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ABSTRACT 
Walkability is becoming increasingly important in urban planning, 
public health, and environmental protection. Traditional 
assessment tools like streetscape images and semantic 
segmentation focus on objective factors, while questionnaires as 
the main tool for perceived walkability are limited by cost and 
scale. This study introduces a new method using the Multimodal 
Contrastive Learning Model, CLIP, to assess perceived 
walkability by analysing both tangible and subjective factors such 
as safety and attractiveness. The method compares perceived with 
physical walkability by scoring street view images with a 
customized scale. Initial results indicate CLIP can identify 
pedestrian-friendly streetscapes that might score low on physical 
metrics. While its accuracy needs more evaluation, CLIP offers a 
cost-effective alternative without needing extensive labelled 
datasets. This method can be combined with objective pedestrian 
assessment methods to serve as reference information for various 
industries such as real estate, transportation planning, and tourism. 
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1 INTRODUCTION 
As global urbanization accelerates, walkability has moved 

beyond a purely transportation function to become a function of 
community connectivity, public health, and environmental 
protection. More cities are beginning to promote walking in 
practical ways, pushing for pedestrian-friendly neighbourhood 
environments. 

Research on walkability has focused on objective 
environmental factors of walking. Early studies identified 
mesoscale factors such as residential density and land use as 
crucial determinants of walking behaviour[7]. Technological 
advances such as streetscape imagery and semantic segmentation 
have enabled measuring street-scale peripatetic features [8, 11]. 
However, walking behaviour is also influenced by subjective 
walking intentions. For example, some narrow neighbourhoods 
may have actual high walkability due to cultural attractiveness but 
perform poorly on objective metrics (e.g., sky openness, degree of 
greenery, percentage of sidewalks, etc.). Therefore, perceived 
walkability should be considered in addition to the objective 
context when considering overall walkability. 
The current method of assessing perceived walkability is 
primarily questionnaires, and relatively authoritative questionnaire 
scales have been developed in this area such as NEWS and its 
derivatives [4, 13, 14], LWI[10], and PANES[3]. These scales 
have been widely recognized and used. Streetscape imagery has 
also played a role in this area. The Place Pulse dataset, released by 
MIT Media Lab, is a pairwise comparison dataset collected 
through web-based research. Version 1.0[15] contains three 
subjective dimensions, and version 2.0[5] contains six. However, 
Place Pulse is positioned as a dataset about urban perceptions and 
does not fully reflect willingness to walk. A recent study [9] used 
a similar approach to constructing the Place Pulse dataset to 
publish a street view image dataset about concerns about walking 
preferences in Jeonju City, South Korea, developing a deep 
learning model to assess perceived walkability. However, the 
generalization ability of this model has yet to be validated. To 
summarize, the limitations of previous studies are apparent. 
Regarding physical walkability, the accuracy of the semantic 
segmentation model also needs to be further improved, and the 
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walkability assessment cannot rely solely on semantic 
segmentation techniques. Regarding perceived walkability, the 
questionnaire survey method is challenging to apply widely due to 
geographical limitations, high time, and cost. Developing and 
training pairwise comparison datasets and derived deep learning 
models through web research are costly and cannot investigate the 
detailed factors affecting perception. Evaluating walkability by 
combining semantic segmentation models and object detection 
models is one solution idea, but the multimodal comparative 
learning model, CLIP, seems able to provide a more flexible and 
efficient solution. Furthermore, its zero-shot learning capability 
dramatically reduces the training cost of the model, offering the 
possibility of rapid deployment in a variety of urban scenarios. 

