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ABSTRACT

Predicting human mobility holds significant practical value, with
applications ranging from enhancing disaster risk planning to sim-
ulating epidemic spread. In this paper, we present the GeoFormer,
a decoder-only transformer model adapted from the GPT architec-
ture to forecast human mobility. Our proposed model is rigorously
tested in the context of the HuMob Challenge 2023—a competi-
tion designed to evaluate the performance of prediction models
on standardized datasets to predict human mobility. The challenge
leverages two datasets encompassing urban-scale data of 25,000
and 100,000 individuals over a longitudinal period of 75 days. Geo-
Former stands out as a top performer in the competition, securing a
place in the top-3 ranking. Its success is underscored by performing
well on both performance metrics chosen for the competition—the
GEO-BLEU and the Dynamic Time Warping (DTW) measures. The
performance of the GeoFormer on the HuMob Challenge 2023 un-
derscores its potential to make substantial contributions to the field
of human mobility prediction, with far-reaching implications for
disaster preparedness, epidemic control, and beyond.
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1 INTRODUCTION

Digitalization has unlocked a tremendous amount of data useful
for assessing human mobility captured through call detail records
(CDRs) or GPS-enabled devices and smartphones. Human mobil-
ity has become increasingly impactful in today’s world either as a
direct or proxy indicator for various socioeconomic activities, in-
cluding as input to other applications ranging from disease spread
modeling during the COVID-19 pandemic to influencing transport
and urban planning decisions. Accurate forecasts of human mo-
bility patterns can empower policymakers, urban planners, and
healthcare professionals with valuable insights to better prepare
for various scenarios.

The HuMob Challenge 2023 aims to find mobility prediction
models that can predict individual human trajectories contained in
two standardized benchmarking datasets [1]. The datasets encom-
pass two distinct types of human mobility: normal period mobility
and emergency period mobility, each holding unique challenges
and implications. In response to the challenge, we introduce a novel
approach to predicting human mobility that leverages a decoder-
only transformer model, specifically the generative pre-trained
transformer (GPT) architecture [3].

The recent popularity of artificial intelligence (AI) applications
has largely been driven by the phenomenal and almost human-
like capability of generative deep learning models. The release of
ChatGPT, a conversational application of generative Al by OpenAl,
is arguably the inflection point for the mainstream adoption of
Al ChatGPT, at its core, is powered by transformers [9]—a rev-
olutionary and now a ubiquitous component for a large number
of state-of-the-art models across use cases [8]. With the goal of
introducing generative Al in human mobility prediction, this work
makes three contributions to the field. Firstly, we present a pioneer-
ing approach that offers an innovative perspective on modeling
and predicting human mobility using generative deep learning
models. Secondly, we further demonstrate the versatility and cross-
functional applicability of generative models built on transformer
architectures, establishing their potential as a fundamental tool in
the domain of mobility prediction. Lastly, we layout the process
of integrating insights from mobility data into transforming the
human mobility problem into a problem that is analogous to those
in natural language processing (NLP).

Our analysis and the results of the competition demonstrate that
the proposed GPT-based model exhibits promising performance in
predicting human mobility, reinforcing its potential for applications
across various domains. Furthermore, our investigation into the
sensitivity of evaluation metrics towards generative parameters
of the models adds a nuanced perspective to the assessment of
human mobility prediction models. In essence, this paper serves as
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Figure 1: Panel (a) shows the snapshot of the raw data structure including the day-of-week (dow) derived variable. Panels
(b) and (c) show the seasonality of the average daily movement count, marked by the red vertical lines, and the subsequent
reduction in mobility evident in the emergency period shown in panel (c). Panel (d) shows the rate of out-of-data coordinate

values during the prediction period.

a stepping stone toward more accurate and robust human mobility
prediction methods, with far-reaching implications for healthcare,
urban planning, and beyond.

2 DATA AND METRICS
2.1 Data

The data used in this paper comes from an anonymized set of data
on human mobility in an undisclosed metropolitan area in Japan.
Spatiotemporal anonymization was conducted to ensure the pri-
vacy of individuals in the data. Two sets of data were released
corresponding to the two tasks in the challenge. A more compre-
hensive description of the data is detailed in [11].

