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ABSTRACT
Wearable Cognitive Assistance (WCA) is a rapidly evolving

application that relies on accurate computer vision mod-

els for optimal performance and user experience. However,

adapting these models to varying user workstation back-

grounds can be challenging, as it often necessitates exten-

sive data collection and model retraining. To address this

challenge, we propose an approach that focuses on improv-

ing model specialization to enhance the accuracy of model

inference. Our method eliminates the need to gather the en-

tire training dataset from each individual end user. This not

only reduces labor-intensive work but also minimizes band-

width requirements for transferring data to remote servers

for training.

We successfully train specialized models that are tailored

to the unique characteristics of each workstation. These

specializedmodels consistently achieve competitive accuracy

levels during model inference, comparable to the ground

truth models trained with real data collected directly from

the workstations, which ultimately enhances the overall user

experience with the WCA application.
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• Computing methodologies → Machine learning; •
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1 INTRODUCTION
Wearable Cognitive Assistance (WCA) [5] is an emerging

category of applications that integrates wearable devices,

computer vision, and edge computing to augment human

cognition. WCA applications leverage the capabilities of

wearable devices to deliver real-time support and guidance

to users, assisting them in performing various tasks or ac-

tivities. While the concept has been present for almost two

decades [16, 17], recent technological advancements in com-

puter vision, edge computing offloading, and the widespread

availability of wearable devices have greatly enhanced the

accessibility of these applications.

The CMULiving Edge Lab has developed and implemented

the Gabriel platform1
, an open-source software platform

aimed at simplifying the development of WCA applications

[5]. Gabriel effectively abstracts away the complexities asso-

ciated with system-level functionalities commonly required

across multiple applications, including network communi-

cation and data pre-processing [3]. Figure 1 illustrates the

workflow of a WCA application built using the Gabriel plat-

form.

In this workflow, sensor data, specifically video frames,

captured by an end-user’s wearable device, undergoes initial

encoding and compression before being wirelessly transmit-

ted to a cloudlet—a server situated in close network proximity.

On the cloudlet, the sensor streams are processed by a set

of cognitive modules that leverage computationally inten-

sive computer vision models, such as object detection and

classification. The cognitive module outputs are then inte-

grated by a task-specific user guidance module, responsible

for conducting higher-level cognitive processing. By estab-

lishing a mapping between the user’s current progress and

1
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Figure 1: The WCA application architecture developed
with the Gabriel platform. Reference source [5].

the outputs obtained from the cognitive modules, the guid-

ance generator triggers task-appropriate visual, verbal, or

tactile guidance, which is subsequently transmitted back to

the end-user’s wearable device. Thanks to the Gabriel plat-

form, we have extensively delved into the realm of wearable

cognitive assistance, resulting in the creation of nearly 20

applications in this domain
2
.

As presented, the deep neural network (DNN) lies at the

core of a WCA application. Therefore, the accuracy of these

machine learning models plays a crucial role in determining

the success of WCA. However, training these DNN models

requires a large number of ground-truth images. Each image

in the dataset must be meticulously annotated with bounding

boxes or polygons to identify the object of interest. This anno-

tation process is highly time-consuming and labor-intensive,

often serving as a significant bottleneck in the development

of WCA applications. To address this challenge, we have

developed an automatic annotation tool called tinyHulk [10].

The tool automates the annotation process and efficiently

generates a clean and high-quality training set specifically

from input videos recorded with a green background.

Furthermore, to address resource limitations at the cloudlet

and fulfill critical response time requirements, WCA applica-

tions strive to deploy lightweight models with lower com-

putational complexity. However, this tradeoff for efficiency

can result in a decrease in model inference accuracy, lead-

ing to diminished performance. This impact is particularly

pronounced in computer vision models, where the models

learn to recognize and extract relevant features from images

to make predictions. Challenges such as domain shift [7, 15],

feature extraction [11], and generalization [1] arise when the

backgrounds in the training set significantly differ from those

in the input images, further contributing to the performance

decline.

