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Automatically classifying plant leaves is a challenging fine-grained classification task because of the diver-
sity in leaf morphology, including size, texture, shape, and venation. Although powerful deep learning-based
methods have achieved great improvement in leaf classification, these methods still require a large number of
well-labeled samples for supervised training, which is difficult to get. In contrast, relying on the specific coarse-
to-fine classification strategy, human botanists only require a small number of samples for accurate leaf recog-
nition. Inspired by the classification strategy of human botanists, we propose a novel S2CL — Lea f Net, which
exploits multi-granularity clues with a hierarchical attention mechanism and boosts the learning ability with
the supervised sampling contrastive learning with limited training samples to classify plant leaves as human
botanists do. Specifically, to fully explore and exploit the subtle details of the leaves, a novel sampling transfor-
mation mechanism is combined with the supervised contrastive learning to enhance the network’s perception
of details by amplifying the discriminative regions with a weighted sampling of different regions. Further-
more, we construct the hierarchical attention mechanism to produce attention maps of different granularity,
which helps to discover details in leaves that are important for classification. Experiments are conducted on
the open-access leaf datasets, including Flavia, Swedish, and LeafSnap, which prove the effectiveness of the
proposed S?CL — Leaf Net.
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1 INTRODUCTION

Given the image of the entire plant or just parts of it, such as flowers, fruits, leaves, and stems
[16, 42], automatic plant classification refers to identifying plant images into botanical species
with algorithms. Compared with organs such as flowers or fruits, which only appear at some spe-
cific stages of maturity, the leaf images of the plant are easier to collect, so it is more convenient
to identify categories of plants with their leaves. In this article, we focus on classifying leaf images
for plant identification. There are three challenges for leaf image recognition. First, closely related
plants may be very similar in appearance, since they have the same ancestor in the evolution tree,
as shown in Figure 1. Second, differences in the poses of objects and illumination, especially in the
maturity level of leaves, can lead to large variances in images of the same species. Finally, accu-
rate labeling of plant images needs expert domain knowledge, which makes it difficult to obtain
sufficient well-labeled training samples for data-driven deep learning methods, greatly limiting its
performance and practical use.

In the field of leaf image recognition, early works generally utilize hand-crafted features, such as
textural features and shape-defining features, combined with SVM or nearest neighbor classifier
for plant identification [10, 29, 39, 41]. Most of the recent works are based on Convolutional
Neural Networks (CNNs), which outperform hand-crafted based methods by a large margin.
Such as approaches based on CNNs [3, 21, 47, 50], which utilize the data augmentation and stacked
convolutional layers on the leaf image recognition.

Furthermore, leaf recognition is a typical fine-grained image classification task, which has at-
tracted a lot of attention due to its wide application in practice. Both leaf recognition and fine-
grained image classification have the same goal, intending to classify subcategories, such as birds,
cars, and so on. General methods in the field of fine-grained classification can be grouped in two
ways. One is discriminative feature learning [23, 34, 36, 52], which usually refers to enhancing the
representation capability of features by end-to-end training. Reference [36] constructs a bilinear
structure to extract the pairwise features by two parallel CNNs and use the pooled outer product
of features to represent an image. After that, many methods [7, 12, 18, 30, 62] have further devel-
oped in this way and made great progress. The other is discriminative region discovery, which
often contains two subnetworks: (1) localization subnetwork, localizing discriminative regions,
and (2) classification subnetwork, combining those regions to produce the final prediction. Some
previous methods [31, 33, 35, 58, 59] utilize additional part annotations to train their localization
subnetworks. Recent methods [15, 19, 40, 48, 55, 61] use the attention capability of classification
networks to localize discriminative regions with only class labels, removing the requirement of ex-
pensive part annotations. However, these fine-grained classification methods rely on an amount
of well-labeled training data, which is expensive to get in the leaf recognition task.

The ability of humans to recognize objects has a specific property, i.e., even babies do not re-
quire many training samples to achieve high recognition accuracy. It is because humans can find
the discriminative regions of objects and then abstract them into specific concepts for recognition.
This is especially the case for experienced botanists, who have a specialized coarse-to-fine classifi-
cation strategy to accurately distinguish leaves [4, 11, 17]. First, they analyze leaf appearance to get
features of integral leaf shape, including edges and overall shapes. With this step, human botanists
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Fig. 1. Leaf images of the four plants, which are quite similar in appearance. From left to right, they are
big-fruited holly, wintersweet, crape myrtle, and camphortree, respectively.

can classify the leaves into general categories, such as coniferous and broad-leaved, to make pri-
mary judgments. Second, botanists turn to analyze the texture and the main veins of leaves to get
more detailed features for more fine-grained classification. Third, they put leaves under a magnify-
ing glass or even a microscope to find the most detailed discriminative information such as minor
veins and the serrated shape of the edge. Finally, they integrate all features obtained in the afore-
mentioned three steps to get the final classification result. With this coarse-to-fine classification
strategy, human botanists can obtain excellent classification performance, only utilizing a small
number of training samples.

