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ABSTRACT
To understand how well a proposed augmented reality (AR)
solution works, existing papers often conducted tailored and
isolated evaluations for specific AR tasks, e.g., depth or light-
ing estimation, and compared them to easy-to-setup base-
lines, either using datasets or resorting to time-consuming
data capturing. Conceptually simple, it can be extremely
difficult to evaluate an AR system fairly and in scale to un-
derstand its real-world performance. The difficulties arise
for three key reasons: lack of control of the physical environ-
ment, the time-consuming data capturing, and the difficulties
to reproduce baseline results.

This paper presents our design of an AR experimentation
platform, ExpAR, aiming to provide scalable and controllable
AR experimentation. ExpAR is envisioned to operate as a
standalone deployment or a federated platform; in the latter
case, AR researchers can contribute physical resources, in-
cluding scene setup and capturing devices, and allow others
to time share these resources. Our design centers around
the generic sensing-understanding-rendering pipeline and
is driven by the evaluation limitations observed in recent
AR systems papers. We demonstrate the feasibility of this
vision with a preliminary prototype and our preliminary
evaluations suggest the importance of further investigating
different device capabilities to stream in 30 FPS.
The ExpAR project site can be found at

https://cake.wpi.edu/expar.
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CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mo-
bile computing design and evaluation methods; • Com-
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1 INTRODUCTION
Augmented reality (AR) has emerged as a promising way
for users to interact with physical worlds through virtual
overlay. For example, in an AR-powered shopping app1, a
user can leverage a handheld device and its camera(s) to
overlay products of interest, e.g., virtual glasses, on a desir-
able physical position, e.g., on the user’s face [29]. As AR
enters the general consumer market, hundreds of millions
of users can benefit from this rich media experience with
applications ranging from tourism to advertisement [6, 9].
Over the past decade, we have witnessed a blossom of

works that provide high-quality AR performance [1, 10, 16,
20, 25, 28], including our work [30–32]. However, we have
found that it is challenging to fairly and scalably evaluate the
developed algorithms and systems to understand their real-
world performance. We attribute the evaluation challenge to
three key aspects: lack of control of the physical environment,
time-consuming data capturing, and difficulty reproducing
baseline results.
This paper introduces ExpAR, a platform providing scal-

able and controllable AR experimentation, by centering the
key design insight of generalizable AR pipelines. Existing
practices in capturing experimental data often involve a user
interacting with the AR device [12, 26]. However, replicating
the user mobility patterns, e.g., walking trajectory and device
pose, and the environment information, e.g., scene lighting
changes, is difficult. ExpAR controls the physical environ-
ment via programmable and remotely controllable mobility
sensors, e.g., smart light bulbs and robotic cars [15].
Moreover, ExpAR provides mechanisms to capture high-

quality data in a scalable and time-efficient manner. Access
1https://www.warbyparker.com/app
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Figure 1: An overview of ExpAR deployment.

to high-quality data is crucial for properly evaluating an
AR pipeline, from data captured by various sensors (most
notably the camera sensors) to render virtual overlay. For
example, prior work demonstrated that a blurred image could
impact the accuracy of downstream vision tasks such as
image classification and lighting estimation [16, 32]. ExpAR
can capture high-quality data by supporting various capable
hardware devices and carefully controlling their motions.
Additionally, collecting a large amount of data in a scalable
and time-efficient way is desirable, though such a desire is
not unique to the AR community. For example, the robotic
community has recently explored ways to enable multiple
remote users to interact with robotic arms [22] and collect
such data. ExpAR supports similar remote manipulation and
allows programmable and parallel access to the physical
capturing devices.
Lastly, to facilitate reproducibility, ExpAR breaks the AR

pipeline into the sensing, understanding, and rendering steps.
For each step, ExpAR will provide baseline methods that AR
researchers can turn on and off to compose the desired AR
pipeline dynamically. In other words, ExpAR will provide the
ability to evaluate an AR solution holistically in the context
of other AR tasks. To improve the baseline diversity, ExpAR
will allow users to upload their own, similar to how Hugging
Face hosts DL models [7].

Figure 1 depicts the high-level overview of ExpAR, a fully
controllable and programmable AR evaluation platform.
ExpAR is envisioned to operate as a standalone deployment
(which we will describe an initial prototype in §4) or a fed-
erated platform that consists of network-connected deploy-
ments at different physical locations, similar to platforms
such as PlanetLab and CloudLab [5, 14]. We envision ExpAR
to consist of geographically-dispersed sites. Each site is a
physical deployment that includes physical scene setups, AR,
and capturing devices, that connect to ExpAR’s backend for
data storage and processing. Both AR researchers and users
can interact with the physical setups remotely to carry out

key tasks, including scalable data capturing, experiment de-
sign, online surveys, and participant observation. We make
the following key contributions.
• We pinpoint the limitations of existing AR evaluation
methodology via characterizing recent papers and reflect-
ing our evaluation practices.

