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ABSTRACT

In this paper we study the use of deep reinforcement learning that
is supported by a ray tracer, on top of a detailed 3D model of the
geospatial environment, for optimization of antenna tilts in cel-
lular networks. We propose two novel mechanisms—geospatial
importance sampling and multi-path coefficient—to efficiently pass
geospatial information to the reinforcement learning model. We
show that this approach can be used for fast and scalable optimiza-
tion of tilt levels of cellular antennas. We present an experimen-
tal evaluation that compares the use of reinforcement learning to
greedy search, simulated annealing and Bayesian optimization. Our
study shows that reinforcement learning is effective and can cope
with optimization problems that are at a greater scale than the
settings the other algorithms can cope with.
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1 INTRODUCTION

In the last decades, the demand for bandwidth in cellular networks
has been rising rapidly. The number of cellular devices that are
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connected to the network has been growing, and applications like
streaming media and online social networks have led to a large
increase in the traffic volume [17, 22, 23, 27]. To cope with the
growing demand for network services, new generations of cellular
networks, like 4G and 5G, utilize high frequencies and arrays of
antennas (MIMO) [14]. This makes cellular transmissions suscep-
tible to the effect of the geospatial environment. Obstacles like
buildings, trees, and the terrain obstruct, reflect, and refract the
electromagnetic transmissions of antennas, and the effect on the
environment grows as the frequencies are increased. Hence, the
design and optimization of new cellular networks become difficult
but critical, especially in urban areas [15].

When planning a cellular network, the location of each antenna
and its height are selected based on the availability of network
towers in the area (and regulatory restrictions!). The goal is to
provide effective cellular coverage. If a device is located too far from
any antenna or when geospatial obstacles obstruct the transmission,
the signal strength will be low. However, when a device receives
radio-frequency signals from several antennas, this may cause an
interference—the signals from some antennas interfere with the
signals of other antennas. To optimize the network and increase
the coverage while decreasing the interference, cellular operators
change the tilt of antennas and their transmission power. Fig. 1 and
Fig. 2 illustrate a cellular antenna and its tilt.

Optimization of the tilt and power of antennas should be done
in real-time to address evolving situations, like changes in the
demand for network coverage, and to cope with cell outage [3]. A
cell outage compensation is a self-healing function often employed
by Self-Organising Networks (SON) [24]. The goal is to mitigate
the degradation of coverage, capacity, and service quality in the
case of an outage of a cell or a site. The cell outage compensation
is executed by tuning the electrical tilt of antennas and changing
the downlink received-power level, in the cells surrounding the
affected site. This requires real-time automation and fast reaction
to the outage, while considering the features of the cellular network
and the geospatial environment. Computation should also be fast
when optimizing large-scale areas [6]. If planning at the scale of a
large city or even a country is too slow, some areas would seldom
be optimized, and this could affect the quality of service and the
availability of the network.

Thttps://www. fcc.gov/wireless-telecommunications
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Figure 1: A cellular antenna with sectors Figure 2: Downtilt of a cellular antenna. Figure 3: Ray tracing in Rhea: rays are

that can be tilted.

For an effective computation of the coverage of cellular antennas,
an accurate propagation model of the radio transmission should be
combined with a detailed 3D model of the geospatial environment.
Such a computation is expensive, so it could be ineffective in an
optimization where a large number of states should be explored—
if there are n sector antennas in an area and each antenna has ¢
tilt levels, the search space has a size of t". For example, with 20
antennas and 10 tilt levels, the search space will have more than 10
trillion combinations. So, even if only a small portion of the search
space is explored in the optimization, each step should be very fast,
which is challenging over a detailed geospatial model.

In this paper, we introduce a novel approach in which rein-
forcement learning is combined with ray tracing to address this
optimization problem. We use Rhea, a ray tracing tool developed at
AT&T, to compute the propagation modeling of the transmission
of each antenna [10]. The ray tracer produces training examples
for different antenna parameters and tilt levels. It compresses the
geospatial context of signal propagation paths by applying two
novel mechanisms that we introduce—geospatial significance sam-
pling and multi-path coefficients. A reinforcement learning model is
trained over the propagation patterns and geospatial contexts cre-
ated by Rhea. The model is used for efficiently optimizing antenna
tilt levels for coverage and interference avoidance. Our experi-
ments show that geospatial significance sampling and multi-path
coeflicients are effective for optimizing the performance of the re-
inforcement method. They support industry-level tilt optimization
and the ability to cope with nation-wide scale.

This paper is organized as follows. In Section 2 we discuss re-
lated work. In Section 3 we formally define the research problem.
We present our method and baseline algorithms in Section 4. Our
experimental evaluation with a comparison between the algorithms
is presented in Section 5. In Section 6 we discuss our conclusions.

