
Evaluation of Machine Learning for Intrusion Detection in
Microservice Applications

Iury Araujo
University of Coimbra

CISUC, DEI
Coimbra, Portugal

iuryrogerio@dei.uc.pt

Nuno Antunes
University of Coimbra

CISUC, DEI
Coimbra, Portugal
nmsa@dei.uc.pt

Marco Vieira
University of Coimbra

CISUC, DEI
Coimbra, Portugal
mvieira@dei.uc.pt

ABSTRACT
Microservices have thrived recently as an approach for service de-
sign, development, and delivery. It provides several benefits to the
systems as an architecture, such as faster delivery, improved scala-
bility, and greater autonomy. Although microservice architectures
are popular, security characteristics of these architectures impair
the deployment of security, such as sizable attack surface, network
complexity, heterogeneity, and others. For years, intrusion detec-
tion has been a practical security approach for many applications.
Recently, machine learning provided improved functionality for
intrusion detection systems with exciting results in overall tests.
This paper presents the evaluation of machine learning techniques
for intrusion detection in a microservice scenario. System call data
was collected from containers simulating microservice applications;
these containers were submitted to attacks that exploited differ-
ent vulnerabilities. The data was used to train and test machine
learning techniques, and the test results provided us with exciting
possibilities for this approach. Some of the tested attacks were very
well detected by the techniques, while some were not, attesting that
machine-learning-based intrusion detection is usable in this envi-
ronment. However, to enhance detection, it is required to improve
data processing and representation for this type of scenario.

CCS CONCEPTS
• Security and privacy→ Intrusion/anomaly detection and
malware mitigation; • Computing methodologies → Machine
learning approaches.

KEYWORDS
Intrusion Detection, Machine Learning, Microservices, System Calls

ACM Reference Format:
Iury Araujo, Nuno Antunes, and Marco Vieira. 2023. Evaluation of Machine
Learning for Intrusion Detection in Microservice Applications. In 12th Latin-
American Symposium on Dependable and Secure Computing (LADC 2023),
October 16–18, 2023, La Paz, Bolivia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3615366.3615375

This work is licensed under a Creative Commons Attribution International
4.0 License.

LADC 2023, October 16–18, 2023, La Paz, Bolivia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0844-2/23/10.
https://doi.org/10.1145/3615366.3615375

1 INTRODUCTION
Microservices have become a popular approach in recent years [12,
15, 26]. They provide an approach to software and systems archi-
tecture that builds on the firmly established concept of modular-
ization [12]. Microservices are small and independent applications
responsible for a single goal and can be deployed, scaled, and tested
independently [15]. Thus, the approach renders monolithic systems
into granular units that interact viamessages through awell-defined
network interface, increasing software agility and enabling orga-
nizations to make more continuous deliveries and achieve better
time to market [12, 15].

Although microservices provide several advantages to systems
development, new challenges appear, such as security [19]. For in-
stance, recent industrial reports reveal that big companies have been
receiving massive attacks on their microservices-based systems
and infrastructure in the last few years [19]. One such company
is Netflix which had a subdomain compromised, and the attacker
was able to send any content via the context netflix.com to the
users [6, 19]. The security issues microservices face are not strictly
new, being present in Service-Oriented Architecture and generally
in distributed systems. However, they become more challenging
due to specific security characteristics of the microservices envi-
ronment, such as greater attack surface, network complexity, and
heterogeneity, thus remaining open challenges [6, 25].

Several studies have proposed solutions for the issues discussed
earlier [8, 11, 17]. However, as technologies evolve, attacks and
vulnerabilities do so as well. Therefore, security approaches must
be revised, improved, and sometimes created anew. Also, emergent
technologies can be used to propose new approaches. One such
technology is Machine Learning, which has become popular in
improving the security of distributed architectures, such as edge
computing and IoT [4, 7, 20, 24]. In these architectures, ML is used
as the backbone of the attack identification process from Intrusion
Detection System, exploring the data of the target applications [5].
AlthoughML techniques can help to improve security in distributed
architectures, not all methods provide good results. Many of them
need help from data processing before using the MLmethods or will
need post-processing techniques to attain a satisfactory solution,
and some can never work with that type of scenario. Thus, applying
ML to security solutions, such as intrusion detection, is a constant
study, adaptation, and testing process.

In this work, our goal is to analyze how machine learning tech-
niques may be used to detect intrusions in applications deployed in
a microservice scenario. For this, we have evaluated different ML
techniques and configurations using an experiment to identify how

1

126

https://doi.org/10.1145/3615366.3615375
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3615366.3615375
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3615366.3615375&domain=pdf&date_stamp=2023-10-17


LADC 2023, October 16–18, 2023, La Paz, Bolivia Iury Araujo, Nuno Antunes, and Marco Vieira

well these techniques could identify distinct attacks. The experi-
ment described here used system call data collected from containers
deployed in Docker to simulate standalone services. This training
and testing data was submitted to pre-processing methods to trans-
form it into a suitable technique format. Also, a post-processing
technique based on a sliding window was used to improve the iden-
tification of attacks and minimize the number of false alarms. The
results have shown promising possibilities for using ML techniques
for intrusion detection in this scenario. However, it seems depen-
dent on the quality of the training and testing data, including the
ability to find a proper representation of system call data in this
scenario.

The paper is structured as follows. Section II presents the back-
ground and the works related to the research. The evaluation pro-
cess is described in section III. Section IV discusses the experiment,
its configuration and the steps to obtain the training and testing
data. The results will be presented and discussed in Section V. Lastly,
Section VII concludes the work and presents the future work.

2 BACKGROUND AND RELATEDWORK
Intrusion detection monitors events occurring in computer systems
or networks, analysing them for traces of security problems [1].
Intrusion Detection System detects malicious activities and unau-
thorized usage to protect computers and network infrastructure.
An Intrusion Detection System will capture and analyse network
traffic to discover suspicious activities and report them to an admin-
istrator, human or computational system, which decides the action
to that activity [5]. Intrusion Detection System must constantly
analyse activities performed on the system. These activities are the
data used to identify attacks from normal behaviour. Mainly, IDS
will use two approaches to analyse data, signature and anomaly
detection.

