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Metaverse is expected to emerge as a new paradigm for the next-generation Internet, providing fully immer-
sive and personalized experiences to socialize, work, and play in self-sustaining and hyper-spatio-temporal
virtual world(s). The advancements in different technologies such as augmented reality, virtual reality, ex-
tended reality (XR), artificial intelligence (AI), and 5G/6G communication will be the key enablers behind
the realization of AI-XR metaverse applications. While Al itself has many potential applications in the afore-
mentioned technologies (e.g., avatar generation, network optimization), ensuring the security of Alin critical
applications like AI-XR metaverse applications is profoundly crucial to avoid undesirable actions that could
undermine users’ privacy and safety, consequently putting their lives in danger. To this end, we attempt to
analyze the security, privacy, and trustworthiness aspects associated with the use of various Al techniques in
AI-XR metaverse applications. Specifically, we discuss numerous such challenges and present a taxonomy of
potential solutions that could be leveraged to develop secure, private, robust, and trustworthy AI-XR applica-
tions. To highlight the real implications of Al-associated adversarial threats, we designed a metaverse-specific
case study and analyzed it through the adversarial lens. Finally, we elaborate upon various open issues that
require further research interest from the community.
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1 INTRODUCTION

In the recent era, metaverse technology is rapidly emerging and there are a lot of potential appli-
cations that can benefit from these developments, such as healthcare, industry, business, and so
on. While there is no single agreed-upon definition of a metaverse [35], the metaverse is a conver-
gence of physical, augmented, and virtual reality and provides a powerfully immersive experience
to users by allowing them to seamlessly interact with the real and virtual (computer-simulated)
world. The term “metaverse” is a combination of two terms, i.e., “meta,” which means transcend-
ing, and “universe,” which refers to the physical universe and the current virtual world. This is the
basic definition of the term metaverse, nevertheless, the literature shows that it does not have a
unified definition [35].

Metaverse allows the creation of shared virtual space by connecting all virtual worlds through
the Internet, where digital avatars (i.e., users) can communicate and interact with each other sim-
ilar to the physical world. Key backbone technologies in the metaverse include artificial intelli-
gence (AI) and extended reality (XR) that leverage different technological developments such
as virtual reality (VR), augmented reality (AR), and mixed reality (MR). In addition, similar
to the current Internet, metaverse will leverage other concomitant technologies such as infor-
mation and communication technologies (ICT), 5G, and 6G, but metaverse will provide a
qualitatively different experience to its users by enabling real-life-like 3-D experiences through
the incorporation aforementioned technologies.

Metaverse allows for the digitalization of traditional brick-and-mortar institutions and busi-
nesses—it will be possible to develop virtual markets, digital lands, and digital infrastructure,
which can be bought and sold using blockchain and non-fungible tokens (NFTs), which are
non-interchangeable units of data stored on a blockchain. Metaverse can be a game-changer in
terms of the impact of its potential applications due to the greater immersion, involvement, and
personalization possible due to AI-XR. This is the prime reason various corporations have shown
great interest in the idealization of the metaverse and are making big bets on developing their own
AI-XR-based metaverse ecosystems.

Metaverse is receiving increasing traction from numerous major tech companies worldwide
such as Facebook (which is recently rebranded with the name “Meta”), Microsoft, Google, and
Amazon. In addition, the widespread adoption of the metaverse is evident in the infusion of bil-
lions of dollars of investments by these companies in an attempt to achieve great technological
transformation. However, despite such huge traction of the metaverse and its potential to trans-
form existing ecosystems like healthcare, there are numerous challenges associated with the use
of Al in the metaverse that may hinder their seamless adoption by end-users in the longer term. In
addition, in the backdrop of recent technologically induced social issues, there is a palpable lack
of trust and confidence in such technologies.

Since technology can be used both ways (i.e., for good and harm), it is vital that governments,
corporations, and society at large seriously consider ethical and moral issues. There are many eth-
ical questions about privacy, security, transparency, accountability, democracy, freedom of speech,
and anonymity that technology alone cannot answer. Some specific concerns related to how Al-
XR-based metaverse applications will impact humanity are: (1) How will AI-XR-based metaverse
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applications impact and promote human values and human rights? How will AI-XR-based meta-
verse promote social welfare and not cause harm to society at large; (3) How can we regulate
critical applications of metaverse like healthcare? (4) How do we align the commercial and techni-
cal imperatives of AI-XR metaverse applications with human values and promote a moral vision
and character development? (5) How do we ensure that AI-XR metaverse application developers
do not exploit or manipulate their users? Keeping in mind the aforementioned questions, in this
article, we present an analysis of the security, privacy, and trust issues associated with the use of
AI-XR in metaverse applications.

Contributions of this Article: To the best of our knowledge, this article is the first attempt towards
analyzing the challenges associated with the use of different Al techniques in AI-XR metaverse ap-
plications. The comparison of this article with existing survey and review articles that are focused
on analyzing security and privacy aspects of AI-XR metaverse applications is presented in Table 1.
In summary, the following are the salient contributions of this article:

(1) We highlight various issues that arise with the use of Al in metaverse applications that
mainly include security, privacy, and trustworthiness.

(2) We present a taxonomy of different potential solutions that can be used to realize secure,
robust, safe, and trustworthy AI-XR applications.

(3) We identify various ML-based use cases across different layers of metaverse architecture and
highlight several ML-associated vulnerabilities at each layer.

(4) We present a case study to highlight the real threat of Al-based vulnerabilities by considering
a prospective metaverse application design scenario.

(5) We elaborate upon various open issues that require further development.

Organization of this Article: The rest of the article is organized as follows: Section 2 presents
relevant background. The discussion of challenges related to security, safety, privacy, and trust is
presented in Section 3. The taxonomy of different vulnerabilities associated with the use of ML
in AI-XR metaverse applications is discussed in Section 4. Different potential solutions that can
ensure security, privacy, safety, and trust in ML applications are discussed in Section 5. Various
open issues that require further research attention are highlighted in Section 6. We conclude the
article in Section 7. The organization of the article is depicted in Figure 1.

2 BACKGROUND
2.1 Metaverse: An Introduction

Before understanding the concept of the metaverse, it is very important to understand the related
concepts that are described below.

— Virtual Reality (VR): In VR, the users achieve an immersive experience by donning a VR
headset that allows them to enter into a virtual (computer-simulated) world thus completely
blanking out the real world. The key objective of enabling immersion in VR is to provide
high-fidelity user interaction to give him the feeling that the virtual world is real [60]. Prime
examples of VR include Facebook Oculus and HTC VIVE VR headrests. VR has a wide range
of applications, but a VR headset is required to enter the digital world.

— Augmented Reality (AR): In AR, the users obtain an immersive experience by blending the
virtual (digital) and the real world and projecting digital content (text, images, and sounds)
onto the real world. Unlike VR, AR can be realized without special equipment (like a headset)
through the use of smartphones, implants, glasses, or contact lenses that are used to overlay
digital content on top of the real world.

— Mixed Reality (MR): MR is a hybrid term that is used to refer to the conjunction of virtual
and real worlds to produce new environments and experiences, where physical and digital
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Table 1. Comparison of our Article with Existing Surveys and Review Papers that Are Focused on
Analyzing Privacy and Security of AI-XR Metaverse Applications

Year Authors Focused Area General Issues | ML Related Issues & Solutions | Background & | Open
S|P R S | P | T | XAI | Ethical Applications | Issues
2018 | Falchuk et al. [45] [ Privacy issues and solutions for digital footprints in metaverse games. MK X x| x| x| x X ~ X
2020 | Guzman et al. [38] | Analyzed privacy and security in MR from data-centric perspective. Vv = x| x| x| x X ~ v
2021 | Ningetal [98] | General focused survey on metaverse with partial discussion on privacy and | ~ | ~ X X[ x[x] x X vV vV
security issues.
2021 | Pietro et al. [40] | Discussed general privacy and security issues in metaverse applications. V]V X x| x| x| x X ~ N
2022 | Huynh etal. [68] | Discussed potential applications of Al in various metaverse applications. x| = X x| x| x| x X v ~
2022 | Zhao etal. [176] | Security & privacy issues and solutions for four dimensions: communication, | v | vV X X x [ x| x X ~ X
user information, scenario, and goods.
2022 | Wang et al. [150] | Presented general (non ML-associated) security and privacy related chal-| v/ | v/ v x| x[x| x X v v
lenges for different metaverse applications.
This article ML-associated security, privacy, and trustworthiness challenges and solutions | v/ | v/ v VIVIV] V v N v
for AI-XR metaverse applications.

Legend: S — Security; P — Privacy; R — Regulatory; T — Trustworthy; 1/ — covered; X — Not Covered; ~ — Partially
Covered.
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Fig. 1. Organization of the article.

objects co-exist and interact in real time (it is an enhanced form of AR). Microsoft HoloLens
headrest is an example MR headset.

— Extended Reality (XR): XR is an umbrella term that encompasses and subsumes VR, AR, and
MR. It covers all the future realities that might emerge from these technologies. XR is pre-
dicted to become a $209 billion market by 2022.

Immersive first-person experiences are one of the most significant aspects of XR, VR, and
AR. The metaverse takes this to the next level, allowing large groups of individuals to share an
immersive first-person experience while maintaining a strong sense of mutual presence. Although
the term “metaverse” is often associated with virtual reality, according to Rosenberg, there are
two types of metaverses: a “virtual metaverse,” in which people are avatars, and an “augmented
metaverse,” in which layers of virtual content are overlaid on the real world and experienced
by real people. Figure 2 depicts XR, VR, AR, and the virtual and augmented metaverse, as well
as their interaction. Metaverse is the next generation of the Internet that will surround us both
graphically and socially. A historical overview of developments regarding metaverse is shown in
Figure 3 and different applications of XR in metaverse along with their enabling technologies are
illustrated in Figure 4(a).

2.2 Metaverse: An Architectural Overview

The architecture of the metaverse expands from people’s experiences to underlying enabling tech-
nologies and has seven layers that include: (1) Experience; (2) Discovery; (3) Creator; (4) Spatial
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Fig. 4. Depiction of XR role in metaverse and different layers in metaverse’s architecture.

Mapping; (5) Decentralization; (6) Human Interface; and (7) Infrastructure, which is illustrated in
Figure 4(b) and described below.

— Layer 1: Experience: It is the topmost layer in the metaverse, which is mainly concerned with
the experiences of the users, and it provides different services to them, e.g., games, E-sports,
social interactions, events, festivals, shopping, co-working.

— Layer 2: Discovery: It is like a push-and-pull service that introduces people to new experi-
ences in the metaverse, such as virtual stores, advertising networks, ratings, social curation
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avatars, chatbots, and so on. It will involve both inbound (i.e., users are actively seeking
information regarding experiences) and outbound (i.e., an advertisement that is not explic-
itly requested by the user). This layer is mainly driven by metaverse service providers and
content creators to inform and motivate users regarding new features and services.