• We describe the design of a fully controllable and
programmable AR platform, centering the key insight
of decomposable sensing-understanding-rendering AR
pipelines. Our design serves as a conceptual framework for
implementing a AR researcher-center evaluation platform.

• We present a preliminary prototype and evaluation that
showcases the feasibility of programmable visual data cap-
turing, streaming, and storage via a custom-built mobile
capturing device and a cloud backend.
Our work shares similar spirits with three recent efforts,

ILLIXR, XRBench, and CoMIC [11–13], in enabling better
support for evaluating the emerging mixed reality applica-
tions. XRBench focuses on evaluating deep learning models
for XR applications in representative execution patterns,
which is similar to the design of ExpAR’s understanding com-
ponent. While ILLIXR and its multi-user counterpart CoMIC
can capture data to evaluate a standalone system, it is not
designed with a controllable physical environment, scalable
experimentation, and cross-system evaluations in mind. In
contrast, ExpAR is designed from outside to address the prac-
tical limitations exhibited in evaluating AR systems. In short,
ExpAR compliments existing efforts and bridges the gap in
reproducible AR research.

2 LIMITATIONS OF EXISTING AR
EVALUATION METHODOLOGY

To understand the current practices and the limitations of
AR evaluation, we surveyed 12 AR system papers focusing
on their evaluation methodology. We categorize these papers
based on AR tasks and characterize each paper’s evaluation
methodology along multiple important dimensions. The di-
mensions are selected based on our prior experiences in
evaluating AR systems. Table 1 summarizes our findings
where the Task(s) column refers to the number of tasks each
paper evaluated. This analysis presents an in-depth under-
standing of the AR researcher’s evaluation workflow. We
make several key observations.
First, most works require capturing visual data during

experimentation; some even used specialized hardware to
gather ground truth [2, 10, 16, 24, 26]. Specialized hardware
can be costly, e.g., Microsoft HoloLens 2 used by DeepMix
costs $3.5K. Therefore, even if it is beneficial for evaluating
AR systems on specialized hardware, not all papers can do so.
However, if we can amortize the monetary cost by sharing
the specialized devices among AR researchers, then it be-
comes more tractable to evaluate with specialized hardware.
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Table 1: A survey of recent AR systems work and their evaluation methodology. For the last three columns, information
inside the parenthesis represents the numerical scale. For example, Y(30) in the user study column means 30 participants.

Category Paper Simulation Task(s) Visual data capturing
(Y*- specialized)

Variation
(Spatial, Temporal)

Scene Diversity
(Low,Medium) User Study Eval. Scale

(Small,Medium)

Lighting
Gleam [20] N 1 Y S L(2) Y(30) M(4)
Xihe [31] Y(Replay) 1 Y T L(1) N S(2)
LitAR [32] Y(Game Engine) 1 Y S,T L(3) N S(1)

Depth InDepth [28] Y(Dataset) 1 Y S M(3/20) Y(27) S(2)
MobiDepth [26] N 2 Y* S - N S(3)

Tracking
EdgeSLAM [2] N 1 Y* S,T M(4) N S(2)
AdaptSLAM [3] Y 1 N(Dataset) S,T M(6) N S(1)
FollowupAR [24] N 1 Y* S M(2/variations) N S(1)

Recognition/
Detection

CollabAR [16] Y(Dataset) 1 Y* S M N S(3)
DeepMix [10] Y(Dataset) 1 Y* S L(-/3) Y(33) S(1)

Scheduling Heimdall [25] N K Y T - N S(2)

Multi-User SEAR [27] Y K Y T - N S(1)

This suggests the need for an experimentation platform to
provide the visual data-capturing feature and time-sharing
of expensive specialized hardware.
Second, many works evaluated and reported the perfor-

mance with temporal and spatial variations. However, there
is often a lack of explicit control of the physical environment.
For example, in MobiDepth [26], the impact of spatial vari-
ance was measured by creating a dynamic scene that requires
either moving the capturing device or the object of interest.
However, the movement speed was only an approximated
range, e.g., moving slowly vs. moving quickly. Although it
was not explicitly mentioned, we suspect that the authors
manually captured the required data. As such, it is hard to
accurately quantify the impact of spatial locations on the AR
systems (the proposed and the baselines). Temporal varia-
tions are slightly easier to control, e.g., in Xihe, we studied the
impact of light intensity by fixing the rendering position and
using a remotely controlled light source [31]. However, com-
paring how different systems work under the same temporal
variations is non-trivial. We developed a session recorder to
ensure consistent input to different systems [31].
Third, we saw that almost all papers have low scene di-

