Check for
Updates

A City-level High-performance Spatio-temporal Mobility
Simulation System

Jun Zhang
zhangjun990222@gmail.com
Department of Electronic
Engineering, Tsinghua University
TsingRoc, Beijing, China

Li Liu
lliu@birentech.com
BirenTech Research

Shanghai, China

ABSTRACT

Urban mobility simulation refers to simulating human fine-grained
spatio-temporal mobility and activity behaviors in cities, which
facilitates the measurement of traffic operations, assesses the im-
pacts of transportation on other areas of the city like environment,
and supports the designation of simulation-driven mobility-related
sustainable policies. It is becoming one of the important tools in
the development of sustainable cities. However, the main challenge
currently restricting the mobility simulation and its applications is
poor performance when dealing with city-scale million or even ten
million people simulation. In mobility simulation, agents like peo-
ple and vehicles need to take actions based on the previous step’s
states of other agents nearby, which reflects the spatio-temporal
dependencies among agents. Facing city-scale scenarios, the spatio-
temporal dependencies become the main barrier to achieving ef-
ficient parallel computation acceleration. To alleviate the impact
of spatio-temporal dependencies on parallel acceleration, we pro-
pose a city-level high-performance spatio-temporal mobility simu-
lation system designed with a two-stage parallel process based on
read/write separation and a parallel-friendly indexing subsystem.
The two-stage parallel process optimizes cross-step state read/write
processes among agents by reorganizing all states into three cat-
egories (public read-only, public write-only, and private) and in-
troducing a two-stage control flow design to divide the entire data
flow into two easily parallelized groups. The indexing subsystem
optimizes spatial belonging relationship maintenance and relative
location queries through parallel-friendly data structure selection
with addition, deletion, and query process design. We implement
the whole system on both CPU and GPU to adapt to different hard-
ware environments. We also conduct extensive experiments and

“Yong Li is the Corresponding Author.

This work is licensed under a Creative Commons Attribution International 4.0
License.

SuMob °23, November 13, 2023, Hamburg, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0361-4/23/11.

https://doi.org/10.1145/3615899.3627936

Wenxuan Ao
johnao73thu@gmail.com
Department of Electronic

Engineering, Tsinghua University
Beijing, China

Depeng Jin
jindp@tsinghua.edu.cn
Department of Electronic
Engineering, Tsinghua University
Beijing, China

Yong Li*
liyong07@tsinghua.edu.cn
Department of Electronic
Engineering, Tsinghua University
Beijing, China

build use cases to demonstrate that the system achieves the ex-
pected results in terms of performance and can support innovative
applications about sustainable mobility research. The experiments
show that our proposed system achieves a computational speedup
of 278.77 times the wall clock time, i.e. 3.59 milliseconds per step, in
a city-level simulation with nearly 1 million people simultaneously.

CCS CONCEPTS

« Information systems — Spatial-temporal systems; - Com-
puter systems organization — Parallel architectures; Multi-
core architectures.

KEYWORDS

Mobility simulation, parallel system, heterogeneous acceleration
system

ACM Reference Format:

Jun Zhang, Wenxuan Ao, Depeng Jin, Li Liu, and Yong Li. 2023. A City-level
High-performance Spatio-temporal Mobility Simulation System. In 1st ACM
SIGSPATIAL International Workshop on Sustainable Mobility (SuMob °23),
November 13, 2023, Hamburg, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3615899.3627936

1 INTRODUCTION

Urban mobility simulation, as computational tools to simulate fine-
grained spatio-temporal patterns and dynamics of human mobility
and activity behaviors within urban space, can help researchers
and urban decision-makers to measure traffic operations [1, 13],
evaluate the impacts on other areas like environment [4], public
health [12], planning [9], etc. It can also support sustainable mobil-
ity policy making [17].

From a technical point of view, mobility simulation is gener-
ally implemented as the process of calculating the fine-grained
change of human’s spatio-temporal positions through step-by-step
iteration based on the kinematic physical laws and the mobility
simulation models like driving and walking models. Fine-grained
refers to the time granularity of less than or equal to 1 second.

Nowadays, the main challenge of large-scale city-level mobility
simulations is poor computational performance. SUMO [2], as the
most popular open-source traffic simulation system, has mature

https://orcid.org/0000-0003-1232-3475
https://orcid.org/0000-0001-5310-0652
https://orcid.org/0000-0003-0419-5514
https://orcid.org/0000-0001-5617-1659
https://doi.org/10.1145/3615899.3627936
https://doi.org/10.1145/3615899.3627936
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3615899.3627936&domain=pdf&date_stamp=2023-12-19

SuMob 23, November 13, 2023, Hamburg, Germany

map processing! and traffic demand generation?. However, it can
only calculate one iteration of about 80,000 people per second
according to its documentation®. This means that if faced with
a city-level scenario where 800,000 people need to move at the
same time, the simulation would take 10 times longer than the wall
clock time. The calculation speed is unacceptable. In addition to the
real-time simulation application mentioned above, the performance
issues severely restrict the applications of mobility simulation in
decision-making tasks. Because these tasks usually require multiple
simulations to find the optimal solution, researchers have to waste
a lot of time waiting for the calculation. Cityflow [25] implements
multi-thread acceleration and achieves significant performance
improvements compared to SUMO, but it only completes the driving
mode, which cannot fully simulate urban mobility. Therefore, we
need to achieve parallel acceleration on the main mobility modes
so that the tool can help researchers find city-scale solutions for
sustainable mobility.

To achieve parallel computing for mobility simulation, we have to
properly handle the the spatio-temporal dependencies among
agents like people and vehicles in system implementation. The
spatio-temporal dependencies include the time dependency of the
agent reading the state of the previous step in each iteration and
the spatial dependencies of obtaining other agents’ states which
are spatially close. For example, when a person is driving, he/she
needs to care about his/her speed and the speed and distance of the
vehicle ahead to take the next driving action. Due to the existence
of these dependencies, we cannot simply divide computing tasks
into unrelated batches, and then use mature parallel computing
frameworks such as MapReduce [8] and Spark [23] to accelerate
it. Instead, we need to design data flow and control flow for effi-
cient parallelization to handle the time dependency and provide
parallel-friendly ways of maintaining and querying these spatial
relationships to handle spatial dependencies.