2.1.1 Task 1 data. The task 1 of the challenge requires a model
that can predict human mobility in a "business-as-usual” period.
Mobility trajectories from 100,000 individuals comprise the task 1
dataset. This dataset is collected over a 75-day period. The dataset
contains full mobility trajectories for 80,000 individuals, while the
remaining individuals only include full mobility information for
60 days. The remaining 15 days are undisclosed, representing the
subset to be predicted by the model.

2.1.2  Task 2 data. The task 2 of the challenge demands a model
that can predict human mobility in an "emergency" period that
covers unusual human behaviour. Mobility trajectories from 25,000
individuals comprise the task 2 dataset. Similar to the task 1, the
dataset is collected over a 75-day period. The dataset contains full
mobility trajectories for 22,500 individuals, while the remaining
individuals only include full mobility information for 60 days. Again,

the remaining 15 days are undisclosed, representing the subset to
be predicted by the model.

2.1.3  Validation and Test split. We sampled 2000 users from each
dataset to serve as the validation and test set, each having 1000
users. Individuals that were included in either the validation or test
set will only have trajectories until the 60" day in the training
data. The validation set is used to find the optimal checkpoint of
the trained generative model. The test set was used primarily for
assessing the model’s predictive performance and selecting the
optimal generative parameters.

2.2 Metrics

The performance of the models in the challenge is evaluated using
two metrics: the Dynamic Time Warping (DTW) and GEO-BLEU
score. The DTW is a distance measure commonly used to measure
the difference between time series data that may have different
sequence lengths due to varying rates of observations [5, 10]. The
GEO-BLEU metric is inspired by the BLEU metric commonly used
in the natural language processing literature [6]. A lower DTW
score indicates better performance, whereas a higher GEO-BLEU
score corresponds to a more performant model.

3 MODEL AND METHODS

In this section, we provide details on the analysis performed, the
model proposed, and the strategies we implemented to transform
the data, train the model, and generate predictions from the model.
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3.1 Analysis

It is imperative to understand insights from the data to guide and
justify modeling decisions. We performed simple exploratory anal-
ysis of the available data to gain some intuition that could be useful
for implementing the model. We focused on exploring temporal
insights from the data. The analysis of the global properties of the
data reveals expected seasonality in mobility. While the actual times
have been obfuscated, we can infer the occurrence of nighttime
and daytime by plotting the distribution of observations by event
stamp (Figure 1, panels b and c). The evidence of periodicity in the
data was a significant insight that drove one of the key modeling
decisions, particularly simplifying the model by only learning one-
week periods of the data. The drastic shift in mobility intensity
during the emergency period seen in the latter part of panel (c)
provided an insight into the decreased mobility of individuals. This
change in behavior hinted at the likely impropriety of training the
task 2 model with the full timeseries in the dataset, i.e., including
the normal period in the training despite needing to predict only
for the emergency period.

One additional insight we explored was the distribution of loca-
tion visited by individuals after the 60-day period—the prediction
period. This insight is essential because it can help guide whether
we can fully rely on past trajectory for the inference or not. We
found that in the prediction period, some of the coordinates, (x, y)
tuples, have never appeared in the training period. Panel (d) in Fig.
1 shows the distribution of the rate of the out-of-training positions
X, y, and their combination (x, y). While treating the x and y values
of the location independently, we find that about 20% of the x- or
y-coordinates have not been seen in the past. Considering exact
location coordinate (x, y), we see that about 40% of locations visited
in the prediction period by individuals have not been visited in the
past. This is a crucial insight since it provides a significant bound
to a model that relies solely on past visited locations.

3.2 The GeoFormer Model

Our proposed solution aims to reformulate human mobility as an
abstracted sequence. This reformulation and abstraction allow us
to apply models that can learn and generate sequential data. In par-
ticular, we establish an analogy between human mobility sequence
and sequence of words in a sentence. This abstraction allows us to
exploit all the deep learning machinery used to model and generate
sentences, e.g., autoregressive decoder-only transformer models.
In the following, we provide the main details of the model we
used to predict the mobility of users in both tasks. We first define
the base model—we call the GeoFormer—and then discuss how we
represented the data to fit the form required by the model.

3.2.1 Generative Pre-trained Transformer (GPT). The GPT model is
a transformer-based deep learning architecture for autoregressive
modeling. The GPT uses a decoder transformer that takes in a
sequence of tokens. The autoregressive learning is made possible
by introducing masking with a training task designed to predict
the next token in the sequence. This allows a trained GPT model to
generate sequences. Theoretically, the GPT architecture models the
conditional probability of generating a token x at position j given
the past sequence [xo, x1, X2, ..., Xj—1]. Evidence for the impeccable
ability of GPT architecture in modeling sequential data abounds
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[2, 4,7, 8]. This makes the GPT formulation fully compatible with
the problem at hand.