versity and small-scale evaluation scenarios. For example,
Xihe was only evaluated in one physical room to under-
stand its real-world performance [31]. Even for works with
higher scene diversity, they were only evaluated in up to six
scenes [3]. Additionally, most works evaluated use one to
two mobile devices, with the upper end being four. Because
of the heterogeneous mobile capabilities, it is hard to gener-
alize and understand how well these works will perform in
the wild. The requirements of having access to physical ex-
periment spaces and high manual setup efforts seem to place
a high toll on conducting diverse and large-scale evaluations.
Fourth, the nature of AR research calls for visual percep-

tion studies. All papers presented metric-based qualitative

evaluations but only some conducted user studies to under-
stand human perception performance. User studies are often
considered to have a higher barrier for entry, e.g., requiring
researchers to recruit and manage participants and design
scalable study protocols.
Last, almost all papers focus on single-task evaluation.

However, delivering the AR experience from sensory data
to rendered results to end users involve a complex ecosys-
tem and many moving pieces (see Figure 3). For example, an
AR shopping app often requires hand tracking and object
detection models to allow users to interact with the mixed
environment [25]. Furthermore, in the context of support-
ing multi-user AR experiences [16, 27], it is unavoidable
to consider inter-task dependencies. Evaluating one task in
isolation is a good start, but we believe it would be better
to evaluate the proposed solution in the context of the AR
ecosystem. Such holistic evaluations can provide valuable
insights into how well the proposed solution will work in a
real-world deployment.
2.1 Reflections of Our Experimentation
We re-examine what we did when evaluating an AR system
LitAR [32]. We used two groups of questions (Appendix B);
the first group summarizes our evaluation process and ratio-
nales, while the second group asks for desirable features that
can enable better evaluation experiences. We summarize the
key reflection takeaways below.
Controlled evaluation is time-consuming and difficult
to set up. Because AR evaluation often involves interaction
with the physical environment, we need to control relevant
physical factors during the experiments. For example, in
LitAR, we need to control the distance between observation
and rendering positions for each experiment run when eval-
uating its impact on lighting reconstruction quality. In the
simplest case, this would involve manually setting up the
capturing device and the props (i.e., a metal sphere ball) at
specified locations and repeating the process for different
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Figure 2: An overview of ExpAR key workflows. AR researchers and user study participants can leverage ExpAR to perform
key evaluation tasks, including data capturing, experiment design, participant observation, and online surveys.

distance variables. Each setup can take a few minutes, and
therefore it can take many hours to complete a set of eval-
uations. However, this simple setup does not control other
scene properties, e.g., lighting conditions and moving objects.
Building a fully controlled physical scene is difficult (but not
impossible). Instead, we resorted to a photorealistic indoor
simulator that took about two months to set up.
Evaluation diversity and scale are limited by monetary
cost and time. When it comes to input data diversity, we
are often limited by whatever off-the-shelf sensory devices
are available and the budget to acquire them. For example,
it would be interesting to see how different LiDAR sensors
impact LitAR’s performance, but one such device (e.g., iPad
Pro) costs more than $1K. Evaluating LitAR in more than
three physical scene setups would be beneficial. Still, wewere
constrained by access to physical spaces and the ability to
re-organize the scene (e.g., we don’t have much control when
using a public space). We also found ourselves developing
one-off tools and workflows when capturing various sensory
data, streaming these data to the edge, and managing these
data for further analysis. Though this is a similar challenge to
edge offloading, the added burdens of dealing with hardware
sensors and different AR tasks make it non-trivial to scale
up the data capturing and, thus, evaluations.
Comparative studies are often guided by the easiness
of reproducibility. In LitAR, we only compared with two
easy-to-setup baselines: a commercial solution ARKit and
our prior work Xihe [31]. Would we benefit from comparing
LitAR to other baselines? Probably. But such attempts were
squashed by the hurdles to reproduce without source code
and datasets or even the tremendous efforts required to set
up the baselines. These hurdles also apply to user studies,
which have other challenges, including participant recruit-
ment [28] and multi-user coordination [22]. Additionally, we
only evaluated how LitAR performs for the lighting estima-
tion task; we did not evaluate LitAR in an AR application

to understand how it interacts with other AR tasks and its
impact on the AR experiences. Even though this type of
holistic evaluation is valuable for understanding in-the-wild
performance, we see very few works that include holistic
evaluations. We suspect that the lack of holistic evaluations
is not caused by a lack of interest, but rather the lack of plug-
and-play evaluation support. It is already difficult to set up
baselines for a single task; we can’t imagine the obstacles one
has to overcome to configure an entire application scenario
that requires the coordination of many tasks.

