
The Shapley Value in Database Management

Leopoldo Bertossi
SKEMA Business School

Montreal, Canada
leopoldo.bertossi@skema.edu

Benny Kimelfeld
Technion – Israel Institute of Technology

Haifa, Israel
bennyk@technion.ac.il

Ester Livshits
University of Edinburgh

Edinburgh, UK
ester.livshits@ed.ac.uk

Mikaël Monet
Université de Lille, CNRS, Inria, UMR 9189 -

CRIStAL, F-59000 Lille
Lille, France

mikael.monet@inria.fr

ABSTRACT
Attribution scores can be applied in data management
to quantify the contribution of individual items to con-
clusions from the data, as part of the explanation of
what led to these conclusions. In Artificial Intelligence,
Machine Learning, and Data Management, some of the
common scores are deployments of the Shapley value,
a formula for profit sharing in cooperative game theory.
Since its invention in the 1950s, the Shapley value has
been used for contribution measurement in many fields,
from economics to law, with its latest researched ap-
plications in modern machine learning. Recent stud-
ies investigated the application of the Shapley value to
database management. This article gives an overview
of recent results on the computational complexity of the
Shapley value for measuring the contribution of tuples
to query answers and to the extent of inconsistency with
respect to integrity constraints. More specifically, the
article highlights lower and upper bounds on the com-
plexity of calculating the Shapley value, either exactly
or approximately, as well as solutions for realizing the
calculation in practice.

1 Introduction
Explanations have been investigated in Artificial
Intelligence (AI) and Machine Learning (ML) for
some decades, and also, for a much longer time, in
other fields such as Philosophy, Logic, Physics, and
Statistics. Actually, the explicit study of explana-
tions can be traced back to the ancient Greeks, who
were already concerned with causes and effects. A
whole new area of research has emerged around ex-
planations in AI (Explainable AI or XAI [54]) and
Data Science. The basic need is fundamental: a hu-
man applies AI to make important decisions, and
the human is accountable for these decisions as well
as for the very choice to involve the specific AI al-

gorithms in deployment. Hence, adopting the algo-
rithm’s decision may necessitate some level of hu-
man understanding of what led to the decision.

In light of that, a decision or classification model,
typically obtained through machine learning, should
be able to attach an explanation to its outcome.
Stakeholders, such as an applicant for a loan from
the bank, may desire a reason for the decision, es-
pecially if the request is declined. In a similar vein,
a database may contain massive volumes of data or
be built according to an intricate schema. Query
answers could be difficult to explain or quantify
in terms of the relevance of specific data in the
database. This is also true for other database phe-
nomena, such as the violation of integrity constraints.

In this article, we will concentrate mostly on ex-
planations in data management, and more specifi-
cally, in relational databases (which we refer to sim-
ply as databases in the remainder of the manuscript).
Different data-related phenomena may open a quest
for explanations. Typically, one desires to under-
stand why an answer is returned when applying the
query to the database. One may also want to un-
derstand why a particular potential answer is not
returned. In another scenario, they may wish to
understand why an aggregate query result is a num-
ber that is unexpectedly high or low. It is also of
interest to understand why an integrity constraint
is not satisfied by the database. Even more, given a
set of integrity constraints and a numerical measure
of their violation by the database, we may want to
know the extent to which a data item is responsible
for the database’s inconsistency [8, 45,48].

We consider explanations that point to data items
that contribute to the outcome that we wish to
explain. As many items might take part in the
outcome one way or another, we need to be able

ar
X

iv
:2

40
1.

06
23

4v
1

 [
cs

.D
B

]
 1

1
Ja

n
20

24

to quantify this contribution. To that aim, one
of the fundamental concepts adopted is the Shap-
ley value [63], which is a formula for wealth distri-
bution in a cooperative game. The Shapley value
has a plethora of applications, including profit shar-
ing between Internet providers [51], influence mea-
surement in social networks [57], the importance
of genes for specific body functions [56], and key-
player identification in terrorist networks [67], to
name a few. In the context of explanations, the
idea is straightforward: data items are the players
who play the game of establishing the outcome.