Signature detection, also called misuse detection, identifies at-
tacks by searching for a specific pattern or behaviour already classi-
fied as an attack stored in a signature database [1, 14]. This approach
often uses pattern-matching techniques to identify malicious activ-
ity. Anomaly detection will search for deviations from the expected
behaviour, indicating an probable attack on the system. This type
of detection assumes that anomalies are rare events that are dis-
tinctive from the system’s normal behaviour. Thus, it is possible
to construct a model of the system’s normal behaviour, and every-
thing that deviates from that is considered an anomaly [1, 14]. The
development of anomaly detection models is executed through two
phases: the training phase and the testing phase.

Machine learning has become an exciting technology for intru-
sion detection approaches. Computer security intrinsically provides
robust datasets on which ML techniques may take advantage. In
addition, the advent of powerful data crushing hardware and more
capable data analysis and ML algorithms provide the perfect time
to explore the potential of ML in the area of security [5]. Several
studies, like the ones in [2, 10, 20, 22], have provided information
about the ML techniques that could be used to provide intrusion de-
tection for a variety of scenarios and vulnerabilities. Unfortunately,
it is impossible to recommend a specific ML technique based only
on the system exposition to attacks. The richness and complexity
of the techniques do not allow for such simple categorisation [2].

Also, studies warn of the importance of training and testing data in
intrusion detection. ML techniques can not work correctly without
representative data, and obtaining this data is a time-consuming
and challenging task [2, 10].

Unfortunately, studies on machine learning for security in mi-
croservices are scarce. The work developed in [18] proposes a
machine-learning-based approach capable of modelling microser-
vices behaviour by observing inter-service communication. This
modelling creates a visualisation of the system’s expected behaviour
and its services. Therefore any action that would deviate from this
model is considered an anomaly and possible intrusion. Although
the idea expands to microservice applications, the approach is de-
signed to train and test the Internet of Things (IoT) services.

In [13], an ML-based detection system is proposed to analyse
system call data from microservices in cloud containers to identify
cryptomining action. The tests implement a real-world scenario
in Kubernetes with a detection system composed of different ML
techniques to identify any anomalous pods. The results show that
three techniques of the four tested achieved a collective accuracy
of 97%. Also the study provides exciting ideas for the organisation
and collection of training and testing system call data. The work
presented in [3] presented a performance evaluation of an intru-
sion detection system based on ML techniques for multi-tenant
applications. The experiment uses different forms of embedding
the system call data and shows promising results for the majority
of the ML techniques tested. However, the precision, recall, and
F-measure metrics were not separated for the type of attack. Thus,
it is impossible to determine if the result is valid for all types or if it
is just one type with good results concealing the bad results from
the others.

The related works show a research gap in machine-learning-
based intrusion detection systems for microservice security. Al-
though ML techniques are being incorporated into intrusion detec-
tion systems, many researchers are focused only on IoT or edge
scenarios.On the other hand, the few microservices studies we en-
countered usually focus on one class of vulnerability. Thus, part of
our proposal focuses on providing an approach for microservice se-
curity using machine-learning-based intrusion detection for several
classes of vulnerabilities.

3 EVALUATION OF MACHINE LEARNING
TECHNIQUES

To assess the ML techniques, we designed a procedure where the
techniques would be trained and tested, and changes could be ap-
plied based on the results. As different parameters of the algorithms
may change the results of ML techniques, evaluating the results
from changes in parameters is also necessary. Figure 1 presents the
procedure for evaluating techniques, which is divided into phases,
as follows.

As we can observe, in the first phase, a technique is selected from
the available ones and paired with a set of parameters, this pair
will use a percentage of the data from the scenario to train a model
based on the techniques algorithm and the given parameters. The
second phase will take the model created by the previous phase and
a smaller percentage of the data to test the model and determine
the confusion matrix for the test. In the third phase, the results

2

127



Evaluation of ML for Intrusion Detection in Microservice Applications LADC 2023, October 16–18, 2023, La Paz, Bolivia

Figure 1: Evaluation procedure of machine learning tech-
niques.

from the confusion matrix are analysed and if they are considered
satisfactory, the technique is approved for that set of parameters.
Also, all the information from the evaluation is saved for later use,
such as parameters, training and testing data, and the confusion
matrix from the test results. Lastly, the fourth phase only happens
if the results are not acceptable. In this case, the technique is sent
again to the first phase, and a new set of parameters is chosen to
be executed with it, restarting the evaluation procedure.

The pre-processing task will mainly transform the data from
microservice applications into a format and structure more appli-
cable to the ML technique at the moment. This task may have a
different number of steps depending on the technique. For example,
techniques based on distance will have different pre-processing
approaches than the ones based on regression. Also, the data may
be refined or processed to improve the quality of the data and offer
a subset more suitable for the problem. This happens in situations
in which the volume of data is greater than needed, and some pre-
processing techniques may be used to reduce the size of subsets.
Moreover, pre-processing is also needed when the data present
imbalanced characteristics in which a class, or classes, has just a
tiny number of instances in the data but are very important for
the context of the model. In this context, the data produced by the
pre-processing techniques may help to avoid model fitting.

For this work, we chose to work with only the following su-
pervised techniques: Decision Tree, Random Forest, and Support
Vector Machine. DT and RF are techniques widely used for ma-
chine-learning-based intrusion detection in other scenarios and are
relatively simple to use [2, 4, 10, 13, 24]. Thus, it seemed natural to
start the processes with them. SVM is another technique frequently
used in the context of intrusion detection [21, 23]. The appeal for
using this technique as one of the firsts to be assessed comes from
the different kernel functions that can be used by the training algo-
rithm, which prompts different results and a deeper analysis of the
impact of technique parameters on the evaluation procedure.

