
Programming
Systems and
Languages
1965 1975
Saul Rosen
Purdue University

In spite of impressive gains by PL/I, Fortran and
Cobol remain the languages in which most of the world's
production programs are written and will remain
so into the foreseeable future. There is a great deal of
theoretical interest in Algol 68 and in extensible
languages, but so far at least they have had little
practical impact. Problem-oriented languages may
very well become the most important language
development area in the next five to ten years. In the
operating system area all major computer manufacturers
set out to produce very ambitious multiprogramming
systems, and they all ran into similar problems. A
number of university projects, though not directly
comparable to those of the manufacturers, have
contributed greatly to a better understanding of
operating system principles. Important trends include
the increased interest in the development of system
measurement and evaluation techniques, and increased
use of microprogramming for some programming
system functions.

Key Words and Phrases: languages, operating
systems, programming systems, multiprogramming,
history

CR Categories: 1.2, 4.22, 4.32

Introduction

In a paper "Programming Systems and Languages,
a Historical Survey" [28], which was written in 1963, I
tried to present a brief history of the development of
computer software up to that time. I wrote a short ad-
dendUm to that paper [29] in 1966. Now, about six years
later, on the occasion of the 25th Anniversary of ACM,
it seems appropriate to approach the subject again; to
attempt to bring the history up to date, and in line with
the general aim of this anniversary issue, to attempt to
peer a short way into the future.

The earlier papers could attempt to cover all signifi-
cant language and system developments since the field
was young, and it was possible to be personally involved,
or at least directly aware of all of them. In more recent
years it has become impossible for any one person to
keep up with all developments, and even if it were pos-
sible it would take a set of books rather than one short
article to discuss them all. This paper must therefore be,
even more than the earlier ones were, an essay from the
point of view of one observer. The language and system
developments that are covered are only the ones that
the author was aware of and the ones that he considered
most important and most influential.

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Author's address: Purdue University, Computing Center,
Lafayette, IN 47907.

591

Programming Languages

Perhaps the most striking fact about programming
languages in the past ten years has been the continued
overwhelming acceptance of FORTRAN and COBOL. In
1972 and on into the foreseeable future FORTRAN and
COBOL are the languages in which most of the world's
serious production programs are written.

When a language has achieved a certain level of
acceptance it becomes increasingly attractive to go on

Communications July 1972
of Volume 15
the ACM Number 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F361454.361482&domain=pdf&date_stamp=1972-07-01

using that language. Relatively efficient compilers exist
on a number of different computers. Libraries of rou-
tines have been developed that can be used or adapted
as needed. There are large numbers of programmers who
are familiar with the language. For most conventional
scientific and data processing applications there is rela-
tively little to be gained by deviating from the normality
represented by languages like FORTRAN and COBOL.

There are of course many programming situations
in which valid reasons exist for deviating from the
standard languages. Unusual space or timing require-
ments might dictate the use of assembly language or the
use of one of the many special system programming
languages that have been developed Ill. There are
situations in which the use of another language has be-
come established, for example JOVIAL in the case of
sections of the military establishment. There are also
many special purpose languages which provide major
advantages and conveniences in the areas in which they
are appropriate.

There were some people in IBM and in the SHARE
organization who thought that PL/I would gradually
supplant and make obsolete languages like FORTRAN,
COBOL, and ALGOL. PL/I contains most of the features
of all of those languages, and provides many useful
features that are not present in any of them. There were
and still are those who blame the preeminence of
FORTRAN over ALGOL on IBM's support of FORTRAN and
its lack of enthusiasm for ALGOL. With IBM'S very enthu-
siastic backing and its multiple, large implementation
teams it looked as if PL/I was bound to succeed. And it
did succeed to some extent. PL/I is now quite widely
used, and its use is increasing. Instead of replacing
FORTRAN and COBOL, it seems on the way toward joining
them as one of the standard production languages. It
works especially well for those installations which have
large programs that involve both computing and data
processing. Even if the computing and data processing
load occurs in separate jobs, there are some real advan-
tages to being able to use a single language for all types
of computing.

Even for IBM, the introduction of a new major lan-
guage has been a long, hard grind. The first series of
VL/I compilers for the 360 were slow and clumsy. The
basic language specifications were frozen before any
experience had been gained in writing in the language
or in writing compilers for the language, and features
that appeared useful and desirable turned out to be con-
fusing and difficult to implement.

There has been some debate as to whether one can
reasonably talk about the efficiency of a programming
language. In most situations it is the compiler and not
the language that should be called efficient or inefficient.
Yet it does seem clear that the efficiency of a compiler
may depend on the definition of the language to be
compiled. FORTRAN is essentially more efficient in some
ways than PL/I or ALGOL. There are fewer things that
have to be checked at compile time, fewer complex

592

operations that have to be postponed to run time. Even
with the recent efficient PL/I compilers on the 360, the
class of problems that can be handled well by FORTRAN
can still be handled more efficiently in FORTRAN than
in PL/I. While similar efficiency considerations may not
be valid when comparing PL/I to COBOL, it has been
argued [33] that COBOL is a more natural and suitable
language for typical data processing applications.

So far PL/I has been almost exclusively an IBM lan-
guage. PL/1"compilers do exist on machines by other
manufacturers, but most of them are early, incomplete,
and inefficient versions. An exception is Honeywell,
which inherited a rather good aL/I compiler for its
600/6000 series computers when it took over the General
Electric computer division.