It is relevant to emphasize that the Shapley value
corresponds to a principled approach to quantify the
contribution of a player to a wealth function that
is shared by a set of players. Its inception started
by stating some desired general properties of such a
contribution score. It was next proved that there is
only one such score that satisfies those properties,
namely the Shapley value [60].

An inherent challenge in the application of the
Shapley value for explanations (and other tasks)
is its computational complexity—the Shapley value
is often intractable to calculate, and particularly,
the execution cost might grow exponentially with
the number of players. Hence, past research in-
vestigated islands of tractability and approximation
techniques for the Shapley value.

In the remainder of the introduction, we delve
into some background on explanations in AI and
their development into explanations in databases.

Background on Explanations
Explanations may come in different forms, and dif-
ferent kinds of them have been proposed and inves-
tigated in the context of Computer Science. These
include the area of model-based diagnosis, whose
most prominent kinds are consistency-based diagno-
sis and abductive diagnosis [64]. Causality [58], and
particularly actual causality [34], deem causes as ex-
planations for observed effects and phenomena. In
all these kinds of diagnosis, an explanation comes in
the form of a set of basic propositions, which are ex-
pressed in the language of the model that describes
the situation related to the observations [10]. In
the case of causality, they can be values of observed
variables or features.

Actual causality [33, 34] provides counterfactual
explanations to observations. These explanations
are obtained by hypothetically intervening in (i.e.,
changing some components of) the system under
observation, to detect whether the intervention leads
to changes in the observed behavior. In general
terms, counterfactuals are basic propositions about

components of a system that may be a cause for the
observed behavior.

Importantly, in actual causality, we distinguish
between endogenous and exogenous variables [34,
35]. Only the former are subject to interventions
and may become actual causes. The latter are vari-
ables that we do not question, or have no control
upon. The separation between endogenous and ex-
ogenous variables is application dependent.

Counterfactual causes are actual causes that di-
rectly explain the observation: changing them leads
to a change in the observation. Actual causes that
are non-counterfactual ones are weaker causes, in
that they require the company of other components
to explain the observation. This idea is formalized
in quantitative terms by means of the responsibility
score [17] that captures the causal strength of an ex-
planation. In this way, the score takes into account
the amount of company that a potential explana-
tion requires in order to become a counterfactual
cause. Accordingly, a counterfactual explanation
may come with a responsibility score that represents
its causal strength in relation to the observation. A
numerical score like this is usually called an attribu-
tion score (of the explanation for the observation).

Attribution scores in the explanation of causes
are widely investigated in ML. They are provided,
most typically and frequently, for outcomes of ML-
based decision and classification systems. Next, we
discuss a few prominent examples. (For a thorough
description, c.f. some recent surveys [15,32,53,54].)

The Resp score [11] applies the general respon-
sibility score to the outcomes of classification sys-
tems. Specifically, it quantifies the relevance of fea-
ture values in an input entity to an ML-based sys-
tem for the obtained classification label. To this
aim, Resp generalizes the responsibility score to deal
with non-binary variables. The relevance of fea-
ture values is also quantified by the highly popular
SHAP attribution score [49,50]. SHAP is a particu-
lar application of the Shapley value. More precisely,
SHAP is the Shapley value for a particular coopera-
tive game played by a set of players that correspond
to the features. The tractability and approximabil-
ity of SHAP for certain classes of classifiers has been
recently investigated [3,4,68]. The Resp and SHAP
scores have also been experimentally compared [11].

Finally, in a different direction, the Shapley value
was used to quantify the relevance of particular for-
mulas to the inconsistency of a knowledge base [38].