2 RELATED WORK

The use of reinforcement learning for optimizing cellular networks
has been studied extensively in the last two decades [20, 26, 32].
Vannella et al. [28, 29] showed how to use Safe Policy Improvement
through Baseline Bootstrapping. The use of reinforcement learning
for optimizing 5G networks has been considered in [31]. Tilt opti-
mization for LTE networks has been investigated in [12] and [11].
These papers, however, have not used a ray tracer and they do not
show how to apply reinforcement learning to a detailed model of

emitted from the antenna for creating a
heatmap of the signal strength.

the geospatial environment. Our work is the first to incorporate
a nationwide, industry-level geospatial model in optimization of
cellular networks based on reinforcement learning.

Several studies explored the creation and usage of a detailed
geospatial model for network planning [5-7] and network opti-
mization [2]. These studies, however, do not consider the use of
reinforcement learning for tilt optimization, as in this paper.

The novelty of our approach is the carefully-designed combi-
nation of a ray tracer over a detailed model of the environment
with reinforcement-learning-based tilt optimization. Geospatial in-
formation of the environment is aggregated and compressed by
the ray tracer and provided to the reinforcement learning model.
We show how to execute the optimization efficiently by utilizing
this information. This combination enables an industry-level near
real-time optimization of cellular networks.

3 FRAMEWORK

In this section we present our framework, describe the ray tracing
tool Rhea, and define the research problem.

Geospatial model. The environment is represented by a geospa-
tial model. The geospatial model is constructed based on a variety
of data sources, including USGS?, NLCD?, OSM*, and proprietary
geospatial datasets containing objects with shape and height. The
geospatial model consists of three types of entities—buildings, fo-
liage, and ground (the terrain). Buildings and trees are modeled by
3D cuboids. Each object is a mesh that is represented by vectors
of vertices, triangles that constitute the mesh, and the normal of
each surface. Such a model can be generated from a LiDAR point
cloud [8]. The terrain is represented by a mesh of triangles and it is
produced based on the LiDAR point cloud.

The model consists for each cellular antenna all the parameters
that affect the transmission, including power, bandwidth, frequency,
antenna pattern, azimuth, and tilt. Azimuth is the angle in the
horizontal plane between the center of the main lobe of the antenna
transmission pattern (presented in Fig. 4) and the geographical
north. Tilt is the angle in the vertical plane between the direction
of the center of the main lobe of the antenna and the horizon.

https://www.usgs.gov/the-national-map-data-delivery/gis-data-download
Shttps://www.usgs.gov/centers/eros/science/national-land-cover-database
*https://www.openstreetmap.org/
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Figure 4: Antenna radiation pattern that maps transmission
power to each direction. On the left, a 3D representation of
the pattern. On the right, a 2D horizontal slice of the pattern.

The geospatial data is indexed by an octree [21]. The index sup-
ports the retrieval of geospatial objects per location with logarith-
mic time complexity in the number of objects. Penetrable objects
(e.g., foliage) and reflective objects (e.g., buildings, ground) are
stored in different indexes. It allows to treat them differently and
compute the distance traveled through the penetrable objects.

Radio propagation model. Electromagnetic radiation travels in
space in straight lines when not affected by objects in the envi-
ronment. The signal is emitted from an antenna with frequency
and power that are assigned to the antenna. The received power
density decreases as a function of the distance from the transmitter.
To compute the received power at a receiver antenna, we use Friis
formula [25]. The formula computes the power loss as a function of
the distance between the transmitter and a given point. By knowing
the transmission power, in milliwatts or decibel-milliwatts, we can
apply the path-loss formula and compute the power at the receiver.

Coverage and interference. The ground is partitioned into bins
by a grid, where each bin has a size of 4mx4m. The computation
of signal strength is conducted for each bin b by combining the
transmissions that reach b. Coverage is the set of bins in which the
received signal strength exceeds a predefined threshold. Interfer-
ence within a bin whose carrier frequency is f is considered to be
unacceptable if the received signal power from the strongest cell
transmitting at f (the serving cell) is not sufficiently stronger than
the net received signal power from all other cells operating at the
same frequency f. That is, suppose the strongest signal at carrier
frequency f reaching a given bin b is s1, and there is another signal
of strength s reaching bin b from a different antenna operating at
the same frequency f, then s; is said to cause critical interference
if the ratio of sq to sz is below a threshold.

Computing Coverage and interference. Many applications rely
on signal measurements to discover the coverage and the inter-
ference. However, for tilt optimization, measured signal strength
does not fully consider the geospatial environment and does not
always distinguish between different tilt levels. For example, Fig. 5
and Fig. 7 present the spatial distribution of the signal around
the antenna in Area 1 and Area 2, respectively. Fig. 6 and Fig. 8
present the distribution of the measurements of the signal strength
in Area 1 and Area 2, respectively. While the average and the overall
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distribution of measured signal strengths are similar, the spatial
distributions of the signal are different in the two areas.