The original descriptions of PL/I were quite infor-
mal, and the PL/I effort was subject to some criticism on
this score. To produce a formal description of a lan-
guage of the magnitude and complexity of PL/I was a
formidable task. This task was undertaken by a group
at the IBM research laboratory in Vienna, and the re-
sulting document was so thick that it was humorously
referred to as the Vienna telephone directory. Their
work contains a number of interesting contributions in
the area of language definition and description that are
described in considerable detail in [23].

Algol 60 and Algol 68

ALGOL 60 has retained its importance as a publica-
tion language for numerical analysis, and in several of
its extended versions it has been used also as a publica-
tion language for some of the more theoretical develop-
ments in computer software. The most interesting of
the recent extensions is the language PASCAL [35]. In
Europe, as the large IBM and Control Data computers
become popular, the use of ALGOL as a production lan-
guage faded, and FORTRAN became an international
standard. The larger Burroughs computers, the 5000,
6000, and 7000 series, whose hardware design was very
strongly influenced by ALGOL are still widely pro-
grammed in the Burroughs version of ALGOL. However,
they are not widely used for scientific computation, and
in recent years even Burroughs has yielded, at least to
the extent of providing FORTRAN processors on their
large computers.

At an early stage in the ALGOL development the
decision had been made to break the effort into two
parts. The first had as its aim the design of a language
that would embody those concepts which were clearly
understood and in which it was possible to achieve al-
most universal agreement. The result of this effort was
ALGOL 60, presented to the world in the elegant docu-
ment prepared by Peter Naur. The second effort, which
was not implemented until the completion of the first,
involved a study of advanced concepts in programming
with the aim of providing a language, or perhaps a

Communications July 1972
of Volume 15
the ACM Number 7

series of languages of greater power and generality and
usefulness than the original ALGOL 60.

A formal ALGOL working committee was set up under
the auspices of the International Federation for Infor-
mation Processing 0FIP), with an informal periodical,
the Algol Bulletin. There was also considerable activity
in this area outside of the formal committee structure.

The ALGOL working committee, after much discus-
sion and dissension, produced a formal document de-
scribing a new language, ALGOL 68. One of the principles
of design of the new language was to permit user exten-
sibility. ALGOL 60 permitted a limited number of data
types: real, integer, Boolean, and array. Concepts as
simple as double precision or complex arithmetic were
foreign to the letter of the ALGOL 60 definition even
though they were added to some implementations.
ALGOL 68 allows the programmer to define data types
(modes) and data structures and also to define operators
that apply to these defined modes.

The formal report on ALGOL 68 [34] is a document
that is 140 pages long. These 140 pages are almost all
formalism, with little exposition. The language descrip-
tion is inelegant, to the point of being unpleasant to read
and difficult to understand. There have since been a
number of attempts to present some of the principles of
ALGOL 68 in readable form, of which one of the best and
most accessible to date is [6].

A number of implementations of ALGOL 68 have been
started and some may already be in use. It seems safe to
predict that ALGOL 68 will not be widely used as a gen-
eral purpose programming language in the same sense
as FORTRAN or even ALGOL 60 have been used. The im-
portance of ALGOL 68 will lie in its contributions to the
theoretical development of programming language con-
cepts, and it will be some time before these can be
adequately evaluated.

Extensible Languages

Extensible languages are in a way the descendants of
the compiler-compiler and compiler generator efforts of
earlier years. An excellent summary of those areas is
contained in [17]. Many language designers find it
attractive to think in terms of a core language in which
the only things that are defined a priori are a minimal
set of primitives and a very general mechanism by means
of which the language can be extended.

ALGOL 68 has already been mentioned as an exten-
sible language, but in this area it is only one among
many, and not necessarily the most important. At an
extensible languages symposium [2] held in 1969, six
extensible languages were discussed in addition to
ALGOL 68. They included major language definition
projects such as GPL [18], IMP [19], BASEL, and PPL. A
recent survey, [8], mentions several other efforts in this
area that qualify as language research and development
projects of major importance.

These efforts have been of great theoretical interest,
but so far at least, their impact on the practical side of
programming has been small. Most computer users
seem to be able to do all of the language development
that they want to do within the framework of conven-
tional subroutine definition and macro definition facil-
ities provided in the popular general purpose languages
and assembly systems.

T. E. Cheatman states in [8] that "extensible lan-
guages are just now about to emerge in a way that might
have a significant impact."

Basic and APL

Two languages, BASIC and APL, have become popular
in connection with the expansion of the use of on-line
interactive computing. These languages represent two
contrasting philosophies of computer language design.

BASIC was developed at Dar tmouth in an effort to
provide a language that was as simple and natural and
easy to learn as possible. It was like a beginners subset of
FORTRAN. It caught on because of its simplicity and also
because of the effective time-sharing system built around
it at Dartmouth and effectively marketed by General
Electric. Most competing time-sharing services devel-
oped their own BASIC processors, and BASIC soon became
the language of discourse for small time-sharing users.