In the context of WCA applications, where the user expe-

rience is highly dependent on the performance of computer

2
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vision models at specific user workstations, the need for gen-

erality is considered unnecessary. In light of this, our paper

presents a training method that focuses on enhancing model

specialization. By tailoring the model to the specific char-

acteristics of the user workstations, we aim to improve the

performance of model inference, ultimately leading to en-

hanced user experience. We employ the augmentation tech-

nique offered by tinyHulk to create a new training dataset

where the background of each image is replaced with the

background of the user’s workstation. By incorporating this

customized training data, the trained model demonstrates a

noteworthy improvement in model inference performance

specifically at the user’s workstation.

The key contributions of this paper are:

• We introduce an approach to generate specialized aug-

mented data for training computer visionmodels, specif-

ically designed to enhance model specialization within

the context of WCA.(Section 3).

• We conduct a comprehensive evaluation to assess the

accuracy of the trained model and compare it against

a ground truth model trained with real dataset (Sec-

tion 5).

Our approach facilitates the rapid generation of training

datasets, minimizing the time and effort required from hu-

mans. Furthermore, the models trained with the augmented

data exhibit competitive performance compared to models

trained using real data collected from the user’s workstation.

As a result, the enhanced models contribute to an improved

user experience with WCA applications.

2 RELATEDWORK
In this section, we provide a literature review on related

work that focuses on improving the inference of DNNmodels

through the enhancement of model specialization.

Model specialization [9, 14] is utilized as a means to opti-

mize inference costs in scenarios where generality is known

to be unnecessary. In the field of video analytics for static

cameras, Rivas et al. [14] note that a static camera, which

maintains a consistent position, orientation, lens, distance,

and point of view, continuously captures the same scene.

Based on this observation, they propose a Contextually Op-

timized Video Analytics framework (COVA) to enhance the

accuracy of lightweight models. COVA achieves this by spe-

cializing and tailoring the models to the specific context

in which the cameras will be deployed. Similarly, Shen et

al. [18] identify the presence of short-term skews in the

class distribution commonly found in everyday videos. They

leverage this insight to train models online that are special-

ized for such distribution patterns. Ravi et al. [9] proposed

model distillation to specialize accurate, low-cost semantic

segmentation models for a target video stream, enabling

https://www.cmu.edu/scs/edgecomputing/resources/videos.html


more efficient inference by adapting compact models to the

specific frame distribution observed by a single camera. Like-

wise, Khani et al. [6] proposed an Adaptive Model Streaming

(AMS) approach to enhance the performance of efficient

lightweight models for video inference on edge devices. The

AMS approach focuses on specializing a lightweight model

for a specific video and task, thus improving the overall

performance of the model in edge computing scenarios.

In line with this perspective, in the realm of WCA, users

predominantly work on their individual workstations, where

the quality of their experience is directly influenced by the

accuracy of computer vision model inference in that specific

environment. To tackle this, our proposed method focuses

on specialized training of the model, tailored specifically to

the user’s workstation. We leverage the background replace-

ment augmentation feature of our developed annotation tool,

tinyHulk, to generate a new training set: each frame image

in this set is modified by replacing the original background

with the actual background of the user’s workstation. By in-

corporating this customized training data, the trained model

demonstrates a noteworthy improvement in model inference

performance specifically at the user’s workstation.

3 ENHANCING MODEL SPECIALIZATION
IN WCA

In this section, we begin by introducing the automatic anno-

tation tool, tinyHulk. Subsequently, we detail the process of

utilizing the background replacement feature of tinyHulk to

generate a new training set specifically tailored for training

the model to specialize in the user’s workstation environ-

ment.

3.1 tinyHulk - Lightweight Automatic
Annotation Tool

We developed tinyHulk
3
[10], an automatic annotation tool

that reduces human time and effort for the labor-intensive

annotation tasks. tinyHulk is developed using the Open Com-

puter Vision libraries (OpenCV) [12] for computer vision

algorithms. The workflow of tinyHulk, as depicted in Fig-

ure 2, encompasses the following steps: 1) video parsing and

duplicate removal; 2) bounding-box drawing; 3) background

replacement; 4) annotation result inspection and modifica-

tion window; and 5) labeled data generation.