This strategy inspires us to design a novel hierarchical attention module to extract features of
different granularity, which is helpful for the correct classification of leaf images. It is well-noted
that there is an inherent hierarchical structure in convolutional neural networks, in which fea-
tures from low-level to high-level are extracted. The low-level features respond to edge and color
conjunctions, middle-level features respond to the similar texture (such as mesh pattern), and high-
level features are more class-specific (such as dog faces and bird legs) [57]. This nature of CNNs is
the same as the classification strategy of botanists mentioned above, and these features of different
levels can be utilized to get the attention maps of different granularity to guide the classification
network where to focus. However, due to shallow and mid-level maps that may respond to back-
ground regions, directly using the response maps of shallow and mid-level features may introduce
noise. In our proposed method, these attention maps are obtained by aggregated class active maps,
which can protect the final attention maps from noise, especially in low-level attention maps.

Additionally, aiming at reducing the number of required training data to make machines
simulate the recognition ability like humans, we propose Supervised Sampling Contrastive
Learning (SSCL). Our proposed SSCL utilizes the sampling transformation to generate strong
contrastive pairs and greatly improve the performance compared with the vanilla supervised
contrastive learning [27]. Specifically, our SSCL densely samples the original image where the
attention maps have high responses, while sparsely samples where the attention maps have low
responses. As a result, under the guidance of attention maps, the mechanism of the sampling
transformation is very close to that of magnifying glasses, by which the discriminative regions
are magnified and the background regions are depressed. Then, the strong contrastive pairs are
fed into a two-branch network, i.e., a discriminative branch focuses on the high-response regions
and a complementary branch focuses on medium-response regions. By doing this, the SSCL can
help improve the generalization of classification models, which is important in leaf recognition
with limited training samples.

With the help of the fusion attention map produced by the hierarchical attention module and our
supervised sampling contrastive learning, rich and detailed information is extracted for correctly
recognizing the leaf images with a small number of training samples like human botanists do. Our
contributions can be summarized into three aspects:

— Different from previous works that localize discriminative regions with a single deep feature,
we are motivated by the coarse-to-fine classification strategy of plant botanists and propose
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the hierarchical attention mechanism, which can localize the discriminative regions with
different granularity.

— To solve the challenge of limited well-labeled data, we propose supervised sampling con-
trastive learning to handle the leaf recognition task in the few-shot learning scenario, by
which small and subtle details of important discriminative regions are enlarged for accurate
recognition.

— We evaluate our methods on three common-used public leaf datasets, outperforming the
state-of-the-art methods.

2 RELATED WORK
2.1 Leaf Image Recognition

Recently, plant image recognition based on image classification methods has attracted a lot of at-
tention in the field of computer vision. And many public plant datasets, such as Flavia [54], Swedish
[49], and LeafSnap [32], are proposed, which provide a fair comparison of plant recognition meth-
ods. Leaf image recognition is a challenging task because of the difficulties in recognizing similar
species, such as large intra-class variance, small inter-class distance, long-tail distribution, and
noisy images.

Early work [39] proposes a symbolic method for leaf image recognition, which utilizes a nearest
neighbor classifier and relies on the leaf textual features. Specifically, they propose a local binary
pattern as the leaf textural features. Then, they utilize the clustering algorithm to decide the num-
ber of textual patterns, in which they use a threshold to cluster samples to decrease the variation
of the samples belonging to the same class. Finally, the nearest neighbor classifier is utilized to pro-
duce the final results. However, this method relies on a multi-view of the leaf samples, which limits
the usability of this method due to the difficulty of obtaining fine-grained leaf images. Similarly,
Reference [2] also designs hand-crafted features, including shape descriptors and Fourier descrip-
tors, for leaf recognition. Then, these features are fed to a multi-layer perceptron to produce the
recognition results.