The APE language was developed over many years
by Kenneth Iverson at the IBM research laboratories--a
development which culminated in the publication of
his book [20] in 1962. The language and the book
achieved considerable notice, mostly in academic circles.
It seemed useful as a publication language for describing
hardware and software computing algorithms but, at
least originally, was not considered important as a
practical programming language. In 1966 Iverson and
his colleagues at IBM designed and installed an elegant
time-sharing system on an IBM 360/50 based on the use
of APL as a programming language. APL differs from
most so-called higher level languages in that it attempts
to emulate and exploit the conciseness and elegance of
mathematical notation in the expression of algorithms.
It provides many operators on scalars and vectors and
matrices, and some of the operators do complicated
things. The resulting conciseness is attractive to users
of slow terminals, since powerful algorithms can be
expressed in a few lines. Some people find this unattrac-
tive, claiming that the language is cryptic and confusing,
but some, especially sophisticated programmers, love it.

Since the APL language and the processor and time-
sharing system that supported it did not arise through
normal IBM software support channels, it was ignored
by IBM, but spread rapidly through word of mouth pub-
licity and informal distribution until customer demand
forced IBM to recognize its existence and set up more
formal channels of distribution.

593 Communications July 1972
of Volume 15
the ACM Number 7

Special Purpose Languages

The discussion so far has only been in terms of
general purpose precedure oriented languages. Many
other more specalized languages have either become or
remained important. In the area of string handling,
SNOBOL 4 is now widely used. There are a number of
simulation languages, SIMSCRIPT, GPSS, and SIMULA that
have been implemented on many machines. There are
well-known specialized languages in computer assisted
instruction (COURSEWRITER, PLANIT), in graphics, in en-
gineering design (ECAP, ICES), and in many other areas.
Jean Sammet in her classic volume on programming
languages [32] devotes almost 100 pages to languages
of this type, including a comprehensive bibliography of
developments through 1967.

Languages that help in the statement of computing
problems in specialized areas may represent the most
important computer language developments of the
next five to ten years. By their very nature these lan-
guages belong to the specialized areas in which they
apply, and are not often of major interest to computer
scientists. Translator writing systems and extensible
languages have been proposed and sometimes used as
tools for the implementation of such languages. Some
of the most useful have been written in FORTRAN and
represent relatively straightforward extensions of
FORTRAN.

Operating Systems

The "third generation" of large scale computing
systems is characterized by muitiprogramming operat-
ing systems based on large capacity disk and drum stor-
age devices. In the new generation of computing systems
that were delivered in the mid and late sixties, it became
possible to provide adequate implementations of system
concepts that had been proposed and tried with only
moderate success on earlier second generation com-
puters. These concepts include the idea of an automatic
scheduling system in which jobs can be loaded contin-
uously from many sources into queues in disk storage,
from which they can be scheduled for execution accord-
ing to their priority and their resource requirements.
They include the concept of an on-line file system that
provides safe permanent storage for programs and data
files, and that provides the utility routines and backup
facilities that are necessary for the successful operation
of such systems. They include concepts like conversa-
tional remote job entry, and the varieties of interactive
computing that are usually included within the connota-
tion of the phrase time-sharing.

All of the major computer manufacturers set out to
build major multiprogramming systems for their new
equipment, and they all ran into serious difficulties and
delays. The problems were essentially the same for all
of them. There was too much system code that had to

594

be resident in central memory and too much computer
time used in system overhead functions. Attempts to
reduce system overhead usually had the effect of in-
creasing the amount of resident system code, thereby
reducing the amount available for user jobs. The obvi-
ous remedy was to require larger and larger central
memories; but core memory was expensive, and the size
of core required in order to run the operating system
efficiently might price the computer out of its market.

Peripheral storage access was slow, and the perform-
ance of the system was closely tied to the efficiency with
which peripheral storage could be used. It is almost
impossible to optimize access to peripheral storage in
general systems of the type projected. Special high per-
formance drums or fixed head disks for system residence
can help, as can multiple high speed channels into main
memory, but these can be expensive options in many
computing systems. Early versions of most systems, and
also some later versions, were disk access limited and
used central processor and other system resources at
only a small fraction of their capacity.

Systems had to be debugged and improved, and the
process of change introduced new bugs and new prob-
lems. The systems became immensely complicated as
new features were added and as more sophisticated
algorithms were introduced in attempts to improve
performance. The early days of most production systems
were a nightmare of system crashes and temporary fixes.

Nobody really knew how to go about producing and
debugging these new operating systems, raM'S approach
was to use hundreds and even thousands of program-
mers in a "human wave" attack on the problem. Other
less affluent manufacturers brought themselves to the
verge of bankruptcy trying to imitate them. Academic
critics pointed to their own in house systems that had
been done in a few man years of effort, and urged the
computer manufacturers to adopt their (often simplistic)
approaches.

The complex, new multiprogramming systems
needed a higher level of reliability than the earlier uni-
programming systems. In the earlier systems a system
error, either hardware or software, would affect only the
job that was then being run, and recovery usually re-
quired the rerunning of just one job. In the new systems
a system crash could affect dozens of jobs in various
stages of completion. Elaborate recovery procedures are
needed to permit system recovery from errors with min-
imum loss of files already created and work already com-
pleted. Recovery procedures of this type are among the
most difficult system programs to install, to debug,
and to maintain.

For many of the reasons discussed above it was pos-
sible for an elaborate multiprogramming system to pro-
vide poorer performance on a computing system than
a much simpler uniprogramming system on the same
equipment. Thus several years after the initial release of
EXEC 8 for the UNIVAC 1108 most customers were still
using the uniprogramming EXEC 2 system which had

Communications July 1972
of Volume 15
the ACM Number 7

been developed earlier for the 1107 and which had pro-
vided the initial software support for the 1108. I do not
mean to suggest that UNIVAC'S performance was worse
than that of other manufacturers. Their customers were
perhaps luckier than those of some other manufacturers
as they had an earlier system to fall back on while the
new system was brought up to an acceptable level of
performance. Most of them did eventually switch to
EXEC 8 to be able to take advantage of the many features
that are provided by modern operating system software.