Therefore, we propose a high-performance spatio-temporal mo-
bility simulation system. Due to the differences in patterns of hu-
man mobility behavior in different kinds of spaces, the system
first divides the whole city space into two parts, indoor and out-
door. Indoor is the collection of area-of-interest (AOI), representing
relatively enclosed areas, such as schools, shopping malls, parks,
neighborhoods, etc. Outdoor is the collection of the urban road
network, including driveways, sidewalks, crosswalks, etc. Human
mobility in outdoor spaces is usually along the direction of the road,
while in indoor spaces it is mainly limited by the boundaries of the
area. According to the division of city space, mobility models are
also divided into two categories: indoor (e.g. walking in AOI) and
outdoor (e.g. driving, biking, walking). With the above city space
division, the system provides universal mechanisms to alleviate the
computational parallelization restrictions from the spatio-temporal
dependencies. These universal mechanisms include a two-stage
parallel process based on read/write separation for solving the time
dependency and an indexing subsystem for efficiently handling
the spatial dependencies. To verify the performance of the above
design, we implement the system with multiple mobility models
on both CPU and GPU and conduct corresponding experiments.
!https://sumo.dlr.de/docs/#network_building

Zhttps://sumo.dlr.de/docs/#demand_modelling
3https://sumo.dlr.de/docs/FAQ html#how._fast_can_sumo_run

Jun Zhang, Wenxuan Ao, Depeng Jin, Li Liu, and Yong Li

Driving Lane

: O AOI Gate on Driving Lane

Figure 1: An example of the city space division in our pro-
posed system.

To summarize, the main contributions of the work are as follows:

e We design two universal mechanisms, a two-stage paral-
lel process based on read/write separation and an indexing
subsystem, to solve the spatio-temporal dependencies chal-
lenge which restrains the parallel acceleration of large-scale
city-level mobility simulation.

e We implement the city-level high-performance spatio-temporal
mobility simulation system on both CPU and GPU, conduct
experiments to verify the system’s performance and build
application cases to show its usability. The experiments show
that in a city that simulates 900,000 running agents simulta-
neously in a large city, the system achieves a computational
speed of 3.59 milliseconds per step on GPU, which is 278.77
times the wall clock time.

The remainder of the paper is organized as follows. We first
introduce the preliminaries in Section 2. In Section 3 we elaborate
on the spatio-temporal dependencies in mobility simulation, and
the technical challenges they pose. The design and implementation
of the proposed system are detailed in Section 4. Afterward, we
conduct experiments and show several application cases in Sec-
tion 5. We review related work in Section 6 and conclude the paper
in Section 7.

2 PRELIMINARIES

2.1 City Space Division

Due to the differences in the inherent structure of urban space, peo-
ple have different mobility behavior patterns in different types of
spaces. For example, when people walk on a sidewalk, they usually
move in the direction of the road, while when they move around a
square, they are limited only by the square’s boundaries. Therefore,
we divide the whole city space into indoor and outdoor parts in
the system to match these two common human mobility behavior
patterns. Indoor space mainly corresponds to human mobility be-
havior inside buildings or enclosed areas. While the outdoor space
mainly corresponds to the human mobility behavior in the urban
road network.

https://sumo.dlr.de/docs/##network_building
https://sumo.dlr.de/docs/##demand_modelling
https://sumo.dlr.de/docs/FAQ.html##how_fast_can_sumo_run

A City-level High-performance Spatio-temporal Mobility Simulation System

As shown in Figure 1, the indoor space is modeled as a collection
of AOIs. AOI represents relatively enclosed areas like schools, shop-
ping malls, neighborhoods, etc. In the system, the AOI is recorded
as a (id, polygon) tuple, where polygon is a list of coordinate points
(x,y) to represent the boundary of the AOIL Modeling outdoor
spaces is more complex. To provide a common abstraction, model-
ing of the outdoors needs to include at least driveways and side-
walks, and express the topological relationships between driveways
and driveways, and between sidewalks and sidewalks. Also, cross-
walks should be considered. For the sake of uniformity, we refer
to the driveways, sidewalks, and crosswalks collectively as lanes.
All lanes are divided into two categories, driving lanes and walking
lanes, which are also shown in Figure 1. Obviously, driving can
only happen on the driving lane, while walking and biking can only
happen on the walking lane. The lane in the system is recorded
as a (id, type, polyline, predecessors, successors, left, right) tuple,
where type is driving or walking, polyline denotes the center line
of the lane and is recorded as a list of coordinate points (x,y),
predecessors is a list of IDs for the current lane’s preceding lane,
successors is the lane ID list following the current lane, left and
right are the IDs of the adjacent lanes to the left and right of the
current lane respectively. Such a data model reflects the spatial
location and topological relationships of the lanes.

To link the indoor space with the outdoor space, the AOI has a
series of "gates" that indicate where to enter and exit the AOL The
gates are recorded as a list of (lane_id, s, type) tuple in the AOI's
data structure, where lane_id, s and type denote the lane ID where
the gate is located, the distance of the gate location relative to the
beginning of the lane at the lane’s polyline and the type of the lane,
respectively.

To construct the above city space data, we implement a tool
chain for processing open-source map data from OpenStreetMap?.

2.2 Input for Mobility Simulation

The input for mobility simulation is uniformly modeled as a list of
trips for each person over time. A trip is defined as a (Ps, Pe, ts, mode)
tuple, where P and P, are respectively the starting and ending po-
sitions of the trip, t; is the starting time of the trip, and mode is the
trip’s mobility mode like walking, driving and biking. The position
P can be either an AOI or a position at a lane. Through the input
form, our system is compatible with mobility simulation demand in-
puts of different spatio-temporal scales. For example, we can sample
trips from the results of origin-destination (OD) predictions [7, 21]
to restore the fine-grained mobility of the city’s overall population.
We can also use deep learning methods to directly generate indi-
vidual position-based activity trajectories [6, 12, 22], which may be
beneficial for city managers to focus on urban dynamics under the
influence of specific events. In addition, rule-based generation [3]
is a more classic way to provide individual position-based activity
trajectories.

Driven by such input data, the task of mobility simulation is to
output fine-grained mobility trajectories in a step-by-step calcula-
tion.

“https://www.openstreetmap.org/

SuMob 23, November 13, 2023, Hamburg, Germany

: Simulation Step ¢ Mutex Solution o 1oc

O Wait O

Vehicle i

: Lock Unlock
4p Read/write :

Read De—1 confiicts : : .

;i Barrier Solution

Simulate ® SYINC w ‘tSylnc Svlnc
: Write D, [al [-
i Vehicle j i T T Wait

Read D,_; Simulate Write D,

Figure 2: An example of the time dependency and the corre-
sponding mutex and barrier solution.