Despite proving their effectiveness in several public datasets, these hand-crafted features-based
methods are soon outperformed by the deep learning methods. Reference [41] proposes a CNNs-
based method for plant classification, which employs data augmentation based on low-level trans-
formations applied to the leaf images such as shifting, scaling, and rotation. However, deep
learning-based methods rely on a huge amount of well-labeled training data, which is not well
applicable in leaf recognition due to the difficulty of collecting samples. Reference [5] points out
that the CNNs need a large number of training samples to achieve high accuracy and provide solid
results. Therefore, it is very important to use powerful deep learning methods and fewer data
to achieve good leaf recognition results. Taking the problems above into account, Reference [51]
proposes a few-shot learning method for leaf recognition. Specifically, they employ the Siamese
Convolutional Neural Network (S-CNN) to extract the leaf features of pre-defined leaf image
pairs and then apply metric learning to learn discriminative features. In this article, we also con-
duct research in the few-shot learning scenario.

2.2 Fine-grained Image Classification

In the past few years, great progress [20, 22, 24, 46] has been made in the field of image classification
due to the rapid development of deep learning technology and the availability of large-scale image
datasets [13]. Compared with generic image recognition[28, 37], methods in fine-grained visual
classification should have the ability to localize discriminative regions or learn the discriminative
features due to the high inter-class similarity and large intra-class variance. According to whether
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there is an explicit localization process, methods can be categorized into localization-classification
networks and discriminative feature learning.

One is discriminative feature learning [23, 34, 36, 52], which usually refers to enhancing the
representation capability of features by end-to-end training. Reference [36] constructs a bilinear
structure to extract the pairwise features by two parallel CNNs and uses the pooled outer product of
features to represent an image. After that, many methods [7, 12, 18, 30, 62] have further developed
in this way and made great progress. Discriminative feature learning methods are simple and
straightforward but struggle with human interpretation and performance consistency.

The other is discriminative region discovery, which often contains two subnetworks: localiza-
tion subnetwork and classification subnetwork combining those regions to produce the final pre-
diction. Some previous methods [31, 33, 35, 58, 59] utilize additional part annotations to train
their localization subnetworks. Recent methods [15, 19, 40, 48, 55, 61] use the attention capability
of classification networks to localize discriminative regions with only class labels, removing the
requirement of expensive part annotations.

3 METHODOLOGY

Like the human plant taxonomists, the proposed S?CL — Leaf Net first utilizes the hierarchical
attention mechanism to learn attention maps with different granularity, which localizes the dis-
criminative regions of input images in a coarse to fine manner. Then, these attention maps are fed
into the sampling transformation to selectively sample the input image into a pair of positive
contrastive learning images, which should be similar in the feature space. Finally, we apply the
supervised contrastive loss along with cross-entropy loss to train the whole framework, which
minimizes the distance of images from the same species while maximizing that from different
species. The network utilizes the CNN backbone to extract features and can be trained end-to-end,
as illustrated in Figure 2.

3.1 Hierarchical Attention Mechanism

With professional consideration, human botanists utilize a three-step coarse-to-fine strategy to
find discriminative details of leaf samples, as shown in Figure 3. First, they analyze the appearances
of leaves to get features of integral leaf shapes, including their edges and shapes. Then, they record
these general features and turn to further analyze the leaves by scrutinizing their colors, shapes,
and textures. Third, they perform microscopic and laboratory tests on the leaves, concentrating on
leaf veins to get the most discriminative details. After this three-step strategy, all discriminative
information obtained above is taken into integrated consideration to get the recognition results.

Convolutional neural networks are inherently hierarchical, and input images are progressively
downsampled to obtain features from low level to high level. It is well-noted that in this hier-
archical structure, the low-level features correspond to primary patterns, the mid-level features
correspond to some generalized patterns, and the high-level features correspond to high-level
semantics.

This well inspired us to propose a novel hierarchical attention mechanism to simulate the classifi-
cation strategies of human botanists. Given an input image X, we feed it into the backbone CNN to
produce a series of features with different granularity {fi, f2, ..., fi,..., fi}. And f; € RK>XH>XW;
is extracted feature of the Ith layer, where K; denotes the number of feature channels and H; and
W, denote the width and height of the feature map, respectively. Then, global average pooling
is performed on the f; followed by a fully connected layer to obtain classification score s € RV,
where N is the number of categories to be recognized. Denote the matrix of the fully connected
layer with W; € RX/*N | the class active map of ith category in the Ith layer CAM;; can be
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Fig. 2. An overview of the proposed S?CL — Leaf Net. First, the input leaf images are fed into the backbone
CNN to produce a coarse prediction. Then, attention maps with different granularity are extracted by the
hierarchical attention mechanism, which localizes the discriminative regions from coarse to fine. Second,
sampling transformation is applied to the original leaf images with aggregated attention maps for producing
a positive contrastive learning pair. Finally, supervised contrastive loss combined with cross-entropy loss is
applied to train the whole network in an end-to-end way.

