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ABSTRACT
The growing prevalence of location-based devices has resulted
in a signi�cant abundance of location data from various tracking
vendors. Nevertheless, a noticeable de�cit exists regarding readily
accessible, extensive, and publicly available datasets for research
purposes, primarily due to privacy concerns and ownership con-
straints. There is a pressing need for expansive datasets to advance
machine learning techniques in this domain. The absence of such
resources currently represents a substantial hindrance to research
progress in this �eld. Data augmentation is emerging as a popular
technique to mitigate this issue in several domains. However, ap-
plying state-of-the-art techniques as-is proves challenging when
dealing with trajectory data due to the intricate spatio-temporal
dependencies inherent to such data. In this work, we propose a
novel strategy for augmenting trajectory data that applies a geo-
graphical perturbation on trajectory points along a trajectory. Such
a perturbation results in controlled changes in the raw trajectory
and, consequently, causes changes in the trajectory feature space.
We test our strategy in two trajectory datasets and show a perfor-
mance improvement of approximately 20% when contrasted with
the baseline. We believe this strategy will pave the way for a more
comprehensive framework for trajectory data augmentation that
can be used in �elds where few labeled trajectory data are available
for training machine learning models.

CCS CONCEPTS
•Computingmethodologies! Classi�cation and regression trees;
• Software and its engineering! Software libraries and repos-
itories; • Information systems! Data cleaning; Geographic
information systems.
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1 INTRODUCTION
In recent years, driven by the widespread adoption of location-
based devices, we have witnessed a burgeoning interest in research
concerning the analysis of movement data [10, 15, 17]. Nonethe-
less, the abundant availability of such data from tracking product
vendors is juxtaposed with the scarcity of publicly accessible real
datasets for research purposes. This challenge, compounded by the
necessity for extensive labeled databases to train machine learning
and deep learning techniques, underscores a pivotal obstacle in the
progression of research within this �eld [4, 5, 14].

Data augmentation has emerged as a powerful technique in ma-
chine learning, strengthening model robustness while mitigating
over�tting and under�tting issues by generating diverse synthetic
data that can be used to overcome the scarcity of labeled data.
Data augmentation is the process of generating synthetic data by
applying transformations to the original examples [13]. Data aug-
mentation not only increases the e�ciency of the machine learning
models but they have also been shown to make the machine learn-
ing models more robust [9].

In the literature, we have seen di�erent techniques for data
augmentation in di�erent domains such as image geometric trans-
formations (e.g., data jittering, cropping, �ipping, distortion, and ro-
tation) [7], Fourier transformations (e.g., fast Fourier transform and
Gaussian noise injection) [8], time-series augmentation (e.g., time
warping, slicing, permutation, and interpolation) [8], Generative
Adversarial Networks (GANs) [1] and Encoder-Decoder Networks
[11]. Despite its success in other domains, data augmentation’s
potential remains largely untapped in mobility data analysis, pri-
marily due to the intricate nature and unique format of trajectory
data. A trajectory is a spatio-temporal data consisting of temporally
and spatially spaced points associated with location information,
as detected by location devices.

Data augmentation techniques developed in other domains, like
geometric augmentation methods for image processing, cannot
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be directly applied to trajectories since they would barely impact
the features extracted from a trajectory. Similarly, Fourier trans-
formations, predominantly employed in image and wave analysis,
�nd limited use outside these domains and may need a careful re-
design to be used in trajectory analysis. A notable parallel lies in
the resemblance between time series and trajectory data, given that
trajectories also comprise temporally spaced points. This similarity
encourages the adaptation of augmentation techniques from the
time-series domain to the trajectory analysis domain.

Our proposal is based on the concept of adding noise to data be-
fore feature extraction. In the case of trajectory data, simply adding
random noise to trajectory point features may create attributes
with inconsistent values, like increasing the object’s speed and, at
the same time, decreasing the acceleration. To resolve the matter
at hand, our approach entails the implementation of a random geo-
graphical variance into the original trajectory data. This is accom-
plished by adjusting the geographical coordinates of the trajectory
points within a predetermined circular region. We achieve this by
selectively shifting the location of speci�c points either within the
circle or along its perimeter. By utilizing this spatial threshold, we
aim to prevent any potential discrepancies from arising.