The performance of the operating systems on the
major computers improved gradually as new versions
were released that partially solved some of the problems
of earlier systems. It became apparent, at least to me,
that reasonable operating systems could evolve from the
clumsy inefficient structures that had been started with
little analysis or understanding years earlier. Core mem-
ory has become cheaper and users have become resigned
to the fact that to run a big system requires large central
memory. Peripheral storage has improved and continues
to improve in speed and accessibility. The mating of
communication devices to computers has developed so
far that to have large or medium scale computers at the
center of impressive communication networks is rela-
tively routine.

There are many operating systems on many different
kinds of computers. I shall comment briefly on a few of
those that, in my opinion, have been most important in
introducing new concepts and in total impact on the
computer field.

The Atlas System and Virtual Memory

The Atlas hardware and software system was one of
the most interesting and forward looking of the second
generation systems. The Atlas introduced the concept of
the "single level storage system" [21] implemented by
hardware paging. It was the first large scale implementa-
tion of the type of system that has come to be
called a virtual memory system. Although it must have
seemed ambitious to its designers, and so it was for its
time, the Atlas was actually planned, designed, and
built on a far too modest scale to be anything but a pro-
totype for such systems in the future.

Paging, implemented by hardware address transla-
tion, is now a feature of many different computers, in-
cluding models designed by just about every major com-
puter manufacturer. The special problems of operating
systems on paging machines have attracted much in-
terest, which has produced a large literature in this area.
The reader is referred to [11] for a detailed discussion
of virtual memory and for an extensive bibliography.

595

The Burroughs Systems

The Burroughs 5000 system was the first, and is still
perhaps the only, computer whose design was based on
a number of well-defined software objectives. The aim of
the design was to provide an appropriate compile time
and run time environment for the new ALGOL 60 lan-
guage, and features were included to assist in the han-
dling of block structure and dynamic storage allocation,
and to provide for the automatic interpretation of pure
procedure segments encoded into Polish (parenthesis-
free) strings. These features were extended and refined
in the more recent Burroughs 6000 and 7000 series ma-
chines.

When the expression virtual memory became pop-
ular, it turned out that the Burroughs 5000 series already
had a virtual memory system. As other "new" features
appeared in operating systems on more widely used
machines (e.g. os 360), Burroughs programmers and
Burroughs users proclaimed that these were things they
had been doing for years. It may have been the first
modern multiprocessor multiprogramming system [24],
but its direct influence on most other operating systems
was limited because the hardware architecture remained
unique to the Burroughs line and because there were
few customer installations during the early years in
which the system was being developed.

From the beginning the Burroughs systems have
been characterized by the use of ALGOL-like languages
as system programming languages. There is no language
processor that corresponds to the assembler on other
systems, and higher level languages are the only lan-
guages used by system and problem programmers. The
hardware organization of Burroughs computers makes
this approach relatively efficient and quite effective.

The CDC 6000 SetSes

Control Data Corporation started building com-
puters in 1958 and soon gained a reputation as a com-
pany that emphasized and delivered hardware per-
formance and that kept costs and prices down by
deemphasizing expensive but unessential activities like
software development.

Its own success and the trend of developments in
the computer industry led to a gradual change in attitude
and an ever-increasing commitment in the area of com-
puter software. This change in attitude was in progress
during the time when CDC was developing its impressive
6000 series computer.

The first 6600, delivered in 1964, heralded the begin-
ning of a new generation of computing systems. The
6000 series computers are powerful multiprocessor sys-
tems with one or two central processors sharing a large
main memory with ten peripheral processors. Each
peripheral processor also has its own private core mere-

Communications July 1972
of Volume 15
the ACM Number 7

ory, and among them they drive 12 high speed channels
which can support a large variety of local and remote
peripheral devices.

This equipment needed a sophisticated multipro-
gramming operating system, and a system was put to-
gether rapidly by the computer design group at the CDC
Chippewa labs, hence the name Chippewa system. In
striking contrast to the Burroughs approach, the Chip-
pewa system was not only not written in a higher level
language, but major parts of it were written in raw octal
machine code.

The hardware designers had good insight into how
an operating system should be structured for the equip-
ment they had designed, and even though the original
implementation lacked elegance, the basic concepts have
survived. When the first 6600's were being delivered, the
relatively new software division set out to produce a dif-
ferent and a more sophisticated operating system SIPROS;
but the performance of SIPROS was never adequate, and
after a few frustrating years they backed off and went
to an enhanced Chippewa system which has evolved into
the current scoPE systems.

A group associated with the manufacturing plants in
Minnesota built even more directly on the Chippewa
structure and developed a system first called MACE and
then renamed as KRONOS. Although KRONOS is being
marketed mainly as a time-sharing system, it is probably
the first major operating system that uses a preempt-
resume scheduling strategy in an environment that is
mostly dedicated to batch processing [4].

Control Data's early history of limited and inade-
quate software support has served to obscure the fact
that the multiprogramming multiprocessor systems on
the 6000 series computers are probably the most suc-
cessful systems of their kind, and perhaps more than
other better advertised systems, they provide consider-
able insight into the structure and problems of such
systems.