Analyze edges and Scrutinizing colors, Focusing on venations
overall shapes shapes and textures with microscopic

Fig. 3. The strategy of human botanists for recognizing leaves. First, they will analyze the margins and
overall shapes of leaves. Second, the analysis is performed by scrutinizing both the shapes and colors of
leaves. Finally, the microscopic observation is conducted to focus on the venations. The final decision is
made based on the observation of these three steps.
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Fig. 4. CAM utilizes the classification weights in the linear classifier of the predicted category to weight the
features of different channels, whose values represent the importance of different regions for the predicted
category.

computed as

Ki
CAM; = > Wik - fik. (1)
k=1
For a better understanding, the process of producing CAM is shown in Figure 4.

Response values of the class active map indicate the importance of regions for correct classifica-
tion, i.e., important regions have larger attention values, while background regions have smaller
attention values. To take full advantage of the rich deep features of different layers, our hierarchical
attention module aggregates class active maps of the predicted category by:

A= Z a; - b(CAM,), ()
1

where «; denotes aggregation weight, which is a trainable parameter. b is bilinear interpolation
to make the class active maps the same size for aggregation. After obtaining the aggregated class
active map, normalization is performed to scale the attention values in the same range:

Avy

A = —
*Y max(Ax,y)

®3)

As shown in Figure 5, our hierarchical attention module well simulates the strategy of human
botanists. In the shallow layer of the CNNs, the hierarchical attention mechanism focuses on the
edges of leaves, which achieves the same goal as the first step of botanists’ classification strategy. In
the middle layer of the CNNs, the hierarchical attention mechanism turns to focus on the general
leaf patterns, such as colors and shapes. Finally, in the high layer of the CNNs, the hierarchical
attention mechanism focuses on the venations of leaves, which is the same with human botanists,
because the venations are very important for recognizing categories of leaves.

3.2 Sampling Transformation

Like References [43, 63] and [14], our method also applies the sampling transformation to make
the network zoom in the discriminative regions. First, we apply a sliding window size of  on the
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Fig. 5. The Hierarchical Attention Mechanism. There is an internal hierarchical structure in convolutional
neural networks, where different layers focus on different information. In the shallow layers, the focus is on
the edges and overall shapes of leaves. In the middle layers, the focus is on some general patterns, such as
colors and textures. And in the high layers, the focus is on some high-level semantics that is closely related
to recognizing. It well simulates the coarse-to-fine classification strategy of human botanists.

aggregated class active map to obtain the peak response points P = {(xo, Yo), (X1, Y1), - - - » (Xns Yn)},
where n is the number of valid peak point. Second, we use a threshold to partition the peak points
into two sets Py and P., according to their attention values,

Pd:{(x7y)|(x’y)ep ’ifo,yzs}
Pe={(x,y)l(x,y) €P ,ifAyy <6},

where § is the partition threshold.
Then, learnable Gaussian kernels are utilized to generate the sparse attention S € R™H*W with

©

(x=x)?+(y-y;)?

2 .
Ax,yie vt if(xi,yi) € P,
Si,x,y = 1 (xfxi)2+(y72yi)2 (5)
e Mwif o if(xi,yi) € P,
Axi’yi

where f; and f, is the parameter of Gaussian kernels, which are learnable parameters determined
during the training process.

With the sparse attention defined in Equation (5), we perform image re-sampling to highlight
fine-grained details from informative local regions while preserving surrounding context informa-
tion. We construct two sampling maps Sy and S, for the discriminative branch and complementary
branch of feature extraction, respectively.

Sa = Zsi, if (xi,y:) € Py,
Se= .S if(xi,yi) € Pe.

Next, the sampling module g takes as input the saliency map S along with the full resolution
image X to produce the re-sampled image X, with

Xnew =9(X,5)~ (7)

As presented in Reference [43], we can compute a mapping between the sampled image and the
original image and then use the grid sampler introduced in Reference [26]. This mapping can be
written in the standard form as two functions u(x, y) and v(x, y) such that

Xnew = X(u(x, y), v(x,y)). ®)

(6)
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Fig. 6. The overview of supervised contrastive learning, which is a simple yet effective few-shot learning
method. In supervised contrastive learning, samples of the same class and their transformations are positive
examples. While samples of other classes and their transformations are negative examples.