Fig. 9 and Fig. 10 present the spatial distribution of the signal
for high and low tilt of a given antennas. In Fig. 11 we see in
yellow the area in which the signal is stronger for a low tilt level
and in purple the area in which the signal is stronger for a high
tilt level. Note that a low tilt level mostly covers areas near the
antenna and high tilt covers areas that are further away. Despite
the large difference between the spatial distribution for the two tilt
levels, the distribution of measured signal strengths in the area is
similar for the two tilt levels. So, ordinary (non-spatial) distributions
of measured signal strengths do not always distinguish between
different tilt levels and are not able to measure the effect of the tilt.
To address this, we use a ray traces to compute the signal strengths.

Ray Tracing. Our ray tracer, Rhea, was developed in-house. The
main goal of Rhea is to accurately and efficiently compute coverage
and interference per bin. The results can be presented as a heatmap.
The ray tracer is applied to a model of the environment, see Fig.3.
It executes a Monte-Carlo photon injection algorithm in the 3D
model and the rays geometrically approximate electromagnetic
signal propagation. In particular, key components such as antenna
patterns, signal energy spreading with distance, reflections, diffrac-
tions and refractions on solid surfaces, and penetration through
foliage are captured in a deterministic fashion, while accounting
for the various components of attenuation and multipath fading.

When applying the ray tracer, various parameters are associated
with each antenna, including position, transmit power, carrier fre-
quency, spectrum bandwidth, waveguide loss, and antenna pattern.
Antenna manufacturers provide 2D transmission patterns that are
converted to 3D patterns by interpolation. The pattern is rotated
to align with the antenna azimuth and tilt angles. Thus, any pho-
ton injected from the source at a relative azimuth 6 and downtilt
¢ in reference to the antenna orientation is ascribed an antenna
gain G (6, ¢). The hit points of photons are counted per each bin.
The wavefronts of the photons are combined per rules of phasor
addition to account for multipath fading, for determining the net
received signal strength in each bin.

The computation has two phases: (i) photon traversal, and (ii) bin-
level consolidation. In the photon traversal phase, photons are emit-
ted from the source in pseudo-random directions, uniformly. The
total number of photons in the simulation is based on the processing
budget (up to 40 million) and desired bin granularity. The path of
each photon is traced in the 3D model using standard geometrical
procedures. The system records for each photon the traveled dis-
tance, net attenuation, phase shifts, reflections, and travel through
foliage, to compute the path loss. While light ray reflections are
glossy (combination of specular and diffusive) [30], the radio signal
reflections are predominantly specular, given that their wavelengths
are considerably longer than surface imperfections.

In the second phase, the net received signal strength is computed
for every bin on the ground. For this purpose, the set of distinct
wavefronts (marked by different paths) is identified per each bin
based on the photons hitting that bin. These wavefronts are com-
bined per rules of phasor addition to account for multipath fading
and compute the net received signal strength for each bin.
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Figure 13: Different states of bins in an area. (The cell loca-
tions were selected randomly.)

Tilt Optimization. The goal of network optimization is to increase
coverage and decrease interference, in the considered area. Recall
that the area is partitioned into bins. Each bin is in one of the
following four states, defined based on practical industry standards,
for two arbitrary thresholds & and .

e Dominance. The strongest signal in the bin is less than o
dBm below the environment noise floor (the sum of all the
other signals), and the second and third strongest signals in
this bin are more than f dBm below the strongest signal.

and for high tilt (purple).

and low tilt levels.

e Lack of Dominance. The strongest signal is less than
dBm below the environment noise floor, and the second
and third strongest signals are less than  dBm below the
strongest signal. (Two signals are too close to the strongest.)

o Interference. The strongest signal is more than ¢ dBm
below the environment noise floor, that is, it is not strong
enough in comparison to the sum of all other signals.

e No Coverage. There is no signal in the bin (all the signals
are too low).

Fig. 13 presents examples of different bin states. The antenna
locations are marked by yellow circles. (These locations were se-
lected randomly just for the example.) Bins that are close to a single
antenna typically are in a dominance state. Bins between antennas
are in a lack of dominance or interference state. Bins that do not
have any antenna directed to them or are hidden by obstacles are
often in a no-coverage state.

The optimization aims to maximizing the total number of bins
with a dominance state and minimizing the total number of bins
without dominance of a single serving cell. In the optimization, we
cannot move or shut down existing antennas. It is only possible to
electrically change the antenna tilts and the transmission strength,
to change the coverage. For example, up-tilting an antenna usually
makes the covering sector larger and the energy more sparsely
distributed, while down-tilting usually makes a smaller, more con-
centrated covering sector. But because of geospatial obstacles, the
actual effect is complicated and we use Rhea to compute it.