— Layer 3: Creator: This layer is sometimes also referred to as the creator economy. Like the
previous layer, it is mainly driven by the content creator and service providers, who leverage
different technologies to create content or experiences for metaverse users such as asset
markets, E-commerce, design tools, and workflow.

— Layer 4: Spatial Mapping: This layer provides a bridge between the digital world and the
physical world and provides immersive experiences to metaverse users. It consists of dif-
ferent technologies, such as geospatial mapping, object and speech recognition, 3D engines
(for enabling animations), VR, AR, XR, multitasking, and integration of user interfaces and
heterogeneous sensor data (e.g., from IoT and wearable devices). It can be assumed as the
backbone of the creator layer [46].

— Layer 5: Decentralization: Decentralization is very crucial in the metaverse and ideally it
should not be controlled by a single entity. It provides a scalable ecosystem to developers in
terms of providing online capabilities and reliability to the users at the same time. This layer
will consist of multiple technologies that include edge computing, blockchain, microservices,
and Al agents.

— Layer 6: Human Interface: This layer is mainly concerned with the interfacing of the physical
world with the digital and from the digital to the physical world. For example, let us consider
the example of metaverse services that require data collected from humans using different
sensors such as smartwatches, smartphones, smart glasses, wearable IoT devices, biosensors,
and head-mounted displays, just to mention a few.

— Layer 7: Infrastructure: This layer is responsible for connecting different enabling devices
and technologies to the network for content delivery in the metaverse. Different ICT tech-
nologies will act as a backbone in the infrastructure layer of the metaverse. For example,
5G/6G-based communication has huge potential to drastically improve the performance of
metaverse applications while reducing latency and speeding up content delivery. In addi-
tion, this layer will involve major data processing capabilities such as data centers, the cloud,
CPUs, GPUs, and even quantum computers.

2.3 Metaverse: Applications

Metaverse applications that incorporate different technologies such as VR, AR, or XR have vari-
ous potential applications in education, healthcare, industry, and scientific research, just to name
a few. A detailed taxonomy of various potential metaverse applications is illustrated in Figure 5.
Metaverse allows moving from text-focused Internet that supports 2D images to a 3D or even a
4D world (in which we may travel in time (forward or backward)). One of the promising applica-
tions will be social VR, which will be the enhanced version of current social media. As metaverse
can leverage both VR and AR, numerous applications (e.g., voice recognition, gesture recognition,
and speech translation) can benefit [115]. Over the past few years, VR and AR technologies have
become very mature and nowadays their equipment is relatively cheap and readily available. This
is a long way from the modest beginning of AR and VR, which were ignited in the 1960s by Ivan
Sutherland in his pioneering work on the first responsive head-mounted wearable devices, which
were admittedly primitive by modern standards.

Modern VR headsets have become accessible (e.g., Facebook’s Oculus Quest 2 is available
for $300) with the price expected to go down as technology continues to advance. There are nu-
merous AR applications such as Heads-Up-Display (HUD) features on modern luxury cars, the
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use of face filters in apps such as Snapchat, and games such as the addictive Pokémon GO game,
where players could “see” Pokémon characters on the street. Modern mobile phones supporting
Lidar technology now can support AR with new software development kits emerging such as
Google’s AR development platform ARCore, which provides the ability to track motion, under-
stand the environment, and estimate light—three capabilities essential for AR. AR pioneer Louis
Rosenberg predicts that within 10 years, most people will be spending more than two hours every
day in VR, and augmented reality interfaces will replace mobile phones as our primary interface
with digital content.

2.4 Role of Al and ML in Metaverse

Different Al techniques including machine learning (ML) and deep learning (DL) have many
potential applications in the metaverse (as shown in Figure 6). For example, one of the most fas-
cinating features of the metaverse will be voice-based commands that will utilize different voice
recognition and analysis techniques for language processing and understanding human commands.
In addition, metaverse will use different ML/DL-based regression and classification for data man-
agement and decision-making. Also, to provide immersive experiences to the users it will use dif-
ferent generative models to generate photo-realistic avatars and for 3D reconstruction of objects
from 2D images. Below, we discuss the potential applications of ML/DL in the metaverse across
five dimensions.
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2.4.1  Applications of ML in Natural Language Processing (NLP). NLP consists of different tech-
niques that are used for automatically analyzing and understanding human languages (i.e., text
and speech). There are many NLP applications that will be part of AI-XR metaverse applications,
e.g., speech-to-text, text-to-speech, chatbots, and text/speech-based emotion recognition are the
most prominent features of the metaverse. In particular, NLP techniques will be used for the recog-
nition and understanding of complicated human conversations and commands. A key driving force
behind the success of NLP methods is the advancement in ML/DL, with the development of new
techniques such as recurrent neural networks (RNN), long-short term memory (LSTM), and
transformer networks [103].

2.4.2  Applications of ML in Vision. Machine vision or computer vision will be a fundamental
component of AI-XR metaverse applications. Different computer vision applications will enable
various functionalities in metaverse applications, for example, processing visual data from differ-
ent sensors to infer high-level visual semantics. The major tasks of the visual processing pipeline
include understanding users’ activities, emotion recognition, object detection, scene understand-
ing, semantic segmentation, avatar generation, and so on. In addition to these applications, the
metaverse is expected to have Al-empowered quality assessment capabilities, e.g., for satisfying
the users’ demands about viewing high-resolution videos [68]. In this regard, advanced Al methods
can be used to develop quantitative and qualitative benchmarks for visual quality assessment.

2.4.3 Applications of ML in Network Communication. Metaverse is expected to simultaneously
entertain a massive number of users with the metaverse services provisioned mainly through wire-
less networks. Over the past few years, substantial research attention has been devoted to improv-
ing the overall throughput and performance of wireless network communication, and the use of
different Al techniques is the main driving force behind this innovation [32]. Metaverse will mainly
include real-time multimedia services that require a reliable connection, high throughput, and low
latency to ensure a seamless user experience. Therefore, it is expected that the metaverse will
benefit from 5G and beyond empowered communication. The potential of different AI techniques
has already been demonstrated for 5G and 6G, e.g., intelligent resource allocation [129], solving
resource slicing problem [12], channel state estimation [91], network modulation [140], and so on.

2.4.4  Applications of ML in Blockchain. Service providers in the metaverse will provide users
with different incentives in terms of digital assists (e.g., coins) for different events, games, and cre-
ative activities. The dispersion of such assets requires a transparent way to record and track such
transactions. In this regard, smart contracts—empowered blockchain technology can be leveraged
that allows critical information to be stored on an immutable and impenetrable ledger. The decen-
tralized nature of blockchain imbues it with great potential to address security and privacy issues
in the metaverse [27]. This potential increases with Al-empowered blockchain applications [167],
for example, different Al-based clustering and classification techniques can be used for data anal-
ysis stored on blockchain [137]. In addition, different Al techniques can be used for knowledge
discovery and learning, efficient data management, perception, reasoning, and planning.

2.4.5 Applications of ML in Digital Twin. The term digital twin refers to the digital replica (i.e.,
representation) of real objects. A digital twin is capable of synchronizing regular actions, oper-
ations processes, and assets with the real world, e.g., analyzing, monitoring, predicting, and vi-
sualizing [138]. The digital twin also acts as a bridge where the actual world and digital world
interact with each other through different 10T devices [31]. The digital twin will be one of the
most important building sectors of the metaverse that allows users to access and use services in
the virtual world while exactly depicting the real world in a virtual environment. For example,
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surgeons and medical experts can create a digital replica of a patient to study and understand the
involved complexities before performing his surgery.

3 CHALLENGES IN IMPLEMENTING SECURE AND TRUSTWORTHY AI-XR
METAVERSE APPLICATIONS

Despite the significant potential of different AI-XR metaverse applications, there are various chal-
lenges related to security, privacy, and lack of trust that can hinder their wide adoption. A few such
challenges include privacy breaches, security invasion, user profiling, unfair Al outcomes, and so
on. These challenges may directly or indirectly put the users’ safety at risk and can influence
social acceptability [81]. Moreover, as discussed above, metaverse is the integration of different
modern technologies such as Al, blockchain, and 5G/6G, therefore, it is likely that the inherent
issues associated with these technologies get translated into the metaverse. In this section, we de-
scribe different challenges that can hinder the secure, safe, robust, and trustworthy employment
of AI-XR metaverse applications. Specifically, we characterized and discuss these challenges in
two dimensions, i.e., challenges associated with the use of Al techniques including ML/DL-based
methods and XR-related challenges in the metaverse. We will start by first discussing Al-related
challenges.

3.1 Al-associated Challenges in AI-XR Metaverse

Modern Al techniques that include ML/DL-based models suffer from different vulnerabilities that
hinder the smooth, safe, secure, and trustworthy use of these methods in critical applications such
as healthcare, autonomous vehicles, and AI-XR metaverse applications. Below, we briefly discuss
various such challenges.

3.1.1  Privacy Issues. Ensuring the privacy of the end-users will be a major challenge in AI-XR
metaverse applications. As these applications are designed to monitor and collect users’ data at an
unprecedented fine-grained level, in a bid to create a replica of the digital world [45], there is a
greater danger and risk of privacy breaches [150]. For example, to create an immersive virtual scene
in the metaverse, data from different sensors will be collected and analyzed using Al models, e.g.,
facial expressions, brain wave patterns, hand movements, eye movements, biometric, and speech
data [150]. This raises obvious concerns regarding the privacy of users and opens a new horizon
for digital crimes [45]. Users’ sensitive information including daily routine activities, personal logs,
and schedules will be stored on a server, which ultimately becomes a critical privacy challenge
in a publicly distributed network. Such data include body movements, voice, reflexes, and even
more critical data that include subconscious and unconscious responses such as eye movements
and physiological signals. Features such as eye tracking are readily accessible using commercially
available products such as the HTC Vive Pro Eye and Pico Neo VR headsets even though the
XR expert Louis Rosenberg recommends banning such features and data collection in non-health-
related applications for ethical reasons. In general, the data is collected through on-device sensors
at the user site, processed at their devices or nearby local server, and logged as storage in the
cloud. Considering the above-mentioned procedure, some malicious attacks can be encountered,
which are classified as (i) data collection, (ii) data storage, (iii) data usage, and (iv) user profiling.
Furthermore, as AR technology depends on the precise localization of users in the physical world,
modern smartphones use Lidar sensors and Simultaneous Localization and Mapping (SLAM)
algorithms to precisely locate the user in the real world. This opens up the possibility of privacy
violations, as sensitive information may be exploited for anti-social purposes. Some important
concerns related to the privacy of data are described next.
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Data Collection. Generally, the data in AI-XR metaverse applications is collected through users’
input either by voice command or textual input and multi-modal sensors including camera, micro-
phone, textual commands, gesture sensors, and wearable devices. These devices are expected to
frequently collect personal information such as daily routine activities, voice and biometric data,
and personal preferences including shopping items, TV shows, and preferred food choices. In ad-
dition, the private data will be used for the creation of avatars for a digital representation of a
real human in the metaverse, which also raises privacy issues. For example, the built-in location
sensor in the Oculus headset can be used for tracking users’ presence in the real environment with
a precise accuracy [150].