The two mapping functions are used to map pixels proportionally to the normalized weight as-
signed to them by the saliency map. Assuming that u(x, y), v(x, y), x and y range from 0 to 1, an
exact approximation to this problem would be to find u and v such that

u(x,y) rolxy)
f f S(x’,y")dx"dy" = xy. 9)
0 0

According to Reference [43], the solution can be described as
Dy SOy )k(x", y')x’
Yy SO Yk y)

’U(_x ) _ Zx’,y’ S(X’, y,)k(x’7 y,)y, (11)
T S SGL k()

where k is a distance kernel that acts as a regularizer to avoid corner cases where all the pixels
converge to the same value. By this, re-sampled images with the same dimensions as X have been
produced from X. This sampling transformation makes regions with high attention values sampled
more densely, since those regions have larger sampling weights. While regions with low atten-
tion values are sampled sparsely to preserve the context regions. By replacing S in Equations (10)
and (11) with S; and S, respectively, we can get two different groups of sampling functions. Thus,
two different sampled images can be obtained with Equation (8).

On one hand, due to the partition of valid peak points, regions that are magnified in the two
sampled images are different, which can provide rich but diverse discriminative information for
classification. On the other hand, these two sampled images constitute a positive contrastive learn-
ing pair, which can be optimized with supervised contrastive learning, which is described in the
next section.

u(x,y) = (10)

3.3 Supervised Contrastive Learning for Leaf Recognition

Aiming at recognizing leaf images with a small number of training samples, we introduce super-
vised contrastive learning, which is a simple yet effective few-shot learning method. As shown in
Figure 6, given an input image X, the supervised contrastive learning [27] first applies two differ-
ent data transformations ¢t ~ T and ¢’ ~ T to obtain two transformed images. Both transformed
images are fed into the encoder network f(-) to obtain a normalized embedding h. During train-
ing, this representation h is further propagated through a projection network g(-) that is discarded
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(c)

E
(d) (e) (f)

Fig. 7. Comparison of different transformed images. (a) is the original input image. (b) and (c) are images
that are randomly cropped and resized, which is applied in vanilla supervised contrastive learning. (d) is the
image that is center-cropped, which is applied in previous leaf recognition methods. (e) and (f) are a pair of
the sampled image produced by the sampling module, which not only magnifies the discriminative regions
but also preserves the other details.

at inference time. The supervised contrastive loss is computed on the outputs z of the projection
network, bringing together representations from the same category while keeping representations
from different categories away from each other. Further, a linear classifier is trained on top of the
frozen representations equipped with a cross-entropy loss.

In vanilla supervised contrastive learning, the transformations of data augmentation include
horizontal flip, random rotation, random crop, random resize, and so on. Though these transfor-
mations are effective for data augmentation and are commonly used in image classification, these
transformations can not automatically attend to the discriminative regions of input images. How-
ever, localizing discriminative regions is an important step for image classification, especially for
fine-grained classification tasks. As shown in Figure 7, compared with transformations used in
vanilla supervised contrastive learning, our sampling module not only attends the discriminative
regions but also reserves context regions, which is very helpful for recognizing.

Recapping the overall procedure, the input images are first fed into the hierarchical attention
module to produce multi-level attention maps, which are later aggregated together and fed into the
sampling transformation. Under the guidance of the attention maps, the sampling transformation
performs dense sampling on the input image in areas with high attention values, while sparse sam-
pling is performed in areas with low attention values. And the sampling transformation produces
two sampled images with different attention regions, which constitutes a positive contrastive pair
that can be used in supervised contrastive learning.

For a mini-batch of N training samplers, denote the index of augmented samples with i € I =
{1,2,...,2N}, and let A(i) = I\i be the set of images of this mini-batch except the ith image. The
supervised contrastive loss is defined as

Lser = Z Lscl

iel

exp(z; - zp/7)
- Z log Z ,
l)l Z]EA(!) exp(zl Z]/T)

iel PEP(i)

(12)
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Table 1. The Statistics of Datasets in this Article

Number of Number of Number of
Datasets S .
classes training images test images
Flavia [54] 32 1,526 381
Swedish [49] 15 844 281
LeafSnap [32] 184 23,147 2,760

where P(i) = {p € A(i) : y, = y;} is the set of all positives in this mini-batch, including the other
augmented samples originating from the same source sample or samples from the same category.
yp is the label of the pth image and |P(i)| is its cardinality.

The features extracted from the original image and the two sampled images are denoted with
F = {F,,F,, F.}. We utilize the concatenation of F,, F;, and F, to make the final classification. So,
there are four linear classifiers to be trained with

Lets = ) Lee (i y*) + Lee (9, ¥°), (13)
iel
where I = {I,, Iy, I.}. Lc. denotes the cross-entropy loss, and y* denotes the ground-truth label. y,.
is the predicted label of the concatenation feature. The whole model is trained end-to-end with

L=Lcs + ﬁLscl, (14)

where f denotes the balance weight. L. is defined with Equation (12) and L.y, is defined with
Equation (13).