Specifically, we define the GeoFormer as a GPT model that learns
the conditional probability distribution defined below,

xij ~ P(X|xi1, Xiz, oy Xij—1) 1)

where i corresponds to the ith individual, j corresponding to
the j*% time period, and x;; corresponding to the coordinate of the
user i at time j.

3.2.2 Input linearization. Reformulating the mobility problem as
an NLP problem of sentence generation requires transforming the
mobility data to fit into the chosen framework. We call this process
input linearization. We represent the location data as tokens in a
sequence. We use the fact that one whole day of data is discretized
into 30-minute intervals. This means that a full day will have at
most 48 timesteps. We represent the daily trajectory for an indi-
vidual using the full 48 timesteps despite the provided data only
containing timesteps with observed locations, Fig. 1 - panel (a).
So, we explicitly assign a special "empty” (N) token to timesteps
without observations.

Representing the coordinates strictly as the tuple (x, y) is the
precise approach in encoding the location information of individu-
als. However, this representation is suboptimal due to the existence
of 500 distinct cells for both x and y coordinate values. Fully defin-
ing the geographic representation would require 250,000 unique
location tokens. To mitigate this "explosion” of the token space,
we independently represent the location of an individual. This
means that we have 500 tokens for the x coordinates and 500 to-
kens for y coordinates. We distinguish these tokens as x<pos_id>
and y<pos_id>, for x and y tokens, respectively shown in Annex
A.1. That is, a coordinate is composed of two subsequent tokens: an
x token followed by a y token. This choice is also influenced by the
insight we earlier uncovered regarding the significant rates of out-
of-training values for location (x, y) during the prediction period,
as shown in Figure 1 - panel (d). That is, using (x, y) jointly will
result in lower generalizability. This representation is a reasonable
trade-off since the GPT model can learn the conditional probability
of tokens as well.

The choice of the representation and the linearization of the data
were largely influenced by the insights obtained from the analysis
above. The seasonality observed in the data was considered in de-
signing the model input. In particular, we represent the training
data as a sequence of an 8-day mobility signature. Since the model
is autoregressive, this 8-day mobility signature will allow us to gen-
erate the 8¢/ day trajectory when we have input from the previous
7 days. This choice was made because of the clear seasonality in
the one-week (7-day) period as shown in Figure 1, panels b and c.
However, one important limitation of the approach is worth noting
which is the assumption that a one-week segment of mobility data
sufficiently models the subsequent day.

While there is no explicit long-term memory for a trajectory of
the individual beyond one week, the linearized input is designed
to condition the model at the individual level. In particular, we
prefix the individual’s mobility data with a representation for the
individual in the form of user id tokens. The learning algorithm
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is assumed to encode through the user id tokens the general long-
term characteristics of the mobility specific to an individual. This
is useful for predicting and generating the mobility trajectory of
the individuals beyond the training data. An example of the fully
linearized input is shown in Annex A.2. The full representation
outlined complies with the input for the autoregressive framework,
allowing us to generate subsequent mobility information of the
individuals.

3.3 Model Configuration and Training

The model consists of 12 transformer layers having 24 attention
heads, and 768 embedding dimensions with a 10% dropout rate.
The optimizer used is AdamW with beta values of (0.9, 0.999) and
epsilon equal to 17°. The learning rate scheduler follows a cosine
curve with a maximum of 5~ and a linear warm-up for 20,000
steps. A maximum gradient normalization of 5 was set.

The model for task 1 was trained for 5 epochs using all available
data. For task 2, we fine-tuned the checkpoint corresponding to
the task 1 model with the best validation metrics. While the nature
of the two tasks is different, i.e., task 2 represents an emergency
period, we found that performing fine-tuning of the task 1 trained
model works reasonably well for task 2 as well. However, we limited
the dataset to fine-tune the model for task 2 only on data from the
60th day until the 75 h since the data distribution is different prior
to the prediction period as depicted in Fig. 1 - panel (c).