2.3 Basic Process of Mobility Simulation

The basic process of mobility simulation is a discrete-time iterative
calculation process. There is a global clock that increments by a
fixed amount of time A; (the default is 1 second) at each simulation
step. At each step, all agents are updated based on the mobility mod-
els corresponding to their current mobility behavior. The update
process can be divided into two parts: one is kinematic physical
laws, and the other is acceleration decision-making. The kinematic
physical laws are as follows:

atAZ

t
Pt = Pt—l + U[_IA[+ ,0p = U1 + atAt, (1)

where Py, v, a; are the position, the velocity, and the acceleration at
step t. P, v and a are represented as 1D scalars in an outdoor space
and as 2D vectors in an indoor space. The acceleration decision-
making, i.e., how to determine the value of a at each step, depends
entirely on the choice of the mobility model. Generally speaking,
the determination of a depends on the self state and the states of
other agents around, such as the position and velocity. Thus, we
can formulate it as follows:

ar = f ((Pt—l,selfa Ut—l,self)a {(Pt—l,isvt—l,i)“ € Nself}) > (2)

where N is the set of agents that are close to the agent self.
The function f is the model of the agent’s mobility behavior, which
can be a simple collision-free model with fixed speed for walking, a
complex model to consider relative distance and velocity for driving
like [16, 19], etc.

3 SPATIO-TEMPORAL DEPENDENCIES IN
MOBILITY SIMULATION

The section gives examples to explain the spatio-temporal depen-
dencies among the states of agents at different steps in mobility
simulation shown in Equation 2 and analyze the key issues that
need to be addressed in the design and implementation of parallel
systems due to the spatio-temporal dependencies.

3.1 Time Dependency

Equation 1 and 2 show that the calculation of an agent depends on
its state and other agents’ states at the previous step, which leads
to a time dependency.

The example, shown in Figure 2, are now two vehicles i and j in
the system, and the state of vehicle j at step ¢ is denoted as D;. From
the perspective of vehicle j, it performs the simulation and modifies

https://www.openstreetmap.org/

SuMob 23, November 13, 2023, Hamburg, Germany

: In-lane Spatial Relationships Cross-lane Spatial Relationships:
: Person j Lane 2 Person j Lane 2
LocatedIn First0);

35 ®
‘\ (’ Predecessor/Successor

Lanelé :

|:> Ahead/Behind

Locatedin
. i Locatedin
Person i it Person i Lane 1

Figure 3: Examples of the spatial relationships in the outdoor
space.

its state to the new value D;, while vehicle i needs to obtain its data
D1 for the simulation process. This leads to read/write conflicts
for the state data of vehicle j. The most intuitive solution to the
problem of read/write conflicts in parallel systems is the mutual
exclusion lock (a.k.a mutex). The mutex ensures that a piece of data
can only be manipulated by one task by providing two primitives:
lock and unlock. If a task locks the mutex, other tasks trying to
lock it must wait until the mutex is unlocked by the task. In the
mutex solution, since multiple tasks may wish to process the same
piece of data at the same time, waiting occurs, which leads to a
waste of computational resources for this period and introduces
an implicit sequential process. Moreover, the solution does not
guarantee that vehicle i always obtains the state D;_1 of vehicle j
at the previous step, which is unavailable.

Another way that can guarantee correctness is a barrier-based
solution, which is implemented in [25]. Barrier synchronization
requires all tasks to wait at the barrier until all the tasks reach the
barrier. In this way, all vehicles can perform data reads simulta-
neously first, then simulations and data write simultaneously in
sequence. However, an unbalanced amount of computation can
result in more waiting time for tasks that end earlier. Also, as a
multitasking synchronization mechanism, using the barrier itself
introduces some implicit sequential processes.

According to Amdahl’s law, the speedup ratio of task parallel
processing can be expressed as follows:

5_; 3)

l—a+ ¥’

where S denotes the speedup ratio, a denotes the ratio of paralleliz-
able parts, n is the number of parallelism. The law shows that even
if infinite computational resources are invested to parallelize the
simulation tasks, i.e., n tends to infinity, the overall speedup ratio
will not exceed 1/(1 — a). Therefore, mutex and barrier not only
cause a waste of computational resources but also constrain the
upper limit of the system speedup.

The key to solving the issue lies in how to reasonably design the
data flow and control flow of the system according to the character-
istics of mobility simulation, to minimize mutex, barrier, and other
sequential processes, thus increasing the upper limit of the system
acceleration ratio.

3.2 Spatial Dependencies

The spatial dependencies in the mobility simulation are reflected
as spatial belonging relationship maintenance and relative location
queries.

Jun Zhang, Wenxuan Ao, Depeng Jin, Li Liu, and Yong Li

et L 2T .

Time Dependency ® : Outdoor People Vector

oo Indexi Incremental Update

Data/Control Flow S s nb e)utng 7

Design n: R
T o Update Public Data
©:| (Lane, AOI i
Two-stage Parallel o (Lane, AOI) (Omzlg:?lae':)c;e)

Process Based on & -1
Read/Write =~ | e L 2 g
Separation [Barrier Sync z

greserenienenneenennnesen e e 3

! late Indoor & Simulate & Update Z
Spatial Dependencies %" Update Private Data Private Data :
& (A0I) (Outdoor People) | :

Parallel-friendly 9: T :
Relationship 3 | Notify via Public | :
Organization :Q- Write-only Data

g
Indexing Subsystem [Barrier Sync |
L

Figure 4: The system framework with prepare stage and up-
date stage parallel process based on read/write separation
and indexing subsystem to solve the key issues from spatio-
temporal dependencies in the mobility simulation.

Taking the outdoor space as an example, Figure 3 shows two
simple spatial dependency phenomena with corresponding spatial
relationships. In both cases, we assume that person i needs to
identify the person in front of him/her, which is a common spatial
query process used by driving mobility models. If both people are
in the same lane, the relative position relationship of the two people
(ahead/behind) and the spatial belonging relationship (located in)
are included here. If two people are not in the same lane, person
i first needs to confirm the lane he/she is located in, then get the
next lane based on the lane predecessor/successor relationship and
finally find the first person of lane 2.

As for indoor spaces, the spatial belonging relationship is also
necessary. Moreover, people within the AOI have different ways
of using the space, such as walking and waiting to leave. Walking
people treat AOI as a 2-dimensional flat space. The waiting person
is standing still at the gate waiting for the departure condition to be
met. As the simulation progresses, people in the AOI will change
the way they use their space.

Overall, the most critical issue in the face of spatial dependen-
cies is to find parallel-friendly data structure and their operation
primitives to maintain these relationships and provide efficient
queries.