IBM's System 360 and Its Operating Systems

The most important software systems of the period
1965-1970 were the systems developed by IBM for its
system 360. This is true not because of the intrinsic merit
of the systems themselves, but rather because of IBM'S
position of dominance in the computer industry. It is
true in spite of the inelegant and often clumsy design of
os 360, and in spite of the inefficiencies and unreliability
of the early versions that have been only partially allevi-
ated by the more recent ones.

The documentation for the 360 operating systems is
voluminous, almost to the point of being overwhelming.
There are literally thousands of documents, and the
techniques of computer assisted text preparation and
publication make it possible to produce new documents
and new versions of old documents at an alarming rate.
A good brief introduction to os 360 can be found in [25].

596

It is hard to point to any really new concepts or ideas
that were introduced in os 360. Its contribution is rather
one of integration and synthesis. This was, perhaps, the
first example of a really large modular system based on
a few general concepts: reentrant code, queuing of con-
trol blocks, uniform and consistent handling of inter-
rupts, etc. The designers of os. 360 introduced a great
deal of new and useful terminology, much of which has
become and will remain a standard for the whole in-
dustry.

Some of the most interesting and attractive concepts
in os lost some of their attractiveness in the actual imple-
mentations. One example is JCL, the Job Control Lan-
guage. JCL provides a flexible and versatile control card
language. The designers were right in wanting to make
the many features of JCL available to the user, but the
way in which they made them available in a language
that is cryptic, confusing, and difficult to write and de-
bug has made JCL one of the swear words of third gener-
ation systems. Another example in the area of data
management is the indexed sequential access method.
This represented a new level of service to the user. It
made automatic the allocation and reallocation of stor-
age, the setting up and modification of directories, the
handling of overflow conditions and other features that
would otherwise require difficult specific detailed cod-
ing. Unfortunately the user who took advantage of the
availability of features of this type often found that the
resulting inefficiency of computer use might offset the
advantages offered by the powerful general capabilities
of the system. This is of course true in most large sys-
tems. It stands out in os because of the large number of
general capabilities that have been designed into the
system.

The original concept of os 360 was to provide sup-
port for all 360 systems except for the very smallest ones
which would use the very primitive BPS (Basic Program-
ming Support) and BOS (Basic Operating System)
startup systems.

It soon became apparent that os was going to be the
system for large 360's with at least 256K bytes of core,
and that something else would be needed if the smaller
systems were to run at all efficiently. This led to the par-
allel development at IBM of the Disc Operating System
(DOS) which was started early in 1965, and which, ac-
cording to its implementors, was released several months
before the initial release of os.

The early os releases were quite primitive sequential
systems that could not support concurrent input, output,
and computing. A group of IBM support programmers
at the Houston Space Flight Center developed a modi-
fied os system called HASP (Houston Automatic Spooling
Priority System) that became popular. Later multipro-
gramming versions of os, MFT (Multiprogramming with
a Fixed number of Tasks), and MVT (Multiprogramming
with a Variable number of Tasks) do permit multiple
reader and writer programs to operate simultaneously
with one or more user programs. However, the facilities

Communications July 1972
of Volume 15
the ACM Number 7

for scheduling and resource allocation still seem inade-
quate at most large installations, and a more capable
HASt'2 system, which was introduced toward the end of
1968, is widely used. HASP has a rather ambivalent rela-
tionship to os since the HASP program runs as one of the
programs in the os multiprogramming environment, but
it is a specially privileged program that controls system
input and output and that makes all of the important
job-scheduling decisions.

In order to include reasonably sophisticated schedul-
ing techniques in an operating system it is necessary to
be able to preempt jobs, to remove them from primary
storage (core) to secondary storage (drum or disk), and
to later restore them to primary memory and resume
their operation. All large third generation computers
with the exception only of the IBM 360 systems provide
at least one hardware relocation register which permits
jobs loaded into main memory to be location indepen-
dent. They can be preempted, moved to secondary stor-
age, and later reloaded into a different area of primary
memory and resumed.

Under the system 360 operating systems, if a job is
moved out to secondary storage it can be resumed only
if it is reloaded into the area from which it was dumped.
This is practical only in special cases, and rollout or
preempt-resume scheduling strategies are therefore not
practical on the 360. This severely limits the storage
management that can be used on the 360.

It was expected that the 370 series would correct this
design flaw, but the 370 as originally released hardly
differed from the 360. It seems to be an open secret that
relocation hardware exists in the IBM 370 but is tempo-
rarily disabled, presumably pending the development of
appropriate software.

The 360 Model 67 Operating Systems

mM introduced the 360 model 67 to provide a prod-
uct competitive with the G~ 645 in the time-sharing mar-
ket [30]. The model 67 is an atypical 360, which can run
the standard 360 operating systems but which also has
paging and segmentation hardware and so can support
a sophisticated virtual memory operating system. The
ambitious time-sharing system TSS 67 was announced in
the spring of 1965 with the initial release scheduled for
the fall of 1967. In the spring of 1966, I wrote in [29] that
"all previous experience inclines this observer to be pes-
simistic regarding on-time delivery and initial perform-
ance." The early performance of the system was actually
worse than even a pessimistic observer might have pre-
dicted.

The early performance was predicted with some ac-
curacy in a simulation study by Nielsen [26], who was
then a graduate student at Stanford University.