3.4 Generating predictions

Prediction in the context of the GeoFormer is similar to the genera-
tive process performed in standard text applications of GPT. The
process is autoregressive, meaning that each token in the sequence
is generated one token at a time, and previously generated tokens
are used to generate the next. A conditional generation is possible
with the appropriate input data design.

The inference signature. To help the model generate the predic-
tion, we exploit the provided signature in the data to be predicted.
The data already specifies the time periods for which coordinates
are to be predicted. So, we generate an expected input pattern from
the data and only require the model to fill the values for the needed
times. The signature shown in Annex A.3 indicates the values to
be filled by the model as x,y while skipping predictions for times
represented by N.

Limiting the candidate tokens. Despite the insight that about 20%
of the x and y tokens in the prediction period have not appeared
in the training period, we chose to limit the candidate tokens in
the generation to those that have been already part of the past
trajectories of the individual. We constrained the tokens specific to
the day-of-week and the specific timestamp, with a window of 2
timestamps before and after. The window is used to account for the
stochasticity in data collection, which could associate a location
across neighboring timestamps due to issues in connectivity and
other factors. This means that if we want a prediction for 6 a.m. on
a Saturday, we only consider all the x and y locations previously
visited by the individual at 5:00 a.m., 5:30 a.m., 6:00 a.m., 6:30 a.m.,
and 7:00 a.m. on previous Saturdays. Constraining the candidate
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Table 1: Metrics values for the validation, test, and final data
across tasks

Metrics Validation  Test Final

GEO-BLEU 0.3047 0.3114 0.3160
Task 1

DTW 29.6978 29.8037 26.2161
Task 2 GEO-BLEU 0.2004 0.2053 0.1828

DTW 38.0069 43.4332  37.7815

tokens mitigates hallucinations by the model in generating locations
that are too far from the individual’s likely trajectory.

Generation parameters. We experimented with some parameters
of the generative algorithm in generating the trajectories. The
temperature and the top-k parameters were the most useful based
on our assessment. The top-p parameter was also varied, but it
appears to produce similar effect with the top-k parameter.

4 RESULTS AND DISCUSSIONS

We tracked the metrics on the test data to find the optimal set of
parameters for the generation of the predictions. Our experiments
suggest an inverse relationship between the GEO-BLEU and the
DTW metrics as we vary the temperature parameter. As the tem-
perature parameter approaches 1, the probability distribution of the
tokens becomes more unbiased. In this regime, the GEO-BLEU score
tends to improve. Decreasing the temperature parameter results
in better DTW score, but negatively affects the GEO-BLEU score.
Therefore, optimizing for both metrics requires careful tuning of
the temperature parameter.

Another parameter we tuned was the top-k parameter. This
parameter limits the tokens to be considered for generation only to
tokens with the k highest probability. We varied this parameter and
found that k = 5 produces generally better predictions measured
by both metrics.

Part of the competition was an intermediate assessment of pre-
dictions. In this period, we submitted a version of the GeoFormer
predictions for task 1 using only 6 transformer layers. The Geo-
Former scored 0.3037 on the GEO-BLEU and scored 29.07 for the
DTW on the final test data.

Summary of the validation, test, and final scores for the models
we selected for submission is reported in Table 1. The scores show
a considerable variation in the validation and test DTW scores
compared with the scores measured on the final assessment groups,
versus the GEO-BLEU. The model appears to be more stable when
applied to the task 1 compared with the task 2 dataset. This may be
due to the larger task 1 dataset.

5 CONCLUSION

In this paper, we detailed a generative deep learning model for
predicting human mobility data. The GeoFormer model achieved
a top score in the challenge having optimal scores for both the
GEO-BLEU and the DTW metrics across the two types of mobility
data tested. We believe that the success of the GeoFormer in the
HuMob Challenge 2023 will pave the way for more applications
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of generative deep learning models in solving problems related to
human mobility.
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DATA PROCESSING

A.1 Vocabulary

The linearized trajectory of an individual consists of tokens from
the following set. These tokens are mapped to learnable embeddings
of the model. The day-of-week tokens are expected to learn the
variations across different days in a week. The x and y coordinates
are independently represented instead of creating unique tokens
for a tuple (x, y). This helps reduce the number of tokens in the
model, and also help the model generalize.