Typically, it is impossible to achieve dominance in all the bins.
Thus, both dominance and lack-of-dominance are considered ac-
ceptable states, while trying to prevent interference and no-coverage
states. To evaluate this, the system is maximizing a weighted sum
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S = WiSdominance + W2Sno-dominance — W3Sinterference — W4Sno-coverage:
where w1, wo, w3 and wy are positive weights whose sum is equal to
1, and Sgominances Sno-dominance Sinterference> Sno-coverage are the num-
ber of bins in each state. The weights are selected by network engi-
neers as part of the network quality policy of the cellular provider.
The sum S is called coverage quality. The optimization objective is
to find tilt values with the maximum coverage quality.

This optimization objective is intrinsically geospatial. Changes
in sector coverage and energy distribution depend on the distance
from the antenna, the antenna height, the terrain, geospatial entities
in the area (like buildings), and other environmental features (like
the reflection factors of the geospatial objects). When the geospatial
environment is complex and the number of antennas increases, the
effect of changes in tilt on the coverage quality is non-monotonic
and there is no simple function to tell how a change in tilt will
affect the coverage quality. We need to simulate each case by Rhea
and evaluate each setting independently.

Problem Definition. Computing the maximum coverage quality
is hard in large-scale settings. So, our goal is to search for the best
solution that can be discovered fast. In an industrial setting, we
may be given a limited amount of time 7 for the computation and
the goal is to compute the best solution within this time frame.
The problem that we are studying is as follows. Given an area, the
antennas in it, and a computation-time threshold 7, compute, within
time 7, the tilt levels with the highest coverage quality.

4 ALGORITHMS

In this section we present our method for tilt optimization by using
reinforcement learning. We also present three baseline methods to
which we compare our method.

4.1 Reinforcement Learning

Our method is based on the classic multi-agent deep reinforcement
learning (MADRL) framework [13]. Intuitively, reinforcement learn-
ing (RL) is learning by trial and error. In each step, multiple agents
take actions independently and apply changes to the environment.
The agents observe the new states and receive rewards accordingly.
The history of the changes and the rewards are recorded and used
to train a model for maximizing the rewards.

In our setting, for every antenna there are 15 tilt levels, where 0
is an up tilt towards the horizon and 14 is a down tilt towards the
ground. An agent is assigned to each antenna. An action of an agent
is an increase (decrease) of the tilt level by 1. So, for n antennas, in
each step there are roughly 3" combinations of possible changes,
where each antenna can be tilted up, tilted down or have its tilt
level kept unchanged. For n antennas with 15 tilt levels, the entire
search space has a size of 15".

The environment consists of the geospatial model and the an-
tennas (with their features). For every combination of tilt levels,
we compute the coverage of each antenna and the state of each bin
(dominance, interference, ...), by Rhea [10]. Note that the selection
of the bin size is affected by the tradeoff between the accuracy of
the model and the computation time. In practice, a partition into
16m X 16m bins is sufficiently accurate for tilt optimization.

The algorithm gathers and manages the following information
for each antenna A and bin b,

Geolndustry "23, November 13, 2023, Hamburg, Germany

(1) the strength of the signal from A at b,

(2) the coverage quality of A at b,

(3) the strongest signal at b,

(4) the level of interference at b, and

(5) the multi-path coefficient, which is the difference between
(i) the signal strength when considering all the paths from A
to b, including indirect ones where reflection is involved, and
(ii) the signal strength based on the direct path (line-of-sight)
if such a path exists.

To increase the efficiency, the algorithm processes a subset of
the bins in each step. This subset is selected uniformly and its size
B is a hyperparameter of the algorithms.

Training. During training, the initial tilts are selected randomly
(uniformly). This yields the initial environment state S("%) The
overall coverage quality Q under this tilt setting is computed by
Rhea. The goal is to find a tilt setting whose overall coverage quality
is higher than Qinit) by an improvement threshold T.

At each step, every agent executes an off-policy action or an
on-policy action. When an off-policy action is performed, a random
action vector a is drawn uniformly from the action space. When
an on-policy action is executed, a mini-batch of B bins is selected
uniformly. Coverage quality, signal strength and interference are
computed for the B bins, by Rhea, and the actions that increase
coverage quality for these bins are computed and applied.

We use a three-layer feed-forward neural network [4] with ReLU
activation [1] as the policy net. It uses a hyperparameter € which
is the probability of executing the off-policy action (while 1 — ¢
is the probability of an on-policy action). The parameter € decays
as the number of training iterations grows. Thus, the effect of the
decisions of the policy net grows over time.