Besides these three key observations, we suspect the fun-
damental problem that limits the AR evaluationmethodology
is treating evaluation as an afterthought. In essence, we first
design and build AR solutions and at a later stage, very re-
luctantly start the evaluation. The reluctance in part can be
caused by the abovementioned challenges and obstacles in
commencing any evaluations. ExpAR aims to simplify the
evaluation process for AR solutions and promotes the key
principle of iteration, prototyping, and testing.

3 EXPAR DESIGN
This section describes our overall vision of ExpAR, a fully
controllable and programmable AR platform, and its high-
level design goals. ExpAR is envisioned to operate as a stan-
dalone deployment (which we will describe an initial proto-
type in §4) or a federated platform that consists of network-
connected deployments at different physical locations, simi-
lar to platforms such as PlanetLab and CloudLab [5, 14].
Key design insight: let’s generalize the AR pipeline! Based
on our experiences in designing AR systems and survey-
ing other works (see Table 1), we present a generic sensing-
understanding-rendering paradigm to which AR systems can
generalize (Figure 3). Data capturing, i.e., sensing, plays a
critical role in using deep learning models to understand the
interaction between physical and virtual worlds. Those two
components converge in the rendering in which virtual ob-
jects are composited and shown to the end users [4, 23]. By
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decomposing the AR pipeline into these three components,
ExpAR can allow better sharing of each component among
different active experiments and support holistic evaluations
with minimal efforts from the AR researchers.
Design goals. We leverage our findings described in §2 and
design ExpAR with the following three key goals. (i) Con-
trollable evaluation environment. ExpAR should provide the
ability to control each physical scene programmatically. This
includes but is not limited to controlling physical environ-
ment conditions such as lighting and object placements and
data capturing devices. (ii) Scalable data capturing and par-
allel evaluations. ExpAR should allow both AR researchers
and users to access a wide variety of hardware devices, e.g.,
to capture data in parallel from devices residing in different
physical locations. Devices can be time-shared, and different
user study participants can use different devices to enable
truly large-scale evaluations. (iii) Reusable pipeline compo-
nents and composable application scenarios. ExpAR should
provide built-in and default methods for different pipeline
components. AR researchers can use existing components to
define and configure their evaluation pipelines. To boost the
component diversity, ExpAR will also allow community con-
tribution, similar to existing AI/ML platforms like Hugging
Face [7]. Moreover, ExpAR will provide default application
templates that AR researchers can drag and drop their tasks
into, as well as the ability to customize the templates for
easy-to-setup holistic evaluations.
Overview. Figure 2 illustrates the key design components
of a single deployment ExpAR and how two stakeholders, i.e.,
AR researchers and user study participants, interact with
ExpAR. In a federated deployment, we will support a third
stakeholder, the platform admin, who manages the operation
of ExpAR. Additional example workflows are in Appendix A.

The basic setup of ExpAR consists of data capturing devices,
a physical indoor scene where those capturing devices are
initially parked and will explore, and a backend that persists
data, including captured experimental data, static assets, and
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Figure 4: A prototype implementation. The capturing de-
vice is based on Raspberry Pi 3, and the backend runs in
Google Cloud as microservices inside docker containers.

models/algorithms for different AR tasks. Many off-the-shelf
hardware devices can act as the capturing devices, provided
these devices are mobile, can be controlled remotely, and are
equipped with necessary sensors, e.g., 360◦ RGB cameras and
depth sensors. Example capturing devices include remote
control cars and low-cost robots [15, 18, 19].

At a high level, AR researchers will programmatically con-
trol the capturing devices to traverse the physical scene and
collect data helpful for understanding the environment, e.g.,
360◦ videos. These data can be live viewed for monitoring
and debugging purpose but will also be saved to facilitate
future experiments. When an AR researcher needs to use
ExpAR to capture the initial environment data, she can use
any supported clients, e.g., VR headset or web UI, to select
the desired physical scene. The scene configuration, which
includes the number of capturing devices, capturing device
capability, and the scene setup, like where the table is, is fixed
for a given time. AR researchers select suitable scenes based
on their experiment needs. Note that AR researchers do not
need to have physical access to each scene and do not need
to own any of the physical resources. AR researchers are
the users of ExpAR instead of the owners. This design shares
the same spirit as existing experimental platforms such as
PlanetLab, CloudLab, and AWS’s device farm [5, 8, 14].
Once researchers finish setting up the experiments, e.g.,

capturing required data and configuring the AR pipeline with
desired template and components, user study participants
can leverage ExpAR to conduct large-scale online surveys or
remotely use the AR pipeline for participant observation.