# Special tokens:
<eos>, <|data|>, <|sep|>

# The day-of-week tokens:
<|dow@|>, <|dowl|>, <|dow2|>, <|dow3|>, <|dow4|>, <|dow5|>, <|dow6|>

# User id tokens
0, 1,2, 3,4,5,6,7,8,9

# Location tokens:
N
X000, x001, x002, x003, x004, ..., x499
yo0oo, yeel, yee2, yeo3, yoo4, ..., y499

A.2 Example linearized input

This signature represents a trajectory for user 71000. The data starts

on

day-of-week 6. This will be an input to the trained model to

generate the trajectory for the next day. The special token <|sep|>
conditions the start of the prediction.
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71000

<|datal|>

<| dow6 | >NNNNNNNNNNNNNNNNNNNx129y@88x129y090x128y086x128y087x131y092N
x132y089x132y091x132y092Nx128y089x126y091NNNx131y092x132y088NN
x132y087NNx126y@86NNNNNN

<| dow@ | >NNNNNNNNNNNNNNNx135y076x126y084x127y085x133y078x126y086NN
x128y092x126y085x126y086x127y086NNx127y092x127y089x131y092x131y090
x126y088x124y092x127y085Nx127y@85NNNx130y086x130y0@90NNxX126y@86NNN

<|dow1 | >NNNNNNNNNNNNNNNNNx126y087x127y088x127y085x124y093x125y091x125y084
x126y087x131y091NNNNNNNNNx128y089x126y087x126y086x128y087x126y088
x131y090Nx132y093x132y087x131y080x126y086NNN

<| dow2 | >NNNNNNNNNNNNNNNNNx 128y@89Nx130y087x131y@9TNNNx128y089x127y086N
x127y096x128y101x126y097Nx131y092Nx118y071Nx120y077x126y086x128y087
x126y086Nx131y@90NNNNNNx125y088

<| dow3 | >NNNNNNNNNNNNNNNNx144y@72x149y075NNx149y@75NNx161y062x141y075
x131y092x126y086x126y089x125y100x121y102NNx121y101x122y102Nx126y100
x127y089x127y@86NNNNNNNNNN

<| dow4 | >NNNNNNNNNNNNNNNNNx126y082x141y079x154y074x157y073NNNNNx157y0@82
x130y087NNx131y092x125y088Nx126y086x128y099x130yQ94NNNNx142y079NNN

x131y@92NNN
<|dow5|>x128y089x126y086NNx126y@86NNNNNNNNNNNx 131y@90NNx128y089x129y089
x131y092NNx132y09 131y09 126y086x131y@92NNN
<|sep|>

A.3 Example target signature

The target signature is used to inform the generative algorithm
to limit the scope of prediction only on periods where location
values are expected. The N represents time periods where no data
is expected, the xy represents the generation of a sequence of coor-
dinates (x, y) in the given period. For example, when the prediction
corresponds to an x, only location tokens for the x coordinate are
considered in the generation. The leading number 6 represents
the day-of-week, which will be parsed, helping contextualize the
generation of the coordinates.

1

G6NNNNxyNNNNNNNNNNNNNNxyNxy xyxyNNNxyxyNxyxyNxyxyxyNNNNxyNNxyNNNN

A.4 Evaluation loss traces

eval/loss
-ds-in@7-out@1-1en@1_2023-09-10-00-14-30
ds-in@7-out01-1en01_2023-08-23-17-35-41

— humob-em_task2_dataset-1
— humob-task1_dataset-larg

train/global_step

20k 40k 60k 80k 100k 120k

Figure 2: Evaluation loss traces for the models. The eval-
uation loss for the task 1 dataset does not diverge despite
training relatively long. On the other hand, the fine-tuned
model for task 2 briefly decreased but eventually diverged.
We chose the model for task 2 with the lowest validation
metric.


https://connection.mit.edu/humob-challenge-2023
https://connection.mit.edu/humob-challenge-2023
https://doi.org/10.1109/ICASSP39728.2021.9414142
https://doi.org/10.1109/TASSP.1978.1163055
https://arxiv.org/abs/2302.02041
https://arxiv.org/abs/2307.03401

	Abstract
	1 Introduction
	2 Data and Metrics
	2.1 Data
	2.2 Metrics

	3 Model and Methods
	3.1 Analysis
	3.2 The GeoFormer Model
	3.3 Model Configuration and Training
	3.4 Generating predictions

	4 Results and Discussions
	5 Conclusion
	References
	A Data processing
	A.1 Vocabulary
	A.2 Example linearized input
	A.3 Example target signature
	A.4 Evaluation loss traces