In summary, this work’s contributions are the following:
• We propose two geographical noise strategies that randomly
move trajectory points inside a geographical circle (in-circle)
or on the boundaries of a geographical circle (on-circle).

• We propose an algorithm that randomly selects trajectory
points and applies geographical noise using two techniques
(e.g., in-circle and on-circle) to generate consistent augmented
trajectories.

• We test and properly evaluate our proposed method in three
datasets, showing that the technique creates augmented tra-
jectories that can improve machine learning methods’ per-
formances.

2 METHODOLOGY
The objective of trajectory data augmentation is to enhance a given
set of trajectories by introducing geographical noise, thereby gen-
erating new synthetic trajectories that o�er increased diversity
that data mining methods can use. We can apply the strategy to
augment these data by moving trajectory points within a limited
geographical neighborhood, thus creating consistent data. The pro-
posed methodology for data augmentation for trajectory data is
based on choosing a circular spatial bu�er around each trajectory
point and then moving the point based on two strategies: (1) inside
the circle or (2) at the border, detailed below.

2.1 Geographical Noise Strategies
Our �rst strategy to apply geographical noise in trajectory points
is to create a geographical circle in selected points and randomly
move this trajectory point inside (i.e., in-circle geographical noise)
to this geographical boundary. An example of such a technique is
seen in Figure 1, where two trajectory points are selected, and two
trajectory points are moved inside the circle (red dots).

Our second strategy to apply geographical noise in trajectory
points is to create a geographical circle in selected points and ran-
domly move this trajectory point on the border (i.e., in-circle

Figure 1: In-Circle Geographical Noise Example

geographical noise) of this geographical boundary. An example of
such a technique is seen in Figure 2, where two trajectory points
are selected, and two trajectory points are moved on the circle’s
border (i.e., white dots).

Figure 2: On-Circle Point Geographical Noise Example

2.2 Trajectory Data Augmentation Algorithm
This section details Algorithm 1, which performs the data augmen-
tation in raw trajectory data. The algorithm takes as input several
parameters: (i) ?aug, representing the percentage of trajectories to
be augmented; (ii) =gen, indicating the number of trajectories to be
generated for each selected trajectory; (iii) ?noise, which speci�es
the portion of trajectory points to undergo geographical noise; (iv)
A chosen geographical noise strategy, o�ering two distinct options:
in-circle or on-circle; and (v) Acircle, denoting the radius percentage
to be used in the noise strategy.

Upon execution, the algorithm systematically proceeds as fol-
lows. Initialize an empty set, 0D6, which will be used to store the
augmented trajectories (line 1). Select a subset of trajectories (line
2) from the input dataset to be augmented, with the subset size de-
termined by the input parameter ?aug. For each trajectory C within
the chosen subset, we start by conducting =gen iterations to create
a speci�ed number of new trajectories based on the selected one
(lines 3 to 11). We �rst duplicate the currently selected trajectory C ,
storing it as C2?~ (line 5). After, we randomly choose a percentage
of trajectory points from C2?~ according to the parameter ?noise
(line 6). Then, we apply the designated geographical noise strat-
egy (in-circle or on-circle) on the selected points, generating a set
of modi�ed trajectory points =4F?CB (line 7). We then replace the
trajectory points in C2?~ with the modi�ed points =4F?CB (line 8).
Finally, we add the adapted trajectory C2?~ to the set of augmented
trajectories, 0D6 (line 9). After processing all trajectories in the
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selected subset, the algorithm concludes by returning the set of
augmented trajectories, 0D6 (line 12).

Algorithm 1 Trajectory Augmentation Algorithm
Require: ?aug: Percentage of trajectories to be augmented

=gen: Number of trajectories to be generated
?noise: Percentage of trajectory points for geographical noise
Geographical noise strategy: in-circle, on-circle
Acircle: Radius percentage for circle

Ensure: 0D6: Set of augmented trajectories
1: 0D6 = {}
2: BD1B4C_CA0 9B = Select ?aug percentage of trajectories to be aug-

mented
3: for all C in BD1B4C_CA0 9B do
4: for 8 = 1 to =gen do
5: C2?~ = Create a copy of C
6: ?CB = Randomly select percentage ?noise from C2?~
7: =4F?CB = Apply geographical noise strategy to ?CB
8: C2?~ = Replace original trajectory points by =4F?CB
9: 0D6 = Add C2?~ to 0D6
10: end for
11: end for
12: return 0D6