2 CLIP-BASED ASSESSMENT 
METHODOLOGY 

2.1 The Potential for Perceived Walkability 
Assessment 

Traditional walkability assessment methods, like semantic 
segmentation and questionnaires, are hindered by issues of cost, 
efficiency, and adaptability in complex environments. In the 
domain of deep learning, while models like ViLBERT and 
LXMERT[2] attempt to integrate vision and language 
understanding, it's the CLIP model[12] that stands out due to its 
superior zero-shot learning capability. The power of the CLIP 
model lies in its contrastive learning approach, which capitalizes 
on existing knowledge to decipher complex urban dynamics 
without extensive labelled data. Having been pre-trained on 
numerous image-text pairs, CLIP can deeply understand semantic 
relationships. This makes it possible to evaluate urban scenes 
using natural language cues like "wide sidewalks" or "good 
walking facilities" to more accurately reflect real-world settings. 

The versatility of the CLIP model and its minimal data 
preparation needs set it apart from traditional methods. 
Nevertheless, challenges persist. These include handling 
systematic tasks such as counting and distance calculations, 
differentiating object types, and providing precise semantic 
similarity values for text-image pairings. Moreover, the model's 
sensitivity to phrasing means that iterative "just-in-time" 
optimization is essential for optimal performance. Despite its 
challenges, the CLIP model's adaptability and versatility ensure its 
relevance in the face of rapidly evolving urban environments. 

2.2 Architecture and Training Approach of CLIP 
The CLIP model consists of a visual encoder, often using Vision 
Transformer or ResNet, and a text encoder based on the 
Transformer architecture. During pre-training, these encoders 
align image and text pairs in a shared space by maximizing their 
similarity. This training allows CLIP to relate visual and textual 
data seamlessly. In inference, the model matches input labels to 
images, assessing the best fit. CLIP's design facilitates zero-shot 
learning, enabling it to handle new images without labelled data, 
reducing the need for vast datasets and increasing its versatility 
across tasks. 

2.3 Perceived Walkability Assessment 
Ewing's theory[6] suggests that willingness to walk is based on 
objective environmental factors. They argue that physical features 
can directly influence individual reactions or indirectly affect 
them through urban design qualities, ultimately determining the 
overall walkability. This provides a theoretical basis for the 
development of a perceptual scale based on detailed features of 
the physical environment in this study.  
Figure 1 depicts the computational process for assessing perceived 
walkability scores. Constructing an assessment scale based on 
objective environmental factors is crucial in the process. The 

Figure 1 Flow Chart for Calculation Perceived Walkability Score 
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assessment scale customized for this study was based on positive 
and negative perceived walkability impact factors collated from 
previous research. These factors were uniformly rewritten as 
descriptive prompts and input to the CLIP model along with the 
street view images. CLIP calculates a similarity score for each 
image based on each prompt and transforms the score into a more 
interpretable probability distribution using the SoftMax function. 
In other words, the larger probability value obtained means that 
the image better matches the corresponding metric. To avoid the 
single dependency of the calculation results, the positive and 
negative indicator entropy is additionally introduced as an 
adjustment strategy. Its specific calculation is as follows: 

𝐻𝐻(𝑋𝑋) = −�𝑝𝑝(𝑥𝑥𝑖𝑖) log2 𝑝𝑝(𝑥𝑥𝑖𝑖) (1) 

𝑆𝑆 = �𝑑𝑑𝑖𝑖𝑝𝑝(𝑥𝑥𝑖𝑖) + 𝐻𝐻�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� − 𝐻𝐻�𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�
𝑁𝑁

𝑖𝑖=1

  (2) 

In equation (1), 𝐻𝐻(𝑋𝑋) is the entropy of indicator,  𝑝𝑝(𝑥𝑥𝑖𝑖)  is the 
probability that the image corresponds to the i-th indicator. In 
equation (2), 𝑑𝑑𝑖𝑖   is the direction of the i-th indicator (+1 for 
positive direction and -1 for negative direction) and 𝑝𝑝(𝑥𝑥𝑖𝑖)   is the 
image corresponding to the i-th indicator. 𝐻𝐻�𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�  is the 
entropy of the positive indicator and 𝐻𝐻�𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� is the entropy 
of the negative indicator. 
The purpose of this adjustment strategy is to give an additional 
reward to those images that satisfy multiple positive metrics 
simultaneously and to impose a corresponding penalty on those 
images that satisfy multiple negative metrics. It ensures that 
images with higher scores are not just higher because of a better 
match to one indicator but because of a better match to multiple 
positive indicators. 