4 PROTOTYPE IMPLEMENTATION
The current prototype of ExpAR is implemented in Python
and Javascript in a containerized microservice architecture.
Figure 4 presents an overview of ExpAR’s key components
and their interactions. The prototype consists of three logical
modules: the front end, the capturing device, and the back
end. The front-end module’s primary objective is to provide
ExpAR users, e.g., AR researchers and AR users, the ability to
perform data capturing and monitor the capturing progress,
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Figure 5: Setup and streaming performance compar-
isons. Figure 5b shows ExpAR’s FPS performance under the
residential Wi-Fi2.

as well as participate in the online survey via session rewatch.
The capturing device module, encapsulating the hardware, is
responsible for data collection and dispatching the collected
data to the back end, which stores and processes the captured
data. Currently, we implemented the front end in Vue.js, the
data capturing based on a customized remote-controlled car
PiCar-X [21] and a Raspberry Pi (RPi) 3B+, and the backend
in containerized microservices running inside Google Cloud
Platform (GCP)’s NVIDIA T4 GPU servers. See Appendix C
for per-component implementations.

5 PRELIMINARY EVALUATION
We evaluate a prototype of ExpAR using a 360◦ camera, three
representative computation devices, and a back end deployed
to the Google Cloud Platform (GCP), to understand the
streaming performance. The devices include: (i) a lower-end
Raspberry Pi 3, equipped with a 1.2GHz 64-bit quad-core
ARM Cortex-A57 CPU with 1GB RAM; (ii) a mid-end laptop,
powered by an Intel Core i7-11370H processor with 16GB
RAM; and (iii) a high-end server with a 4th Generation Intel
Xeon processor and comes with 64GB RAM. Figure 5a depicts
the setup and the pairwise network performance measured
using iPerf under two Wi-Fi networks.
Figure 5b compares the frame per second (FPS) achieved

under different streaming conditions. For each condition, we
vary the frame resolution and the streaming device pairs.
A streaming pair consists of one of the three devices (Rasp-
berry Pi, laptop, and server) and an endpoint GCP server.
Each device will stream the same video, recorded with the
360◦ camera, from a file. We make two key observations.
First, as the resolution increases from 360p to 1080p, the
FPS decreases for all devices. This suggests that the network
starts to become the bottleneck (by comparing the network
bandwidth to the streaming data size) and the device can’t
2We observe similar FPS trends in university Wi-Fi.

Table 2: Task latency comparison over ten runs.

Task Residential Wi-Fi University Wi-Fi

Loading the system 222.49 (± 8.55 ms) 134.33 (± 3.93ms)
Setting up the device 68.40 (± 8.42 ms) 41.76 (± 2.53ms)

Client-server latency 63.30 (±1.46 ms) 38.06(± 2.24ms)
Executing control command 6.11 (± 1.81 ms) 1.81 (± 0.77ms)

keep up with streaming larger 360◦ frames. Second, even
the high-end server cannot achieve the desired 30 FPS when
streaming at 1080p. We suspect that our CPU-based imple-
mentation is the culprit to such performance.Wemonitor the
resource utilization and find that CPU utilizations increase
drastically for larger resolutions (details in Appendix D).
In short, our preliminary evaluations suggest the need to
further investigate network optimizations and GPU-based
implementations for supporting high-quality experimenta-
tion data streaming.

To better understand how ExpAR operates, we also evalu-
ate the per-task latency under two Wi-Fi conditions. Table 2
summarizes the per-task latency: (i) loading the system: is the
amount of time takes to get a response from our GCP Redis
container. (ii) setting up the device: is the amount of time
takes to write the device ID to the Redis database, (iii) client-
server latency: describes the time to confirm that the server
is active by pinging the server, (iv) and executing commands:
is the amount of time takes for the PiCar-X to execute the
user’s commands. We find that it takes 176.09 ms and 290.89
ms to start up ExpAR using university and residential Wi-Fi
respectively. We believe this overhead is reasonable because
it is a one-time setup. The latency between client-server can
be as high as 63.3 ms and can cause performance issues under
certain interactive evaluation tasks. This suggests the need
for a geo-distributed ExpAR deployment and considering the
server locations based on ExpAR users’ locations. University
Wi-Fi in general leads to lower task latency and suggests the
importance of properly configuring the network when using
ExpAR for interactive experimentation.