In each step, we have the updated state and the previous state of
the environment, denoted S(*) and $?), with coverage qualities

Q(“) and Q(p), respectively. For an agent A, QI(“”) and Qixp ) are
the updated and previous coverage qualities in the bins where the
signal from antenna A is the strongest (that is, bins in which A is
the serving cell). We reward the agents for the way they improve
Q(“) in comparison to Q(P ). We design the reward function based
on the following three principles.

Principle 1: the reward function encourages the agents to co-
operate to improve the overall coverage quality. Our experiments
show that if we only reward the agents for improving their indi-
vidual coverage quality, they will execute greedy steps instead of
improving the overall quality.

Principle 2: the reward function encourages the agents to have
an appropriate individual coverage quality, not too high or too
low. When an antenna serves too many bins it may exceed its
communication capacity. Serving too few bins is a waste of energy.

Principle 3: the reward function discourages agents from com-
peting for dominance in bin b if it is unlikely that they will be the
serving cell of b. Our experiments show that if an antenna has little
chance of serving a bin (for example, the line of sight is blocked
by a building), encouraging it to compete for dominance will only
increase interference.

To enforce these principles, we split the reward into five com-
ponents: step-wise penalty, individual-improvement reward, global-
improvement reward, winning reward, and lose penalty. Step-wise
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Table 1: Components of the reward per agent

Component Notation Definition Formulation
. A constant penalty per action. Negative hyperparameter if
Step- It S
ep-wise penally Encourages agents to change tilts. Q™ — Q) < 0,0 otherwise
Individual-improvement reward I Increasing coverage quality for agent A. II = (QX‘) - fo) )/T
I i 1 lity.
Global-improvement reward GI nereasing overall coverage quality GI = (QW - oWw)yT
Encourages agents to cooperate.
Improving the initial coverage quality ot .
Positive h ter if
Winning reward WR by a margin of the winning threshold T. osive hyperparameter 1 .
oW — olinit) 5 T 0 otherwise.
Encourages the agents to cooperate. ’
Penalty for under-serving or over-serving. . .
Negative h ter if
Lose penalty LP Agent A has its under-serving threshold ceative fyperparamerer 1

(under)
TA

and over-serving threshold

d
Tf(‘OUer)A Qi‘u) < T[(‘un er) or Q,(qu) > T[(‘over)

penalty encourages the agents to take active actions instead of
remaining still, but can also discourage agents to compete for domi-
nance in bins that they cannot serve, because taking actions in that
way will only result in receiving step-wise penalties. The individual-
improvement reward makes agents explore cases of under-serving
and avoid them. Global-improvement reward compensates agents
which improve the overall coverage quality by helping other agents,
such as reducing interference or lack-of-dominance. This encour-
ages agents to cooperate. Winning reward is large, compared to the
other rewards, and its goal is to make cooperation more profitable.
Lose penalty penalizes under-serving and over-serving agents, to
enhance individual-improvement reward. Table 1 is a summary of
the notations, definitions and formulations of these components.

We noticed that it boosts training to scale up the global improve-
ment reward when the overall coverage quality is low, because
this encourages the policy net to explore larger parts of the search
space, by exploring new areas, without penalty. To do so, ¢ is a
step function of the improvement ratio P = (Q(“) - Q(i"it))/T. It
measures how close the current state is to the goal. Similarly, it
helps to scale up the global improvement reward when the overall
coverage quality is close to winning, when it is difficult to improve
the coverage quality. At that stage, the agent needs a large reward
to make progress. The values of ¢/ are as follows.

P | <005 (00501] (01,02] (0.2,05] (0508 >0.38
Y| 20 10 5 2 1 (1+p)?

The reward r4 for agent A is computed by
ra=I1+GIl-y+WR+LP+S

After computing the reward, all the information (actions, updated
tilts, updated environment state, and rewards) is saved as a record
of history, and the next step is executed. The process terminates if
the overall goal of coverage-quality improvement is achieved, or if
the number of steps exceeds a threshold s;,4x. After termination,
the tilts are initialized randomly, and the process is repeated, until
the number of records exceeds a limit M on the history length.

The history records are fed into the policy net, and the model
learns from past trials what actions may lead to higher rewards.
Specifically, the loss and gradients are computed by comparing the
reward at each step with the expected reward (i.e., the expectation

of rewards across the entire mini-batch) using smooth L1 loss.> A
reward discount factor y is applied to weigh short-term rewards
and long-term rewards—smaller y means that the significance of
the rewards decreases faster over time. Eventually, the weights
of the policy net, denoted W), are copied and then updated by
gradient descent with learning rate I. The result weights are called
the target net weights and denoted W;. Then, the policy net weights
are updated by setting them as Wy = W), + 7 * W;, where 7 is a
hyperparameter called the update rate. Finally, the history is cleaned
and the learning process repeats. Each training iteration is called
an epoch. The process is repeated until convergence (no change
anymore) or when reaching a limit E on the number of epochs.