Data Storage. The ultimate aim of developing personalized AI-XR metaverse applications is to
aid human beings and ease their daily routine activities. These applications will contain multiple
sensing devices that generate a substantial amount of data. Whereas these devices will be resource-
constrained with small storage units, which leads to the tradeoff between data generation and
storage at the edge level. To address these shortcomings, these devices upload their data along with
the corresponding logs to online local or global data centers. Though, the data storage tradeoff is
resolved by connecting with the servers. However, it also raises privacy concerns regarding the
access permissions and data protection of the consumers. Also, if the communication channel
is hacked by an attacker, then the data can be manipulated to get the intended outcomes. The
literature suggests that adversaries can extract information regarding the actual data even if the
communication is encrypted and can track the location of the users by realizing different attacks
such as advanced inference attacks [152] and differential attacks [153].

Data Usage and Consent. Continuous data collection through multi-modal sensors including
cameras, microphones, and other sensors will be closely involved in the daily routine activities
of metaverse users. These sensors collect continuous data regardless of privacy awareness, which
is logged over the local or global server(s). Consequently, this procedure raises legal questions
regarding the users’ consent and the kind of data that is collected and shared. Moreover, metaverse
service providers can also utilize this data to optimize their inference models and to make them
robust and more personalized. However, it also raises privacy concerns such as the collection,
disclosure, and sharing of the data without the explicit or implicit consent of users.

User Profiling. Similar to the current social media (in which users are considered as the prod-
uct), everything will be a product alike in the metaverse. Metaverse will act as a meta-platform
for different entities (such as users, developers, content creators, businesses, etc.), and this raises
questions about data collection and its utilization for user profiling [40]. Also, the provisioning
of the metaverse services requires that the users should be uniquely identifiable in the metaverse.
For this purpose, VR headsets/glasses or any other such device can likely be used for illegally
tracking users in real life [127]. Moreover, such devices can be attacked by malicious actors and
can be exploited to track users’ real locations for possible digital and real-world crimes. Guzman
et al. [38] presented a data-centric perspective to avoid unprecedented privacy challenges related
to data collection and its usage in MR.

3.1.2  Lack of Trustworthiness. According to the definition of Trust, expressed by Lee and
See [80], in the perspective of automated systems, “Trust is an attitude that an agent will help
achieve an individual’s goals in a situation characterized by uncertainty and vulnerability” Meta-
verse is a data-driven technology in which service providers will use different automated tools to
assist human beings as a recommendation engine in various domains, e.g., shopping recommen-
dations, movie recommendations, and even recommendations regarding their health. The efficacy
of such recommendation systems is highly dependent on the collection of personalized data for
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intelligent decision-making, e.g., an Al model is trained using the collected fine-grained health
data to suggest more accurate recommendations regarding the well-being of users. Despite the
huge potential of such features of AI-XR metaverse applications, it also raises many questions
about which parameters have influenced the underlying AI model in producing a particular deci-
sion and the trustworthiness of such predictions and decisions. Next, we discuss such challenges
across three dimensions: (i) Truthful AL (ii) Transparency, and (iii) Explainable and Interpretable
Al

Need for Truthful AL The evolution in technology also brings threats among them. Over the past
few years, Al-based personal assistants including Siri, Alexa, Astro, and the like, have managed to
gain wide social acceptance, and these devices are being used by consumers daily for automating
household routine tasks. Currently, misinformation, falsehood, or malfunction in Al-based text or
speech analyses and command execution are not considered a matter of concern. However, it is
expected that Al-enabled intelligent systems with linguistic capabilities will be a major feature of
AI-XR metaverse applications. In this regard, it will be quite challenging to enforce the criterion of
truthfulness in Al-based systems to ensure the safe selection of statements and behavior according
to the social norms of users while interacting with human society.

Transparency Issues. In general practices, developing Al-based systems is about training sophis-
ticated algorithms on large-scale data to learn an efficient and generalizable model that can be
deployed in the real-world environment. However, it is a well-known fact that the performance
of these models is directly proportional to the transparency of training data, i.e., AI models will
perform as well as their training data. Numerous factors such as input data riddled with poor
cleansing, the selection of inherently biased data, underfitting, and overfitting influence the per-
formance of these models and can result in fairness and accountability issues (discussed later in
this section). Unlike typical application development, there are no quality assurance tools avail-
able to spot bugs and evaluate the bias factor in the training data. For instance, if it was known at
which stage the model is going to infer at a perfect scale, then there would not be a need to perform
training on such large-scale data. This process is all about the hit-and-trial procedure, which is a
quite challenging task to identify the right approximations with better data, hyperparameters, and
configuration settings.

Explainable and Interpretable AL The rapid adoption of Al-based applications in human society
has also grown the complexity of the systems, which ultimately requires system understandabil-
ity to make them legitimate and trustworthy. In a critical human-facing technology such as the
AI-XR metaverse, interpretable and explainable Al models are required to answer questions about
accountability and transparency of their decisions and outcomes: for example, how the employed
model reached the decision and which factors influenced the models to make that decision [8]. Such
questions are particularly important for human-centric applications where the potential impact of
AT will be limited if it is not able to provide accurate and transparent Al predictions. Therefore,
the key objective of these models is to develop a relationship of trust between human users and AL
Also, in Reference [88], explainability is described as an inherently human-centric property. How-
ever, one of the main challenges in developing explainable methods is the tradeoff between achiev-
ing the modesty of an algorithm and ensuring the discretion of sensitive user data. In addition, it is
a challenging task to identify the right information while generating a simple yet useful explana-
tion for users. It is worth noting that the terms interpretability and explainability are closely related
and are often used interchangeably in machine learning literature, however, these terms are dif-
ferent in practice. Interpretability of the models is defined as the extent to which its outcomes are
predictable, i.e., for a given change in the input or model parameter(s), the interpretability enables
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us to predict the respective change in its output. On the counter side, explainability deals with the
explanation of internal processes of the ML/DL models in a human-understandable way.

In the literature, various studies have been presented that aim to understand and identify the re-
quirements for XAI from a human perspective. For instance, Liao et al. [87] developed an algorithm-
informed questionnaire to be asked by various AI developers during semi-structured interviews
to identify the gap between the current XAI work and practices to develop user-centered XAI sys-
tems. The study concluded that the current research in XAI lacks an understanding of real-world
users’ needs and requirements for enhancing transparency in Al. Furthermore, the authors sug-
gested a way forward to reduce this gap that includes addressing users’ needs and reducing the gap
between algorithmic output and developing human-understandable explanations. Similarly, the au-
thors in Reference [88], presented an overview of existing XAl literature from a human-centered
perspective. Specifically, they considered the following questions: What is the role of human-
computer interaction (HCI) techniques in shaping XAI research? Furthermore, they highlighted
three roles that the HCI technique plays in navigating, assessing, and expanding XAl research that
includes: (1) Understanding all Al stakeholders’ needs for diverse explainability; (2) Identifying
limitations by considering the gap between the explainability and actionable understanding; and
(3) Performing theoretical analysis of human explanations, behavioral, and cognitive processes to
develop novel computational frameworks to foster enhanced compatibility between humans and
XAL On a similar note, T. Miller emphasized the need to leverage and incorporate insights from
various social sciences including psychology, philosophy, and cognitive science to define expla-
nations for XAI [95]. Considering these fields, the author also provided a detailed overview of
existing literature related to human explanation along with providing insights about how these
existing methods can be incorporated into XAI systems.

3.1.3 ML Security Issues. Despite the state-of-the-art performance of modern Al techniques in-
cluding DL-based systems, it has been shown that these models are highly vulnerable to carefully
crafted adversarial perturbations known as adversarial ML attacks [136]. The threat of these at-
tacks has been already demonstrated for many critical applications such as healthcare, autonomous
vehicles, and so on. On a similar note, AI-XR metaverse applications are essentially critical, as they
involve humans, and ensuring their safety from any harm is profoundly important. On the counter
side, the existence of these challenges raises many concerns about the safety, security, and robust-
ness of Al-based metaverse applications, thus hindering their practical deployment. As it is equally
important that any Al-based system should be equally trusted by all stakeholders involved includ-
ing service providers, developers, and end users. These challenges are detailed later (Section 4).

3.1.4  Lack of Fairness and Accountability. Modern Al methods, like advanced DL models, lack
fairness and accountability in their decisions [111]. However, such questions are particularly
important for critical applications like AI-XR, in which the model’s decisions can have life-
threatening consequences for the end-users. Moreover, Al models are developed using training
data, which will be mainly collected from human users in AI-XR metaverse applications for pro-
viding immersive experiences. Humans possess certain biases that will be readily reflected in the
data they generate, and when this data is used for training Al models, the data bias will be directly
translated into the developed Al-based system. As a result, the model will be biased towards cer-
tain samples that contain certain features (bias), and its decision will not be fair. On a similar note,
the critical nature of AI-XR metaverse applications demands accountable decisions. Consequently,
data bias if remained unaddressed can ultimately lead to unintended consequences [79].

3.1.5 Identity Theft and Authentication Attacks. Users’/avatars’ identities in the metaverse can
be stolen or impersonated illegally, leading to authentication and access control issues in the

ACM Computing Surveys, Vol. 56, No. 7, Article 170. Publication date: April 2024.



Secure and Trustworthy AI-XR for Metaverses 170:13

interconnected virtual worlds. Identity theft in the metaverse will be more dangerous than tradi-
tional attacks. The identity of a user once stolen will reveal everything about that person’s digital
assets, avatars, and social relationships. The attackers can exploit different vulnerable VR gadgets
and other service authentication loopholes to realize identity theft attacks and can steal the vic-
tim’s secret keys of digital assets and bank details. It has been reported that about 17 users in the
OpenSea NFT marketplace were hacked through a phishing attack and flaws in the smart contract
that resulted in a loss of $1.7 million.!

Metaverse will leverage different biometrics and password-driven technologies to authenticate
users and their avatars in the virtual worlds. The attacker can evade such authentication systems
to impersonate real users’ identities to get control of the whole virtual world. Evading Al-based
biometric systems has become easier with the advancements in adversarial ML research. Therefore,
Al-empowered speech-and-face-recognition-based biometric systems can be easily attacked to re-
alize impersonation attacks. Once the attacker has access to the metaverse, it can exploit the data
generated by the victim’s devices to deceive him, committing a crime in the virtual space. How-
ever, the exposure of biological data when used for authentication purposes can also lead to severe
consequences [77]. Moreover, the authentication of social friends of a user using their avatars is
much more challenging in the metaverse as compared to real-world identity authentication. In
this regard, facial data, voice, and videos can be used to develop an Al-based avatar authentication
system, however, the unsolved inherent issues of Al can still hinder its practicality.

