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ABSTRACT 

Wildlife managers invest substantial resources in monitoring 

populations of migratory waterfowl. Aerial imaging surveys appear 

to yield more precise counts compared with traditional ground and 

aerial survey methods; however, given the substantial time 

investment required to manually interpret aerial imagery of 

wildlife, automated image interpretation methods, such as deep 

learning, will be needed to make this approach scalable. We present 

current progress, continuing problems, and lessons learned from a 

cooperative research project with the US Fish and Wildlife Service 

to develop an unoccupied aerial system (UAS) field survey 

workflow for censusing wintering waterfowl at federally managed 

wildlife refuges in New Mexico as well as a deployable 

convolutional neural network (CNN) model for automated 

detection and classification of waterfowl. Our goal is to develop a 

scalable workflow that can be deployed at wildlife refuges within 

the federal system throughout the United States and beyond. Our 

framework utilizes crowdsourced UAS image annotations from the 

participatory science platform Zooniverse; we validated these 

annotations against annotations from wildlife biologists and found 

that the consensus of the two groups was comparable in 

enumerating (91%), classifying to general taxonomic group 

(99.99%), and locating (80%) birds in the imagery. We tested 

multiple CNN architectures and selected YOLOv5 for its 

performance. Models trained on the crowdsourced annotations 

outperform the more limited expert annotations, even when 

subsampled to the same number of annotations as the expert 

dataset; thus, our results indicate that suitable training data to 

finetune a CNN model to a new site may be expeditiously collected 

with very few UAS transects by focusing on collecting 

representative variability (i.e., of species, vegetation, 

environmental conditions, etc.), assuming relatively dense 

aggregations of target bird species. We plan a 2023 winter field 

deployment at sites in New Mexico and Texas.  
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1 Introduction 

Accurate population counts of migratory waterfowl species are a 

critical wildlife management tool to ensure appropriate resource 

availability along migration routes, set harvest levels, and monitor 

species status (Andersson et al. 2015). Traditional methods for 

waterfowl census consist of in-time counts, either of total 

populations or sampling transects, performed on the ground or from 
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low-altitude occupied aircraft (Augustine et al. 2023). Such in-time 

counts can generate inaccurate indices of animal abundance 

regardless of the experience level of the observer (Boyd 2000, 

Frederick et al. 2003)  

The increasing affordability of high-resolution sensor systems and 

unoccupied aerial systems (UAS, “drones”) makes an aerial 

imaging approach for wildlife surveys more feasible than in the 

recent past. Aerial imaging surveys appear to yield more precise 

counts of bird populations compared with traditional ground and 

aerial survey methods (Hodgson et al. 2016) and may offer other 

benefits including increased safety for participants (Sasse 2003) 

and less disturbance to wildlife (Chabot et al. 2015). Given the 

substantial time investment required to manually interpret aerial 

imagery of wildlife (Hodgson et al. 2016), automated image 

interpretation methods, such as deep learning, will be needed to 

make this approach scalable (Lippitt and Zhang 2018). 

We present current progress, continuing problems, and lessons 

learned from a cooperative research project with the US Fish and 

Wildlife Service to develop a UAS field survey workflow for 

censusing wintering waterfowl at federally managed wildlife 

refuges in New Mexico as well as a deployable convolutional 

neural network (CNN) model for automated detection and 

classification of general types of waterfowl (Figure 1). The goal of 

this research program is to develop a scalable workflow that can be 

deployed at wildlife refuges within the federal system throughout 

the United States and beyond. 

 

Figure 1: Conceptual workflow for automating waterfowl 

census with UAS and deep learning with convolutional neural 

networks, including model training and deployment  

2 Methods 

UAS flights were conducted at waterfowl management areas in 

central and northern New Mexico from 2018 - 2023 to collect high-

resolution (average 0.87cm/px) imagery of overwintering 

migratory waterfowl populations. The study area consists of a 

variety of habitat types: agricultural fields, artificially flooded 

wetlands, riparian areas, and xeric uplands. Due to the 

environmental complexity and the small size/cryptic coloring of 

several of the target species, we consider our application to be a 

relatively difficult image interpretation case for human observers 

and thus also a difficult case for deep-learning based object 

detection and classification (Figure 2). 

 

Figure 2: Example image of waterfowl in an artificially flooded 

wetland habitat in our study area in central New Mexico, with 

birds outlined in red boxes. 

A twelve-image benchmark set of imagery was annotated to species 

by fifteen wildlife biologists, while a much larger set of ~30,000 

image tiles (corresponding to ~1,000 images) was uploaded to the 

online participatory science platform Zooniverse to crowdsource 

identifications of general types of waterfowl (duck/goose/crane). 

To test the validity of the image labels, we derived a set of 

consensus annotations from both groups and examined variability 

within each group both overall and per class. Additionally, we 

compared the consensus annotations of the two groups to each other 

to establish the level of comparability between them.  