3 EXPERIMENTAL SETUP AND RESULTS
3.1 Datasets and Feature Extraction
In our experiments, we utilized three distinct datasets to assess the
performance of our proposed methods. The �rst dataset, named
Geolife, is a subset of the comprehensive Geolife dataset [18], com-
prising 36 trajectories for a total of 355,181 trajectory points. These
trajectories encompass various transportation modes, including air-
planes, boats, subways, and taxis. The second dataset, referred to as
Tra�c1, consists of 125 trajectories, encompassing 44,905 trajectory
points, speci�cally involving large and standard vehicles. The third
dataset, called Birds, comprises 58 trajectories, incorporating a total
of 528,488 trajectory points attributed to geese [6], gulls [16], and
vultures [12].

In our experimental setup, we examined the combined impact of
the geographical changes introduced by our proposed algorithm
on the performance of trajectory classi�cation models, as detailed
in Section 3.3.

In the machine learning space around spatio-temporal data, it
is usually preferred that the data is in segment-based form where
each tuple in the dataset represents an entire trajectory or a subset
of trajectory containing the statistical description of the trajectory
or the subset. We calculate the Kinematic trajectory features from
the entire trajectory and encompass metrics such as average speed
and percentiles of direction variation using PTRAIL[2, 3] In total,
PTRAIL extracts 72 trajectory features from the trajectory itself.
It is important to note that these trajectory features are utilized
in both facets of our experiments: as attributes to calculate Eu-
clidean distances and as the feature vector for training the machine

1https://zen-tra�c-data.net/english/outline/dataset.html

learning models. Due to the limited space to present our contribu-
tions, details about these 72 features can be found in the original
documentation of PTRAIL2.

3.2 Feature Vector Average Distance Analysis
When evaluating strategies for reducing geographical noise, we
calculate the average Euclidean distance between the original tra-
jectory features selected for modi�cation and the novel trajectory
features modi�ed by our geographical noise reduction strategies.
To gain initial insight into the e�ectiveness of our geographical
noise strategies, we randomly chose 30% of the trajectories for test-
ing. We ensure that there are no signi�cant overlaps between the
trajectory points in both experiments by using a 50% radius for
the geographical circle (denoted by A28A2;4 in Algorithm 1). Subse-
quently, we generate 20 augmented trajectories (=64= in Algorithm
1) for each randomly selected trajectory, aiming at evaluating the
average impact in the feature vector from each of our proposed
strategies. We modify 20%, 40%, and 60% of trajectory points with
geographical noise strategies (?=>8B4 in Algorithm 1) to analyze
changes in the feature vector. We repeat this experiment 20 times
using the decimals of c taken four by four (e.g., 1415, 9265, etc.) as
seeds to ensure variability in the random selection of trajectories
and the geographical noise application, and the results are reported
in Table 1.

Several conclusions and insights can be extracted from the re-
sults on the average Euclidean distances and standard deviations
between original data points and points with injected noise. The
average Euclidean distances generally tend to increase as the per-
centage of trajectory points selected is increased from 20% to 60%,
suggesting adding more noise to trajectory points results in greater
distance (i.e., higher di�erences in the trajectory features) com-
pared to the original trajectory. The choice of injection method
(on-circle vs. in-circle) also has a noticeable impact on the aver-
age distances. In many cases, the on-circle method tends to result
in more considerable distances than the in-circle method, indicat-
ing that injecting noise on the outer boundary of the original data
points results in more signi�cant perturbations. Onemay choose on-
circle or in-circle strategies depending on the speci�c application
and goals. The on-circle method may be suitable when introduc-
ing more spread-out noise and potentially signi�cantly impacting
the trajectory feature. In contrast, the in-circle approach may be
preferred when you wish noise closer to the original data points. It
is also noticeable that each dataset exhibits its own characteristics
regarding how noise a�ects the average distances. For instance, the
Geolife dataset generally shows more considerable distances than
the other datasets, indicating that noise signi�cantly impacts this
dataset.