The TSS 67 effort was probably second only to os
360 in terms of manpower and money expended on an
operating system. It has been estimated that over 2,000

man years of work went into TSS. Eight successive ver-
sions were produced, almost all of which included the
redesign of major components of the system. The effort
led to interesting developments in the area of command
language, interactive debugging, a table driven sched-
uler, and storage management strategies. Performance
was much better in later versions than in the earlier ones.
Some of the performance gains were achieved by adding
more hardware, especially core memory. It turned out
that paging was less effective in reducing the core mem-
ory requirements than had been expected. With ade-
quate core memory and relatively few users, TSS was a
usable, though expensive time-sharing system.

In the fall of 1970, Doherty [16] described efforts
made at IBM'S research center to improve the perform-
ance of TSS on their own 360/67. In that paper he points
out that prior to these changes, i.e. using the standard
TSS software as of the beginning of 1970, "we could sup-
port fewer than 15 simultaneous users on Release 4 of
TSS/360 without LCS, and responses to trivial requests
were in the 10-30 second range."

Although TSS was the standard supported 360/67
software, there were other systems developed and used.
One of these was the Michigan Terminal System, devel-
oped at the University of Michigan and used there and
at a number of other universities.

Another was cP67 which grew out of a project at the
IBM Cambridge Research Center and became quite pop-
ular among users of the 360/67. cP67 introduced the
concept of a "virtual machine." A typical time-sharing
system attempts to make the user believe that he has
the whole computer with its operating system all to
himself, cP67 lets the user specify a system 360 hardware
configuration and a controlling software system. Thus
one user may be running os 360 on a (virtual) machine
with large core and many disk units while another is
running DOS on another (virtual) machine with small
core and very limited peripherals. Most users run the
Cambridge Monitor System on a (virtual) 360/67. The
system runs relatively efficiently when CMS is used, but
much less efficiently if it is simulating a number of dif-
ferent 360 systems.

Multics

In the mid 1960's time sharing was the central con-
cept of most operating system research projects. This
emphasis was reinforced by the funding agencies of the
United States government, especially by ARPA, the Ad-
vanced Research Projects Agency of the Department of
Defense. The most important project supported by
ARPA in this area was Project MAC at MIT.

The problems in the design of small dedicated time
sharing systems had been solved on the prototype sec-
ond generation systems, CTSS at MIT, the original BASIC
System at Dartmouth, and others. Project MAC set out
to solve the next generation of design problems for large

597 Communications July 1972
of Volume 15
the ACM Number 7

time sharing systems in MULTICS (Multiplexed Informa-
tion and Computing Service) on the GE 645 computer,
many of whose hardware features were designed to
satisfy MULTICS requirements.

The aim of the MULTICS project was not merely to
provide the conventional services that can be provided
adequately by most time sharing systems--its goals were
far more ambitious. They were based on a comprehen-
sive philosophy of program design and structure, and
on a concept of how computers should be used for re-
search and scientific computation. It is a philosophy
which had its analogues and its advocates in the earlier
computer generations. The work of Holt and Turanski
and their colleagues on the GP and GPX systems for
UNIVAC I and UNIVAC II i s most directly relevant.

Their approach envisions essentially all of the im-
portant achievements and activities in computer pro-
gram design and development embodied in one large
on-line programming library. The library consists of
modules of programs and data and commentary or-
ganized within a retrieval structure that makes all
modules available to authorized users. The library
represents a living, growing structure. Research and
program development groups in all installations using
the system contribute to its growth.

The earlier GP systems were attractive to a small
class of programmers--mostly programmers who were
interested in the design and development of large pro-
grams and programming systems. The programming
systems were complicated and system overhead was high.
The same seems to be true of the MULTICS system.

The philosophy of systems like GP and MULTICS is
most attractive in terms of a large community of users.
Ideally all major universities and research laboratories
should be included. MULTICS envisioned direct intercon-
nection among user installations and looked forward to
the large scale computer utility which would become
the "depository of the data base and information pro-
cessing procedures of the community."

The computing community was not ready for this
kind of thing in 1965, and it may never really be ready
for it. Bell Telephone Laboratories went along, but the
more practically oriented university computing centers
did not. Bell finally dropped out in 1970.

The MULTICS system is now running at MIT and at one
or two other installations. It may yet be more widely
used if Honeywell actually produces a rumored succes-
sor to the 645. Even though it has had limited practical
success SO far, MULTICS has had a tremendous amount of
influence in the area of operating system software. Most
of the important concepts in the design of virtual mem-
ory systems were developed by people connected with
the MULTICS project. They produced a series of publica-
tions in which many programming system problems are
analyzed and discussed. Some of the most important
are [10, 13, 5]. Many of the problems are universal prob-
lems, and the discussions will contribute to everyone's
better understanding of the principles involved.

The ARPA Network

In recent years ARPA has shifted its major emphasis
in the area of computing to the; building of a large net-
work tying together many different computers with a
great variety of operating systems. Most of the software
problems arise from the complete lack of uniformity or
standardization in the systems and in their control lan-
guageo.

So long as there are great differences in hardware
architecture it is not going to be', possible to achieve even
the degree of uniformity that has been achieved in the
language area. The ARPA network may very well be a
prototype of the computing systems of the 1980's, and
its influence may be an important factor in a move
toward standardization of operating system language
and structure.