4 SYSTEM DESIGN AND IMPLEMENTATION

4.1 Overview

We design and implement the system, whose framework is shown
in Figure 4. Specifically, first, we introduce the data flow and con-
trol flow design that minimizes the use of mutex, barrier, and other
sequential processes to alleviate the impact of the time dependency.
The design is called two-stage parallel process based on read/write
separation. The read/write separation data flow design organizes
data into three types: private data, public read-only data, and pub-
lic write-only data. By read/write separation, a large number of
potentially mutually exclusive accesses and mutex-related system
calls are avoided in the system. Read/write separation also requires

A City-level High-performance Spatio-temporal Mobility Simulation System

that each simulation step be divided into the prepare stage and
the update stage to maintain and update different types of data
separately. In the system, we design an indexing subsystem with
parallel-friendly data structure to organize spatial relationships
and provide spatial queries with very low time complexity. The
indexing subsystem includes lane location relationship linked lists
and AOI multi-state index. The indexing subsystem also follows the
two-stage parallel process based on read/write separation for data
maintenance, receiving notifications in the update stage through
public write-only data interface and maintaining public read-only
data in the prepare stage by incremental update to ensure its ef-
ficiency. The details of the above design and implementation are
shown in Figure 5.

4.2 Two-stage Parallel Process Based on
Read/Write Separation

Due to the time dependency in the mobility simulation, there are
complex time-related data operations with read/write conflicts in
the system, including reading the state of other agents at the previ-
ous step and writing the state of itself at the current step, etc. Faced
with the situation, the common solution of mutex and barrier in
parallel systems introduces waiting times and implicit sequential
processes that degrade system performance. To minimize the use of
mutex and barrier and provide the correct functionality, we apply
a read/write separation strategy.

In each simulation step, the agent’s data is divided into three
parts: public read-only data, public write-only data, and private data.
Public read-only data stores some information about the agent that is
accessible to others, such as the person’s position, speed, etc. Public
write-only data is used to store modifications and notifications from
other agents, such as people informing the lane that they have left
or entered, etc. Private data contains everything that supports the
agent’s simulation calculation and is only maintained and updated
by itself. Obviously, reading public read-only data and using private
data do not require mutually exclusive protection, while public
write-only data does. Therefore, it is worth noting that the system
needs to be designed in such a way that the public write-only data
always receives only a small number of writes in one simulation
step, to avoid the waiting process of mutex as much as possible.

To solve the problem of maintaining different types of data, each
step of the simulation process is divided into two stages: prepare
stage and update stage. Both stages are finished with a barrier
to ensure synchronization so that the number of barriers in the
whole system is limited to two. In the prepare stage, each agent
handles the copying and processing of data from public write-only
data to private data, completes the resetting of public write-only
data, and copies the corresponding data from private data to public
read-only data, which is shown in Figure 5(d). Also, as shown in
Figure 5(a) and Figure 5(b), the indexing subsystem mentioned
below updates the indexes based on the change notifications in the
public write-only data in the prepare stage, thus ensuring that they
are ready during the update phase. In the update stage, each agent
obtains the required information from the public read-only data of
other agents by the indexing subsystem, computes according to
the corresponding logic like mobility models or state change rules,
updates the private data and performs notification using the public

SuMob 23, November 13, 2023, Hamburg, Germany

write-only data interface of the relevant agent, which is shown in
Figure 5(e) and Figure 5(f).

Throughout the two-stage parallel process, there is an unavoid-
able explicit sequential process, which is the maintenance of the
outdoor people vector. It exists because we use AOI as the par-
allel unit in outdoor space and use people as the parallel unit in
outdoor space considering the differences and characteristics of
the simulation models. Specifically, indoor people mostly do not
consume calculations due to the resting state, which is mentioned
in the following AOI multi-state index part, while outdoor peo-
ple mostly have relatively complex mobility models. Since people
will switch between the indoor space and the outdoor space during
the simulation, the outdoor people vector should be updated. To
alleviate the impact of this explicit serial process on overall perfor-
mance, an incremental update mechanism is introduced. As shown
in Figure 5(c), the incremental update mechanism consists of a join
vector and a departure vector, both of which are protected by the
corresponding mutex. In the update stage, if a person enters the
outdoor space from the indoor space or leaves the outdoor space
to enter the indoor space, the person needs to add its pointer to
the corresponding vector. During the prepare stage, incremental
updates based on the two vectors will be executed. We first pair
the additions and deletions in the join and departure vectors and
complete in-place replacement by the offsets recorded in the pri-
vate data of people who will be deleted. Secondly, we append the
remaining additions directly to the end of the vector and remove
the remaining deletion requirements by swapping them with the
last element of the vector and modifying the offset of each data
accordingly. The average time complexity of the above operation
is O(m + n), where m and n are the average lengths of the join
and departure vectors, respectively. Since the time granularity of
the system is less than or equal to 1 second, the number of people
added and deleted at each step is relatively small, so the impact of
this sequential process on the overall performance is also small.

In summary, as shown in Figure 5, the workflow in the prepare
stage includes:

(1) Incremental update of the outdoor people vector.

(2) Parallel incremental update lane location relationship linked
lists with new joins and departures.

(3) Parallel update AOI multi-state index with new joins.

(4) Parallel update outdoor people’s public read-only data and
maintain their public write-only data if needed.

The workflow in the update stage is as follows:

(1) Parallel processing of simulations within each AOI, includ-
ing walks within the AQI, state changes of people with the
necessary calculations.

(2) Parallel execution of the simulation process for outdoor peo-
ple, including data fetching by index subsystem, simulation
calculation, private data updating, notification of the be-
longing space changes to the corresponding lane, AOIL and
outdoor people vector mechanism if necessary.

4.3 Indexing Subsystem

According to the division of city space, the indexing subsystem
contains lane location relationship linked lists and AOI multi-state
index.

SuMob 23, November 13, 2023, Hamburg, Germany

Jun Zhang, Wenxuan Ao, Depeng Jin, Li Liu, and Yong Li

e o ,

Prepare Stage

(a)

Departurem» Location Relationship

Linked List

Join
Departure

Incremental Update (c)
Public Write-only Data Private Data (d)

| New Destination, ... IEBY—l Destination, ... |
Public Read-only Data

Private Data

Incremental Update Resting

Walking

Position, Speed, |[Copy
Direction, ...

Position, Speed,
Direction, ...

Q0

I
a

00

-3
]
o]
wv
: R
) Lane i i Update Stage ‘9
H : - Data Fetching by Indexing Subsystem : z
: 3 il H Notify Departure H
. . 1 1 ==~
o Person P etRE s [Departure 0 |
: I ' Time Checking Mobility Models
v Walkin, ivi i
O AOI ! g ! Teas State (driving, walking, ...)
— ' Walking Changing
Waiting | | Update Private Data |
Parallel Batch ++| Lane Checking -
\ Notify ‘
.- i -2 In-AOI State Transformation (e) (f) Space Changes m
Process o\, 000 O
| |
1 0000:0000:
— Data Flow

Figure 5: The system design and implementation details.