To generate training datasets for the computer vision mod-

els, we employ the use of tinyHulk in the following manner.

Initially, we record videos that focus on the object of interest,

with a green background surface serving as the backdrop.

Subsequently, these recorded videos are automatically pro-

cessed by tinyHulk, resulting in the generation of annotated

3
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image training sets. The output generated by tinyHulk is a

high-quality training set comprising clean frames, accompa-

nied by corresponding metadata that accurately describes

the bounding box for the object within each frame.

3.2 Enhancing Model Specialization in
WCA with tinyHulk

tinyHulk incorporates an augmentation component that

utilizes the widely-used chroma-keying technique [2] to

generate augmented images. This component replaces the

background of an original image with a user-specified back-

ground, resulting in a new augmented image.

To generate a training dataset specialized for the user’s

workstation, the process involves capturing an image of the

background scene where the WCA application will be used.

This image is then sent to a cloudlet where tinyHulk is de-

ployed.Within the cloudlet, the original training set, compris-

ing green background frames, along with their correspond-

ing metadata describing the bounding box of the object of

interest in each frame, is preserved. Within the augmented

dataset, each new frame inherits the bounding box infor-

mation from the corresponding original frame. Finally, the

augmented dataset is combined with the original training

set to train a new computer vision model that is specialized

to the user’s workstation. This specialized model is subse-

quently incorporated into the computer vision process of

WCA. The process is illustrated in Figure 3.

4 EXPERIMENT
In this section, we describe the experimental setup for devel-

oping a Wearable Cognitive Assistance (WCA) application.

Specifically, we focus on the computer vision process within

the application. We describe how we employed tinyHulk to

generate augmented data, incorporating the new worksta-

tion background, to train our computer vision models.

4.1 A WCA Application for Assembly Task
We develop a WCA assembly application designed to assist

users in completing a specific task of assembling a Meccano

set. The sequential assembly process is illustrated in Figure 4.

The application determines the current step of the assem-

bly task displayed in a camera feed and provide the end-

user with step-by-step guidance for completing the task. To

achieve this, we employ a two-stage vision process inspired

by Gebru et al. [4]. For each image frame captured from

the end-user’s camera, the initial stage involves identifying

the region in the image that contains the assembly being

worked on. This is accomplished by utilizing a Faster R-CNN

(Region-Based Convolutional Neural Network) model [13],

which is specifically built for object detection. Once the re-

gion is identified, the image is cropped accordingly.

https://github.com/cnguyen123/tinyHulk
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Figure 3: The process of generating augmented data
and training specialized models.

In the subsequent stage, the cropped image undergoes

classification using the Fast MPN-COV (Matrix Power Nor-

malized Covariance pooling) ConvNet [8]. The Fast MPN-

COV model is designed to provide one output label for each

step of the assembly task, resulting in six possible outputs for

the WCA application in our experiments. The classification

result obtained from this model indicates the specific task

step depicted in the image frame.

We utilize tinyHulk to generate training datasets for these

models, following the description in Section 3.1. Consequently,

frames that display the outcome of every step in the assembly

task, along with their respective bounding box annotations,

are returned and stored on a cloudlet.

Prior to the end-user using the WCAwith their own work-

station, we request an image of the workstation’s scene

where the application will be used. On the server side, tiny-

Hulk assists in generating augmented data by replacing the

green background with the provided new background, as

depicted in Figure 5. This new data will be incorporated into

the training set to facilitate the retraining of the computer

vision process of the application.

4.2 Ground-truth models trained with real
data

In addition to the previously trained computer vision process,

we further train the alternative models using real data that

captures the placement of objects within the new worksta-

tion scene. To accomplish this, we involve two individuals,

both of whom are familiar with the step-by-step assembly

task
4
. To annotate the real data, we employ the use of CVAT

5
,

a well-known and widely used annotation tool specifically

designed for image data. We employ these models as ground

truth references for evaluating and comparing the perfor-

mance of the computer vision model trained with augmented

data.