6 CONCLUSION
This paper describes the design of ExpAR, an AR experimen-
tation platform that allows setting up controllable evalua-
tion environments easily, capturing data scalably, conducting
evaluations in parallel, and reusing evaluation components.
Our design is based on an in-depth analysis of the evalu-
ation methodology from 12 recent AR system papers and
our prior experiences and centers around the key insight of
generalizable AR pipelines. ExpAR can allow AR researchers
to share the physical devices and physical spaces, increasing
the evaluation scale and diversity currently lacking. A pro-
totype implementation and preliminary evaluation ExpAR
were also presented, revealing interesting future directions
such as improving the capturing device’s onboard processing
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power and optimizing the network performance between the
front end and the capturing device. We will iterate the design
and implementation of a local deployment while working
on our AR projects. We hope to provide ExpAR as a service
to the research community.
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A EXPAR EXAMPLE WORKFLOWS
A.1 Design for AR Researchers
We envision that ExpAR can aid AR developers and re-
searchers in evaluating AR systems better by providing fea-
tures including data capturing, sensing visualization, experi-
mentation design, and reproducible pipeline evaluation. This
section describes the design of ExpAR by explaining how an
AR researcher will use ExpAR to accomplish the key eval-
uation tasks of data capturing and experimentation design.
Figure 2a depicts the workflows associated with these two
evaluation tasks.

A.1.1 Data capturing. At the center of the data capturing
task lies the capturing devices. We envision many captur-
ing device types available in the ExpAR, which the AR re-
searchers can choose from. For example, if the AR researcher
is interested in capturing the ground truth for the lighting
estimation task, she can select the capturing device that con-
sists of 360◦ cameras. Note that the AR researcher does not
need to be physically coupled with the capturing devices.
Rather, the AR researcher will use any provided ExpAR client-
side interfaces, e.g., a web UI, to control the movement of
the capturing devices to mimic how an AR user will interact
with the physical environment.

Moving the capturing device to different physical loca-
tions will allow the AR researcher to capture desired experi-
mental data. These data, e.g., in the form of RGB video and
movement commands, will be stored for later use. The AR
researcher can start the data capturing in parallel with differ-
ent devices as the physical resource permits. To provide full
control of the physical scene data, we will only allow at most
one AR researcher to use the physical deployment. This re-
sembles the current experimental practice where researchers
are in charge of setting up the scene and introducing known
dynamics to the scene. In other words, we will impose the
time sharing at the physical scene level, and the researcher
can capture at most

∑𝑚
𝑖 𝑛𝑖 stream of data in parallel where

𝑚 is the number of idle physical scenes, and 𝑛𝑖 is the number
of capturing devices of 𝑖𝑡ℎ scene. In addition to the paral-
lel capturing, we will also allow researchers to monitor the
capturing progress to spot any abnormalities, e.g., due to
misconfigurations. In short, an AR researcher can use ExpAR
to capture large amounts of experimental data from diverse
scenes with heterogeneous devices to suit their evaluation
needs. Even better, the data capturing can be done with mini-
mal human effort and does not require the costly acquisition
of specialized devices.

A.1.2 Experiment design. AR researchers can use ExpAR to
setup the evaluation pipeline so that user study participants
can use this pipeline to answer survey questions. Often the

process involves AR researchers leveraging tools to create
and generate visual assets for the survey questions and online
survey platforms such as Quatrics to distribute the surveys.
In other words, the survey question preparation and distri-
bution are done in separate pipelines. This current practice
works but can be time-consuming for AR researchers to de-
sign the survey questions. Instead, our goal in designing
ExpAR is to streamline the experiment design process by al-
lowing AR researchers to “plug-and-play” different pipeline
components to assemble final visual products used in the
survey questions. For example, AR researchers can take a
raw video stream and pass it through an end-to-end pipeline
to generate a post-processed video stream in which they can
directly embed questions to suitable frame locations.

More concretely, with ExpAR, the researcher will come up
with a list of questions, and use these questions to guide
the configuration of the evaluation pipeline. For example, if
the researcher is interested to evaluate the performance of
her rendering-related AR tasks such as lighting and depth
estimation, she can choose the baseline methods hosted by
ExpAR to render virtual assets, e.g., racing cars, in the same
physical scene capture. With the rendered results, she can
then create survey questions that ask participants to compare
the relative rendering performance between her proposed
method and a baseline method. Because the researcher is
evaluating an AR task in isolation, we refer to this type of
evaluation as standalone evaluation.
Researchers can also perform holistic evaluation to study

how well the proposed method works with the remaining
sensing-perception-rendering pipeline. In holistic evalua-
tions, ExpAR will ask researchers to select from predefined
AR application scenarios such as museum tours or furniture
shopping or configure their custom scenario. Each scenario
specifies theAR tasks that need to be activated in the pipeline;
for example, in the furniture shopping scenario [25], ExpAR
will activate the baseline models for image segmentation,
object detection, and hand tracking tasks. For custom scenar-
ios, the researchers are responsible for specifying interested
AR tasks and their execution dependency. Afterward, re-
searchers can leverage ExpAR to compare the end-to-end
performance and quality trade-offs between the proposed
method and any baselines.