3 CASE STUDY 
Mapillary is an open source street view image platform which 
provides image metadata[1] that allows users to filter images by 
timestamps. Experimental results of the method are shown for the 
Centrum district of Amsterdam. Street View images are collected 
at 30-meter intervals on the road network. A total of 5,669 images 
were collected. To ensure consistency in the urban landscape, the 
image was limited to April through October of each year, and the 
images were taken within the last five years. Figure 2 shows some 
examples of the perceived walkability score. The Top 3 Labels 
with Probability are the three labels in customized rating scale 
(Appendix 1) that the model thinks best fits/ describes the image. 
In order to show more clearly the sensitivity of the present method 
to perceived factors, this study additionally calculated the physical 
walkability of the study area using a traditional semantic 
segmentation method – the DeepLab V3 model has been used 
here. Four main factors (visual crowdedness, greenery, sky 
openness and sidewalk ratio) with calculation formulas are shown 
in Appendix 2. The weights of the four indicators were assigned 
using hierarchical analysis (Appendix 3). The calculated physical 

and perceived walkability score results were visualized as a heat 
map (Figure 3).  
As shown in Figure 3(a), the "ARTIS" zoo in southeast 
Amsterdam is an important physical walkability hotspot due to its 
vast open green spaces. Other hotspots are concentrated on major 
urban arteries and intersections, such as Amsterdam Central 
Station, while other areas have relatively similar walkability 
scores. In contrast, the Figure 3(b) shows a more complex 
distribution. In addition to the ARTIS Zoo, the city centre 
business district and the famous "red light district" are also 
perceived walkability hotspots. This suggests that the 
methodology captures micro urban features that influence 
perception, such as commercial activities and landmarks, which 
are difficult to detect in a purely physical assessment.  

4 DISCUSSION AND CONCLUSION 
The above results show that the perceived walkability 

approach proposed in this study has significant advantages in the 
following two aspects: 

1. It can provide a more comprehensive assessment of 
walkability due to its ability to identify more details of the 
streetscapes, especially for streets where cannot be measured 
uniformly using objective metrics. This perceptual 
perspective-based approach to walkability assessment can 

Figure 2 Examples of Perceived Walkability Calculation 



GeoIndustry2023, November, 2023, Hamburg, Germany X. Liu et al. 
 

 
 

complement the traditional objective walkability assessment 
approach based on semantic segmentation techniques by 
providing more detailed insights into the improvement of the 
walking environment from both subjective and objective 
dimensions. 

2. It takes full advantage of the CLIP model's strengths in zero-
shot learning and contrastive learning, greatly simplifying the 
process of model construction and dataset training. 
Meanwhile, the deterministic nature of the CLIP model 
ensures its robustness and reproducibility, meaning it 
consistently produces the same results for the same input, 
highlighting its reliability. This approach also avoids the time 
costs associated with traditional questionnaires, making the 
evaluation process more efficient. 

Although this method demonstrates its potential, some aspects 
still need to be improved. First, the accuracy of the computational 
results is limited by the performance of the CLIP model, and a 
reasonable method needs to be developed to assess the 
performance of the model. In addition, there is still room for 
optimization of the evaluation scale of perceived walking ability. 
In addition to determining the direction of each indicator, its 
weight allocation can be refined to make the assessment results 
more targeted. Finally, considering the diversity of perception, 
specialized assessment scales can be designed for different 
populations and cultural backgrounds in the future. 
Benefiting from the training strategy of contrastive learning, the 
CLIP model is equipped with zero-shot learning capability, thus 
demonstrating excellent generalization ability, allowing it to adapt 
to different urban scenarios. Considering its core features of 
efficiency and low cost, this lightweight assessment method can 
be considered for future integration into websites or applications. 
This not only provides a real-time walkability assessment tool, but 
also opens up new research directions in urban planning, 
transportation engineering, and other related industry fields.  