Testing. Testing is similar to training, with two differences. (1) The
policy net is fixed. (2) All the actions are on-policy. Note that in
both training and testing, there is no specific information about
the region of interest involved, such as locations of buildings and
trees, however, the effect of the environment is expressed by the
Rhea multi-path coefficients. Therefore, a policy net trained on
data obtained from a region Ry can be tested on data obtained from
another region Ry, as long as Rhea has the geospatial information
of Ry. Hence, our method is generally applicable—models can be
applied to new areas that were not included in the training.

4.2 Geospatial Significance Sampling (GSS)

To reduce the computational complexity, we only observe a subset
of the bins in each step. But selecting the bins randomly often yields
a non-representative set, because many bins have a minor effect
on the training. For example, bins that are near a single antenna or
bins that are in an area with no signal at all have a small effect on
the optimization, while bins that are covered by several antennas
are likely to be affected by tilt changes. To effectively select bins for
the optimization, we use a selection that is similar to importance
sampling [18] and learning from hard samples [9].

To select the bins for B, we compute the average variances as an
indicator of informativeness. For every antenna A and bin b, we use
the ray tracer to compute the variabce v4 5, of the signal strengths
across all tilt levels. If the average variance 75, = %Zzzlv A,p over all
the n antennas is below a threshold tggs, then bin b is considered
non-informative. Hence, during training, the subsets of bins are

Shttps://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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(a) Geospatial Map

(b) Signal strength variance, by Rhea (c) Rhea multi-path coefficient

(d) Euclidean distance

Figure 14: Distribution of different forms of geospatial information and their alignment with the geospatial distribution of the
variance of the signal strength, based on ray tracing. The black star is the location of the antenna.

drawn from the set {b | 05 > tgss} of bins b whose variance
exceeds the threshold. In our experiments, we used tGss = 3 dBm.
We refer to this selection strategy as geospatial significance sam-
pling (GSS), because it implicitly encodes the global geospatial
information into the selection of training data. Ablation studies
show that GSS significantly improves the performance of our opti-
mization method. That is, policy nets trained on all the bins perform
consistently worse than those trained only on informative bins.

4.3 Multi-Path Coefficient

Naive models of the signal strength only rely on the Euclidean dis-
tance between bins and antenna. Such models do not fully exploite
the geospatial information and they neglect the effect of obstruc-
tions by geospatial objects on the signal strength in different bins.
To examine the effect of the geospatial objects, we compute the
multi-path coefficient of each bin. This coefficient is defined as fol-
lows. For antenna A and bin b, let 54 , be the strength of the signal
from A at b while considering all the paths between A and b, in-
cluding indirect paths due to reelection and refraction. Let s', , be
the strength of the signal from A at b when considering onl}; the
direct path (when there is a line of sight between A and b). We
definergp =1-s45/ 31’4, , as the multi-path coefficient. When r,
is far from 0, there is a significant effect of the geospatial objects on
the signal strength in the bin. When r4 p, is positive it is typically
because of blockage of the line of sight. When it is negative, it is
because of reflections that add strength to the indirect signal. When
rap is close to 0, the effect of the geospatial objects is small.

Fig. 14 illustrates the importance of the multi-path coefficient.
Fig. 14a depicts the buildings in the region, where darker red repre-
sents higher buildings. The antenna location is marked by a black
star. Fig. 14b presents the spatial distribution of the signal-strength
variance vy j, of the antenna, as defined in Section 4.2. Darker red
represents higher variance, that is, bins where the coverage quality
is more likely to change when altering the antenna tilt. Fig. 14c
shows the spatial distribution of the multi-path coefficients. Darker
red represents higher values. In Fig. 14d, the colors are a function of
the Euclidean distances between the bins and the antenna. Darker
points are closer to the antenna. We can see that the spatial distribu-
tion of the multi-path coefficient aligns better with the ray-tracing

results than with the Euclidean distances. Therefore, the policy
net can use the multi-path coefficients to estimate which bins are
more likely to be affected by antenna tilts and are significant for
improving the overall coverage quality.

4.4 Baseline Algorithms

We compare reinforcement learning to three different baseline algo-
rithms: greedy search, simulated annealing and Bayesian optimiza-
tion. All of them were applied over the signal strengths computed
by Rhea, using the same geospatial setting. We do not include here a
comparison with complicated deep learning models such as convo-
lutional neural network (CNN) and attention models because they
are too large and too slow to meet our requirement of near real-time
optimization. For example, generating a CNN-based embedding of
the environment state alone takes more than 1 minute, and it does
not scale well. Next, we briefly introduce the baseline methods and
refer readers to external sources for more details.