Explanations in Databases
In database management, explanations usually come
as database tuples or cells that play a role in the

observed phenomenon, such as the received query
answers. Actual causality and responsibility scores
for query answers have been introduced and inves-
tigated [9, 13, 52]. In this context, connections be-
tween actual causality and model-based diagnosis
have been established [12, 13]. The counterfactual
interventions are tuple updates: insertions or dele-
tions of tuples, or changes of attribute values in
them. These interventions are expected to change
the outcome, for instance, to eliminate the query
answer that we wish to explain. The identified tu-
ples, as actual causes, are supplemented with re-
sponsibility scores, as additional quantitative infor-
mation, that reflects their explanatory strength. As
in AI, we can partition the database into sets of
endogenous tuples and exogenous tuples, and inter-
ventions are applied only to the former.

One can also formulate the causal approach to
query-answer explanations in databases via causal
networks [58]. For this purpose the lineage of the
query [65] can be treated as a causal network. Ac-
tually, this has been the approach to define and
compute another causality-based score for query an-
swers, the causal effect, which has its roots in causal-
ity for observational studies [39]. The causal effect
has been offered as an alternative to actual causality
and responsibility in databases [43, 61]. The causal
effect of a tuple τ ∈ D in relation to a Boolean query
q, is the expected difference E(q|τ ∈ D) − E(q|τ /∈
D), where the database is viewed a probabilistic
database [65] (where every tuple can be eliminated
randomly and independently) and q is treated as a
random variable taking values 0 or 1.

Close to the lineage of a query [6], we find the
notion of provenance of a query [14, 31], which can
be used to explain a query answer by tracing back
its origins to the underlying data source.

More recently, Livshits et al. [43] investigated the
application of Shapley value to define explanations
in databases. In this manuscript, we give a survey
of this and other applications of the Shapley value
as an explanation mechanism in databases. The
first application we discuss assigns to (endogenous)
database tuples scores that reflect their importance
for an obtained query answer. So, similarly to the
application of the Shapley value in explainable ma-
chine learning, one has to define an appropriate
coalitional game that depends on the query and re-
flects this importance. (See Section 3.)

The Shapley value has also been applied to quan-
tify the contribution of database tuples to the incon-
sistency of the database in relation to integrity con-
straints, similarly to its application in knowledge-
base inconsistency [38]. This has been done for

different measures of inconsistency [45]. (See Sec-
tion 4.) In the same spirit, an attribution score for
inconsistency that is directly based on database re-
pairs [7] has been introduced and investigated [8].

Organization
The remainder of the manuscript is organized as fol-
lows. We give preliminary teminology and concepts
in Section 2. In Section 3, we discuss the applica-
tion of the Shapley value in the explanation of query
answers, and in Section 4 we do so for database in-
consistency. Finally, we conclude in Section 5.

2 Basic Concepts
We first present the basic concepts and main nota-
tion that we use throughout the article.

Databases. A database schema S is a finite collec-
tion of relation symbols R, each with an associated
signature (A1, . . . , Aℓ) of distinct attributes Ai. A
database D over a schema S is a finite collection of
facts of the form R(c1, . . . , ck) where R is a relation
symbol of S with the signature (A1, . . . , Ak), and
each ci is a value that is in the domain of the at-
tribute Ai. For our complexity analysis, we assume
that all database values come from a fixed infinite
(recursively enumerable) domain Val; in particu-
lar, we assume that the domain of every attribute
is simply Val. A fact with the relation symbol R is
also called an R-fact.

Queries. Let S be a schema. A query q (over S) is
associated with an arity k ≥ 0 and it maps every
database D over S into a finite k-ary relation of
values (that is, a finite subset of Valk). A query q
with arity zero is called a Boolean query, and then
q(D) is either true (i.e., consists of the empty tuple)
or false (i.e., is empty).

A special case of a query is a Conjunctive Query
(CQ) that captures the select-project-join queries
of SQL and has the logical form

{x | ∃y[φ1(x,y) ∧ · · · ∧ φm(x,y)]}

where x and y are disjoint sequences of distinct vari-
ables and each φi(x,y) is an atomic formula over
S, that is, a formula of the form R(t1, . . . , tk) where
R ∈ S is a k-ary relation symbol and each ti is either
a value (constant) or a variable from x or from y.
The variables of x and y are called the free and the
existential variables, respectively. For convenient
notation, we denote a CQ q by

q(x) :− φ1(x,y), . . . , φm(x,y)

as in the following example that finds all manager-
employee pairs such that the manager manages the

department of the employee:

Manages(x, z) :− EmpDept(z, y),DeptMgr(y, x)

We call q(x) the head of q and φ1(x,y), . . . , φm(x,y)
the body of q. Each φi(x,y) is an atom of q. A self-
join of q is a pair of atoms that use the same rela-
tion symbol. For example, the above Manages CQ
is self-join-free since each relation symbol is used
only once. Lastly, we recall that a union of con-
junctive queries (UCQ) is a logical disjunction of
CQs with the same arity.