It is worth emphasizing that the core idea of this method can be 
widely applied to a variety of perception studies based on the 
generation of objective factors as long as reasonable and scientific 
assessment criteria are developed. 
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Figure 3 Heatmap of Physical (a) and Perceived (b) Walkability Result 



A  APPENDICES 
A.1 Perceived Walkability Rating Scale 
No. Index Indicator Prompt Direction 

1 

Sidewalk 
condition 

Obstacles 

  There are vehicles parked on the sidewalk -1 

2   There are scooters parked on the sidewalk -1 

3   There are bicycles, and motorcycles parked on the sidewalk -1 

4 
Sidewalk width 

  There is a wide sidewalk 1 

5   There is a narrow sidewalk -1 

6 Sidewalk 
construction 

  There is a fenced sidewalk 1 

7   There is a heightened sidewalk 1 

8 
Sidewalk materials 

  There is a tile pavement 1 

9   There are cracks, depressions, and flooded sidewalks. -1 

10 

Traffic safety 

Presence of traffic 
control devices 

  There is road name/direction signs 1 

11   There is a pedestrian symbol marked on the pavement 1 

12   There are green belts and fences between sidewalks and vehicle lane 1 

13 Presence of 
pedestrian facilities 

  There is crosswalk 1 

14   There is a pavement traffic light 1 

15 Unkeep /maintenance 
issue   There are scaffolding or construction sites on the sidewalk -1 

16 
Traffic flow 

  There are many vehicles on the road -1 

17   There are people on the pavement. 1 

18 Train   There are railways along the road -1 

19 Lighting   There are streetlights on the pavements 1 

20 
Security Crime possibility 

  There are police officers along the road 1 

21   There are security cameras 1 

22 

Comfort 

Building’s height 
  There are skyscrapers -1 

23   There are various heights of buildings 1 

24 Wall Graffiti   There is graffiti on the walls -1 

25 
Cleaning 

  There are billboards or advertising signs on the pavement -1 

26   There are garbages on the road -1 

27 
Tree and shadow area 

  There are trees 1 

28   There are shadow areas 1 

29 Seating facilities   There are benches along the sidewalks 1 

30 
Animals 

  There are unleashed dogs on the sidewalk -1 

31   There are birds 1 

32 

Attractiveness 

Commercial zone 
  There are shops along the road 1 

33   There are cafes along the road 1 

34 Institutional zone   There are public buildings such as hospitals, schools, libraries, and office complexes 1 

35 Parks and open 
sapces 

  There are open green zone beside the road 1 

36   There are playground beside the road 1 

37 Accessibility to 
public transportation   There are bus or underground stations 1 

38 Landmark   There are landmarks 1 

39 
Landscape and nature 

  There is river 1 

40   There are flowers 1 

A.2 Physical Walkability Indicators and Formula 
Index Data Formula* 

Visual crowdedness SVI Σ(‘car’+‘bicycle’+‘truck’+‘person’+‘train’+‘bus’+‘motorcycle’)/ ‘total_pixels’ 

Sidewalk ratio SVI ‘sidewalk’ / ‘total_pixels’ 

Greenery SVI Σ(’vegetation’+’terrain’)/ ‘total_pixels’ 

Sky openness SVI ‘sky’ / ‘total_pixels’ 

* ‘xx’ means the number of pixels in this label 
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A.3 Weighting Results of AHP analysis  
Indicators Eigenvector Weights (%) Eigenvalue CI 

sidewalk ratio 1.819 45.467 

4.01 0.003 
greenery 0.565 14.114 

crowdedness 1.052 26.305 

sky openness 0.565 14.114 

 
 
 