4.3.1 Lane Location Relationship Linked Lists. Lane location rela-
tionship linked lists maintain two spatial relationships, including
the belonging relationship between people and lanes, and the rela-
tive position relationship between people and people on the same
lane.

As shown in Figure 5(a), lane location relationship linked lists
are ordered bi-directional linked lists. The nodes of the linked lists
are people. The linked lists are arranged in ascending order of
the distance from the person following the lane’s polyline to the
beginning of the lane. Based on such data structure, a person can
easily find the people before and after him/her through the next
pointers of the ordered bi-directional linked lists. Also, the first
and last person in the lane can be obtained from the head and tail
pointers of the linked lists. The time complexity of all the above
operations is O(1).

Similar to the outdoor people vector, the linked lists also use in-
cremental updates, containing a join vector and a departure vector
as each lane’s public write-only data. The difference is that due to
the characteristics of the data structure of the linked list, in the
incremental update, we first perform all the deletion operations,
secondly reorder the original linked list based on the new location
of the vehicles, and finally merge the two linked lists by merge sort
after constructing the joined vehicles into an ordered linked list by
location. Since the outdoor mobility simulation process does not
involve the rear people overtaking the front people in the same
lane at most times, the reordering operation is usually only a linear
time complexity check. Therefore the average time complexity of
an incremental update process is rough O (I + mlog(m) + n), where

I, m, and n are the average lengths of the linked list, the join and de-
parture vectors, respectively. And the number of added and deleted
people is limited, i.e., m and n are small, so the computational over-
head of index maintenance is acceptable.

4.3.2 AOI Multi-state Index. AOI multi-state index records the
people who are located in the AOI and the data structures are
designed for different people states.

People in AOI have multiple states, which usually include resting,
walking, and waiting. Resting state means that the person has no
mobility needs due to not reaching the departure time. Walking
state means that the person is walking indoor. Waiting state means
that the person is unable to leave the AOI due to congestion on the
lane corresponding to the AOI gate so he/she stands still and waits.
According to the meaning of each state, it can be seen that the
only agents to be calculated in each step of the simulation include
only the people who arrive at the departure time in resting state,
the people whose corresponding lanes are free in waiting state,
and all the people in walking state. Based on the above analysis,
all people in resting state are organized into a priority queue in
ascending order of departure time. And those in waiting state are
stored in a first-in-first-out (FIFO) queue. Those in walking state are
organized into a common vector. All of the above data structures
are implemented through arrays due to the efficient processing
power of modern CPUs and GPUs for small arrays.

The deletion operations for people in AOI are done in the update
stage itself. The join operations are stored in a public write-only
join vector by notifications from people in the update stage. All
the joined people will be assigned to the data structure of the

A City-level High-performance Spatio-temporal Mobility Simulation System

Table 1: Empirically optimal parallel batch size for agents in
prepare stage and update stage.

Agent type Prepare stage Update stage
AOI 512 512
People 2048 1024

Lane 2048 -

corresponding state in the prepare stage as shown in Figure 5(b).
With AOI multi-state index, it is no longer necessary to waste
computing power in AOI to traverse every person, but only to deal
with the agents that have actual updates.

In conclusion, through the agent state division and two-stage
grouping of calculation, we compress the proportion of the sequen-
tial process in the entire simulation, improve the system parallelism,
and reduce the impact of time dependence on parallel acceleration.
The index subsystem provides efficient spatial relationship queries
to address the spatial dependencies and improves simulation effi-
ciency without adding too many sequential processes.

4.4 Mobility Modes

For the driving mode, we use the classical Krauss [16] model fol-
lowing SUMO to implement car-following. The model controls the
vehicle to drive at a safe maximum speed by calculating the rela-
tive distance and the relative speed between the vehicle and the
preceding vehicle, and the braking acceleration of both vehicles,
which can be obtained from the indexing subsystem at constant
time complexity. Further to this, we also refined the impact of lane
speed limits, signals, distance to the end of the line, and other fac-
tors on vehicle control. The model for outdoor walking and biking
is relatively simple, and we use a one-dimensional collision-free
model with fixed speed. Different fixed speed values are used for
walking and biking, and the speed parameters for different people
are randomly disturbed to make them look more reasonable. The
routes of all outdoor mobility behaviors are precomputed by the A*
algorithm with time as the weight.

For the indoor walking model, indoor walking is modeled as a
two-dimensional movement within an AOI polygon considering
pedestrian avoidance. We use the method proposed in [24], which is
one of the latest work to improve the classic social force model [14].
The method first uses physics-infused neural networks (PINN) to
learn crowd mobility patterns in 2-dimensional space from a dataset,
and then extracts the formulas and parameters from the neural
network model, thus enabling the model to be simply implemented
into the system.

4.5 Implementation Details

Due to the strong universality of the above design, we implemented
both the CPU version and the GPU version of the system to meet
different hardware cost considerations. The CPU version is imple-
mented by Golang 1.19°, while the GPU version is implemented by
C++/CUDA.

On the CPU version, all parallel processes are implemented via
Goroutine in the Golang programming language. Goroutine is a

Shttps://go.dev/

SuMob 23, November 13, 2023, Hamburg, Germany

Table 2: Statistics of the city space datasets.

Dataset Grid-40 Grid-80 Beijing
#Driving lane 130056 670656 528742
#Walking lane 0 0 228720

#AO0I 0 0 136619

lightweight user-state thread managed by the Go runtime.® The
scheduler in the Go runtime manages all Goroutines and preemp-
tively schedules them to run on the OS threads created by the Go
runtime. The approach avoids the huge overhead associated with
the frequent creation and deletion of OS threads. The preemptive
scheduling also allows for a more balanced amount of computa-
tion to be carried on different CPU cores and allows Goroutines
blocked by synchronization mechanisms such as mutex and barrier
to be hung to avoid wasting hardware computational resources. It
is obvious that Goroutine is also created with some overhead. To
avoid creating too many Goroutines and increasing the processing
overhead of the Goroutine scheduler, each Goroutine is responsible
for processing a batch of the agents as shown in Figure 5. For the
two stages, the empirically optimal batch size take values for each
type of agent are given in Table 1.