TheGeolife dataset, particularlywith the on-circlemethod, shows
higher standard deviations at 20% noise, indicating more variability
in how noise a�ects this dataset at that speci�c noise level and
injection method. Standard deviations for both the on-circle and
in-circle methods are relatively consistent across di�erent noise
levels for the Tra�c dataset. The highest standard deviation in
this dataset is 0.4933 for the on-circle method at 20% noise. The
Bird dataset generally exhibits lower standard deviations than the

2 Available at: https://ptrail.readthedocs.io/en/latest/
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on-circle
20%

on-circle
40%

on-circle
60%

in-circle
20%

in-circle
40%

in-circle
60%

avg. dist std avg. dist std avg. dist std avg. dist std avg. dist std avg. dist std

Geolife 1.1519 0.5922 0.5956 0.4430 1.3101 0.5452 0.7459 0.4500 1.3716 0.5283 0.8128 0.4511
Tra�c 1.0214 0.4933 0.9917 0.4571 1.1052 0.4642 1.0675 0.4145 1.1370 0.4545 1.0960 0.4062
Bird 1.0439 0.2250 0.8237 0.2125 1.0764 0.2233 0.9082 0.2273 1.1057 0.2316 0.9645 0.2477
Table 1: Average Euclidean distances for di�erent percentages of trajectory points selected to be geographically modi�ed by
our strategies. In the table, bold values indicate the smallest value in each column. For this experiment, the lower the values,
the better.

Geolife and Tra�c datasets. This suggests that noise has a more
consistent impact on the Bird dataset. This dataset’s standard de-
viations are relatively low, indicating that the distances between
original and noisy data points are relatively consistent. Even at
60% noise, the standard deviations remain relatively low (0.2233 for
on-circle and 0.2477 for in-circle)

3.3 Classi�cation Performance Analysis
This experiment evaluates the impact of introducing augmented
trajectories in a trajectory classi�cation problem. We establish a
baseline model for the trajectory classi�cation performance eval-
uation by splitting the original data set into 80% for training and
20% for testing and repeating such split 20 times using the decimals
of c taken four by four. We then average these performances to
establish such a baseline value. After, we start testing the impact of
introducing augmented trajectories in the training data. To train
a model, from the training set, we randomly select 30% of the tra-
jectories (designated as ?0D6 in Algorithm 1) to test our proposed
strategies. We test our algorithm with a 50% radius (A28A2;4 in Algo-
rithm 1) for the geographical circle in both experiments to ensure
we do not have signi�cant overlaps between trajectory points. We
generate 20 augmented trajectories (=64= in Algorithm 1) for each
subselected one. We again test the values of 20%, 40%, and 60%
of trajectory points to be modi�ed (?=>8B4 in Algorithm 1) by our
geographical noise strategies to evaluate the impact in classi�cation
performances for distinct classi�cation models. Aiming at evalu-
ating the impact of the newly created augmented trajectories in
trajectory classi�cation problems, we evaluate the impact on the
F-scores of training supervised machine learning models with and
without augmented trajectories in the training set. We use three
supervised machine learning models named Random Forest, Extra
Trees, and XGBoost. The results of the experiments are detailed in
Table 2.

Using the ExtraTreesClassi�er in the Geolife dataset, in most
cases, F-scores are below the baseline, indicating that the augmen-
tation techniques (on-circle and in-circle) generally result in no
improvements over the baseline data with no augmentation. The
only exception is the on-circle strategy applied to 20% of the points,
leading to a marginal gain of 0.29%. For the GradientBoostingClas-
si�er, the F-scores are more consistently above the baseline, with
gains ranging from 4.72% to 2.27%, suggesting that the augmenta-
tion techniques also improve performance for this model. Similarly,
the F-scores for the RandomForestClassi�er are consistently above
the baseline, with gains ranging from 1.67 to 1.33%, indicating that

the strategies generally improve model performance on the Geolife
dataset.

The F-scores are all below the baseline for the ExtraTreesClas-
si�er in the Tra�c dataset, indicating that the modi�cation tech-
niques lead to no improvement for this model on the Tra�c dataset.
The F-scores for GradientBoostingClassi�er show improvements
for all percentages using the on-circle strategy, ranging from 2.86%
to 1.59%. For the RandomForestClassi�er, the F-scores are consis-
tently above the baseline, suggesting that the techniques result in
improvements for this model on the Tra�c dataset and a maximal
gain of 2.58%. Therefore, for the Tra�c dataset, GradientBoosting-
Classi�er with the on-circle method and RandomForestClassi�er
with any strategy consistently bene�t from the modi�cation tech-
niques, while GradientBoostingClassi�er shows mixed results.