4.4.1 Greedy Search. Greedy search is a naive optimization algo-
rithm. An initial tilt setting is uniformly selected. The algorithm is
given a limit $;4x on the number of search steps. At each step, it
computes the overall coverage quality after changing the tilt of a
single antenna by at most one level. The selected change is the one
that improves the coverage quality the most. For n antennas and
2 possible changes per antenna, at most 2n changes are examined
in each step. If the highest quality score is gained for several dif-
ferent actions, one of them is selected arbitrarily. The search ends
when no action improves the coverage quality (i.e., reaching a local
maximum) or when the number of steps reaches spqx-

Greedy search has two disadvantages. 1) To complete one step of
the greedy search, we need to evaluate the overall coverage quality
approximately 2n times. 2) Often a greedy search gets stuck in a
local maximum and misses the global maximum.

4.4.2 Simulated Annealing. Simulated annealing is a stochastic
metaheuristic to approximate global optimization in a large search
space [19]. Like greedy, it starts with a randomly-selected initial tilt
setting and the number of search steps is limited by s;4x. At step
s, given a hyperparameter search range k, it randomly chooses an
action a that changes at most k antennas, by at most one level each.



Geolndustry "23, November 13, 2023, Hamburg, Germany

It computes a temperature parameter t = 1 — s/smax, and accepts
action aif 0¥) —Q(P) > 0, or otherwise, accepts a with probability
e~ (QM-0PN/t 1f 4 i rejected, no action is executed in this step.
The value k is gradually decreased with each iteration.

In each step, simulated annealing applies bigger changes than
the greedy search and it typically explores a larger subspace of the
search space. So, while it may also get stuck in a local maximum,
it typically finds better solutions than the greedy search and finds
these solutions faster.

4.4.3 Bayesian Optimization. Bayesian optimization is a statistical
method that searches for the optima of a black-box parametric
function, i.e., a multi-variate function without a closed-form. In our
case, the overall coverage quality is such a black-box parametric
function of tilts. The strategy is to think of the black-box function
as a sample drawn from a stochastic process, which is called the
prior. In this paper, we use a Gaussian process for the prior.

We start with a batch of nj,;; random tilt settings and compute
the coverage quality of bins by Rhea. Then, we compute the poste-
rior probability of observing these coverage quality scores, given
a sample (i.e., a specification of the black-box function) from the
prior. We choose the specification that has the highest probability
as the estimation of the black-box function, and draw new random
tilt settings based on the estimation. The process is repeated until it
converges or reaches the step limit s;,4y. We use the gp_minimize
function from the scikit-optimize package for Bayesian opti-
mization. Other hyperparameters of the method are the acquisition
function acq and the noise level [,,.

5 EXPERIMENTS

In this section we present our experimental evaluation and examine
the ability of the algorithms to find an effective tilt setting.

5.1 Experimental Setting

Dataset. Our geospatial model is based on real open-source geospa-
tial datasets, as described in Section 3. We selected an 8km X 8km
region of New York, and placed antennas in this region (the antenna
locations were selected randomly due to business confidentiality).
We executed experiments with 16 antennas and 32 antennas. Each
antenna has 15 tilt levels, labeled from 0 (horizontal) to 14 (14
degrees away from the horizontal line).

Machine. All the experiments were conducted on a Linux server
with a Tesla V100 32GB GPU.

Code. The algorithms were implemented in Python where the
scikit-learn package® was used for Bayesian optimization and the
OpenAl Gymnasium interface’ was used for implementing the
reinforcement learning (RL) algorithm.

5.2 Training Schedule of RL

During training, for each epoch we selected the initial tilt setting
and the winning threshold. There are 15! (1532) possible initial tilt
settings, for 16 (32) antennas, so it is impractical to examine all the
initial tilt settings during training. We found that compared to a
complete random selection of the initial tilts, it is more efficient to

Shttps://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
"https://www.gymlibrary.dev/index.html
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train with a schedule, because the policy net needs to see the same
initial tilt setting multiple times in a row to consolidate what it
learns (like learn-and-recap). The learning goal changes from easy
to hard, to avoid starting the training with a task that is too hard
or provide a goal that is too easy at later stages.

Our training schedule is as follows. The total number of epochs is
2000. Every 20 epochs, a new initial tilt setting is selected uniformly.
The initial winning threshold is set to be 100, and it is increased by
20 every 500 epochs. Other hyperparameters used during training
are presented in Table 2.

Table 2: Training hyperparameters

Hyperparameter Value
step-wise penalty S -1
winning reward WR 100
lose penalty LP -20
under-serving threshold T (under) 20
over-serving threshold T(°?¢7) 200
hidden dimension h 128
batch size B 500
maximum history length M 256
reward discount factor y 0.99
initial off-policy probability e 0.9
decay rate of € 9x107°
update rate 7 of the policy network 0.005
learning rate [ 0.001

For more details on the hyperparameters, see [16].

5.3 Hyperparameters of Baseline Methods

Table 3 lists the choices of hyperparameters for the baseline models.