We tested multiple CNN architectures using the expert annotations 

for training and selected YOLOv5 for its performance; for full 

results, see Sa’doun et al. 2021. However, the expert-trained 

models suffered from poor recall due to the limited number of 

training samples. Therefore, we tested multiple interventions to 

improve model performance. First, we trained models with the 

larger set of crowdsourced annotations, and randomly subsampled 

the dataset to determine if there existed a threshold for model 

performance improvements so that numeric targets could be set for 

future data collection efforts. We also tested the impact of transfer 

learning using a large set of aerial imagery of waterfowl species 

from around the world used to train a global bird detection model 

(Weinstein et al. 2022). Finally, we tested the addition of 

background (“empty”) images to the model.   

3 Results 

3.1 Label Validation 

The consensus of the two groups was comparable in enumerating 

(91%), classifying to morphological groups (99.99%), and locating 

(80%) birds in the imagery. Within each group, average individual 
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agreement with the group consensus was high for the three classes 

of interest: duck (0.93 for experts, 0.92 for volunteers), crane (0.99 

for experts, 0.95 for volunteers), and goose (0.94 for experts, 0.74 

for volunteers). However, we found that experts were highly 

variable in classifying ducks to species, ranging from an average of 

0.83 for the most common duck species class to 0.43 for the rarest. 

3.2 Model Validation 

Comparing against the same in-domain test set, models trained 

using the crowdsourced annotations had superior performance 

compared to models trained only using the expert annotations, even 

when the crowdsourced dataset was randomly subsampled to a 

similar size (Figure 3). The addition of background images and the 

use of transfer learning with the global waterfowl dataset did not 

significantly improve results. 

 

(a)

 

(b) 

Figure 3: Comparison of classification accuracy of a CNN 

model trained (a) using 1% of consensus crowdsourced 

annotations; and (b) the full set of consensus expert annotations  

4 Discussion 

Based on our label validation study, we believe that volunteers can, 

in aggregate, produce image annotations of similar quality to 

experts when classifying broad morphological groups of waterfowl 

in aerial imagery. Additionally, we found that even expert-

generated species-level identifications of ducks in aerial imagery 

are likely not reliable. It is possible that collecting data at a higher 

spatial resolution may aid experts in identifying duck species 

(Dulava et al. 2015). Hierarchical models may also be a feasible 

method for coping with uncertainty in species classifications 

(Augustine et al. 2023).  

Models trained using the crowdsourced annotations universally 

outperformed models trained using the expert annotations, even 

when the crowdsourced dataset was subsampled to a similar size as 

the expert dataset. We believe this occurred because the 

crowdsourced dataset contained a more representative variety of 

species distributions and habitats compared to the expert dataset, 

which contained more redundant examples (Habib et al. 2019). In 

terms of field planning for collecting training images at novel sites, 

our results indicate that suitable training data may be expeditiously 

collected with as little as a single UAS transect per site (~10-15 

images), given that non-empty images will likely contain dozens to 

hundreds examples of the targets of interest. We recommend that 

practitioners should focus on collecting representative variety (e.g., 

of habitat, species, environmental conditions, etc) rather than raw 

numbers of target examples.  

While our best fit model has good recall, it continues to have 

relatively poor precision with the most common class (duck) due to 

confusion with the background. As noted previously, the 

environmental complexity of the study area combined with the 

natural camouflage of duck species makes this a difficult image 

interpretation task even for human observers. We are currently 

testing interventions such as adding in a border class and class 

weighting to mitigate this issue (Kellenberger et al. 2021). 

4.1 Future Directions 

We have two immediate goals for future directions of the project: 

1) evaluating the impact of the UAS on the movements of animals 

to determine whether this is a source of bias in population counts 

derived from UAS imagery; and 2) an expansion of the project area 

to environments and species assemblages out of the domain of the 

current model. 

While it appears that UAS largely do not provoke overt startle 

responses in waterfowl when flown in a survey pattern at 

appropriate flight altitudes (Vas et al. 2015), it is unclear if UAS 

cause more subtle alterations of bird behavior; e.g. swimming away 

from the direction of UAS flight. These subtle movements may bias 

animal population counts if animals move systematically out of 

view of the UAS sensor. We will examine this issue by comparing 

spatial distributions and counts of animals in consecutive and non-

consecutive overlapped image areas. If these distributions appear 

to be nonrandom, we will test if they can be related statistically to 

the direction of UAS flight. 
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Finally, we are in the planning stages for a field deployment this 

winter to attempt a comprehensive population survey at sites in 

New Mexico and Texas. We are currently conducting a power 

analysis to determine the appropriate UAS survey effort based on 

test flights in February at our primary field site at Bosque del 

Apache National Wildlife Refuge. We will also test our own 

recommendations for training data collection for model refinement 

developed as part of our model optimization analysis as we expand 

our study area to the Chenier Plain National Wildlife Refuge 

Complex in Texas, which contains novel species assemblages 

unseen by our current model.  
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