On the GPU version, all parallel processes are implemented
as CUDA kernel functions. And we always use one GPU thread
to process one agent. The block size and grid size of each kernel
function are computed by the helper function provided in the CUDA
library. Fair scheduling of kernel functions is done by NVIDIA GPU
drivers and hardware.

In terms of hardware, we use Aliyun’ ecs.g7.16xlarge instance
with Ubuntu 20.04 following Mirage [26] for the CPU version of
the system. The instance provides 64 virtual cores with 256GB of
memory, whose virtual cores are Intel Xeon(Ice Lake) Platinum
8369B. We use Aliyun ecs.gn7e-c16gl.4xlarge instance with Ubuntu
20.04 for the GPU version of the system. The instance provides
one NVIDIA A100 80G GPU, and 16 virtual cores with 125GB of
memory, whose virtual cores are also Intel Xeon(Ice Lake) Platinum
8369B.

5 EXPERIMENTS
5.1 Experimental Setup

In this section, we carry out experiments to answer several research
questions:

e RQ1: What is the overall performance of the system com-

pared to other mobility simulations such as SUMO and Cityflow?

e RQ2: What is the relationship between the computational
performance of the system and the number of agents?

e RQ3: How much computing resources are consumed by
each functional module in the system, such as the indexing
subsystem and the people data preparation?

5.1.1 City Space Datasets. To facilitate comparison of the perfor-
mance of mobility simulations such as SUMO [2] and Cityflow [25],
we use SUMO’s netgenerate tool to generate grid-like road net-
works as the city space datasets, and randomly generate trips on it.

®https://go.dev/tour/concurrency/1
https://cn.aliyun.com/

https://go.dev/
https://go.dev/tour/concurrency/1
https://cn.aliyun.com/

SuMob 23, November 13, 2023, Hamburg, Germany

The lane number of each road is set to 3. We generated two road
networks with grid numbers of 40 X 40 and 80 x 80, named Grid-40
and Grid-80 respectively.

We also build a Beijing city space dataset from OpenStreetMap
through our toolchain. However, since we have not implemented
the conversion tool from our data format to the SUMO format, the
dataset will not be used for performance testing between different
mobility simulations.

The three datasets’ statistics are shown in Table 2.

5.1.2 Baseline Methods. We compare the CPU version and the
GPU version of our system to the two existing popular mobility
simulations as baselines, SUMO [2] and Cityflow [25]. To easily dis-
tinguish the hardware resources used by different methods, we add
the hardware resource identifier used after the system name. Specif-
ically, SUMO-1 represents the single-threaded version of SUMO,
and SUMO-64 represents the SUMO program executed with 64
threads. Cityflow-64 represents the Cityflow program executed
with 64 threads. Besides, Ours-CPU-64 represents the CPU version
of our system executed with 64 threads, and Ours-GPU represents
the GPU version of our system.

5.1.3 Experiment Settings. To answer the first research question,
we chose two scenarios to compare the time cost of various methods.
The first scenario is when the number of running agents reaches
100,000 on the Grid-40 dataset, which is named as Grid-40-100k.
The second scenario is when the number of running agents reaches
200,000 on the Grid-80 dataset, which is named as Grid-80-200k.
Since Cityflow does not support walking models, the agents in the
two scenarios only include vehicles on the road. The time cost is
calculated as the average simulation time of the 10 steps in which
the current number of running agents is closest to the target value.

For the second research question, we test the CPU version and
the GPU version of our system for 100,000, 300,000, 500,000, 700,000,
and 900,000 running agents simultaneously on the Beijing dataset
and calculate the time costs. The starting position and end position
of these agents’ trips are randomly generated between all AOIs of
the Beijing dataset. If the distance between the starting position
and end position is less than 5 kilometers, they use walking mode,
otherwise, they use driving mode.

We adopt pprof®, which is a profiling tool for Golang programs,
to profile the CPU version of the system on the 900,000 agent
scenario to answer the third research question. Based on the pprof
report, we organize the percentage of each functional module in
the overall CPU computing resource consumption.

Moreover, we build a preliminary application case to show the
potential of our system to support sustainable mobility research. In
this case, we first simulate the whole-day mobility of Beijing and
adopt the carbon emission model [10] to analyze the distribution
of carbon emissions from Beijing roads.

5.2 Results and Analysis

5.2.1 Overall Performance. The result of the comparison regarding
overall performance among SUMO, Cityflow, CPU version and
GPU version of our system are shown in Table 3. In summary, the
overall performance of our system is significantly higher than the

8https://github.com/google/pprof

Jun Zhang, Wenxuan Ao, Depeng Jin, Li Liu, and Yong Li

Table 3: Overall performance comparison.

Time cost (ms/step)

Scenario Grid-40-100k Grid-80-200k
SUMO-1 1049 2217
SUMO-64 625 1445
Cityflow-64 36.92 71.66
Ours-CPU-64 11.17 28.15
Ours-GPU 1.36 1.78
70 -
I CPU-64
601 m@ GPU

o

o

Time cost (ms/step)
N W A O
o o

-
o

1l

100000 300000 500000 700000 900000
Number of running agents

Figure 6: The relationship between the time cost per step of
our system and the number of running agents.

baseline methods, especially the GPU version. The GPU version
of our system achieves 1.36 and 1.78 milliseconds per step in the
Grid-40-100k and Grid-80-200k scenarios respectively. The time
costs of the CPU version of our system in the two scenarios are
11.17 and 28.15 milliseconds per step respectively. Cityflow shows
similar performance to the CPU version of our system, taking 3.31
and 2.55 as long on the two scenarios respectively. SUMO is almost
unusable in such relatively large scenarios. Regardless of whether
multi-threading is used, its single-step running time exceeds 500
milliseconds.

5.2.2 The Relationship Between the Computational Performance of
Our System and the Number of Agents. The results of the compari-
son regarding the performance and the number of running agents
of our system is shown in Figure 6. The time cost of the CPU version
of the system per step is (22.29,32.03,46.96,59.51,69.87) milliseconds
at (100,000, 300,000, 500,000, 700,000, 900,000) agent scenarios, re-
spectively. The GPU version’s time cost is (1.41,2.22,2.95,3.26,3.59)
milliseconds. We can observe that as the number of agents increases,
our system shows a more linear growth trend, indicating that our
system has fewer sequential processes and greater potential for
larger-scale fine-grained human mobility simulation tasks. Mean-
while, facing the simulation task of simulating 900,000 running
agents simultaneously, our system can complete the simulation
task at 278.77 times the wall clock time by using GPU, which fully
demonstrates that the design of the system achieves the goal of
high performance.

https://github.com/google/pprof

A City-level High-performance Spatio-temporal Mobility Simulation System

« Driving Update 45.53
S Walking Update
Person Prepare
Lane Prepare 6.19
Aoi Prepare
Aoi Update

Others

Functional module

0 10 20 30 40 50
The percentage computing resources consumed (%)

Figure 7: The percentage of computing resources consumed
by different functional modules in the CPU version of the
system organized from the pprof’s report.