3.1.6  The Bias Problem. Bias refers to a model making certain unethical assumptions about the
data. Human bias along with its many aspects has been studied by researchers in many disciplines,
including law, psychology, and so forth. In Reference [99], bias is defined as “the prejudice or incli-
nation of a decision made by an Al system which is in a way considered to be unfair for or against
one person or group.” Bias in recommendation systems, advertising algorithms, facial recognition
systems, and risk assessment tools has been widely studied in recent years. In metaverse applica-
tions, data will be collected from a heterogeneous group of people and sources having their own
characteristics, stereotypes, and behaviors, which introduces different biases in the collected data.
In References [93, 102, 135], the authors discuss different kinds of bias based on the sources and
the types of bias. On the base of sources, these biases have been divided into further categories:
biases caused by data, biases caused by algorithms, and biases caused by user interaction.

3.2 XR-related Challenges in Metaverse

AI-XR metaverse applications are essentially human-centric, and ensuring the security, privacy,
security, and robustness of such applications is of utmost importance. It has been envisioned that
an entirely new form of digital media will emerge from the use of VR and AR in the modern
metaverse (TV, print media, and the web). In recent years, there has been immense discussion
regarding the concerns about surveillance capitalism, which is happening on the Internet in dif-
ferent applications. Many large tech organizations providing Internet services, such as Facebook,
Google, Microsoft, and Amazon, collect large amounts of data related to the surveillance of their
users, which is then used to satisfy the needs of advertisers [146]. The pioneers of VR and AR such
as Jaron Lanier [78] and Louis Rosenberg? have predicted that the concerns about surveillance are
expected to rise in metaverse. For example, it has been shown how reconfiguring AR in Pokémon
Go (an AR mobile game) drew unexpected audiences to museums and public spaces like trains to
fill in the space thus creating a form of virtual trespassing. It has been reported that people were

Uhttps://threatpost.com/nft-investors-lose- 1-7m-in-opensea-phishing-attack/178558/
Zhttps://bigthink.com/the-future/metaverse-augmented- reality-danger/
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putting their lives in danger to pursue virtual characters. This highlights that safety concerns may
arise when such immersive technologies are engineered for gaming and experiences. Below, we
discuss the key challenges that are hindering metaverse applications in general and we will later
discuss the specific challenges that arise with the use of different Al techniques in metaverse ap-
plications (Section 4).

3.2.1 Safety Issues. There are various concerns regarding the mental and physical safety of
metaverse users. There are several reported incidents of digital harassment, theft, and bullying in
XR applications [92]. The report on “Immersive and Addictive Technologies” highlights rampant
incidents of sexual harassment, cyberbullying, and grooming online [100]. Ensuring the safety of
users is a major challenge for AI-XR metaverse applications because of the fact that such inci-
dents have real damage and harm to users despite being experienced in the virtual world. The
avatars generated using recent advancements in Al techniques, in particular, generative models,
can appear more realistic in AI-XR metaverse applications and can engage users in promotional
conversation, thus providing a false sense of a real human behind the avatar. The avatars in such
a promotional content are fueled with more personalized data (such as your vitals, emotions, ex-
pressions, etc.) to look more realistic. Also, these sales avatars can pitch products to you more
persuasively than any real salesman or even a recommendation system due to their access to rich
cyber-physical data about you. The research in deep fake technology and photorealistic avatars
is already at the stage where computer-generated content is indistinguishable from the real. Such
advancements can be leveraged to realize an adversarial attack on AI-XR metaverse applications
to get the intended behavior and outcomes.

3.2.2  Potential Antisocial Aspects. There are various opinions regarding the antisocial aspects
of AI-XR metaverse applications. Many people think that introducing AI-XR metaverse may de-
tract the users (humans) from their purposes and may have a somatic effect. In the literature, it
has been shown that extended times online can result in users demonstrating post-VR sadness and
detachment from reality. For instance, Aldous Huxley in 1932 wrote in his social science dystopian
fiction novel that using technology can lead to self-inflicted harm that can influence people to be
diverted from their higher priorities and become more prone to being influenced by other inter-
ests. As a result of such a quest for technological utopia, the human psyche and society as a whole
are greatly afflicted. Social critics have long argued that various digital media, such as television,
the Internet, and the Web, make people docile and less connected to the real world. For example,
Jerry Mander in 1978 wrote in his book Four Arguments for the Elimination of Television that TV
removes the sense of reality from people, promotes capitalism, can be used as a scapegoat, and
all these three factors work together negatively. The modern technological disruptions including
the web and social networking services have created a filter bubble detaching people from the real
world and the truth. Due to these reasons, the current era is also referred to as a post-truth era [51].
We may reasonably expect that alienation from the real world will exacerbate with the increasing
adoption of VR, AR, and AI-XR metaverse applications, which aim at changing the human per-
spective of the world. This argument can be supported by the fact that, in 2018, the World Health
Organization formally included “gaming disorder” in its International Classification of Diseases
following research that shows that technology can promote addictive behavior in people. More-
over, the literature focused on analyzing the social implications of metaverse argues to understand
and identify potential psychological problems that can arise in metaverse [23].

3.2.3  Ethical Aspects. Any technological intervention involving humans suffers from some se-
rious ethical issues, especially the one that contains intelligence. The Institute of Electrical and
Electronics Engineers (IEEE) has recently published a report on Ethically Aligned Design that
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mainly focuses on the Ethics of Autonomous and Intelligent Systems [126]. This report empha-
sizes the need of developing ethical autonomous and intelligent systems (A/IS) that promote
human well-being and protect human rights through transparent and accountable A/IS and the
prevention of the misuse of Al This report is the collective effort of hundreds of researchers
having diverse backgrounds and expertise in important areas such as governance, technology,
civil society, and policy-making. This report has a dedicated section on XR and, interestingly, IEEE
also has a Global Initiative on Ethics of XR.> In this report, various ethical issues related to XR
have been highlighted, including users’ preference for virtual life over the real world and complete
disengagement with society. In addition, the reports conclude with the following remark regarding
XR: “The nature of XR environments fosters unique legal and ethical challenges that can directly
affect users’ privacy, identity, and rights. Society will need to rethink notions of privacy, accessibility,
and governance across public and private spaces. New laws or regulations regarding data ownership,
free use, universal access, and adaptive accessibility within XR environments may need to be
developed.”

3.24 Regulatory Challenges. The big tech companies have resisted regulation, decrying the
fact that regulation will slow down innovation. However, there are various ethics researchers and
social scientists who are arguing for much greater regulation to ensure that consumer rights are
protected. In this regard, the EU General Data Protection Regulation (GDPR) has paved the
way for many countries and regions attempting to develop similar regulatory laws to protect In-
ternet users. These regulations mainly emphasize the importance of the non-profiling of users (i.e.,
limiting the storage of tracking data) and for better transparency (i.e., online services and applica-
tions should specify why and what information is being stored). On a similar note, AI-XR meta-
verse applications are subject to the requirement of being transparent in terms of data collection
and utilization and should also be subject to the informed consent of users. Also, the development
of such applications requires thoughtful deliberation from a regulatory perspective. For instance,
it is worth considering banning non-medical applications to collect vital biomedical statistics due
to the high risks of being exploited maliciously. To mitigate the risk of users being manipulated
deceptively, metaverse operators may be bounded to transparently declare the staging of virtual
products and experiences in the metaverse. Rosenberg, one of the pioneers of VR and AR, has al-
ready started to argue about the need for regulation for metaverse applications [118]. For instance,
he suggested leveraging the arguments regarding the regulation of social media for developing
a legal and philosophical basis for metaverse regulation. As the metaverse can be deemed as an
evolutionary expansion of similar services. Rosenberg argued that the only solution to eliminate
ethical and privacy-related concerns associated with metaverse is to shift from an advertising-
based to a subscription-based business model in which users pay a subscription fee for accessing
the metaverse platform. This eliminates the service providers’ need to monitor their user base to a
greater extent, however, this is not a feasible solution, as it is difficult to say whether or not users
will pay for a safer metaverse.

4 ANALYZING SECURITY AND TRUSTWORTHINESS ASPECTS OF AI-XR

In this section, we will discuss the challenges associated with the use of different Al techniques (in
particular, ML/DL-based models) that hinder the safe, secure, and trustworthy deployment of these
methods in metaverse applications. We start by first providing a broad overview of Al security in
the metaverse.

Shttps://standards.ieee.org/industry-connections/ethics-extended-reality/
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Fig. 7. Overview of ML security in metaverse.

4.1 Security of ML in Metaverse

The impact of metaverse applications will be social and economic, and these applications will be
more susceptible to undesirable adversarial action(s). AI will be the fundamental driving force
behind the success of the metaverse, and there are numerous applications of Al in different layers
of the metaverse. However, the use of Al algorithms in AI-XR metaverse applications also opens
them up to different adversarial attacks. In Figure 7, we highlight the threat of different security and
privacy attacks that can be realized in different applications in almost every layer of the metaverse.
The figure also highlights that there are various common ML security issues and attack surfaces
that get shared across the architectural landscape of the metaverse across different Al applications
at each level. In this section, we discuss different Al-associated security and privacy attacks on
AI-XR metaverse applications.

4.2 Potential Attacks on Al-based Metaverse Applications

The threat of adversarial ML attacks has already been shown to be successful in compromising the
integrity of Al techniques in many critical tasks, e.g., connected and autonomous vehicles [112],
computer vision [4], and healthcare [111], just to name a few. Furthermore, AI-XR algorithms could
be biased either due to data imbalance or adversarial subversion. Many of the ethical dilemmas
and social harms such as distraction, narcissism, disinformation, outrage, and polarization stem
from the economic model of surveillance capitalism in which service providers give the customers
everything and anything that makes the company money. In this way, these companies pander
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to the base animal desires of people and exploit their cognitive biases, effectively downgrading
humans and manipulating them for ulterior selfish purposes.

In the adversarial ML literature, an adversarial example is defined as the input to the deployed
Al model crafted by an adversary by introducing imperceptible noise into the legitimate sample to
get the intended outcomes. In general, there are two types of adversarial ML attacks: (1) poisoning
attacks that aim at altering the training process of the Al model; and (2) evasion attacks that are
focused on evading the deployed Al model by making inferences (they are also known as inference
time attacks). In poisoning attacks, the adversary mainly modifies the training data to tamper with
the learning of the Al model [17]. In contrast, test data is manipulated in evasion attacks to get the
desired predictions from the model [16]. Recent works have shown that Al models are vulnerable
to attacks at both training and inference stages [75]. Training stage attacks typically corrupt a
small subset (typically ~1%) of the training data samples to achieve malicious goals during Al
model training [11, 57]. However, the inference stage attacks cause a trained model to misbehave
on adversarially crafted test inputs [9, 10].