4 EXPERIMENTAL EVALUATION
To test the evaluation approach for ML techniques explained in Fig-
ure 1, we decided to evaluate the three techniques established previ-
ously. Each technique was trained, tested, and evaluated more than
once with different parameters and changes to the pre-processing

approaches. The experiment was implemented in Python 3.8.10, in-
cluding pre-processing and post-processing tasks. The free library
Scikit-learn version 0.24.2 was used for ML training and testing. All
the phases and tasks of the evaluation procedure were conducted
in a machine with the following specifications: Intel Core i5 10400
CPU at 2.90GHz with 32GB of RAM, with Ubuntu 20.04.2 LTS.

4.1 Data Collection
The quality of the data used for training ML techniques is directly
related to the model’s capacity to learn the scenario correctly. Thus,
the data must represent the nuances of the scenario completely. We
are using system call data to train and test the techniques for this
work. Microservice applications can provide a variety of data usable
in intrusion detection approaches. Among this variety, system call
data has been widely used by Intrusion Detection System for a long
time to evaluate any deviation from the normal execution, thus
identifying possible security problems [16].

The data used to train and test the ML techniques in our evalua-
tion procedure come from the work done by Flora J., Gonçalves P.,
and Antunes N. in [9] to evaluate intrusion detection effectiveness
in cloud container-based systems. Their work used a MariaDB de-
ployment for Docker container to simulate a microservice. Based
on the TPC-C benchmark, a variable workload was used to perform
requests to the container. This workload had a variable number of
active clients. It starts with ten active connections but repeatedly
increases until it reaches a maximum of 90 connections and then
decreases until it arrives again at ten active connections. In addi-
tion, this workload would also periodically execute commands that
emulate administrative tasks. The sysdig was used to collect the
system calls because of its native support for containers.

The data was collected in the form of collections, and each col-
lection contains system calls executed by the container during a
period (30𝑚𝑖𝑛). In the middle of the collection time (15𝑚𝑖𝑛), an
attack against the MariaDB is performed. The time interval for the
attack is important because the collection can contain the system’s
execution before and after the attack. Five types of vulnerabilities
were exploited to produce attack data for the training and testing
of the ML techniques. They were vulnerabilities in an older version
of MariaDB with proof-of-concept code available at exploitdb.com.
For each type of vulnerability, three collections were produced.
Table 1 offers an overview of the selected vulnerabilities and their
identification through this work. Additionally, three collections
were created with only benign information gathered over a more
extensive period (24𝐻 ).

Table 1: List of vulnerabilities exploited in this work. [9]

CVE ID Acess Vulnerability Type(s) CVSSS ID

CVE-2016-6662 Remote Execute Code,
Bypass 10.0 V1

CVE-2012-5611 Remote Execute Code,
Overflow 6.5 V2

CVE-2013-1861 Remote Denial Of Service,
Overflow 5.0 V3

CVE-2012-5627 Remote Execute Code 4.0 V4
CVE-2016-6663 Local Gain privileges 4.4 V5

3

128



LADC 2023, October 16–18, 2023, La Paz, Bolivia Iury Araujo, Nuno Antunes, and Marco Vieira

The deployment for the collection of data in the work [9] was
configured with Ubuntu 14.04 LTS and installed MariaDB version
5.5.28 with default configurations. Two machines were used, a
Target Infrastructure and a Test Driver. The target infrastructure
machine supported the evaluated service and has a 6-core 2.8GHz
CPU with 32GB of RAM, with Ubuntu 18.04.2 LTS. The Test Driver
has a 3.20GHz CPU and 16GB of RAM, with Ubuntu 16.04.3 LTS.

4.2 Metrics and Evaluation
Metrics are essential to evaluate the efficiency of the models created
by the training phase and determine if the ML techniques can detect
intrusions in microservice applications. They also help determine
if any change to the parameters improves or worsens the model’s
efficiency. ML is a study field that possesses many techniques, such
as accuracy, recall, precision, F1-score, AUC, ROC, and others, and
their use will depend on which aspects are more important to be
analysed by the research. This work has decided to use only two
specific metrics: sensitivity and false alarm ratio, respectively, the
True Positive Rate and False Positive Rate. These metrics can be
obtained by evaluating the confusion matrix of the test phase. The
decision to use these metrics was based on the necessity to evaluate
the TPR during the attack period and the FPR before and after the
attack.

To better evaluate the results, we divided the testing data into
three periods: pre-attack, attack, and post-attack. Figure 2 presents
the timeline of the testing data. What we expect from a successful
model is a high TPR during the attack and a lower number of false
alarms FPR during the pre-attack and the post-attack. Although
this evaluation is very simplified, it answers the questions about
the efficiency of the techniques and the following need to execute
changes, be these changes to the parameters or the data. Also, it
is possible that even with changes, some vulnerabilities are not
detected by some techniques, which can be a problem related to the
similarity of normal and attack instances or the quantity of data
needed to produce a workable model.

Figure 2: Division of the testing data into three time periods.

4.3 Data Pre-processing
Although the collected data is enough to represent our scenario,
its format and structure are not adequate for the machine learning
techniques. Thus, based on the work of [13], which uses system
calls to detect cryptomining in cloud containers, we have decided
to use their approach to structure system calls. The data collected
are composed of the system calls and their parameters. For this
experiment, we have chosen to ignore the parameters of the sys-
tem calls and see no distinction among the same command with
different parameters. We believe that these parameters have inter-
esting information and may help create more accurate models in

the future. However, encoding these parameters in a structure that
could represent the differences among system calls is not an easy
task and would require more resources.