Integrity constraints. Let S be a schema. An in-
tegrity constraint is simply a Boolean query. A
database D satisfies a set ∆ of integrity constraints,
denoted D |= ∆, if D satisfies every constraint in ∆,
that is, D |= γ for all γ ∈ ∆. When ∆ is clear from
the context, we say that D is consistent if D |= ∆,
and otherwise that it is inconsistent. Two sets of in-
tegrity constraints are equivalent if every database
that satisfies one also satisfies the other.

A special case of an integrity constraint is a Func-
tional Dependency (FD) R : X → Y where R is a
relation symbol of S and X and Y are sets of at-
tributes of R. A database D satisfies R : X → Y
if every two R-facts that agree on (i.e., have the
same value for every attribute of) X also agree on
Y . When R is clear from the context, we may write
just X → Y .

Shapley value. As explained in the introduction,
the Shapley value is a function for wealth distri-
bution in cooperative games. The precise definition
is as follows. Let L be a finite set of players. A co-
operative game is a function G : P(L) → R, where
P(L) is the power set of L. For M ⊆ L, the value
G(M) represents a value, such as wealth, jointly ob-
tained by M when the players of M cooperate. The
Shapley value for the player a in the game G is, in-
tuitively, the following quantity. Suppose that we
form a random cooperating team by selecting play-
ers, one by one, uniformly and without replacement;
what is the expected change of utility when a is se-
lected? The exact definition is:

Shapley(L,G, a) := (1)
1

|L|!
∑

π∈ΠL

(G(πa ∪ {a})− G(πa))

Here, ΠL is the set of all possible permutations over
the players in L, and for each permutation π we
denote by πa the set of players that appear before
a in the permutation.

Complexity concepts. Throughout the paper, we re-
fer to the standard classes PTime, NP and coNP of

decision problems. We will also consider the func-
tion classes FP, #P and FP#P. Recall that FP
is the class of functions that can be computed in
polynomial time, #P is the class of functions can
be described as counting the accepting paths of a
nondeterministic Turing machine on the given in-
put, and FP#P is the class of functions that can
be computed in polynomial time with an oracle to
some function in #P.

We assume that integer numbers are represented
in the usual binary way, and that non-integers are
rational numbers represented using their numerator
and denominator, where (n, d) stands for n/d.

Suppose that f is a numerical function that maps
its input x to a number f(x). A Fully Polynomial-
time Randomized Approximation Scheme (FPRAS)
for f is a randomized algorithm A that takes as in-
put an instance x of f and an error ϵ > 0, and re-
turns an ϵ-approximation of f(x) with probability
at least 3/4 (which is arbitrary and can be ampli-
fied to be arbitrarily close to 1 using standard tech-
niques). More precisely, we distinguish between an
additive FPRAS :

Pr
[
f(x)− ϵ ≤ A(x) ≤ f(x) + ϵ

]
>

3

4

and a multiplicative FPRAS :

Pr
[f(x)
1 + ϵ

≤ A(x) ≤ (1 + ϵ)f(x)
]
>

3

4

3 Contribution to Database Queries
In this section, we survey the use of the Shapley
value in the context of explaining query answers.
We will focus on Boolean queries, to keep the pre-
sentation short, but the framework easily extends to
queries with free variables, or to aggregate queries
returning numerical values (e.g., as explained by
Livshits et al. [43]). We first define the notions and
then review recent work.