Attacks on Al models are generally carried out by first defining a threat model. A threat model is
a set of assumptions regarding the attackers’ abilities to access and affect a typical Al model train-
ing pipeline. Broadly, there are two main threat models—the poisoning threat model (i.e., realizing
poisoning attacks) and the adversarial threat model (realizing evasion attacks). A poisoning threat
model assumes an attacker who can control a small set of the training dataset to adversely affect
the training of the model. An adversarial threat model assumes an attacker who can access and,
to a certain extent, perturb the inputs to an already trained Al model. In the following, we high-
light major security threats associated with the use of Al techniques in metaverse applications that
include computer vision, NLP, network communication, authentication, and recognition systems.

4.2.1 ML-associated Security Issues in Computer Vision. Computer vision is one of the central
building blocks in the foundation of the metaverse. In recent years, DL algorithms have enabled
major advances in computer vision ranging from image classification [25, 39] to scene understand-
ing [26, 36] and generating realistic images [158]. However, the discovery of the adversarial vulner-
abilities of DL-based image processing models by Szegedy et al. [136] sparked a growing concern
regarding the reliability and security of these deep models [7, 76, 143, 145]. Numerous works have
analyzed these adversarial vulnerabilities in greater depth under different threat models [75]. In
general, adversarial attacks work by optimizing the perturbation, Ax, to an input image, x, such
that the output of the model, ¥, is significantly changed, maximize ||7 (x) — ¥ (x + Ax)||. Ax is
typically optimized based on the gradients, which are either computed directly (white-box sce-
narios) or estimated by introducing random noise (black-box scenarios). A summary of various
adversarial ML attacks on different computer vision applications can be seen in Table 2.

4.2.2  MlL-associated Security Issues in NLP. Similar to the vulnerabilities of ML models for vi-
sion applications, the literature demonstrates that the ML methods for modeling NLP tasks are
also vulnerable to malicious attacks, at both the training and the inference stages of a typical ML
pipeline [9, 11]. Below, we discuss such attacks.

Poisoning and Trojaning Attacks: Poisoning attacks and trojaning (also known as backdoor) at-
tacks are the most widely known training stage attacks in NLP. Poisoning attacks aim to tamper
with the training of the model so it is unable to perform satisfactorily on the test inputs [17, 96, 134].
Trojaning attacks aim to insert a trojan—typically characterized by a specific pattern of words
known only to the attacker in the input sequence—into a model such that the model behaves nor-
mally on natural test inputs but malfunctions as desired by the attacker (through the use of the
trojan pattern of words [57, 125]). Similar to the case with the computer vision applications, the
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Table 2. Summary of Different Adversarial Attacks on Various Computer Vision Applications (that Are
Expected to be Potential Metaverse Applications)

Application Authors Methodology Datasets Before — After
Goswami et al. [55] Studied how different architectures affect adversarial | MEDS, PaSC 89.3% — 41.6%
Face Authentication vulnerabilities.
Sharif et al. [128] Developed adversarial glasses to fool face recognition | Celebrity Face 98.95% — 0%
systems.
Shen et al. [130] Developed black-box attack for face recognition sys- | CusFace, LFW 100% — 7.9%
tems using visible light.
Chatzikyriakidis et al. [30] | Perturbed facial images to fool automatic face recogni- | CelebA 97.8% — 4%
tion to secure a person’s identity.
Dabouei et al. [37] Studied the vulnerability of face recognition systems | VGGFace2 100% — 0.14%
against geometrically perturbed faces.
Zhong et al. [177] Used dropout and feature-Tevel attacks to improve the | VGGFace2 100% — 3.24%
transferability of adversarial inputs.
Dong et al. [41] Used evolutionary algorithm to find adversarial inputs | LFW 100% — 0%
against the models’ decisions.
Wenger et al. [155] Proposed improved physically realizable attack against | VGGFace 100% — 10%
face recognition.
Ali et al. [11] Proposed multi-trigger backdoor attack against back- | Celebrity Face 88% — 8%
door defenses.
Xue et al. [166] Exploited hidden facial features as triggers of the back- | VGGFace 100% — 0.02%
door attack.
Zhang et al. [173] Proposed generalizable contextual adversarial perturba- | PascalVOC, COCO | 78.8% — 1.6%
Object Detection tions against object detectors.
Lee et al. [82] Showed that non-overlapping physical patches can fool | COCO 55.4% — 0.05%
object detectors.
Xie et al. [161] Proposed multi-targeted adversarial attacks to fool ob- | PascalVOC 72.07% — 3.36%
ject detectors.
Xie et al. [161] Showed that multi-targeted adversarial attacks against | PascalVOC 54.87% — 37.9%
object detectors are transferable.
Wei et al. [154] Utilized generative methods to efficiently obtain trans- | PascalVOC 43% — 3%
ferable adversarial inputs.
Wang et al. [151] Utilized position and label information to attack black- | PascalVOC 100% — 16%
box object detectors.
Wu et al. [157] Leveraged natural rotations to insert a backdoor into | PascalVOC 89.5% — 4.45%
the object detectors.
Wang et al. [148] Optimally generates adversarial perturbations against | KITTI 84% — 0%
3D-Object detectors.
3D-Object Modelling Xiang et al. [159] Generated 3D adversarial point clouds against Point- | ModeINet40 93% — 0%
Net model.
Hamdi et al. [61] Exploited an auto-encoder to generate transferable 3D | ModeINet40 93% — 5%
adversarial perturbations to point cloud.
Meloni et al. [94] Used off-the-shelf 3D surrogates to transfer attack on | N/A 100% — 0%
3D object models.
Lietal. [85] Proposed a novel formulation to develop backdoor trig- | ShapeNetPart 98.4% — 0.5%
gers against 3D point cloud models.
Arnab et al. [13] Performed an in-depth study of adversarial vulnerabili- | Cityscapes 77.1% — 19.3%
ties of semantic segmentation models.
Semantic Segmentation Xie et al. [161] Proposed multi-targeted adversarial attacks to fool se- | PascalVOC 72.07% — 3.36%
mantic segmentation models.
Hendrik et al. [64] Analyzed universal adversarial perturbation to fool a | Citscapes 64.8% — 12.9%
segmentation model for any input.
Lietal. [86] Poisoned the segmentation models using object-level | ADE20K 37.7% — 25.2%
target class and semantic triggers.
Feng et al. [48] Proposed frequency-injection backdoor attack against | KiTS-19 545% — 21.1%
medical image segmentation tasks.

trojaning attacks, being more difficult to be detected as compared to the poisoning attacks, pose a
greater threat to NLP applications in the metaverse.

Adversarial Attacks. Although adversarial examples have been extensively studied in computer
vision, they have received significantly limited attention in NLP tasks mainly due to the discrete
input search space—minimal adversarial perturbations in the input are no longer feasible in NLP [8,
9]. Recently, however, there have been numerous works highlighting the adversarial vulnerabilities
of the NLP-based ML models. Notable adversarial attacks include Text-bugger, Text-fooler, PWWS,
and BERT Adversarial Example (BAE).

Adversarial attacks against NLP models generally follow three major steps—evaluation, per-
turbation, and selection—to achieve some adversarial goal—for example, targeted or untargeted
misclassification—under a predefined threat model. Consider, for example, an input sequence
X ={x1,x2,...,%i,...,%x,} correctly classified by an NLP model, ¥, in class, ¥ (X) =y € RM, At
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Table 3. Summary of Different Adversarial ML Attacks on Various NLP Applications

Application Authors Methodology Datasets Before — After
Language to Language Modelling Zhand et al. [175] | Proposes wo.rd saliem.:y speedup local search method to at- | NIST (MT) 92.48% Degradation
tack translation machines.
Boucher et al. [22] | Uses invisible characters, homoglyphs, and deletion control | WMT14 37% — 1%
characters to fool the model.
Lietal. [84] Exploits BERT-MLM to fool a fine-tuned BERT model by | AG news 94.2% — 10.6%
generating coherent perturbations.
Ali et al. [10] Proposes an adaptive adversarial attack to generate pertur- | Kaggle Fake news | 95% — 0%
bations against statistical defenses.
Fake-news Detection Jinetal. [71] Identifies key contributing words and replaces them with | Kaggle Fake news | 96.7% — 15.9%
synonyms while retaining the coherence.
Zellers et al. [172] | Presents a generative model, Grover, to generate fake news | Not applicable 95% — 67%
that fools fake-news detectors.
Pan et al. [104] Exploits linguistic styles as triggers to backdoor an NLP | COVID 95.1% — 6.7%
model.
Garg et al. [53] Exploits BERT-MLM to generate adversarial perturbations | Amazon 96% — 11%
that are coherent with the context.
Boucher et al. [22] | Uses invisible characters, homoglyphs, and deletion control | Wikipedia Detox | 95% — 19.5%
Toxicity/Sentiment Classification characters to fool the model.
Ebrahimi et al. [44] | Leverages atomic flip operation to swap tokens to fool NLP | AG news 92.35% — 27.7%
fake news classifiers.
Li et al. [83] Exploits model gradients to find and perturb the most posi- | IMDB 90.7% — 0%
tively contributing words.
Li et al. [84] Exploits BERT-MLM to fool a fine-tuned BERT model by | IMDB 90.9% — 11.4%
generating coherent perturbations.
Jinetal. [71] Identifies key contributing words and replaces them with | Yelp 93.8% — 1.1%
synonyms while retaining the coherence.
Chen et al. [33] Uses char- and word-level triggers to backdoor NLP senti- | SST-5 55% — 0%
ment classifiers.
Irtiza et al. [70] Proposes a context-aware hidden trigger backdoor attack | IMDB 84.5% — 2.48%
against NLP classifiers.

the evaluation stage, the attacker uses some impact scoring function to compute a set, I, represent-
ing the impact of each word over the output. At the perturbation stage, the attacker repeatedly
perturbs the most impactful words in I, using some pre-defined perturbation mechanism such that
the semantic and contextual value of X remains preserved. At the selection stage, the most optimal
perturbation is selected. Table 3 provides a summary of various adversarial ML attacks on different
NLP applications.