Dijkstra and His Followers

A one-page note on "Concurrent Programming
Control" that appeared in Communications in Septem-
ber of 1965 was the first significant contribution to what
has become an interesting and important approach in
the area of operating systems. The paper was by E. W.
Dijkstra [14]. See also Knuth [22]. It was a very useful
contribution in that it provides a solution to a basic
interlock problem, but it is more important for the ap-
proach that it exemplifies. There is a simple statement
of the problem, a proposed solution, and then a proof
of the fact that the solution does indeed solve the prob
lem. At the First Symposium on Operating System
Principles held at Gatlinburg, Tennessee, in October
1967, Dijkstra [15] presented a paper in which he very
briefly described the THE operating system that he and
his colleagues at Eindhoven had designed.

The following is a brief quotation from his paper:
"We have found that it is possible to define a refined
multiprogramming system in such a way that its logical
soundness can be proved a priori and its implementation
can admit exhaustive testing. The only errors that
showed up during testing were trivial coding e r ro r s . . .
At the time this was written the testing had not yet been
completed, but the resulting system is guaranteed to be
flawless."

Dijkstra's work has had a great deal of impact, espe-
cially in academic and research circles. A number of
operating systems for relatively small computing systems
have been built according to the principles enunciated
by Dijkstra and his followers, and a number of others
have been started. See, for example, Brinch Hansen [7].

It is not clear to what extent the concepts of formal
structure and formal proof will apply to larger more
general purpose operating systems. The modular hier-
archical structure upon which the method is based may
lead to intolerable inefficiencies in large systems. The
formal proofs may turn out to be extremely difficult

598 Communications July 1972
of Volume 15
the ACM Number 7

mathematical exercises. Even if their methods are not
universally adopted, Dijkstra and his colleague's have
had a great and salutary effect on system designs. They
have thought deeply about problems of interlock and
interference and deadlock, and have clarified and solved
many problems in these areas. They have helped bring
clear thinking into system design.

Hardware Developments

Software in microprogramming seems bound to be-
come more important in the future. The advances in
this area have been slower and less dramatic than some
of the enthusiasts for microprogramming predicted, but
they have been important nonetheless. Recently deliv-
ered peripheral controllers, for example, contain as
much sequencing hardware (implemented by micropro-
gramming) as would be used in a large scale general
purpose computer of a slightly earlier generation.

With its model 85, IBM introduced a storage manage-
ment concept based on a small "cache" or "buffer"
memorythat uses hardware to produce a single level stor-
age system. This attractive concept has been extended
to all of the larger members of the IBM 370 family and
will probably be used in many future systems [9].

For now the buffer memory concept deals only with
two levels of very high speed memory. Typically the
"slow" memory is magnetic core memory with a 2
microsecond cycle, and the fast memory is an integrated
circuit memory with access time less than 100 nanosec-
onds. It does not yet affect disk and drum storage where
access times are measured in milliseconds.

The most usual and most obvious prediction of the
next major "breakthrough" in the computer field is that
it will be the development of inexpensive random access
memory, with access times in microseconds to replace
the direct access drums and disks at equal or possibly
even lower cost per bit. It is of course impossible to
predict if this will happen by 1975. I am surprised that
it hasn't happened yet.

When it does happen, it will have a very major effect
on system software. It seems probable that in those fu-
ture systems hardware management of multilevel storage
as typified by the large 370 systems will play a much
more important role than the software management
techniques that are typical of today's virtual memory
systems.

Micropro grammin g

It has become increasingly popular to use micropro-
grams in a read-only memory in place of hard wired
sequencing circuits in computer design. Microprograms
can be used to perform functions that are usually con-
sidered to be software functions. It has been suggested
that much of what we now call the operating system will
soon be done by microprogramming rather than by
software methods.

Several years ago [31] I used the term hardware pro-
gramming rather than microprogramming to emphasize
the fact that it is indeed programming and is often pro-
gramming of the most detailed kind. When the micro-
programming is done in a read-write memory (e.g. rag's
writeable control storage), the similarity with software
programming becomes even more apparent.

Conclusion

One of the encouraging developments in the field is
the great current interest in system measurement, eval-
uation, and modeling [3]. Designers of hardware and
software are more conscious now than they have ever
been before of the necessity for incorporating measure-
ment and evaluation techniques into systems at an early
stage in their design. Many new hardware and software
designs are incorporating features that will permit gath-
ering of statistics and monitoring of performance at a
level that has usually been prohibitively difficult or ex-
pensive in earlier systems.

There is much to criticize in the area of operating
systems and computer software in general. Yet anyone
who compares the situation now with that of five or ten
years ago must be impressed by the tremendous prog-
ress that has been made. We try to do too much
with our systems; we try to make them run reliably on
equipment that cannot support them adequately. We do
not always succeed, but over the years there has been a
great increase in all of the things that count: in produc-
tivity, in reliability, in flexibility. We now do as a matter
of course things that would have been considered almost
impossibly difficult not very many years ago. We have
achieved a much better understanding, both theoretical
and practical, of the problems of operating system soft-
ware. We are in a much better position to face the soft-
ware problems that will be posed by future systems than
we were just a few years ago. If ultra complex machines
like the CDC STAR and the ILLIAC IV are any indication
of things to come, the problems may be very difficult
indeed, and it will be many years before the problems
of operating system design and implementation can be
dismissed as routine.

References

Only a few direct references are listed here. Many of these
references contain much more complete bibliographies in the
specific areas that they cover. See especially [12 and 32].

1.
ACM Proc. of a SIGPLAN symposium on languages for systems

implementation. Purdue U., Oct. 1971. Sigplan Notices 6, 9
(Oct. 1971).
2.