In the Birds dataset, the ExtraTreesClassi�er shows F-scores sub-
stantially above the baseline in all cases, with gains ranging from
19.61% to 7.85%. The GradientBoostingClassi�er produced F-scores
below the baseline, suggesting that the modi�cation techniques do
not improve performance for this model on the Bird dataset. The F-
scores are mostly above the baseline for the RandomForestClassi�er,
indicating improvements, except 60% of trajectory points modi�ed
by the in-circle strategy. For the Bird dataset, ExtraTreesClassi�er
and RandomForestClassi�er show improvements with the augmen-
tation techniques, while GradientBoostingClassi�er struggles to
bene�t from them.

In summary, the analysis in relation to the baseline suggests that
the impact of the data augmentation algorithm techniques varies
depending on the dataset and the machine learning model, and our
proposed algorithm indeed achieves performance improvements.
For the Geolife and Tra�c datasets, the techniques often lead to
improvements when using GradientBoostingClassi�er and Ran-
domForestClassi�er. For the Bird dataset, ExtraTreesClassi�er and
RandomForestClassi�er bene�ted the most from the techniques,
while GradientBoostingClassi�er showed no improvement.

4 CONCLUSIONS AND FUTUREWORKS
In this study, we introduced a new algorithm for enhancing trajec-
tory data by incorporating geographical noise, employing two dis-
tinct strategies – in-circle and on-circle. Our fundamental assertion
is that the augmentation of trajectory data should precede feature
extraction in trajectory classi�cation tasks. Applying random noise
to the trajectory features may lead to data inconsistencies. Hence,
our algorithm is devised to randomly select trajectory data points
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Model Baseline on-circle
20%

on-circle
40%

on-circle
60%

in-circle
20%

in-circle
40%

in-circle
60%

ExtraTreesClassi�er 63.47% 63.76% 58.73% 63.28% 63.04% 63.36% 61.57%
Geolife GradientBoostingClasi�er 61.23% 65.95% 64.91% 63.50% 63.55% 61.04% 59.63%

RandomForestClassi�er 66.62% 68.20% 65.13% 67.70% 68.29% 67.95% 66.03%

ExtraTreesClassi�er 83.68% 83.40% 83.40% 83.30% 83.41% 83.29% 83.41%
Tra�c GradientBoostingClasi�er 69.60% 71.19% 72.46% 71.49% 67.80% 69.42% 68.01%

RandomForestClassi�er 79.68% 81.84% 82.26% 80.48% 81.77% 81.20% 80.47%

ExtraTreesClassi�er 76.86% 90.59% 84.71% 96.47% 96.47% 95.63% 94.45%
Bird GradientBoostingClasi�er 66.47% 59.75% 59.75% 58.63% 58.63% 62.30% 50.53%

RandomForestClassi�er 59.75% 61.18% 61.18% 61.18% 61.18% 66.47% 58.82%
Table 2: Baseline and average F-scores for di�erent percentages of trajectory points selected to be geographically modi�ed by
our strategies.

and introduce geographical noise to these points, thereby gener-
ating augmented trajectories. This augmentation enables feature
extraction to be conducted subsequently, ensuring data consistency
and reliability. In our experiment, we evaluated how the incorpora-
tion of augmented trajectories a�ects the performance of machine
learning algorithms in trajectory classi�cation tasks. We observe
that introducing augmented trajectories via our algorithm can posi-
tively impact the performance of machine learning models in many
instances, thus paving the way for more robust strategies in trajec-
tory data augmentation.

As future work, we envision this algorithm as the cornerstone for
a comprehensive and robust framework for augmenting trajectory
datasets. While our initial results have demonstrated promising out-
comes even with a completely random selection of trajectories and
trajectory points for noise injection, we recognize the importance
of systematically controlling this noise to enhance its applicability
in classi�cation problems. Furthermore, we believe that innovat-
ing new techniques for ranking trajectories and trajectory points
presents an exciting possibility for augmenting trajectories.