Figure 3 explains transforming system call data into training
and testing data for our study of ML techniques. The process is
divided into three phases: encoding, n-gram, and feature vector. In
the encoding phase, a dictionary containing all system calls from
the raw data is created, and each system call has associated with a
unique identification number. Next, the raw data pass through an
encoding process where the system call data is transformed into a
sequence of identification numbers based on the created dictionary.
This encoded data maintains the same sequence of system calls
present in the raw data. In the n-grams phase, the process uses the
n-grams approach from [13]. This approach divides the sequence
of system calls into units of size 𝑛 called frames.

The value of 𝑛 is entirely dependable on tests and experimenta-
tion. Initially, our strategy was based on the research in [13], which
uses a frame size of 𝑛 = 35. Although the results were at first good,
we decided to evaluate the TPR during the attack when testing with
other frame sizes of 𝑛 = {35, 50, 100, 200, 400}. To evaluate the clas-
sification results of different frame sizes under various attacks, we
have decided to use the size 𝑛 = 50 for this experiment. This choice
was based on how stable was the classification of attacks for this
frame size, around 80-87% of correct attack classification. Frames
have a better granularity to be evaluated by the ML techniques than
using each system call because they are easier to extract features.

Lastly, the feature vector phase transforms the frames into fea-
ture vectors. This transformation helps structure the data into a
more suitable format for the ML techniques. However, we no longer
consider the system calls sequence in our model training by using
feature vectors. Each position in the feature vector is connected
to a type of system call in the dictionary. In these positions, the
number of times a system call appears in the frame is recorded, and
the spaces related to system calls that are not present in the frame
are marked with zeros. Also, feature vectors formed by this phase
will have a size equal to the number of elements in the dictionary,
which permits the test of different frame sizes without changing
the format.

4.4 Data Post-processing
The post-processing approach uses results from the test phase of the
evaluation procedure. These results are composed of a sequence of
frames classified with a binary value 𝑓 = {0−𝑁𝑜𝑟𝑚𝑎𝑙, 1−𝐴𝑡𝑡𝑎𝑐𝑘}.
They are organised following their timestamps, maintaining the
proper timeline of frames precisely as they were collected. To pro-
cess this timeline, we create a window of size 𝑛 and set an attack
threshold of percentage 𝑝 . Thus, the window will analyse 𝑛 frames
per iteration and verify how many are classified as attacks if that
value is equal to or larger than 𝑥 = ((𝑛 ∗ 𝑝) ÷ 100), and an attack
alert is invoked. For instance, considering a window of size 𝑛 = 50
and a threshold of 𝑝 = 10%, each iteration will evaluate 50 frames.
If at least five are classified as attacks, the post-processing approach
will invoke an attack alert at that moment.

Besides calculating the attack alert, the approach also designs the
window as a sliding window. This window will begin the timeline
analysis with the first 𝑛 frames. After the evaluation, it will move

4

129



Evaluation of ML for Intrusion Detection in Microservice Applications LADC 2023, October 16–18, 2023, La Paz, Bolivia

Figure 3: Data pre-processing for the collected system call data.

to collect the next frame and evaluate again if an alert needs to be
invoked. This behaviour will continue until there is no frame to
complete the size 𝑛 of the window. This sliding window approach
intends to increase the number of attack alerts during the timeline
attack phase and reduce the number of attack alerts invoked dur-
ing the pre and post-attack. One challenge of the approach is to
determine the ideal window size and the threshold percentage. To
determine these variables, we conducted several tests with different
results from the test phase of the evaluation procedure.

4.5 Evaluation Procedure
The evaluation procedure described in Section 3 assess ML tech-
niques using different parameters or pre-processing techniques
until the results are satisfactory. Although some techniques pos-
sess parameters that can apply changes to the trained models, our
most significant concern was to test different parameters and pre-
processing techniques that could help classify imbalanced data.
This concern was born because the training and testing data was
imbalanced to the attack class. Table 2 presents the number of in-
stances for each vulnerability dataset and the proportion of attack
and normal instances. Based on how imbalanced the data is, we
have decided on the test configurations for each technique.

Table 2: Proportion of normal and attack instances in the
training and testing data.

Vulnerability Instances Normal Instances Attack Instances
V1 567498 565803 (99.7013%) 1695 (0.2987%)
V2 501380 565803 (99.7013%) 469 (0.0935%)
V3 492055 491276 (99.8417%) 779 (0.1583%)
V4 642561 554446 (86.2869%) 88115 (13.7131%)
V5 565299 562120 (99.4376%) 3179 (0.5624%)

We have decided to use four types of configuration for the DT
and RF techniques: 1) no specific parameters or pre-processing

approaches were applied to theML technique. Thus, only the default
specifications were used; 2) the parameter weight was selected. This
parameter will guarantee that the algorithm applies weights to a
model’s training. The weight is automatically calculated based on
the proportion of the classes in the training data. The weight is
applied to warn the algorithm that misclassifies an instance from
the minority class is worst than one from the majority class. 3) no
specific parameter is used, but an oversampling process is applied
to create a new dataset where the number of attack instances is
equal to the normal instances. 4) no specific parameter is used, but
an undersampling process is applied to create a new dataset where
the number of normal instances is reduced to the same number of
attack instances.

We have decided to evaluate the results using different kernel
functions for the SVM technique. The four functions available in
the scikit-learn and used in the assessment are linear, polynomial,
RBF, and sigmoid. Also, the SVM is a technique that can take a long
time to train a model if there are many instances. Thus we have
decided to apply an undersampling process to reduce the volume of
training data for this technique. Table 3 presents the configurations
used for the ML Techniques.