4 EXPERIMENTS AND RESULTS

In this section, we conduct experiments on three public leaf datasets, i.e., LeafSnap, Flavia, and
Swedish, to evaluate the effectiveness of our proposed method S?CL — Leaf Net.

4.1 Datasets

In this article, we evaluate the proposed approach on three fine-grained leaf datasets: LeafSnap,
Flavia, and Swedish. The detailed statistics of these three datasets are shown in Table 1, including
the number of training and test samples. These three datasets cover a wide variety of plant species,
which makes these datasets challenging. Specifically, the LeafSnap dataset is imbalanced, and there
are only a few samples available for some species. While in Flavia and Swedish, they are balanced.
Noting that the goal of this article is to automatically recognize which species the leaf image
belongs to with less labeled training data, we have designed different few-shot settings to evaluate
our method. That is, we use 5 to 20 samples per class for training the models, which is a smaller
amount of training data compared with existing leaf recognition methods and other fine-grained
recognition methods.

Following the few-shot learning setting in S-CNN [51], the number of samples per class during
training is set as 5, 10, 15, and 20, respectively, which are randomly sampled from the original
training sets. For the test phase, all remaining images in the original training set and the original
test images are used to evaluate the performance of our proposed method. Except for the few-
shot learning setting, we also conduct experiments under the fully supervised setting, in which all
original training sets are used.

To describe these three leaf image datasets more clearly, the samples are shown in Figure 8. In
these three datasets, there is a high similarity between the different categories of leaves, which
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Fig. 8. Samples from three common-used leaf image datasets. (a) are from Flavia, (b) are from Swedish, and
(c) are from LeafSnap.

makes it challenging to recognize their class correctly. Furthermore, compared with Flavia and
Swedish, LeafSnap is a more complex dataset. It contains two subsets, lab subset and field subset,
where the lab subset is captured in a laboratory environment, and the field subset is taken in a
natural environment.

4.2 Implementation Details

We implement our proposed method with PyTorch and train our models on an NVIDIA Titan X
(Pascal) GPU, whose memory is 12 GB. For a fair comparison, all images are resized to 224 x 224
during both the training and test phases. For data augmentation, randomly cropped, random resize,
and random horizontal flip are deployed for all training samples. While for the test samples, only
random horizontal flip is deployed. For training the whole model, we deploy the SGD optimizer.
Specifically, the momentum is set to 0.9 and 0.0005 for the weight decay. During training, the
size of a single batch is set to 30. The max training epoch is set to 50. The initial learning rate is
0.0005, with exponential decay of 0.95 every 4 epochs. Specifically, we train the parameters out
of the backbone CNN with learning rate times 10 for weight parameters and times 20 for bias
parameters.

4.3 Experiments and Analysis

4.3.1  Few-shot Learning Scenario. To verify the few-shot learning performance of our method,
we conduct experiments in Flavia, Swedish, and LeafSnap datasets. Following the experiment set-
ting of S-CNN [51], we set the number of training samples per category to 5, 10, 15, and 20, respec-
tively, and all remaining images to compose the test set.

Note that this is different from the normal N-way-K-shot setting in few-shot learning; it can be
seen as an all-way setting, which is more difficult than the commonly used 5-way and 10-way set-
tings. As shown in Table 2, the experiment result on the Flavia dataset shows that we achieve a new
state-of-the-art performance. Thanks to the hierarchical attention mechanism and the strong opti-
mization strategy [20], our method without supervised sampling contrastive learning outperforms
the previous methods. Our hierarchical attention mechanism helps the network find details of dif-
ferent granularity, which are useful for recognizing the categories leaves belong to. Furthermore,
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Table 2. Overall Accuracy (%) of the Different Methods
for the Flavia Dataset

Method n=5 n=10 n=15 n=20
SSLDP [1] 322 441 587 746
SFFD [38] 428 778 832 858

SS-HCNN [9] 418 691 871 935
S-ResNet [51] 574 812 897 938
S-Inception [51] 59.2 852 923 953

PMG [15] 67.4 87.6 94.4 96.8
AE-Net [25] 68.5 88.3 95.5 97.9
Ours w/o SSCL  70.1 90.1 96.9 97.7
Ours 75.3 93.8 97.7 98.3

The SSCL denotes supervised sampling contrastive learning.