As mentioned in the introduction, a database D
consists of a set Dx of exogenous facts, and a set Dn

of endogenous facts. For a Boolean query q and en-
dogenous fact f ∈ Dn of a database D = Dn ∪Dx,
the goal is to measure the contribution of f to the
result q(D). To this end, we view a Boolean query
as a numerical query that answers 1 if it is sat-
isfied by the database and 0 otherwise. We then
apply the Shapley value, where the players are the
endogenous facts and the game function is the func-
tion Gq,Dx,Dn

: P(Dn) → {0, 1} mapping every sub-
set E ⊆ Dn to the value q(E ∪Dx) − q(Dx). (The
subtraction is applied to satisfy the requirement
that the wealth function is zero on the empty set of
players.) Applying Equation (1), the Shapley value

of f (in D for q), denoted ShapleyQ(q,Dn, Dx, f),
is defined as follows:

ShapleyQ(q,Dn, Dx, f) := Shapley(Dn,Gq,Dx,Dn , f)

=
1

|Dn|!
∑

π∈ΠDn

[
q(Dx ∪ πf ∪ {f})− q(Dx ∪ πf)

]
.

Intuitively, this value represents the contribution
of f to the result of the query: the higher this value
is, the more f contributes to satisfying q. Note
that this value could be negative, in the case where
q is not monotone. Moreover, the properties of the
Shapley value imply that we always have q(D) =
q(Dx) +

∑
f∈Dn

ShapleyQ(q,Dn, Dx, f). In words,
the contributions of all endogenous facts sum up to
q(D)− q(Dx); hence, the Shapley value states how
the score q(D) on the whole database is to be shared
among the endogenous facts.

3.1 Exact Computation
In database theory, the computational complexity
of a problem is often measured with what is called
the data complexity [69], which is the complexity
of the problem when a particular query q is fixed
(there is, thus, one computational problem for each
distinct query). Accordingly, past work [24, 43, 59]
has studied the data complexity of exactly comput-
ing the Shapley value of a fact, as defined above,
depending on the particular query q at hand. For-
mally, for an arbitrary Boolean query q and slightly
abusing the notation, the computational problem
ShapleyQ(q) is defined as follows:

Problem: ShapleyQ(q)
Param: Boolean query q
Input: Database Dx ∪Dn, fact f ∈ Dn

Goal: Compute ShapleyQ(q,Dn, Dx, f)

We aim for dichotomies in complexity, for classes
of queries (e.g., CQs), that chart the boundary be-
tween polynomial-time cases and intractable cases.
We report on such results in this section.

3.1.1 Reduction to Probabilistic Databases
Deutch et al. [24] showed that the calculation of the
Shapley value can be reduced to query answering in
probabilistic databases. Hence, this reduction yields
a class of tractable queries. To explain that, we
need some definitions.

A Tuple-Independent Database (TID for short) is
a pair (D,π) consisting of a database D and a func-
tion π that maps each fact f ∈ D to a probability
π(f) ∈ [0, 1]. The TID (D,π) defines a probabil-
ity distribution PrD,π on P(D), where each D′ ⊆

D has the probability PrD,π(D
′) =:

∏
f∈D′ π(f) ×∏

f∈D\D′(1−π(f)). We evaluate a Boolean query q
by calculating the probability that q is satisfied by
the TID: Pr(q, (D,π)) =

∑
D′⊆D PrD,π(D

′) · q(D′).
The problem of Probabilistic Query Evaluation for
q, or PQE(q) for short, is the following:

Problem: PQE(q)
Param: Boolean query q
Input: TID (D,π)
Goal: Compute Pr(q, (D,π))

We can now state the result of Deutch et al. [24]:

Theorem 1. For every Boolean query q, the prob-
lem ShapleyQ(q) reduces in polynomial time to the
problem PQE(q).