Furthermore, some other adjustments needed to be made to the
evaluation procedure by the analysis of some preliminary results.
The most important one was related to the training data. The testing
data was divided into three periods, pre-attack, attack, and post-
attack. This division was also made to the training data. However,
the training would still use the data from the three periods to train
the model without distinction. e noticed that the number of false
alarms in the post-attack reached between 30% and 50% of the
total data during the initial training and testing. The number of
correctly classified attack instances was below 10%. Thus, based on
the evidence presented in [9], we decided not to train the models
with data from the post-attack. The problem identified is that some
vulnerabilities may produce effects that can affect the systems for
an extended period that surpass the duration of the attack and go

5

130



LADC 2023, October 16–18, 2023, La Paz, Bolivia Iury Araujo, Nuno Antunes, and Marco Vieira

Table 3: Configurations used for the tests of each supervised technique

Configuration Decision Tree (DT) Random Forest (RF) SVM
Config 1 Default Parameters Default Parameters Kernel Linear
Config 2 Weight Parameter Weight Parameter Kernel Poly
Config 3 Oversampling Oversampling Kernel RBF
Config 4 Undersampling Undersampling Kernel Sigmoid

into the post-attack. Thus, training the models with data from the
post-attack regarding it as normal data is not a good practice. In
this work, we have decided to only use for training the data from
the pre-attack and attack, and results have shown an improvement
in the classification of attack instances during the attack phase.

Although the earlier adjustment to the training data has im-
proved the results, the high number of false alarms was still a
problem for our evaluation. We evaluated that the data collected in
30𝑚𝑖𝑛 maybe was not enough to produce a good variety of normal
instances. We have decided to include a dataset from the same sys-
tem in the training data to correct this problem, but it only contains
benign data collected throughout 24𝐻 . This addition has dramati-
cally improved the results since it has diminished the number of
false alarms pre and post-attack. In addition to earlier measures to
improve the quality of the training data, we have also decided to
use cross-validation in our evaluation procedure to validate if the
model created can generalise the different subsamples of the data.
In this preliminary work, we used the cross-validation procedure
k-folds to resample our data with the parameter of 𝑘 = 10 for the
supervised techniques. The results in the next section already con-
sider the sum of the confusion matrices from the cross-validation
process.

5 RESULTS AND DISCUSSION
The evaluation procedure was assessed by two tests, which are
described next. 1) The first test uses the three collections from each
vulnerability to train and test the models. 2) The second test creates
a new collection containing information from all the vulnerabili-
ties. This new collection includes two data collections from each
vulnerability and the normal data collected over 24𝐻 . The unified
collection is used to train the model, and the remaining collection
from the vulnerabilities is used to test each vulnerability’s model.
Following, the results will be analysed by vulnerability, technique,
and frame size.

5.1 Vulnerabilities Analysis
The first test verifies the capacity of the ML techniques to create
a model that could classify the attack instances correctly from
the tested vulnerabilities. Figure 4 presents the results from this
first test. These results helped verify how the models detected the
attacks exploiting the vulnerabilities. Vulnerability V4 had the best
results between the techniques and configurations in this initial
test. Its TPR during the attack phase reached a value of 0.98 in most
techniques. However, the FPR in pre and post-attack phases were
the lowest ranging from 0.05 to 0.014. This result indicates that the
models created can detect the attacks for this vulnerability without
raising too many false alarms.

On the other hand, for vulnerability V1 in the first test, the
TPR for some techniques and configurations are good enough to
identify almost 50% of the attack instances. However, the FPR in
the pre and post-attack are incredibly high. The vulnerabilities V2
and V3 have similar results to V1 and cannot to detect attacks, at
the moment, without creating a large number of false alarms. A
fascinating realisation is that not all attack instances need to be
detected in the attack phase before the intrusion detection system
generates a response. This realisation makes it acceptable to have
a low TPR in the attack phase, between 0.2 and 0.3, if the FPR in
the pre and post-attack phases are very low, not surpassing 0.10.
Another remark from the analysis of the results is that the false
alarms will be more frequent during post-attack because the system
is still recovering from an intrusion. Thus, for a period after the
attack, the expected execution of the system is not correctly active
yet.

The second test verifies that adding additional normal instances
to the training data will minimise the false alarm ratio in the pre
and post-attack. Figure 5 presents the results from this second test.
The first noticeable difference between the results of this test and
the first one is a reduction in the false alarm ratio of all vulnerabili-
ties. However, this reduction was also observed in the TPR for the
vulnerabilities V1, V2, and V3. The evidence provided by the results
points towards datasets with few attack instances that cannot train
adequate models. Moreover, vulnerabilities V4 and V5 were not
negatively affected by this test, keeping similar results to the first
test.

5.2 Techniques Analysis
Some remarks are noticeable in the results when considering each
technique among the tests. The most noticeable ones are the be-
haviours of the techniques decision tree and random forest in con-
figuration 4, which performs an undersampling before the training
and testing. For this configuration, the FPR results in the first and
second tests for the pre-attack and post-attacks are incredibly high
compared to the other configurations. For example, in the first test,
the decision tree FPR ranged between 0.016 to 0.698, while the other
configuration’s FPR ranged from 0.10 to 0.330. This event can also
be observed in the second test but in a more subtle way. The in-
crease in the FPR is noticeable; however, it does not rise above 0.285
for decision three and 0.236 for the random forest. These results
indicate that undersampling for this data is not appropriate because
the resulting dataset is too small to contain enough information to
classify the instances correctly.

Comparing the decision tree and random forest results, we see a
slightly better result for FPR and TPR in the random forest. This
result happens to the first test and for the second as well. As the

6

131



Evaluation of ML for Intrusion Detection in Microservice Applications LADC 2023, October 16–18, 2023, La Paz, Bolivia

Figure 4: Heatmap of the results from the first test.

random forest uses more than one tree to create the final model,
it gains an advantage over a single decision tree. However, it is
necessary to investigate if the created model and its creation cost
are worthy of the detection gains.