Table 3. Overall Accuracy (%) of the Different Methods
for the Swedish Dataset

Method n=5 n=10 n=15 n=20
SSLDP [1] 317 425 557 738
SFFD [38] 39.6 73.6 80.9 83.1

SS-HCNN [9] 385 665 850  92.0
S-ResNet [51]  52.8 772 881 917
S-Inception [51] 49.6 725 85.1 88.8

PMG [15] 713 870 949  98.1
AE-Net [25] 728 883 965 979
Ours w/o SSCL 739 889 968  99.0
Ours 79.8 907 903  99.3

The SSCL denotes the supervised sampling contrastive learning.

on this basis, our sampling transformation amplifies these useful image regions and effectively
extends the data augmentation approaches used in supervised contrastive learning, which further
boosts the performance of our approach.

Specifically, with a relatively small number of training samples such as the number of training
samples per category equal to 5 and 10, our supervised sampling contrastive learning achieves a
great improvement (75.3% vs. 70.1% and 93.8% vs. 90.1%) than without the SSCL. The good perfor-
mance implies that our methods could be very useful in practice where training images are hard
to get and annotate. And compared with the vanilla S-CNN [51], when the number of training
samples increases, our proposed supervised sampling contrastive learning still improves the per-
formance of the model (97.7% vs. 96.9% and 97.7% vs. 98.3%). This is because, by sampling transfor-
mation, the informative regions are effectively enlarged, which is highly important in fine-grained
recognition.

As shown in Tables 3 and 4, our proposed method achieves consistent improvement in Swedish
and LeafSnap. This demonstrates the scalability of our approach to other datasets.
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Table 4. Overall Accuracy (%) of the Different Methods
for the LeafSnap Dataset

Method n=5 n=10 n=15 n=20
S-ResNet [51] 59.4 80.4 92.6 96.8
S-Inception [51] 61.0  80.0 90.0 93.2

PMG [15] 745 860 911 975
AE-Net [25] 748 855 915  97.9
Oursw/oSSCL 809 889 915  98.1
Ours 824 89.6 928 987

The SSCL denotes the supervised sampling contrastive learning.

Table 5. Repeated Experiment Results in
Flavia Dataset

1 2 3 4 5
n=5 753 750 752 748 752
n=20 983 983 979 98.1 98.0

Due to the training images being randomly sampled from the original datasets, we repeated
the experiments to exclude the effect of randomness when k = 5 and k = 20 in Flavia dataset.
The experiment results are shown in Table 5, which demonstrates the stability of the proposed
S?CL — Leaf Net.

4.3.2  Experiments Results under Fully Supervised Setting. The proposed S?CL — LeafNet not
only achieves state-of-the-art performance in the few-shot learning scenario but also shows well
adaption under the fully supervised setting. Under the fully supervised setting, all training images
are used in the training phase, which is the same as the fine-grained image recognition task. That
is, we use all the 1,526 training samples in the Flavia dataset under this setting. And the computa-
tional costs are not much more than that in the case of few-shot learning. Thanks to the sampling
transformation, the informative regions where details of the leaf images are well enlarged, which
is important for fine-grained recognition [14, 63]. And as shown in Table 6, our proposed method
also achieves state-of-the-art performance under the fully supervised setting.

4.3.3  Ablation Study and Visualization. To better illustrate the effect of our proposed method,
ablation studies are conducted. Our proposed hierarchical attention mechanism could effectively
find discriminative regions of different granularity that are highly related to correctly recognizing
the leaf categories. In comparison, we design a simple module to fuse the attention maps. More
specifically, the class active maps are not used to produce the raw attention maps, and the normal-
ized convolutional response maps are replaced to generate the attention maps. Then, we average
these raw attention maps to obtain the final attention map. Experimental results are shown in
Table 7. Using the simple fusion method not only fails to improve the recognition accuracy but
even harms the performance of the model when the training images are not sufficient. We think
that it is because the middle-level features are sensitive to the changes in input images. Thus, the
middle-level features are not robust like the high-level features, and even are noisy for recognition.
Using these noisy features to produce attention maps that guide models to enlarge the attention
regions may be harmful. Thanks to the class active maps focusing on the active regions that are
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Table 6. Overall Accuracy (%) of the Different Methods on the Flavia
Dataset under the Fully Supervised Setting

Method Accuracy
PCNN [53] 96.9
LeafNet CNN [41] 97.9
Shape & Statistical & Vein Features, PCA + KNN [45] 98.8
DeepPlant+MLP [44] 99.4
SWP-Leaf Net [6] 99.7
PMG [15] 99.6
AE-Net [25] 99.7
Ours w/o SSCL 99.5
Ours 99.8

The SSCL denotes the supervised sampling contrastive learning.