Figure 8: Carbon emission intensity distribution per lane
length from Beijing roads based on a full-day mobility simu-
lation.

5.2.3 Functional Module Computation Percentage Analysis. Fig-
ure 7 shows the computational resource percentage of different
functional modules in the whole simulation process on the CPU
version of the system. As can be seen, most of the system’s calcu-
lations are used for the simulation of the update stage, including
driving (45.53%) and walking (19.38%). The people data preparation
introduced by the two-stage parallel process based on read/write
separation design accounts for 10.26%. The maintenance of the
indexing subsystem totals about 10%, including lane location re-
lationship linked lists (6.19%) and AOI multi-state index (3.67%).
This indicates that the functional modules introduced in the sys-
tem design are efficient and do not impose significant additional
overhead.

5.2.4 Application Case. Based on the system, we obtained all-day
fine-grained spatio-temporal human mobility data for central Bei-
jing, which is one of the largest cities in China. We use such all-day
fine-grained spatio-temporal human mobility data to estimate the
distribution of carbon emission intensity from Beijing roads, whose
result is illustrated in Figure 8. Specifically, the velocity, accelera-
tion, and distance of each vehicle at each moment obtained through

SuMob 23, November 13, 2023, Hamburg, Germany

mobility simulation are input into the carbon emission model to
obtain the carbon emissions of the vehicle at the current time. The
carbon emission amounts are then aggregated by the road to ob-
tain the result. Based on the preliminary estimation experiment,
researchers can further investigate interesting topics such as how
to regulate travel demand to reduce emissions and so on.

6 RELATED WORKS
6.1 Mobility Simulation

Mobility simulation is a feasible way to convert the input coarse-
grained human mobility data into fine-grained human mobility
data. Currently, the most popular open-source mobility simula-
tion system is SUMO [2]. SUMO supports a rich set of mobility
models and can simulate cars, buses, trains, bicycles, pedestrians,
public transport, and more. But the biggest problem with SUMO
is that its single-threaded architecture makes it slower than wall
clock time when simulating more than 80,000 cars at the same
time. Therefore, the poor computational performance limits the
use of SUMO for city-level spatio-temporal mobility simulation.
Cityflow [25] and QarSUMO [5] are also parallel mobility simu-
lation solutions, which focus on the simulation and acceleration
of vehicle driving. Cityflow [25] uses a barrier-based architecture
to achieve proper multi-threaded acceleration by dividing the sim-
ulation step into multiple processes such as planning the route,
getting action, updating location, updating action, and updating
leader and gap. QarSUMO [5] splits the map into multiple partitions,
each of which is simulated by a SUMO simulator, and the different
partitions exchange incoming and outgoing vehicles through com-
munication, thus achieving the parallel acceleration of the SUMO
simulator. Mirage [26] is an efficient and extensible city simulation
framework that simulates multiple elements in a city and the in-
teractions and dependencies between them. Its mobility module,
which is the predecessor of the work, adopts parallel safety design
principle and Intel Threading Building Block® (TBB) to implement
multi-threaded mobility simulation, and it can calculate several
times faster than the wall clock time in the face of urban-level
mobility simulation tasks.

6.2 Mobility Prediction and Generation

Prediction and generation are also commonly used to obtain human
mobility data. As prediction methods, DeepTransport [18] proposes
a long short-term memory (LSTM) based module to understand
and predict human mobility. DeepMove [11] adopts an attentional
recurrent network for mobility prediction based on lengthy and
sparse trajectories. [6] proposes a context-aware model named
Deep]MT to jointly do mobility and timestamp prediction. As gen-
eration methods, [15] combines variational autoencoder (VAE) and
sequence-to-sequence (seq2seq) model to do human mobility re-
construction tasks. MoveSim [12] proposes a generative adversarial
framework and utilizes the prior knowledge of human mobility
regularity to improve mobility generation quality. [20] proposes a
two-stage generative adversarial network (GAN) to generate spatio-
temporal human mobility data based on 15-second interval taxi

“https://www.intel.com/content/www;/us/en/developer/tools/oneapi/onetbb.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html

SuMob 23, November 13, 2023, Hamburg, Germany

trajectories. [22] presents a generative adversarial imitation learn-
ing framework to generate artificial activity trajectories. Due to
the spatio-temporal granularity of the data, most of the prediction
and generation methods focus on coarse-grained human mobility,
which is the data basis for the mobility simulation.

7 CONCLUSION

By analyzing the spatio-temporal dependencies in mobility simu-
lation and the corresponding technical issues, we design the two-
stage parallel process based on read/write separation and the in-
dexing subsystem to achieve parallel acceleration of mobility sim-
ulation. We implement the whole system on both CPU and GPU
and show through experiments and cases that the system we de-
sign achieves the expected results in terms of performance and can
support innovative applications on sustainable mobility. Powered
by the high-performance system, researchers have more room to
introduce methods such as reinforcement learning to propose in-
telligent solutions to sustainable policy-making problems in cities.
For example, researchers can try to modify mobility infrastructure
settings such as traffic lights, intersection road markings, and road
speed limits on the existing road network to improve mobility costs
across the city, including but not limited to time costs, environmen-
tal costs, etc. Researchers can also enforce certain transportation
mode selection rules to observe the impact of policies on urban
transportation, such as requiring that only walking or cycling is
required for trips less than a certain distance. Moreover, the game
between accessibility and residents’ income and expenditure is also
an interesting research topic that can be based on simulation.

In future work, we will focus on the combination of mobility
and carbon emission estimation, try to track the environmental
impact of the mobility process from the perspective of the agent, and
study methods to reduce carbon emissions caused by the mobility
process.

ACKNOWLEDGMENTS

This work is sponsored by Shanghai Biren Technology Co., Ltd.
through the Collaboration on GPGPU Innovation Research between
Tsinghua University and Shanghai Biren Technology Co., Ltd.

REFERENCES

[1] Lukas Ambiihl, Monica Menendez, and Marta C Gonzalez. 2023. Understanding
congestion propagation by combining percolation theory with the macroscopic
fundamental diagram. Communications Physics 6, 1 (2023), 26.

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. 2011.

SUMO-simulation of urban mobility: an overview. In Proceedings of SIMUL 2011,

The Third International Conference on Advances in System Simulation. ThinkMind.