As the configurations used undersampling, the same results as
in DT and RF with undersampling were expected. In the first test,
the SVM results presented the highest values for FPR from all the
techniques. For instance, the post-processing values between SVM
configurations 1,2 and 3 were, at their highest, respectively, 0.751,
0.786 and 0.779. However, this tendency is not continued in the
second test in which these SVM configurations received results
as good as other tested techniques. Exceptionally in the first test,
the only divergent result for vulnerabilities V4 and V5 was for the
technique SVM with kernel Sigmoid, where its FPR ranged from
0.560 to 0.609. Again in the second test, the technique SVM with
Config 4 results were poor. The results show that the kernel Sigmoid
cannot handle the scenario since its results are creating a high false
alarm rate and minimising the TPR. Furthermore, in Figure 5, the
technique and configuration were not affected as strongly as the
other kernels by using a large volume of normal data.

5.3 Frames Size Analysis
Our decision to use 𝑛 = 50 as our default frame size was based
on the analysis of the expanded results of the first test presented

in Table 4 for the decision tree, Table 5 for the random forest and
Table 6 for the SVM results. These tables contain the values for
TPR and FPR during the execution phases to detect attacks through
vulnerability V1. In Table 4, we can see the FPR values for pre-
attack are getting lower as we increase the size of the frames for
Configurations 1,2, and 3. However, for the post-processing FPR,
the values commonly increase until frame size 𝑛 = 400 when the
value decreases. This behaviour is also typical of the TPR results
in the attack phase. This information helped us understand the
limitation on the size of the frame. More oversized frames have less
information available to themodel since it evaluates a feature vector,
and their internal sequence of system calls is not analysed. This
situation can increase the number of identical frames in different
phases, making it difficult to establish a rule to classify them.

Thus, it is possible to understand how the frame size 𝑛 = 50
was chosen by analysing the other results. In table 5, the same
behaviour is identified. Frame size 𝑛 = 50 is the only one where
the TPR is higher than other sizes, and the FPR during pre and
post-attacks is the lowest possible. Thus as we intend to reward
techniques and configurations with high attack phase TPR and low
pre and post-attack FPR, 𝑛 = 50 is the best choice.

In addition, some remarks can be retrieved from configuration
4 of Tables 4 and 5. It is possible to see that independent of the
frame size, the values for all phases in configuration 4 are higher

7

132



LADC 2023, October 16–18, 2023, La Paz, Bolivia Iury Araujo, Nuno Antunes, and Marco Vieira

Figure 5: Heatmap of the results from the second test.

than any other configuration. Also, the results for this configura-
tion have low variance between them, indicating that even when
increasing the frame size, the dataset formed by the undersampling
does not provide enough information for the correct classification
of instances. Lastly, the results from Table 6 are not suitable for a
frame size evaluation since the FPR is very high. These results are
an effect of the undersampling that they are submitted. However,
as the second test results suggest, undersampling can be used for
this technique as long we provide a sizable dataset with enough
normal data and enough representation of the attack instances.

5.4 Post-processing Results
Based on the results of the second test in Figure 5, we evaluated how
a sliding window post-processing approach could help improve the
test phase results. Our idea was to minimise the number of false
alarms during the pre and post-attack and increase the number of
attack alerts during the attack period. For this analysis, we used
the results from the Decision Tree with the undersampling config-
uration in test two as the post-processing object. In our tests, this
pair produces the worst classification results because the subsam-
ple created is too small to represent all system call data, creating
many false alarms during the pre and post-attack. In addition, the
tests were used to gather information about the ideal values for

the window size and the alert threshold because they are impor-
tant to obtain relevant results from the post-processing approach.
The window sizes tested were 𝑛 = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}
and the threshold values were 𝑝 = {5%, 10%, 15%, 20%}. Our tests
were executed on all five vulnerabilities. However, we selected V5,
V4, and V2 results to discuss since they encapsulate all results’
characteristics.

Starting with vulnerability V5, the results from earlier sections
show that supervised techniques could correctly classify its attack
frames in a fair proportion without throwing false alarms. Post-
processing results verified that by increasing the threshold value,
the number of attack alerts in pre and post-attack was minimised
from 30% to below 1%. Also, as the window size increases, the
proportion of attack alerts is better during the attack phase, with a
TPR variation average of 0.2. The vulnerability V4 results show us
a scenario in which attack alerts in the attack phase gain little from
the post-processing approach. V4 is a vulnerability in which our
tests could secure a high TPR and an exceptionally low number of
false alarms. The only scenario where the post-processing approach
helps is when undersampling is used. In the results, we verified that
to a higher threshold. The attack alerts are diminished during pre
and post-processing attacks. However, the attack alerts during the
attack phase do not show any differences since the classification of
frames could secure the best scenario in the attack phase.

8

133



Evaluation of ML for Intrusion Detection in Microservice Applications LADC 2023, October 16–18, 2023, La Paz, Bolivia

Table 4: Results from different frames sizes for the Decision Tree in Vulnerability V1

Pre-attack (FPR) Attack (TPR) Post-attack (FPR)
Frame Size Config1 Config2 Config3 Config4 Config1 Config2 Config3 Config4 Config1 Config2 Config3 Config4

35 0.002 0.185 0.191 0.361 0.062 0.245 0.243 0.507 0.170 0.407 0.404 0.630
50 0.003 0.113 0.111 0.344 0.081 0.241 0.236 0.555 0.290 0.330 0.330 0.698
100 0.004 0.053 0.052 0.350 0.117 0.169 0.178 0.574 0.456 0.432 0.432 0.746
200 0.006 0.015 0.019 0.386 0.127 0.128 0.133 0.583 0.508 0.518 0.528 0.791
400 0.006 0.006 0.006 0.346 0.103 0.123 0.123 0.529 0.484 0.403 0.409 0.796

Table 5: Results from different frames sizes for the Random Forest in Vulnerability V1

Pre-attack (FPR) Attack (TPR) Post-attack (FPR)
Frame Size Config1 Config2 Config3 Config4 Config1 Config2 Config3 Config4 Config1 Config2 Config3 Config4