Table 7. Effect of Hierarchical Attention Mechanism

Method n=5 n=10 n=15 n=20 fullysupervised
Ours w/o HAM 81.2 88.9 91.7 96.9 99.1
Ours w/simple fusion 80.1  87.8 91.5 96.3 98.5
Ours w/HAM 82.4 88.6 92.8 98.1 99.7

Experiments are conducted on the LeafSnap dataset.

related to the predicted category, our proposed hierarchical attention mechanism could help the
procedure of recognizing,.

As shown in Figure 9, we visualize the attention maps of the hierarchical attention mechanism.
As shown in the first row in Figure 9, the hierarchical attention mechanism mainly focuses on the
edge and veins of leaves in the shallow layer of CNN, which provides important details for the
final recognition. In the middle layer of CNN, the hierarchical attention mechanism turns to focus
on general leaf shapes, such as shape and color. Finally, in the high layer of CNN, the hierarchical
attention mechanism focuses on the discriminative regions that are important for classification.

More importantly, we find that these hierarchical attentions could complement each other. For
very narrow leaves such as coniferous leaves, as shown in the second row in Figure 9, it is dif-
ficult for the high-level attention module to accurately localize the discrimination regions. And
the attention regions will diffuse to the surrounding background, which is unfavorable to the final
classification procedure. However, just as mentioned before, attention maps produced by shallow
layers can be very noisy. Just as shown in the third row in Figure 9, there are many active points
scattered in the background. In this case, the attention maps from the middle and high levels help
to correct the errors caused by these noises.

Furthermore, the sampled leaf images are presented in Figure 10. And for the discriminative
sampled images, the main region of leaves is enlarged, just like using a magnifying glass magnifies
important regions in the image. As the supplement of the discriminative sampled images, the
complementary sampled images have little distortion compared to the original image and can be
seen as a compromise between the discriminative images and original images. Compared with data
augmentation methods, such as random crop and center crop, which are used in vanilla supervised
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Fig. 9. Visualization of hierarchical attention. The first column is the input leaf image. And, from left to right,
there are three attention maps of network layers from shallow to deep.

Fig. 10. Sampled images after sampling transformation. The first row is the original leaf image. Discrim-
inative sampled images and complementary sampled images are presented in the second and third rows,
respectively.
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Table 8. Comparison with State-of-the-art
Fine-grained Recognition Methods on
CUB-200-2011 Dataset

Method Accuracy
FT ResNet 84.1
DFL [52] 87.4
NTS [56] 87.5
TASN [63] 87.9
MAMC [48] 87.3
S3N [14] 88.5
PMG [15] 89.6
PMG with multi-head [8] 89.9
PART [60] 89.6
Ours 90.1

contrastive learning, using sampling transformation can magnify important details of leaves and
preserve the original shape of the main object. This distortion of these important regions is a
helpful data augmentation method, especially when used with supervised contrastive learning.

4.3.4  Evaluation under FGVC Setting. Though this is not the point of our proposed method, our
method still can be utilized in traditional FGVC task. To prove the effectiveness of our proposed
method, we conduct experiment on the common-used FGVC dataset, CUB-200-2011.

Due to our proposed method being based on the CNN backbone, we compare our proposed
method with SOTA CNN-based FGVC method. As shown in Table 8, though this is not the point
of our article, our method still achieves comparable performance to state-of-the-art CNN-based
fine-grained methods under the traditional FGVC setting. We think this is because learning dis-
criminative features is important in fine-grained recognition, which is the same in both leaf images
and bird images. This proves that our proposed HAM and SSCL are also effective in more general
fine-grained image classification.

5 CONCLUSION

To make the classification networks recognize the leaf images like human botanists, we propose
the S’CL — Leaf Net, which can correctly classify leaf images with a few training samples. This
comes from two aspects, i.e., the hierarchical attention mechanism and supervised sampling con-
trastive learning. Inspired by the classification strategy of human botanists, our hierarchical at-
tention mechanism localizes the discriminative regions of different granularity with the inherent
hierarchical architecture of CNNs. And by using the supervised sampling contrastive learning,
the original leaf images are augmented without damaging the discriminative regions, helping the
recognition model achieve high accuracy with a few training samples. Furthermore, we conduct
experiments on three commonly used leaf datasets and achieve new state-of-the-art performance.
Visualization results are provided for a better understanding of our methods.
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