Overall, Table 1 summarizes the training datasets and

their sizes. We implemented 5 distinct computer vision pro-

cesses, each includes trained models using unique training

sets above:

• Green: Models trained with the green background

training set. It is worth noting that, the original green

background encompassed a total of 2158 frames. The

model trained on this dataset exhibited inferior perfor-

mance compared to the model trained using the clean

green dataset (572 frames in total), which involved the

removal of duplicate and blurred frames. Therefore,

4
Given the impracticality of expecting users to have prior knowledge on

how to perform the step-by-step assembly task and capture the data from

the beginning, we acknowledge that these scenarios may not reflect real-

world conditions. However, in order to construct a ground truth model that

serves as a baseline for comparison with our augmented data-trained model,

we assume that the user involved has prior knowledge of the step-by-step

assembly task

5
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Table 1: Training sets and their total frames.

Training set Total Frames

Green 572

Green + Augmented 1144

Real-black 2685

Real-wooden 3077

Table 2: Test sets size and sample.

Test set Size Sample

Black table 4871

Wooden table 5106

for the purpose of our presentation, we present the

trained model using the refined clean green dataset.

• Specialized_wooden: Models trained with the green

background and the augmented data specifically gen-

erated for wooden table workstation.

• Specialized_black: Models trained with the green

background and the augmented data specifically gen-

erated for black table workstation.

• Real_wooden: Models trained with the real data col-

lected at the wooden table workstation.

• Real_black: Models trained with the real data col-

lected at the black table workstation.

The models were trained on a cloudlet equipped with an

Intel Xeon Processor E5-2699 CPU and an Nvidia GeForce

GTX 1080 Ti GPU. Specifically, the object detection model

Faster R-CNN was trained with 25,000 steps, while the clas-

sifier Fast MPN-COV was trained for 50 epochs.

To evaluate the performance of the WCA application us-

ing various computer vision processes, we collected test sets

where the assembly task was performed on two distinct

workstations: the black table, and the wooden table. Each

frame in the test set was meticulously labeled with the corre-

sponding step name (e.g., short bar, red bar, screw, long bar,

short bar + red bar, and full). Figure 2 presents the test sets

size. The accuracy of the WCA’s computer vision process is

calculated using the equation provided below:

𝐴 =
𝑐

𝑇
∗ 100 (1)

Here, 𝑐 denotes the total number of frames correctly la-

beled by the computer vision process, and 𝑇 represents the

total number of frames in the test set.

5 RESULT AND DISCUSSION
This section presents the outcomes of the WCA application

when employing different computer vision processes on the

designated test set. We emphasize the benefits of model spe-

cialization in enhancing the accuracy of computer vision

models, ultimately resulting in an enhanced user experience

for the WCA application.

5.1 How does the performance of the
specialized models compare to the
ground truth models?

For each user’s workstation, we train specialized models us-

ing both the new augmented data generated by tinyHulk and

the existing green data. Additionally, we train real models us-

ing manually collected and annotated data from each user’s

workstation. Subsequently, we evaluate the performance of

these trained models by running the WCA with different

computer vision models over the collected test sets. Table 3

provides the accuracy of each computer vision process on a

specific test set. We observe that in both test cases, the spe-

cialized models outperform the green model, which aligns

with our expectations. This can be attributed to two factors.

Firstly, the training set of the specialized models is twice the

size of the green model’s training set, providing more data

for learning. Secondly, the specialized models are trained

using augmented data that closely resembles the background

of the workstation used to capture the test set. This close

resemblance in background enhances the accuracy of the

model’s inference.

In both test cases, we have consistently observed that mod-

els trained with a training set that incorporates a background

similar to that of the test set exhibit higher inference accuracy

than those other models. For instance, the specialized_black

and real_black models outperformed the specialized_wood

and real_wooden models when tested on the black table, and

vice versa.These results validate the importance of model

specialization in enhancing the performance and accuracy

of the DNNs models.