35 0.000 0.156 0.189 0.381 0.049 0.199 0.237 0.573 0.193 0.352 0.395 0.694
50 0.000 0.088 0.107 0.343 0.061 0.199 0.228 0.599 0.231 0.250 0.290 0.735
100 0.000 0.030 0.048 0.341 0.101 0.130 0.171 0.599 0.418 0.309 0.368 0.786
200 0.000 0.008 0.0013 0.326 0.104 0.030 0.056 0.563 0.457 0.190 0.273 0.814
400 0.116 0.001 0.001 0.314 0.089 0.023 0.060 0.624 0.485 0.157 0.197 0.746

Table 6: Results from different frames sizes for the Support Vector Machine (SVM) in Vulnerability V1

Pre-attack (FPR) Attack (TPR) Post-attack (FPR)
Frame Size Config1 Config2 Config3 Config4 Config1 Config2 Config3 Config4 Config1 Config2 Config3 Config4

35 0.416 0.422 0.404 0.445 0.571 0.586 0.574 0.546 0.712 0.702 0.699 0.543
50 0.392 0.453 0.423 0.457 0.556 0.605 0.585 0.528 0.751 0.786 0.779 0.555
100 0.188 0.303 0.256 0.395 0.462 0.531 0.502 0.533 0.774 0.803 0.795 0.623
200 0.202 0.281 0.234 0.415 0.480 0.502 0.478 0.576 0.805 0.814 0.750 0.801
400 0.189 0.551 0.464 0.856 0.515 0.686 0.639 0.990 0.841 0.891 0.855 0.854

Lastly, in vulnerability V2, no ML technique created a model that
could classify the test frames correctly. Thus, the three phases are
affected equally by the process when we use the post-processing
approach. The number of attack alerts is minimised, including the
attack phase in which we want to increase the attack alerts instead.
In this case, it is possible to evaluate that if the ML techniques
cannot create an adequate model to classify the fessentialrectly, the
post-processing approach cannot help. The results for vulnerabil-
ities V1 and V3 are highly identical to V2 since the models could
not classify the attacks. Using the results from V5, where the post-
processing approach was best executed, we evaluated that the ideal
threshold would be 15% with a window size between 30 to 45.

5.5 Threats to Validity
Although our various experiments to identify the efficacy of intru-
sion detection based on machine learning techniques in a microser-
vice scenario resulted in respectable results, some aspects of this
work may be challenging an overall recognition of the possibilities
for ML-based techniques.

First, ML possesses many different techniques that can be used in
classification. However, our study has focused on supervised tech-
niques, which are just a group inside the pool of possible techniques.
Also, this study was restricted to three techniques, and even with
the results being promising overall, more techniques need to be
evaluated to strengthen the results. Additionally, many parameters

are available to each technique and can significantly change the
results. In this study, the parameters were used only to deal with
imbalanced data problems, which were necessary at the time. Still,
expanding the use of these parameters is ideal for understanding
how each technique deals with attacks through different system
vulnerabilities.

The training and testing data also provide some limitations to
the study. Since vulnerabilities V1, V2, and V3 had so few attack
frames, do these vulnerabilities possess some characteristics that
difficult the detection of attacks performed through them, or the
data available was not enough to train a suitable model. Also, using
feature vectors as our data representation may have hindered the
gathering of more information among the system calls. This choice
was necessary to allow us to test different sizes of frames sizes using
the setup and resources available but reduced the information at
hand for the classification.

6 CONCLUSION AND FUTUREWORK
This work evaluated machine learning techniques for intrusion
detection in a microservice scenario. Our experiment was able to
verify if machine learning techniques would be capable of detecting
intrusions. Although some intrusions were not correctly detected,
two had good detection results and low false alarms. This result
indicates that the evaluation procedure can assess machine learning
techniques for our microservice scenario. However, it also provides

9

134



LADC 2023, October 16–18, 2023, La Paz, Bolivia Iury Araujo, Nuno Antunes, and Marco Vieira

insights into the quality and quantity of data, reinforcing the need to
expand the testing to other techniques with different classification
approaches, such as distance/based techniques.

Although few parameters from the techniques were tested, they
were enough to show the changes between different configurations
and provide information for future technique profiling. Also, the
data pre-processing approaches used to refine the training and
testing were essential in obtaining favourable results. They will
be further explored to verify how it impacts the execution of tech-
niques. In addition, the post-processing approach developed to
analyse classified data from models has provided us with details
about the limits to improve results. Thus, providing us with more
information to adjust our evaluation, which may need more metrics
than the TPR and FPR.

Our next steps will be to expand the ML techniques, attacks, and
parameters tested in the evaluation, for instance, distance-based
techniques. However, we must extend the research into data repre-
sentation for system calls to use these techniques. First, changing
from feature vectors to another format that can maintain the se-
quence in the frames, and later proposing embedding approaches
specifically for system calls to maintain their information and con-
nections. Also, based on the studies with intrusion detection, toler-
ance for microservice scenarios could be explored using integrated
approaches with intrusion detection based on ML techniques.

ACKNOWLEDGMENTS
This work was partially funded by FCT grant 2022.11551.BD. This
work has been partially supported by the project AIDA - Adaptive,
Intelligent and Distributed Assurance Platform (reference POCI-
01-0247-FEDER-045907) leading to this work is co-financed by the
ERDF and COMPETE 2020 and by the FCT under CMU Portugal. It
is also partially supported bt the FCT – Foundation for Science and
Technology, I.P./MCTES through national funds (PIDDAC), within
the scope of CISUC R&D Unit – UIDB/00326/2020 or project code
UIDP/00326/2020.

REFERENCES
[1] Rebecca Gurley Bace. 2000. Intrusion detection. Sams Publishing.
[2] Anna L Buczak and Erhan Guven. 2015. A survey of data mining and machine

learning methods for cyber security intrusion detection. IEEE Communications
surveys & tutorials 18, 2 (2015), 1153–1176.

[3] Marcos Cavalcanti, Pedro Inacio, and Mario Freire. 2021. Performance Evaluation
of Container-Level Anomaly-Based Intrusion Detection Systems for Multi-Tenant
Applications Using Machine Learning Algorithms. In The 16th International
Conference on Availability, Reliability and Security. 1–9.