ExpAR will provide relevant data such as physical scene
recordings (either directly recorded by this researcher or
shared by others), 3D assets, and baselines for AR tasks. In
addition, ExpAR will also allow researchers to upload any
custom data and configure the data’s visibility, private or
public. Based on the evaluation questions, these data will be
assembled on-demand, providing the flexibility to conduct
plug-and-play AR evaluations in scale.
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A.2 Design for AR User Study Participants
This section describes the design of ExpAR by explaining how
a user study participant will use ExpAR to complete two types
of common evaluations: survey questions and participant
observations.

A.2.1 Participant observation. It is valuable to understand
how end users interact with a new AR system. However, it
can be troublesome and time-consuming to invite user study
participants to a physical experimentation site. Other extra-
ordinary conditions such as the COVID-19 pandemic can also
limit the practice of this experimentation form. For multi-
user collaborative AR systems, it can be even more challeng-
ing to invite multiple AR users to be physically present in the
experimentation site simultaneously. Furthermore, requiring
physical presence also restricts the demographic diversity
of the participants as people who are physically close by,
e.g., university students, are more likely to participate in the
study.

ExpAR aims to facilitate the participant observation exper-
iments by relaxing the physical presence requirement. That
is, AR users can remotely interact with the AR systems (and
devices). This concept is similar to RoboTurk, a recent robotic
framework that allows human users to demonstrate how to
perform tasks [17]. Because of the relaxed physical presence
requirement, ExpAR can then support more geographically
diverse user study participants and make multi-user experi-
ments easy to conduct. To allow AR researchers to observe
the interactions, ExpAR will provide a web portal that in real-
time displays AR users’ interactions, an over-the-head view
of the physical scene and the AR devices’ movement, and the
video streams from individual AR devices. Moreover, ExpAR
will store those data in the backend to support post-analysis.

In short, ExpAR will need to support streaming device per-
ception from a physical scene to where the AR user locates
and then send the AR user’s interactions back to the physical
devices. This communication pattern is similar to cloud gam-
ing, and therefore we suspect the challenges lie in designing
network optimizations to provide low-latency interactions.

A.2.2 Online survey. Understanding how a human user per-
ceives AR features is important, and such understanding
is often achieved via user studies. A common way to con-
duct user studies [20, 28] is to invite participants to answer
survey questions, e.g., how two competing techniques com-
pare visually. One of the key features ExpAR can support is
to allow user study participants to take these surveys via
the web portal. As described in §A.1.2, these survey ques-
tions are designed ahead of time by AR researchers who
will then invite participants by sharing the survey URLs.
Depending on the survey questions, the participants might
be watching a replayed video stream in which frames are

overlayed with information such as environmental condi-
tions and visual outputs from different AR models. Relevant
survey questions will be displayed to the participants at pre-
specified frames and responses will be collected, similar to
howMOOC quizzes online learners’ understanding of course
topics.

B REFLECTION QUESTIONS
B.1 Group One
• Describe the general process you took when designing and
running the experiments in one of your recent AR works.

• How long did setting up the physical testbed take?
• How long did data capturing take?
• How long did obtaining results from baselines take?
• How many mobile devices did you evaluate your system on?
• What were some reasons that prevent you from evaluating
your system on more mobile devices?

• What are the task(s) in evaluating the AR systems that you
find yourself repeatedly doing all the time?

• Was this experience described above, the same as other re-
search projects you have done? The same as other AR research
projects?

B.2 Group Two
• If you could have access to a magical experiment setup that
would allow you to do anything you want to evaluate your
system, what would this experiment setup look like?

• How would it work?
• What would you use this magical setup to do?

C MODULE IMPLEMENTATION DETAILS
C.1 Front end
We implemented a web UI to support the two stakehold-
ers of ExpAR. Currently, it consists of three components: (i)
The Capture Viewer component allows the AR researchers to
watch a live stream from the capture device in the data col-
lection process. (ii) The Session Rewatch component fetches
the processed frames from the cloud storage and presents
them to the user for user studies, allowing assessment and
analysis of previously recorded AR sessions. (iii) The Device
Control component processes controls from researchers, e.g.,
in the form of configuration files, and then controls various
data capturing devices to initiate the data capture process.
In the future, we also plan to support other UIs, such as VR
headsets and controllers.