[3] John L Bowman and Moshe E Ben-Akiva. 2001. Activity-based disaggregate
travel demand model system with activity schedules. Transportation research
part a: policy and practice 35, 1 (2001), 1-28.

[4] Matteo Bohm, Mirco Nanni, and Luca Pappalardo. 2022. Gross polluters and
vehicle emissions reduction. Nature Sustainability 5, 8 (June 2022), 699-707.
https://doi.org/10.1038/s41893-022-00903-x

[5] Hao Chen, Ke Yang, Stefano Giovanni Rizzo, Giovanna Vantini, Phillip Taylor,
Xiaosong Ma, and Sanjay Chawla. 2020. QarSUMO: A Parallel, Congestion-
optimized Traffic Simulator. In Proceedings of the 28th International Conference
on Advances in Geographic Information Systems. 578-588.

[6] Yile Chen, Cheng Long, Gao Cong, and Chenliang Li. 2020. Context-aware
Deep Model for Joint Mobility and Time Prediction. In Proceedings of the 13th
International Conference on Web Search and Data Mining. ACM, Houston TX USA,
106-114. https://doi.org/10.1145/3336191.3371837

[7] Kai-Fung Chu, Albert YS Lam, and Victor OK Li. 2019. Deep multi-scale convolu-
tional LSTM network for travel demand and origin-destination predictions. IEEE

[2

Jun Zhang, Wenxuan Ao, Depeng Jin, Li Liu, and Yong Li

Transactions on Intelligent Transportation Systems 21, 8 (2019), 3219-3232.
[8] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113.

[9] Sven Eggimann. 2022. The potential of implementing superblocks for multifunc-
tional street use in cities. Nature sustainability 5, 5 (2022), 406-414.
Mehrsa Ehsani, Abbas Ahmadi, and Dawud Fadai. 2016. Modeling of vehicle
fuel consumption and carbon dioxide emission in road transport. Renewable and
sustainable energy reviews 53 (2016), 1638—1648.
Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng
Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent
Networks. In Proceedings of the 2018 World Wide Web Conference on World Wide
Web - WWW ’18. ACM Press, Lyon, France, 1459-1468. https://doi.org/10.1145/
3178876.3186058
[12] Jie Feng, Zeyu Yang, Fengli Xu, Haisu Yu, Mudan Wang, and Yong Li. 2020.
Learning to Simulate Human Mobility. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, Virtual
Event CA USA, 3426-3433. https://doi.org/10.1145/3394486.3412862
Alexander A Ganin, Maksim Kitsak, Dayton Marchese, Jeffrey M Keisler, Thomas
Seager, and Igor Linkov. 2017. Resilience and efficiency in transportation net-
works. Science advances 3, 12 (2017), e1701079.
Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.
Physical review E 51, 5 (1995), 4282.
[15] Dou Huang, Xuan Song, Zipei Fan, Renhe Jiang, Ryosuke Shibasaki, Yu Zhang,
Haizhong Wang, and Yugo Kato. 2019. A Variational Autoencoder Based Gener-
ative Model of Urban Human Mobility. In 2019 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR). IEEE, San Jose, CA, USA, 425-430.
https://doi.org/10.1109/MIPR.2019.00086
Stefan Krauf3, Peter Wagner, and Christian Gawron. 1997. Metastable states in a
microscopic model of traffic flow. Physical Review E 55, 5 (1997), 5597.
Yanchi Liu, Chuanren Liu, Nicholas Jing Yuan, Lian Duan, Yanjie Fu, Hui Xiong,
Songhua Xu, and Junjie Wu. 2017. Intelligent bus routing with heterogeneous
human mobility patterns. Knowledge and Information Systems 50, 2 (2017), 383~
415.
Xuan Song, Hiroshi Kanasugi, and Ryosuke Shibasaki. 2016. Deeptransport:
Prediction and simulation of human mobility and transportation mode at a
citywide level. In Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence. 2618-2624.
[19] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested traffic
states in empirical observations and microscopic simulations. Physical review E
62, 2 (2000), 1805.
Xingrui Wang, Xinyu Liu, Ziteng Lu, and Hanfang Yang. 2021. Large Scale GPS
Trajectory Generation Using Map Based on Two Stage GAN. Journal of Data
Science (2021), 126-141. https://doi.org/10.6339/21-JDS1004
Yuandong Wang, Hongzhi Yin, Hongxu Chen, Tianyu Wo, Jie Xu, and Kai Zheng.
2019. Origin-destination matrix prediction via graph convolution: a new per-
spective of passenger demand modeling. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining. 1227-1235.
Yuan Yuan, Jingtao Ding, Huandong Wang, Depeng Jin, and Yong Li. 2022. Activ-
ity Trajectory Generation via Modeling Spatiotemporal Dynamics. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
4752-4762.
Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud 10,
10-10 (2010), 95.
Guozhen Zhang, Zihan Yu, Depeng Jin, and Yong Li. 2022. Physics-infused
Machine Learning for Crowd Simulation. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 2439-2449.
Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou,
Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Li. 2019. Cityflow: A multi-
agent reinforcement learning environment for large scale city traffic scenario. In
The world wide web conference. 3620-3624.
[26] Jun Zhang, Depeng Jin, and Yong Li. 2022. Mirage: an efficient and extensible city

simulation framework (systems paper). In Proceedings of the 30th International

Conference on Advances in Geographic Information Systems. 1-4.

[10

[11

[13

[14

(16

(17

[18

™
=

[21

[22

[23

S
=)

[25

https://doi.org/10.1038/s41893-022-00903-x
https://doi.org/10.1145/3336191.3371837
https://doi.org/10.1145/3178876.3186058
https://doi.org/10.1145/3178876.3186058
https://doi.org/10.1145/3394486.3412862
https://doi.org/10.1109/MIPR.2019.00086
https://doi.org/10.6339/21-JDS1004

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 City Space Division
	2.2 Input for Mobility Simulation
	2.3 Basic Process of Mobility Simulation

	3 Spatio-temporal Dependencies in Mobility Simulation
	3.1 Time Dependency
	3.2 Spatial Dependencies

	4 System Design and Implementation
	4.1 Overview
	4.2 Two-stage Parallel Process Based on Read/Write Separation
	4.3 Indexing Subsystem
	4.4 Mobility Modes
	4.5 Implementation Details

	5 Experiments
	5.1 Experimental Setup
	5.2 Results and Analysis

	6 Related Works
	6.1 Mobility Simulation
	6.2 Mobility Prediction and Generation

	7 Conclusion
	Acknowledgments
	References