[4] Nadia Chaabouni, MohamedMosbah, Akka Zemmari, and Cyrille Sauvignac. 2020.
A OneM2M Intrusion Detection and Prevention System based on Edge Machine
Learning. In NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 1–7.

[5] Clarence Chio and David Freeman. 2018. Machine learning and security: Protecting
systems with data and algorithms. " O’Reilly Media, Inc.".

[6] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: yes-
terday, today, and tomorrow. Present and ulterior software engineering (2017),
195–216.

[7] Angelo Feraudo, Poonam Yadav, Vadim Safronov, Diana Andreea Popescu,
Richard Mortier, Shiqiang Wang, Paolo Bellavista, and Jon Crowcroft. 2020.
CoLearn: Enabling federated learning in MUD-compliant IoT edge networks. In
Proceedings of the Third ACM International Workshop on Edge Systems, Analytics
and Networking. 25–30.

[8] José Flora. 2020. Improving the Security of Microservice Systems by Detecting
and Tolerating Intrusions. In 2020 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, 131–134.

[9] José Flora, Paulo Gonçalves, and Nuno Antunes. 2020. Using attack injection to
evaluate intrusion detection effectiveness in container-based systems. In 2020
IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC).
IEEE, 60–69.

[10] Yasir Hamid, M Sugumaran, and Ludovic Journaux. 2016. Machine learning
techniques for intrusion detection: a comparative analysis. In Proceedings of the
International Conference on Informatics and Analytics. 1–6.

[11] Abdelhakim Hannousse and Salima Yahiouche. 2021. Securing microservices
and microservice architectures: A systematic mapping study. Computer Science
Review 41 (2021), 100415.

[12] Pooyan Jamshidi, Claus Pahl, Nabor C Mendonça, James Lewis, and Stefan Tilkov.
2018. Microservices: The journey so far and challenges ahead. IEEE Software 35,
3 (2018), 24–35.

[13] Rupesh Raj Karn, Prabhakar Kudva, Hai Huang, Sahil Suneja, and Ibrahim M
Elfadel. 2020. Cryptomining Detection in Container Clouds Using System Calls
and Explainable Machine Learning. IEEE Transactions on Parallel and Distributed
Systems 32, 3 (2020), 674–691.

[14] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. 2019.
Survey of intrusion detection systems: techniques, datasets and challenges. Cy-
bersecurity 2, 1 (2019), 1–22.

[15] Xabier Larrucea, Izaskun Santamaria, Ricardo Colomo-Palacios, and Christof
Ebert. 2018. Microservices. IEEE Software 35, 3 (2018), 96–100.

[16] Ming Liu, Zhi Xue, Xianghua Xu, Changmin Zhong, and Jinjun Chen. 2018. Host-
based intrusion detection system with system calls: Review and future trends.
ACM Computing Surveys (CSUR) 51, 5 (2018), 1–36.

[17] Nuno Mateus-Coelho, Manuela Cruz-Cunha, and Luis Gonzaga Ferreira. 2021.
Security in Microservices Architectures. Procedia Computer Science 181 (2021),
1225–1236.

[18] Marc-Oliver Pahl and François-Xavier Aubet. 2018. All eyes on you: Distributed
Multi-Dimensional IoT microservice anomaly detection. In 2018 14th International
Conference on Network and Service Management (CNSM). IEEE, 72–80.

[19] Anelis Pereira-Vale, GastónMárquez, HernánAstudillo, and Eduardo B Fernandez.
2019. Security mechanisms used in microservices-based systems: A systematic
mapping. In 2019 XLV Latin American Computing Conference (CLEI). IEEE, 01–10.

[20] Bhawana Sharma, Lokesh Sharma, and Chhagan Lal. 2019. Anomaly detection
techniques using deep learning in iot: A survey. In 2019 International Conference
on Computational Intelligence and Knowledge Economy (ICCIKE). IEEE, 146–149.

[21] Peiying Tao, Zhe Sun, and Zhixin Sun. 2018. An improved intrusion detection
algorithm based on GA and SVM. Ieee Access 6 (2018), 13624–13631.

[22] Han Wang, Luis Barriga, Arash Vahidi, and Shahid Raza. 2019. Machine Learning
for Security at the IoT Edge-A Feasibility Study. In 2019 IEEE 16th International
Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). IEEE,
7–12.

[23] HuiwenWang, Jie Gu, and ShanshanWang. 2017. An effective intrusion detection
framework based on SVM with feature augmentation. Knowledge-Based Systems
136 (2017), 130–139.

[24] Yu Wang, Weizhi Meng, Wenjuan Li, Zhe Liu, Yang Liu, and Hanxiao Xue. 2019.
Adaptive machine learning-based alarm reduction via edge computing for dis-
tributed intrusion detection systems. Concurrency and Computation: Practice and
Experience 31, 19 (2019), e5101.

[25] Dongjin Yu, Yike Jin, Yuqun Zhang, and Xi Zheng. 2019. A survey on security
issues in services communication of Microservices-enabled fog applications.
Concurrency and Computation: Practice and Experience 31, 22 (2019), e4436.

[26] Olaf Zimmermann. 2017. Microservices tenets. Computer Science-Research and
Development 32, 3 (2017), 301–310.

10

135


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Evaluation of Machine Learning Techniques
	4 Experimental Evaluation
	4.1 Data Collection
	4.2 Metrics and Evaluation
	4.3 Data Pre-processing
	4.4 Data Post-processing
	4.5 Evaluation Procedure

	5 Results and Discussion
	5.1 Vulnerabilities Analysis
	5.2 Techniques Analysis
	5.3 Frames Size Analysis
	5.4 Post-processing Results
	5.5 Threats to Validity

	6 Conclusion and Future Work
	Acknowledgments
	References