C.2 Capturing Device
This module interfaces with the hardware sensors and the
onboard computational resources. Currently, the hardware
consists of a 360◦ camera, a PiCar-X, and an RPi 3B+. Our
modular design allows for integrating additional capturing



Toward Scalable and Controllable AR Experimentation arXiv’23, July 17, 2023, Online

Raspberry Pi Laptop GCP
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

CP
U 

%

Re
so

ur
ce

s l
im

ita
tio

n

360p
480p
720p
1080p

(a) CPU Uvicorn

Raspberry Pi Laptop GCP
0

2

4

6

8

10

M
em

or
y 

%

Re
so

ur
ce

s l
im

ita
tio

n

360p
480p

720p
1080p

(b)Memory Uvicorn

Raspberry Pi Laptop GCP
0

20

40

60

80

100

CP
U 

%

Re
so

ur
ce

s l
im

ita
tio

n

360p
480p

720p
1080p

(c) FFmpeg CPU

Raspberry Pi Laptop GCP
0

1

2

3

4

5

M
em

or
y 

%

Re
so

ur
ce

s l
im

ita
tio

n

360p
480p

720p
1080p

(d) FFmpeg Memory

Figure 6: Resource utilization comparison.We measure
both CPU and memory utilization when streaming using
residentialWi-Fi.We see that FFmpeg consumes significantly
higher CPU as resolution increases.

devices, such as drones and mobility-enabled specialized
devices, in the future.

We implemented two key modules: the FastAPI server for
processing user control commands and FFmpeg for stream-
ing video frames in MJPEG to the front/back ends. We have
FFmpeg send the incremental frame counter to the FastAPI
server to synchronize the time between controls and the
video frames. Specifically, the streaming functionality was
implemented by having a process to read PiCamera frames
directly from the camera and then send them to the backend
through FFmpeg via an RTSP connection executed in a sub-
process. We implemented a continuous frame counter that
increments with each new frame captured and shared the
counter across all tasks.
We also used FastAPI to create a WebSocket connection

between the front end and the capturing device. Once this
connection is established, the live video feed will be activated
and can be streamed to the back end. Moreover, the Web-
Socket connection remains open and actively listens for user
inputs. These inputs, formatted as device control instructions,
are forwarded to the device interface for execution.

C.3 Back end
Our back end consists of four main components for storing,
processing, and streaming the captured data. The back end
was implemented as Docker microservices, making the setup
easily reproducible. The back end processes the inbound data

flow from the capturing device, including video, audio, and
metadata.
The MediaMTX server encodes the raw MJPEG stream

into H.264, a format that can be streamed to the front end. It
also generates the video segments for the data packing com-
ponent and interacts with the inference service to augment
the video stream. The Redis component logs user actions,
which will be supplied to the data packing component.

The Data Packing component post-processes and consoli-
dates all the data recorded during an AR session into a single
MP4 file, at the end of each session. It runs a Redis pub/sub
subscribe listener and will start a background process when
messages are published to the data packing channel. It re-
trieves events from the Redis stream log and encodes them
as JSON text to generate a SubRip Text (SRT) file. We use
SRT, rather than KLV, to include synchronized metadata in
the streams because KLV does not have good open-source
support. It then uses FFmpeg to combine video segments and
the SRT file into a single MP4 file. Inference output data can
also be encoded as subtitles.
The Inference component runs DL models on the video

stream. Currently, we implemented a popular object detec-
tion model called YOLOv8 as a proof-of-concept. Upon initi-
ation by MediaMTX, it receives the video stream and applies
the YOLOv8 model to each video frame. It returns the video
to MediaMTX, which subsequently streams it back to the
client and stores it for future playback purposes. Our modu-
larized design makes integrating other ARmodels into ExpAR
as microservices easier.

D RESOURCE UTILIZATION RESULTS
To better understand the performance bottlenecks of ExpAR,
we measured the resource utilizations under different hard-
ware setups. To facilitate these tests, we developed a mock
car script that emulates car movements. This enables us to
capture and stream content on the three computation devices
while simultaneously measuring system resource usage.

As shown in Figure 6, higher video quality consumes more
resources, especially by the FFmpeg process, which is respon-
sible for stream and video format conversion. The Raspberry
Pi struggled with high-quality video (1080p) processing, with
FFmpeg maxing out CPU usage, and caused watchdog re-
set. Our results on the laptop and cloud server had a similar
trend, with the CPU utilization increasing with the resolu-
tion. For higher resolutions, FFmpeg is again experiencing
CPU bottlenecks. This indicates that the current implemen-
tation of ExpAR is not effectively utilizing system resources.
Raspberry Pi’s performance limitations and underutilization
of resources in more powerful hardware highlight future im-
provement areas in exploring techniques to improve resource
utilization and ensure smooth, high-quality AR experimen-
tation experiences on a wide array of hardware.
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