ACM Proc. of the extensible languages symposium. Boston, May
1969. Sigplan Notices 4, 8 (Aug. 1969).

599 Communications July 1972
of Volume 15
the ACM Number 7

36
ACM Proc. of SIGOPS workshop on system performance

evaluation. Harvard U., Apr. 1971.
4.

Abell, V.A., Rosen, S., andWagner, R.E. Scheduling ina general
purpose operating system. Proc. AFIPS 1970 FJCC, Vol. 37,
AFIPS Press, Montvale, N.J., pp. 89-96.
5,

Bensoussan, A., Clingen, C.T., and Daley, R.C. The MULTICS
virtual memory. Proc. second symposium on operating system
principles, 1969, pp. 30-42.
6.

Branquart, P., Lewi, J., Sintzoff, M., and Wodon, P.L. The
composition of semantics in Algol 68. Comm. ACM 14, 11
(Nov. 1971), 697-708.
7.

Brinch Hansen, P. (Ed.). RC4000 software multiprogramming
system. A/S Regnecentralen, Copenhagen, 1971.
8.

Cheatham, T.E. The recent evolution of programming languages.
Proc. IFIP Cong. 1971, North Holland Pub. Co.,
Amsterdam, pp. 1118-1134.
9.

Conti, C.J. Concepts for buffer storage. Comput. Group News 2, 8
(Mar. 1969), 9-13.
10.

Daley, R.C., and Dennis, J.B. Virtual memory, processes, and
sharing in MULTICS. Comm. ACM 11, 5 (May 1968),
306-312.
11.

Denning, P.J. Virtual memory. Computbzg Surveys 2, 3 (Sept. 1970),
153-189.
12.

Denning, P.J. Third generation computer systems. Computing
Surveys 3, 4 (Dec. 1971), 175-216.
13.

Dennis, J.B. Segmentation and the design of multiprogrammed
computer systems. J. ACM 12, 4 (Oct. 1965), 589-602.
Reprinted in [27].
14.

Dijkstra, E.W. Solution of a problem in concurrent programming
control. Comm. ACM 8, 9 (Sept. 1965), 569.
15.

Dijkstra, E.W. The structure of"THE" multiprogramming
system. Comm. ACM 11, 5 (May 1968), 341-346.
16.

Doherty, W.J. Scheduling TSS for responsiveness. Proc. AFIPS
1970 FJCC, Vol 37, AFIPS Press, Montvale, N.J., pp. 97-117.
17.

Feldman, J., and Gries, D. Translator writing systems. Comm.
ACM 11, 2 (Feb. 1968), 77-113.
18.

Garwick, J.V. GPL, a truly general purpose language. Comm.
ACM 11, 9 (Sept. 1968), 634-638.
19.

Irons, E.T. Experience with an extensible language. Comm.
ACM 13, 1 (Jan. 1970), 31-40.
20.

Iverson, K. A Programming Language. Wiley, New York, 1962.
21.

Kilburn, T., Edwards, D.B.G., Lanigan, M.J., and Sumner, F.H.
One level storage system. IRE Trans. Electronic Comput.
EC-11 (Apr. 1962), 223-235.
22.

Knuth, D.E. Additional comments on a problem in concurrent
programming control. Letter in Comm. ACM 9, 5 (May 1966),
321-322.
23.

Lucas, P., and Walk, K. On the formal description of PL/1.
Ann. Rev. Automatic Programming 6, 3 (1969), 105-182.
24.

McKeag, R.M. Burroughs B5500 master control program.
Report in series: Investigation of Operating System
Techniques. Dept. Comput. Science, Queens U. of Belfast,
1971.

25.
Mealy, G.H., Witt, B.I., and Clark, W.A. The functional structure

of OS/360. IBMSystems J. 5, 1 (1966), 2-51.
26.

Nielsen, N.R. Simulation of time sharing systems. Comm.
ACM 10, 7 (July 1967), 397-412.
27.

Rosen, S. (Ed.). Programming Systems and Languages. McGraw-
Hill, New York, 1967.
28.

Rosen, S. Programming systems and languages. A historical
survey. Proc. AFIPS 1964 SJCC, Vol. 25, Spartan Books,
N.Y., pp. 1-15. Reprinted in [27].
29.

Rosen, S. Programming Systems and Languages. Some recent
developments. In [27], pp. 23-26.
30.

Rosen, S. Electronic computers, a historical survey. Computing
Surveys 1, 1 (Mar. 1969), 7-36.
31.

Rosen, S. Hardware design reflecting software requirements.
Proc. AFIPS 1968 FJCC Vol. 33, Pt. 2, AFIPS Press,
Montvale, N.J., pp. 1443-1449.
32.

Sammet, J.E. Programming Languages: History and
Fundamentals. Prentice-Hall, Englewood Cliffs, N.J., 1969.
33.

Sammet, J.E. Problems in, and a pragmatic approach to,
programming language measurement. Proc. 1971 AFIPS
FJCC, Vol. 39, AFIPS Press, Montvale, N.J., pp. 243-251.
34.

van Wijngaarden, A. (Ed.). Report on the algorithmic language
ALGOL 68. Numerische Mathematik 14 (1969), 79-218.
35.

Wirth, N. The programming language Pascal. Acta Informatica 1
(1971), 35-63.

600 Communications July 1972
of Volume 15
the ACM Number 7