Table 3: Hyperparameters of the baseline methods

Method
Greedy Search Smax 30

Simulated Annealing Smax 300

5 for steps 1-50

3 for steps 51-100
1 for steps 101-300

Parameter Value

Simulated Annealing k

Bayesian Optimization  s$;ax 30
Bayesian Optimization  n;nir 2
Bayesian Optimization acq EI
Bayesian Optimization [, 0.01

5.4 Results

We evaluated the trained policy net against the baseline methods.
All the results are the average over 1000 random initial tilt settings.
Each initial tilt setting was tested in 5 independent runs, while
considering two metrics: (1) overall coverage quality improvement;
and (2) running time. There is a tradeoff between these metrics, so
the goal is to have a good balance between them. The experiments
show that our reinforcement model can optimize the antenna tilts
effectively—much faster than the baseline methods.
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Figure 15: Performance and optimization time of reinforcement learning (RL) with RHEA vs baselines.
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Figure 16: Ablation study on the effect of geospatial significance sampling (GSS) and multi-path coefficient (RHEA)

Fig. 15a and Fig. 15b show the relation between optimization
time and the improvement in coverage quality. The units of the
x-axis are seconds, in log-scale. Each marker represents a single
optimization step. The abrupt surge of the green curve at step 2 is
due to the log-scale—the first two steps of the Bayesian optimization
collect random samples without estimating Gaussian processes, and
this takes around 0.1s while other steps take around 3s.

We can see the following in Fig. 15a and Fig. 15b. First, greedy
search consistently achieves the worst improvement. This shows
that our optimization problem is non-convex. Second, the reinforce-
ment learning (RL) method improves the overall coverage quality
by a large margin (50% to 100% more improvement than greedy
search) very fast (in less than 0.05s). Third, in the 16-antenna case,
simulated annealing takes 10X more time to achieve similar im-
provement as RL, and Bayesian optimization takes nearly 200x
more time than RL for similar improvement. This gap increases to
40X and 400X, respectively, in the 32-antenna case. This is because
simulated annealing takes significantly more steps to converge

when the size of the search space increases, and the estimation
process is longer for Bayesian optimization as the dimension of
the search space increases. Fourth, though random annealing and
Bayesian optimization can achieve higher improvement than RL if
given sufficient time, we can see when comparing the 16-antenna
case and the 32-antenna case that the optimization becomes more
difficult as the number of antennas increases, because the size of the
search space increases exponentially. For comparison, the policy
net scales up well because it learns to trim the search space based
on observations and to select the action based on features of the
geospatial environment.

As an ablation study, we show in Fig. 16a and Fig. 16b the effect
of geospatial significance sampling (GSS) and multi-path coeffi-
cient (denoted RHEA in the graphs) on the performances. In the
graphs, RL is standard reinforcement learning with random se-
lection of mini-batching and without multi-path coefficients as
input. RL+GSS is RL with geospatial significance sampling but
without multi-path coefficients as input. RL+GSS+Euclid is RL
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with geospatial significance sampling where the multi-path co-
efficient is replaced by the Euclidean distances between the bin
and the antennas. We refer to these variations as partial methods.
RL+GSS+RHEA denotes the RL method we describe in Section 4,
and we refer to it as the complete method.

Fig. 16a and Fig. 16D illustrate the importance of GSS and multi-
path coefficients. First, the complete method outperforms the par-
tial methods by a large margin. Second, RL with GSS outperforms
standard RL by a large margin. Third, adding local geospatial in-
formation is not always helpful. When comparing RL+GSS and
RL+GSS+Euclid, we see that the Euclidean distances do not pro-
vide useful information that the policy net can utilize to improve
its decisions. They just introduce noise and degrade the training
efficiency. Fourth, as the number of antennas increases, the gap
between the complete method and the partial methods increases,
while the gaps among the partial methods decreases. So, as the
optimization problem becomes harder, neither global geospatial
information nor local geospatial information alone is sufficient for
the policy net to make correct decisions.

6 CONCLUSION

In this paper, we presented a novel method for optimizing the tilt
of cellular antennas by using reinforcement learning trained over
propagation models computed by a ray tracing module. The use
of ray tracing provides the ability to train the model over a large
variety of settings, for different parameters and different tilt lev-
els. This makes the model accurate and reliable in comparison to
models that are trained on a smaller set, without considering a
large variety of parameters. We show that the use of reinforce-
ment learning provides a favorable tradeoff between effectiveness
(the level of optimization) and running time. This supports cases
in which systems optimize large-scale areas or react quickly to
changes in the network, like in the case of outage compensation
and self-organizing networks. We show that the proposed approach
is scalable and efficient and that it outperforms optimization based
on simulated annealing and Bayesian optimization. Future work
includes taking user movement and user density into account when
optimizing the network.
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