4.2.3  MlL-associated Security Issues in Networking. AI-XR metaverse applications will provide
ubiquitous connectivity to a massive number of users over wireless networks. Over the past few
years, many Al-based algorithms have been developed to improve the performance of wireless
communication and networking systems that will be used in different layers of network architec-
ture [32]. The use of Al in wireless communication empowers wireless devices to perform many
important intelligent functions such as network composition, analyzing traffic patterns, managing
content requests, analyzing wireless channel dynamics, and so on. Moreover, Al-based algorithms
have been used for optimizing different network constraints such as high throughput and low la-
tency for different multimedia applications. A prominent use case is to leverage intelligent proac-
tive load management in 5G and 6G communication networks and predictive data analytics to im-
prove network operations. Despite the significant potential of using various Al algorithms for dif-
ferent optimizing applications in wireless networks, recent studies have highlighted that Al models
are highly susceptible to adversarial ML attacks. For instance, Usama et al. [141] used a genera-
tive adversarial network (GAN) for realizing adversarial attacks on network intrusion detection.
The threat of adversarial ML attacks on network traffic classification is demonstrated in Reference
[144] and for cognitive self-driving networks is presented in References [143, 145]. Similarly, the
threat of adversarial ML for 5G networks is analyzed in Reference [142]. A summary of various
adversarial ML attacks on network applications is presented in Table 4. We refer interested readers
to a detailed survey highlighting the threat of adversarial ML in network security [69].

In addition to the above-motioned adversarial vulnerabilities associated with the use of Al tech-
niques in many network applications, some other critical network-related issues can hinder the
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Table 4. Summary of Different Adversarial ML Attacks on Different Networking Applications

Application Authors Methodology Datasets Before — After
. . Usama et al. [141] | Exploited GAN to craft adversarial KDD99 89.12% — 56.55%
Intrusion Detection . . .
examples to evade intrusion detection
model.
Aiken et al. [3] Perturbed a few features to evade four KDD99 100% — 0%

ML classifiers trained for detecting
DDosS attacks.

Network Traffic Classification | Usama et al. [144] | Crafted adversarial examples using UNB-CIC Tor Data 96% — 77%
mutual information in black-box
settings.
Modulation Classification Usama et al. [142] | Used C&W attack to evade traffic RML2016.10a 85% — 15%
modulation classifier.
Sadeghi et al. [121] | Realized white-box and black-box GNU Radio 75% — 38%

attacks on VT-CNN model using
PCA-based perturbations.
Network Modulation Usama et al. [142] | Realized black-box attack on channel RML2016.10a 95% — 80%
autoencoder on unsupervised and DRL
models.

Malware Classification Usama et al. [143] | Realized three SOTA adversarial ML Malware Image Data [145] | 98.39% — 1.87%
attacks, i.e., FGSM, BIM, and JSMA.
Abnormal KPI Detection Usama et al. [145] | Leveraged two SOTA attacks to evade LTE network data 98.8% — 13.7%
ML-based abnormal KPI detection
classifiers.

Channel State Estimation Sagduyu et al. [122] | Realized three attacks: spectrum Not Articulated 95.58% — 23.12%
poisoning, jamming, and priority
violation.

smooth operation of the metaverse at a global level. For instance, centralized network architecture
provides flexibility in terms of cost-saving, simplicity, and ease in performing different operations.
However, such architectures are more prone to a single point of failure (SPoF) and distributed
denial of service (DDoS) attacks [149]. For example, if a powerful attacker gets control of the net-
work, then it may lead to severe challenges such as SPoF and DDoS. To address such issues, the lit-
erature suggests leveraging decentralized network architecture [97]. In addition, decentralization
will potentially amplify the transparency and trust of users in exchanging their virtual belong-
ings (such as digital assets and virtual currencies) among each other and across different virtual
worlds in the metaverse. However, many issues arise with the use of decentralized approaches,
e.g., reaching a consensus on an ambiguous operation among the huge number of entities in a
dynamic metaverse. DDoS: Metaverse will include a massive number of IoT devices, which can
be compromised by an attacker to form a botnet to realize DDoS attacks [15]. Sybil Attacks: In a
Sybil attack, the adversary pretends to have fake (or manipulated) identities of legitimate users or
devices. Using such stolen identities, he can take over the network.

4.2.4  Security Issues in Cloud-hosted ML Models. Outsourcing the training of ML/DL models to
third-party services that offer powerful computational resources on the cloud is prevalent nowa-
days. These services allow ML developers to upload their data and models for training over their
cloud platforms. It is expected that such services will be featured in AI-XR metaverse applications,
as they provide the flexibility of developing Al models using sufficiently large training datasets
while reducing the cost and time. However, the literature demonstrates that such services are vul-
nerable to a variety of attacks, such as backdoor attacks [34], exploration attacks [124], model
inversion [168] and model extraction attacks [74], and so on. More details about various attacks
and defenses for cloud-hosted ML models can be found in Reference [109]. Visual illustration of
adversarial ML attacks on different potential applications in the AI-XR metaverse is presented in
Figure 8.

4.3 Attacks on VR

The literature highlights that VR systems are vulnerable to adversarial attacks. For instance, Casey
etal. [29] demonstrated that humans in VR systems can be controlled like joysticks—thus providing
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Fig. 8. lllustration of adversarial ML attacks on different potential applications in AI-XR metaverse. Individ-
ual figure references: Image Recognition [136]; Speech Recognition [113]; Malware Detection [165]; Semantic
Segmentation [50]; Speaker Identification [162]; Fake News Detection [9]; Object Detection [151]; and 3D
Object Modeling [148].

the adversary the ability to control the movement of VR user without his consent or getting into his
knowledge. Moreover, the literature suggests that both security and privacy attacks can be realized
on VR/XR systems [147]. Therefore, developing secure and robust AI-XR metaverse systems is
crucial to the widespread adoption of metaverse applications that are not vulnerable to adversarial
attacks or are capable to withstand such attacks and mitigate their impact.

4.4 Analyzing Implications of ML Security, Privacy, and Trust Issues: An Al-XR Case
Study

In this section, we present an ML/DL-based pipeline for a potential AI-XR metaverse application
use case. We then analyzed various challenges and threats that can arise at each development stage.
The pipeline is developed while considering a general metaverse application—a virtual conference,
in which the participants are remotely connected from different places (the pipeline is presented in
Figure 9). A unique avatar is representing each participant while each avatar is expected to reflect
real-time voice, facial expressions, and gestures. The voice of each participant is translated into
the native language of all the participants along with generating the transcription. The pipeline
depicts different ML/DL-empowered tasks: (1) 3D/4D Visual Reconstruction—responsible for gener-
ating photo-realistic avatars; (2) 3D Visual Mapping—to reflect real-time multi-modal expressions
(i.e., audio, facial, and gestures, etc.); (3) Speech Recognition and Synthesis—to interpret and trans-
late the voice of recipient into other languages; and (4) Speech-to-text Synthesis—to generate the
transcription of audio conversations of all members.

As depicted in Figure 9, data acquisition is performed by collecting raw audio input through a
microphone for NLP, whereas, depth cameras and laser scanners are used for 3D/4D visual recon-
struction and mapping. In the next step, acquired data is pre-processed through several techniques,
including data denoising, deblurring, silence removal, and so on. The processed data is then la-
beled for the training of ML/DL models in a supervised/semi-supervised learning fashion. After
successful data preparation, 3D visual mesh construction and segmentation models are trained
to perform 3D avatar reconstruction. However, acoustic and language models along with neural
vocoders are trained to perform multilingual translation and transcription tasks. Although, in the
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Fig. 10. An abstraction of different ML-associated challenges along with a taxonomy of various solutions
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literature, these pipelines have demonstrated significant performance in 3D reconstruction and
NLP tasks, however, they are highly exposed to various privacy and security attacks at each stage
of the development pipeline (as shown in Figure 9).

5 TOWARDS DEVELOPING SECURE AND TRUSTWORTHY AI-XR

The development of secure, safe, and trustworthy AI-XR metaverse applications is fundamentally
very important, in this section, we will discuss different potential solutions that can be leveraged to
address challenges associated with the use of Al in particular and for the overall system in general.
An abstraction of different techniques that can be leveraged to address the ML-associated issues
is shown in Figure 10, and these methods are described next.
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5.1 Solutions for Privacy Protection in AI-XR

In the literature, privacy-preserving techniques are broadly categorized into three classes: (i) cryp-
tographic techniques, (ii) differential privacy, and (iii) federated and distributed ML, which are
briefly discussed below.

5.1.1 Cryptographic Techniques. Cryptography refers to a practice of methodologies, aiming
to construct and analyze communication protocols to ensure secure communication while achiev-
ing data integrity, authentication, non-repudiation, and data confidentiality. Generally, there are
two common types of encryption methods: (i) symmetric encryption and (ii) asymmetric encryp-
tion method. The symmetric encryption method is a secret-key algorithm, in which the sender
and receiver must share the same key to perform encryption and decryption of the data. Whereas,
asymmetric encryption method (also known as public-key cryptography) uses two keys, i.e., public
and private key, associated with an entity that requires to authenticate its identity electronically
or encrypt data. The public key of each entity is published, whereas, the corresponding private
key is always kept secret to perform encryption or decryption of data. In literature, Ron Rivest,
Adi Shamir, and Leonard Adleman (RSA) [117], Data Encryption Standard (DES) [133], Ad-
vanced Encryption Standard (AES) [106], and Secure Hash Algorithm (SHA) [24] are a few
commonly used algorithms used for data encryption. Different cryptographic techniques can be
employed to convert readable information to an encrypted state, which can be later used at the
receiver end after performing decryption. Below, we discuss some of the most commonly used
encryption methods that can be used for the development of privacy-aware Al models.

Homomorphic Encryption. Homomorphic encryption (HE) is a computational approach that
performs encryption while allowing computational tasks to be executed over encrypted data at
the same time to ensure the privacy of the data. HE is defined as a public key cryptographic tech-
nique in which a pair of public and private keys is created to perform encryption and decryption
operations on the data. The public key is used to encrypt the data before sharing it with the third
party for further computational tasks including training and/or inference. Due to the homomor-
phic characteristics of this approach, the results can be decoded using the private key to visualize
the results without showing them to third-party servers or unauthenticated users. In the ML liter-
ature, HE has been used for protecting the privacy of the users’ data for different applications such
as genome imputation [123], misinformation detection in text messages [6], and so on. Specifically,
the Al models are trained and inferred using encrypted training and testing data, thus preserving
the privacy of the sensitive data.

Secure Multi-party Computation. Secure multi-party computation (also known as secure compu-
tation) is a type of cryptographic technique that is focused on the development of collaborative
methods to perform joint computation and calculate a function over joint inputs while possess-
ing those inputs in an isolated fashion. Contrary to the traditional cryptographic methods, where
cryptography ensures confidentiality and integrity of communication or storage, while the adver-
sary is outside the system of users, this approach protects the users’ privacy from each other while
performing ML-based tasks, including training and inference activities.

Garbled Circuits. The idea of garbled circuits was first proposed by Yao in 1986 to perform two-
party computation [169]. Garbled circuits can be used in a scenario where multiple parties are
interested in performing some computation without sharing their data. Let us assume two parties
(e.g., Alice and Bob, for the sake of simplicity) want to perform some computation using garbled
circuits. Alice will send his input and function in the form of a garbled circuit, and Bob will utilize
his garbled input with the garbled circuit to get the result of the required function, once he obtains
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it from Alice in an oblivious fashion. In Reference [21], garbled circuits along with HE have been
used to develop privacy-aware ML models, where the authors trained three classification models,
namely, decision tree, Naive Bayes, and hyperplane decision classifier, using the encrypted data.