ACKNOWLEDGMENTS
This research was partially funded by the Natural Sciences and
Engineering Research Council of Canada (NSERC), Grant number
RGPIN-2022-03909; the Institute for Big Data Analytics (IBDA) and
the Ocean Frontier Institute (OFI) at Dalhousie University, Halifax
- NS, Canada; and further funded by the Canada First Research
Excellence Fund (CFREF), the Canadian Foundation for Innova-
tion MERIDIAN cyberinfrastructure3, H2020-MSCA MASTER GA
777695. We thank all funding sources.

REFERENCES
[1] G���������, I., P������A�����, J., M����, M., X�, B., W�����F�����, D., O����,

S., C��������, A., ��� B�����, Y. Generative adversarial nets. Advances in neural
information processing systems 27 (2014).

[2] H�����, S., H��������, Y. J., B������, V., R����, C., �� F������, V. P., ���
S�����, A. Ptrail—a python package for parallel trajectory data preprocessing.
SoftwareX 19 (2022), 101176.

[3] H��������, Y. J., H�����, S., T�����, T. S., �� F������, V. P., ��� S�����, A. A
dashboard tool for mobility data mining preprocessing tasks. In 2022 23rd IEEE
Int. Conf. on Mobile Data Management (MDM) (2022).

3https://meridian.cs.dal.ca/

[4] J�����, A. S., R����, C., ���M�����, S. Analytic: An active learning system
for trajectory classi�cation. IEEE computer graphics and applications 37, 5 (2017),
28–39.

[5] K�������, A., E�����U�����, I., R�����, S., B�����, H. A., ��� K����, V.
Machine learning for the geosciences: Challenges and opportunities. IEEE Trans-
actions on Knowledge and Data Engineering 31, 8 (2019), 1544–1554.

[6] K������, A., M������, G., G�����, P., K����������, H., ��� W�������, M.
Data from: Goose parents lead migration v, 2020.

[7] M�������, K., M�����, S., ��� N�����, B. A review: Data pre-processing and
data augmentation techniques. Global Transitions Proceedings 3, 1 (2022), 91–99.
International Conference on Intelligent Engineering Approach(ICIEA-2022).

[8] M�����, A., ���M�����, F. Data augmentation: A comprehensive survey of
modern approaches. Array 16 (2022), 100258.

[9] R������, S.�A., G����, S., C�����, D. A., S�������, F., W����, O., ���M���,
T. A. Data augmentation can improve robustness. Advances in Neural Information
Processing Systems 34 (2021), 29935–29948.

[10] R����, C., S�����������, S., ��� Z������, E. Mobility data. Cambridge Univer-
sity Press, 2013.

[11] R����������, O., F������, P., ��� B���, T. U-net: Convolutional networks
for biomedical image segmentation. International Conference on Medical image
computing and computer-assisted intervention (2015), 234–241.

[12] S�����, S., W�������, M., F������, W., ��� D�������, S. Data from: Behavioural
adaptations to �ight into thin air, 2016.

[13] S������, C., ��� K�����������, T. M. A survey on image data augmentation
for deep learning. J. Big Data 6 (2019), 60.

[14] S�����, A., R���, J., E�����, M., R����, C., ���M�����, S. VISTA: A visual
analytics platform for semantic annotation of trajectories. In Proceedings of the
22nd International Conference on Extending Database Technology (EDBT) (2019).

[15] S�����, G., F�������, M. D., S�����, A., ���M�����, S. Unfolding ais transmis-
sion behavior for vessel movement modeling on noisy data leveraging machine
learning. IEEE Access 11 (2022), 18821–18837.

[16] S������, N. C., G��������, H. G., ��� M������, M. L. Annual movement
patterns of endangered ivory gulls: the importance of sea ice. PLoS One 9, 12
(2014), e115231.

[17] W���, S., B��, Z., C��������, J. S., ��� C���, G. A survey on trajectory data
management, analytics, and learning. ACM Comput. Surv. 54, 2 (2022), 39:1–39:36.

[18] Z����, Y., ��� X��, X. Learning transportation mode from raw gps data for
geographic application on the web. In Proceedings of the 17th World Wide Web
Conference (April 2008).