Interestingly, we observe that the specialized model per-

forms exceptionally well, even in comparison to the ground

truth model trained with real data. In the case of the test set

with a wooden table background, we find that the special-

ized_wooden model performs almost on par with the ground

truth model real_wooden, achieving an accuracy of 83.1%

compared to 84.7% of the real_wooden. Particularly, in the

black table test set, the specialized_black model surpasses

the ground truth real_black, achieving an accuracy of 87.5%

compared to 80.9%. Upon reviewing the training set used

for the ground truth model in this test set, we identified

the presence of duplicate and blurred frames. These factors
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Table 3: Accuracy of trained computer vision models
in WCA across different test sets. The number in bold
represents the best result obtained for the test set.

Model

Accuracy(in percentage)

Black Table Wooden Table

Green 15.2 16.3

Specialized_black 87.5 71.4

Specialized_wooden 59.4 83.1

Real_black 80.9 60.5

Real_wooden 64.6 84.7

have contributed to a lower quality training set, resulting in

reduced accuracy in the trained ground truth model.

In summary, leveraging model specialization with the as-

sistance of tinyHulk has resulted in a significant improve-

ment in the accuracy of the trained model. The specialized

model exhibits a competitive level of accuracy when com-

pared to the model trained with real data.

5.2 How does tinyHulk contribute to time
and effort savings in the process of
model specialization?

In our experiment, the WCA application is built to assist

users in completing the task by providing step-by-step guid-

ance. Since users may not have prior knowledge of the task,

it is impractical to expect them to record a training set at

their workstations for training a specialized model for the

application. Here, tinyHulk provides a solution that simpli-

fies the data collection process. Users only need to capture a

photo of the background of their workstation, and tinyHulk

generates augmented data using the original green training

set, which has been prepared by professional data engineers

in advance. According to the report [10], the process of gen-

erating augmented data for training purposes, specifically

for the object of interest or each step in WCA, takes approx-

imately 20 seconds, regardless of the size of the training set

(the time is dedicated to identifying the HSV threshold re-

quired to modify the background of a sample frame. Once

determined, this threshold is uniformly applied to the entire

dataset). Furthermore, compared to the size of the entire

training set consisting of thousands of frames, the individual

background photo size (e.g., 3.8MB in the experiment) is sig-

nificantly smaller, which resulting in substantial bandwidth

savings for data transferring from the end-user’s device to

the cloudlet.

Our method of model specialization is not limited to a spe-

cific WCA application and can be extended to various other

use cases that rely on computer vision models. For instance,

it can be effectively applied to applications involving object

recognition and detection. These applications can benefit

from improved model specialization without the need for



labor-intensive human involvement in recording and cre-

ating training sets. This not only reduces the workload on

humans but also eliminates the risk of generating low-quality

training sets due to limited data collection skills or exper-

tise. This is particularly crucial considering our observations

in Section 5.1, where low-quality training sets led to lower

model accuracy.

6 CONCLUSION
In the context of the Wearable Cognitive Assistance (WCA)

application, the accuracy of DNNs’ computer vision models

can suffer when deployed on workstations with backgrounds

different from those in the model’s training set. To address

this challenge, we propose an approach that focuses on im-

proving model specialization to enhance the accuracy of

model inference.

Our methodology involves leveraging the augmentation

capabilities of our developed annotation tool, tinyHulk, to

generate augmented data that is specific to the background of

each user’s workstation. This augmented data is then utilized

as the training set for the computer vision model in WCA

applications. The approach minimizes the need for extensive

human effort and time for collecting training data, as well as

the bandwidth necessary for transferring data.

The experimental results demonstrate the efficacy of the

proposed approach. We successfully train specialized models

that are tailored to the unique characteristics of each work-

station. These specialized models consistently achieve com-

petitive accuracy levels during model inference, comparable

to the ground truth models trained with real data collected

directly from the workstations, effectively mitigating the

impact of background variations and ultimately enhancing

the overall user experience with the WCA application.
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