Secret Sharing. In secret sharing, multiple parties collaborate in the computation by sharing
their secrets among them while holding a “share” of the individual secrets. The secret can only
be reconstructed by combining all the individual shares kept by participating parties, otherwise,
it will be useless. In the literature, the secret-sharing technique has been successfully used for
training Al models in a privacy-preserving way. For instance, Bonawitz et al. [20] used the secret-
sharing technique to train an ML model by aggregating model updates from multiple parties in
a privacy-aware way. In a similar study [67], authors used this technique for the development
of a privacy-aware ML-based emotion recognition system leveraging client-server architecture.
In their proposed framework, the secret-sharing technique was used for the communication of
audio-visual data from the client side to the server, where an ensemble model based on a sparse
autoencoder and a CNN model was used for the feature extraction from the collected data. The
SVM classifier was then trained using the extracted features for the emotion recognition task. A
secret-sharing-based parallelized variant of principal component analysis (PCA) for preserv-
ing data privacy is presented in Reference [19].

Secure Processors. Secure processors were pioneered by rogue software to protect sensitive code
from being accessed by malicious actors at higher privilege levels. Secure processors are being used
in different processors now to perform privacy-preserving operations, e.g., the Intel SGX processor.
In Reference [101], SGX processors were used to develop a data-oblivious system for different
ML techniques that include SVM, decision tree, matrix factorization, and k-mean clustering. The
primary goal was to facilitate collaboration between multiple data proprietors performing the ML
task on an SGX-empowered data center.

5.1.2  Differential Privacy. The idea of differential privacy is based on introducing noise in the
data to protect sensitive information while ensuring the usefulness of the data [43]. Differential
privacy is defined in terms of the task-specific concept of neighbor datasets, and it provides strong
guarantees in ensuring the privacy of the data during algorithmic analysis [1]. Numerous differ-
ential privacy-based methods have been presented in the literature, such as differentially pri-
vate stochastic gradient descent (DP-SGD) [42], private-aggregation of teacher ensembles
(PATE) [174], exponential noise-based differential privacy-preserving methods to ensure privacy
on large-scale data. These methods demonstrated better applicability in ML-based applications in
various domains, including intelligent transportation services, smart/virtual personal assistants,
and smart healthcare services.

5.1.3 Federated Learning. Federated learning (FL) refers to a distributed-ML paradigm that
is capable of learning global ML models without directly accessing and/or exchanging data from
edge devices. Intuitively, basic FL-based methods consist of a collaborative learning framework
where each participant such as an edge device, network node, and local server can independently
train a model using its local data. These edge devices then share their model parameters with a
server, which then performs aggregation of the parameters after receiving parameter updates from
each edge device. Finally, the server updates the parameters of the global model and shares the up-
dated parameters with all participants. The iterative process of FL is continuous until the desired
criteria as been fulfilled, e.g., validation accuracy/loss or the maximum number of communication
rounds. In this way, a global model is trained without requiring the actual data from the FL partic-
ipants. Subsequently, this sharing mechanism allows ML-based systems to learn from large-scale
diverse data and develop a global model. Such methods can demonstrate better applicability in
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terms of dealing with sensitive data in various human-centered applications such as AI-XR meta-
verse applications. Despite the success of FL in training an ML model with reliable performance
while maintaining the privacy of the actual data, different attacks can be realized on the model
being trained using the FL paradigm, e.g., backdoor attacks [160], label flipping attacks [110], free-
riding attacks [89], poisoning attacks [5], and so on. Also, it has been demonstrated that sensitive
information can be extracted from the shared parameters in FL settings [18].

5.2 Solutions to Combat Adversarial ML Attacks in AI-XR

In the literature, adversarially robust ML models have been mainly categorized into three cate-
gories [111]: (1) Data Modification; (2) Model Modification; and (3) Using Auxiliary Model. More-
over, a few methods leverage a hybrid approach in which multiple defensive techniques are used
to develop adversarially robust ML models. Below, we discuss the most prominent methods in each
category, and we refer readers interested in more details about these methods to comprehensive
surveys that are focused on adversarial ML [4, 112, 150, 171].

5.2.1 Data Modification. Data modification methods modify the input data during the training
or inference phase to mitigate the effects of adversarial noise. A few such famous methods are
briefly described below.

— Adversarial Re-training: This method was proposed by Goodfellow et al. [54], and it is consid-
ered to be a basic method for mitigating the effect of adversarial perturbation in the trained
model. In this method, adversarial examples are augmented in the training data, which is
then used to (re)-train the model. This method has been extensively used in the literature,
however, a few research studies demonstrated that the models trained using this method are
not robust against multiple attacks [139].

— Feature Squeezing: Xu et al. [164] presented a feature-squeezing-based approach that aims
to squeeze feature space of input that may be exploited in response to an adversary. In this
regard, the heterogeneous feature vectors have been collectively joined into a single space
to reduce available feature space. Although, the proposed defense method achieved signifi-
cant performance against small perturbations. However, it was found less effective against
iterative adversarial attacks [62].

— Input Reconstruction: Input reconstruction-based defense methods have been proposed to
mitigate the effect of adversarial attacks. These methods transform adversarial examples
into legitimate samples by cleaning adversarial noise using an appropriate technique, e.g.,
using an autoencoder [56].

5.2.2  Model Modification. Model modification methods aim at modifying the parameters of
trained ML models to defuse the effect of adversarial attacks. Commonly used model modification
methods are described below.

— Gradient Regularization: This method allows complex neural networks to bring a partial
surge in training computational complexity to improve the performance of the network re-
gardless of any prior knowledge about adversarial attacks. This idea was coined by Ross
et al. [119] to improve the performance of CNN models on classification tasks. Though the
proposed method achieved significant improvement in CNNs’ robustness, it also increases
the computational cost of models, which prejudices the performance in real-world ML-based
applications.

— Defensive Distillation: Distillation in a neural network was initially conceptualized by Hin-
ton et al. [65] to establish knowledge sharing from a larger network to a smaller one.
Later, Papernot et al. [105] extended this notion by developing a distillation-based defense
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mechanism against adversarial attacks, which is known as defensive distillation. In this
method, the larger model is trained over hard labels to maximize accuracy while predicting
the output probabilities of the baseline smaller model. This method is successful in mitigating
the effect of small adversarial perturbation, and it fails in the presence of strong adversarial
perturbations, e.g., adversarial examples generated using C&W attack [28].

— Network Verification: In this method, certain properties of the ML/DL model are verified, e.g.,
validating the output of models, produced in response to the corresponding input samples.
Katz et al. [73] presented ReLU and satisfiability modulo theory (SMT)-based network
verification method to make complex neural networks robust against adversarial examples.
In a similar study, authors have proposed a scalable quantitative verification framework for
DNNeSs to prove formal probabilistic property against adversarial attacks [14].

5.2.3  Using Auxiliary Model. Methods aiming to robustify ML models in this category use an
additional model either to detect adversarial examples or to clean adversarial perturbations. A few
methods are described below.

— Adversarial Detection: In such methods, a detector model is used to differentiate between
normal and adversarial inputs, e.g., a binary classifier [90].

— Ensembling Defenses: In this defense strategy, an ensemble of different defensive techniques
is created to withstand different adversarial attacks. PixelDefend is the most famous ensem-
ble defense method, which consists of two defense approaches, i.e., input reconstruction and
adversarial detection [132].

— Using Generative Modeling: These types of methods leverage different ML/DL-based gener-
ative models for cleaning adversarial noise in adversarial examples to project them back to
the same data manifold.

5.3 Solutions for AI-XR Transparency and Trust Challenges

The true potential of Al-based applications in AI-XR metaverse applications can only be realized
when they are developed using fine-grained personal data for making personalized recommenda-
tions and predictions, which is only possible when users fully trust the underlying system. There-
fore, addressing the challenges related to the trustworthiness aspects of AI-XR metaverse appli-
cations is very important. From an Al perspective, trustworthiness itself requires predictability,
interpretability, explainability, safety, and robustness. Below, we discuss different methods that
can be used to accomplish trustworthiness in Al applications.

5.3.1 Explainable and Interpretable Al. An Al model is referred to as explainable if it can ex-
plain the ability of parameters to justify the results. Explainability aims at making an Al model
understandable to humans. In recent years, substantial research efforts have been conducted to
enhance explainability, trustworthiness, and interpretability in AI models. Fairness, Account-
ability, and Transparency in Machine Learning (FAT-ML) [47] and Defense Advanced Re-
search Projects Agency (DARPA), explainable Al program [59] are the two famous research
groups working in this context. The literature argues that explainable models can be the first step
toward converting black-box Al models into white-box models [2]. We refer interested readers to
a comprehensive survey focused on explaining black-box models for a more detailed discussion
of related terminologies and for a detailed classification of various explainable Al methods for a
given type of black box system [58]. On the contrary, in Reference [120], a counter argument is pro-
vided where the author emphasized the need to develop inherently interpretable models instead
of developing methods to explain black-box models (involving critical decisions).
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Interpretable models refer to the models that explain themselves. In simple words, an Al model is
said to be interpretable if its decision against some input is logically understandable such as which
factors influenced the AI model to reach that decision. In the literature, various methods have been
presented to leverage interpretability in ML models. These methods ensure that the predictions of
interpretable models are unbiased, which ultimately makes it easier to trust these systems in hu-
man society. It is worth noting that the terms interpretable and explainable are interchangeably
used in the literature, however, they are different in terms of domain-specific definitions; more-
over, there is no exact definition of these terms [114]. In summary, explainable Al is more focused
on explaining and communicating AI's output to humans, while interpretable Al is concerned
with the understanding of the internal processing of Al models. A detailed taxonomy of different
explainable and interpretable Al methods can be found in References [2, 114].

5.3.2  Trustworthy Al. The relevant literature emphasizes two famous sets of principles that can
be used to attain trustworthy Al One of them is developed by European Commission’s Al High-
Level Expert Group (HLEG) [66] and the other one is defined by Organisation for Economic
Co-operation and Development (OECD) [170]. The following are the seven essential princi-
ples outlined in OECD: (1) Human agency and oversight; (2) Technical robustness and safety; (3)
Privacy and data governance; (4) Transparency; (5) Diversity, non-discrimination, and fairness; (6)
Environmental and societal well-being; and (7) Accountability.

Similarly, the following principles are outlined in HLEG: (1) Inclusive growth, sustainable devel-
opment, and well-being; (2) Human-centered values and fairness; (3) Transparency and explain-
ability; (4) Robustness, security, and safety; and (5) Accountability. One of the key noticeable in-
sights from the above two principles set is that they mainly emphasized the explainability, security,
fairness, safety, and robustness aspects of AL Therefore, these are the essential requirements that
need to be fulfilled to develop trustworthy Al-based applications. In addition, we can see that these
principles are essentially human-centric and respect ethical norms. As potential AI-XR metaverse
applications will be more human-focused, therefore, the above-mentioned principles can be lever-
aged to develop trustworthy Al-based applications for the metaverse.

5.4 Solutions for Ethical Challenges in AI-XR

5.4.1 Human in the Loop. The metaverse’s inherent complexity raises different security issues.
For instance, it can be envisioned that the metaverse administrators will have to push automation,
that is, to handle more tasks with algorithms, rather than with human operators, due to the re-
quirement of managing a large number of users, applications, and services. The generated data
will be much larger than those managed by the current Web platforms. Delegating tasks to algo-
rithms, especially those implemented with state-of-the-art Al approaches, is necessary to meet
high-level efficiency and scalability. However, in the current social media and the Internet, we
have even started to realize the implications of using algorithms for managing societally relevant
tasks. Despite the significant performance, these algorithms suffer from various issues. Some au-
thors writing on the governance of metaverse have proposed the use of a modular approach for
the development of metaverse applications, as it allows adapting regulations to specific scenarios
and then controlling the system accordingly [49].

5.4.2  Ethical and Responsible Al. To ensure socially desirable Al decisions, novel ways are re-
quired to be figured out to simultaneously minimize potential harms associated with the use of Al
and its potential benefits. In this regard, the importance of taking an ethics-first approach towards
the development of Al-based technologies becomes more plausible [52]. However, there are many
challenges associated with the development of ethical Al pipelines due to distinct social norms
and demographics of the human population, i.e., one ethical solution may be beneficial for a group
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of people but it is highly possible that it will not be suitable for another group at the same time.
Therefore, customized solutions are required to address such issues that can consider the social
norms of target users while making Al-based decisions. In this regard, different ethical guidelines
can be leveraged that can be potentially used for the development of pro-social Al solutions. The
literature shows a groundswell of interest in ensuring ethical and responsible AI [107].

5.5 Situational Awareness

Situational awareness can be defined as the capacity to understand information perceived from
the surrounding environment. The literature argues that situational awareness is a crucial and
effective tool for monitoring the security of complex systems like metaverse [156]. Situational
awareness can be used at the local and global levels for threat monitoring in a single metaverse
or across multiple metaverses, respectively. The feasibility and potential of this tool have been
extensively studied in the literature focused on XR and VR technology. For instance, Woodward
et al. [156] performed a literature review that focused on the design of information presentation
in AR headsets to enhance users’ situational awareness. In Reference [72], authors performed im-
mersive and realistic simulations to evaluate the effectiveness of audio-visual warning systems in
increasing users’ situational awareness in accident situations using VR and demonstrated that VR
can assist drivers to remain alert.

5.6 Human-centric Approach for AI-XR Development

Metaverse is essentially a human-centric application [63]. To realize the real social impact of dif-
ferent AI-XR metaverse applications, they should be analyzed and developed using human-centric
design thinking. Metaverse service providers and developers must pay attention to key stake-
holders (i.e., humans) by prioritizing and considering their social norms, i.e., dignity, justice, and
rights, and supporting goals including creativity, self-efficacy, social connections, and responsi-
bility. The aforementioned characteristics can be inherited in AI-XR metaverse applications by
following three key concepts proposed in Reference [131]. The first one is Human-centric frame-
work—which guides developers and researchers to ensure human-centric thinking about high-level
two-dimensional control. Second, Design metaphors—which point out how two key goals of Al and
social norms are both valuable. However, the stakeholders such as developers, researchers, poli-
cymakers, and business leaders must combine them both in developing metaverse applications
to provide ultimate benefits to the users. Third, Governance Structures—which ensure the bridge
between the above-mentioned ethical principles and the practical measures needed to achieve the
desired goals including reliable metaverse application development while ensuring cultural safety
to increase privacy and trustworthiness of the users.

6 OPEN RESEARCH ISSUES

In this section, we highlight various open research issues that are particularly associated with the
use of ML/DL models in different AI-XR metaverse applications.

6.1 Developing Generalizable Adversarial Defense Methods

Over the past few years, substantial research attention has been devoted to adversarial ML. How-
ever, the literature highlights that the attention devoted to developing adversarially robust ML/DL
models is significantly less as compared to developing novel attack methodologies [109]. In the
literature, different defensive techniques have been proposed to withstand adversarial ML attacks;
however, each method only works in a specific setting and fails to withstand unseen and powerful
attacks (consequently, fails to generalize across a wider class of attacks). However, the literature
focused on adversarial ML shows that the diversity and severity of these attacks are increasing
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with each passing day. Therefore, the development of hybrid and universal defensive techniques
is the need of the hour. In addition, it is required that defense techniques should be developed
while considering evolvable and adaptable adversaries (who can adapt their capabilities to break
defense strategy). The threat of adversarial ML can be a major hurdle in the development of
secure, safe, robust, and trustworthy AI-XR metaverse applications, and if it remains unaddressed,
can cause unintended severe consequences to users and society. It is highly recommended to
consider these aspects while developing ML/DL-empowered human-centric applications like
the AI-XR metaverse. Moreover, the worst-case robustness test can be performed from an
adversarial lens considering different attack surfaces in individual AI-XR metaverse application
architecture.

6.2 Investigating Robustness of Privacy-preserving Methods

looseness-1 As discussed above, AI-XR metaverse applications will collect fine-grained data that
may include personal attributes to provide personalized services (empowered by ML/DL models).
The models trained with such data can be inferred to reconstruct privacy-related information that
can be exploited to get intended outcomes and incentives. Although different privacy-preserving
ML techniques proposed in the literature have been shown to be quite successful in preserving
data privacy, the literature demonstrates that meaningful information can still be inferred even
in the presence of an appropriate privacy-preserving method. For example, it has been demon-
strated that homomorphic encryption (one of the widely used encryption techniques) is vulnera-
ble to model extraction attacks [116]. Similarly, Boenisch et al. [18] showed that sensitive informa-
tion can be reconstructed from the shared parameters in FL. This suggests that the investigation
of vulnerabilities and limitations of existing privacy-preserving methods can be a good step to-
ward developing robust privacy-preserving methods. Ideally, it is required that the ML/DL models
should be developed in such a way that they are by design privacy-aware, i.e., they should not be
able to learn any privacy-related features from the data that could be compromised upon model
inferences.

6.3 Developing Generalizable Explainable and Interpretable Techniques

Another major limitation of DL models hindering their trustworthy applications in critical appli-
cations like the AI-XR metaverse is the lack of explainability and interpretability. This can also
be exploited by adversarial agents to craft adversarial perturbations to realize attacks on different
AI-XR metaverse applications. Although significant research interest has been devoted to the de-
velopment of novel techniques to explain and interpret DL models, the literature shows that their
application is limited to a certain data type or application [114]. While the AI-XR metaverse appli-
cations will have a complex architecture that will simultaneously use multi-modal data for making
different intelligent decisions, existing explainability and interpretability techniques cannot be di-
rectly used for explaining and interpreting ML/DL-driven decisions. More work is required to
create methods that can be generalized across different data types, models, and applications.

6.4 Developing Ethical Data Analysis Pipelines

Current ML/DL models are not capable of considering different ethical norms that are necessary
for human-centric applications like AI-XR metaverse applications. On the contrary, these consid-
erations are yet very important to maximize potential benefits and minimize associated harms
to ensure safe, robust, and fair data analysis. In AI-XR metaverse applications, different ML/DL
models will be trained using massively large data collected by humans and their interactions with
the real and virtual universe. While there is no guarantee that the AI decision will be ethically
committed, because the data used for model training might contain data bias that will eventually
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result in biased decisions. Moreover, the outcomes of ML/DL models will be just a reflection
of human behavior (including moral failures even if they are not intentionally committed).
Therefore, to increase the trust of different stakeholders involved in AI-XR metaverse applications
(particularly, end-users) and to provide them with a sense of safety, fairness, and accountability, it
is highly desirable to develop novel techniques to ensure fair and ethical data analysis empowered
by various ML/DL techniques.

6.5 Pushing Al on Edge: Embedded ML

One of the feasible approaches to preserve the privacy of AI-XR metaverse users will be to deploy
ML/DL models on their smart devices, e.g., smartphones, AR/VR gadgets, tablets, and so on. By
doing so, models can be developed and inferred on their devices without requiring to transmit data
to a central cloud. We envision that various AI-XR metaverse applications will potentially adopt
embedded ML or edge-enabled ML due to the proliferation of different enabling gadgets and smart
devices. However, numerous challenges related to underlying hardware computing capabilities
will arise when sufficiently large ML/DL models will be deployed on resource-constrained devices.
Also, the literature argues that the research on enabling edge Al is at its early stages of develop-
ment [108]. Therefore, it is worth investigating the feasibility and potential of deploying M/DL
models on embedded devices to ultimately develop secure, private, and robust systems to provide
personalized services in AI-XR metaverse applications. We refer interested readers to a recent sur-
vey on analyzing the notion of edge-enabled metaverse applications for a more comprehensive
discussion on the topic and various challenges [163].

6.6 AI-XR Metaverse-specific Security Solutions

The future AI-XR metaverse will have a complex structure and will be a combination of various
enabling (complex) technologies (that possess their associated challenges related to privacy and
security, e.g., adversarial ML). Moreover, the massive connectivity of numerous entities (users,
services providers, organizations, etc.) along with the decentralization will even worsen the enor-
mity of security and privacy in AI-XR metaverse applications. Individual vulnerabilities associated
with each technology can be exploited to realize a more powerful attack to halt or get control of
some services or the entire metaverse. If such vulnerabilities are left unaddressed, then they will
eventually lead to novel challenges, thus making it challenging to ensure the secure, safe, and ro-
bust operation of metaverse services. Therefore, it is very crucial to understand such challenges
and develop customized defense solutions to protect AI-XR metaverse applications and services in
general.

7 CONCLUSIONS

In this article, we have analyzed various security, privacy, and trustworthiness challenges asso-
ciated with the use of different machine learning (ML) and deep learning (DL) techniques
in artificial intelligence and extended reality (AI-XR) metaverse applications. Specifically,
considering the layered architecture of the metaverse, we developed a pipeline and highlighted
different potential ML/DL use cases along with identified various vulnerabilities associated with
their application. Furthermore, we provided a comprehensive overview of these challenges and
discussed potential solutions that could be used to overcome such issues. To accentuate the im-
plications of adversarial threats, we designed a customized case study (considering a prospective
AI-XR metaverse application) and analyzed its security and privacy aspects. Finally, we discussed
various open research issues that require further investigation. We envision that our work on this
crucial topic will provide a one-stop solution to interested researchers who aim to develop secure,
robust, and trustworthy AI-XR applications.
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