Notice that this result is quite general, in that q
can be an arbitrary Boolean query: a CQ, an FO
query, an MSO, Datalog or RPQ query—it does not
matter: if PQE(q) is tractable then ShapleyQ(q) is
tractable as well. As it turns, a celebrated result by
Dalvi and Suciu [19] provides a dichotomy on unions
of conjunctive queries for PQE: either q is safe and
PQE(q) is solvable in polynomial time (FP), or q
is not safe and PQE(q) is FP#P-hard. Therefore, a
direct corollary of Theorem 1 is that ShapleyQ(q) is
in FP for all safe UCQs.

3.1.2 Calculation via Knowledge Compilation
Deutch et al. [24] also provide another route for
solving this problem in practice, through knowledge
compilation. We only sketch this approach here and
refer to their work for more details. The idea is to
first compute, for the query q and database D, the
lineage (also called provenance) of q on D, which is
a Boolean circuit that intuitively captures the de-
pendence of the query answer on individual facts
of D. This lineage is then transformed, using a
knowledge compiler tool, into an equivalent Boolean
circuit in restricted classes from knowledge compi-
lation (namely, so-called deterministic and decom-
posable Boolean circuits), over which the authors
of [24] design a polynomial-time algorithm to com-
pute the Shapley values.

The queries that can be solved in FP with this
method are a subset1 of those that are captured
with Theorem 1, so in terms of theoretical results
nothing is gained here (apart from a polynomial of
slightly lower degree). Nevertheless, this method al-
lows them to use existing tools to solve the problem
in practice instead of implementing everything from
1And it is unknown if this is a strict subset or not, see,
e.g., [55].

scratch. They used in particular ProvSQL [62], a
tool integrated into PostgreSQL that can perform
lineage computation in various semirings, and the
knowledge compiler c2d [21].

3.1.3 Hardness and Dichotomy

As we have discussed, Theorem 1 allows to cap-
ture a large class of tractable queries for the prob-
lem ShapleyQ. It is, however, still unknown whether
this actually captures all tractable cases. In par-
ticular, it is unknown whether there also exists a
general reduction in the other direction:

Open Problem 1. Does PQE(q) reduce in poly-
nomial time to ShapleyQ(q) for all queries q?

Combined with known results on the complexity of
probabilistic databases, a positive answer to this
question would then yield a complete dichotomy of
ShapleyQ for the class of all UCQs and, in fact, even
for the more general class of queries closed under
homomorphism [1].

For the class of CQs without self-joins, Livshits
et al. [43] obtained a dichotomy. The tractability
condition is that q is hierarchical : for all variables
y and y′ it holds that Ay ⊆ Ay′ , or Ay′ ⊆ Ay, or
Ay ∩Ay′ = ∅, where Ax is the set of atoms of q that
use the variable x [20].

Theorem 2. Let q be a self-join-free CQ. If q is
hierarchical, then ShapleyQ(q) is in FP, otherwise
it is FP#P-hard.

We conclude this part with some comments on
Theorem 2. First, the positive part is already cap-
tured by Theorem 1, as it is known that hierarchical
CQs are safe for PQE on TIDs [19]. In contrast, the
lower bound requires a reduction that is specifically
crafted for the problem. In particular, it is not clear
whether and how this reduction can be generalized
to solve Open Problem 1, and there is no gener-
alization of Theorem 2 for CQs with self-joins and
UCQs. Second, the reduction for the lower bound of
Theorem 2 requires the usage of both endogenous
and exogenous facts, and it is still open whether
the lower bound holds if we assume that all facts
are endogenous. Finally, Reshef et al. [59] studied
the complexity of ShapleyQ for CQs with negated
atoms (but still no self-joins), and established anal-
ogous dichotomy results under the restrictions that
certain relations can contain only exogenous facts.

3.2 Approximation
As we have seen, computing the exact Shapley val-
ues of facts is not always tractable in theory. This

naturally brings the question of which queries al-
low for approximate computation of these values
with desired guarantees on the data complexity and
the approximation ratio. We review in this section
what is known on the approximability of the prob-
lems ShapleyQ(q), in terms of FPRAS.

As pointed out in [43], by using the Chernoff-
Hoeffding bound one can easily obtain an additive
FPRAS for computing ShapleyQ(q,Dn, Dx, f): this
can be done for instance by sampling O(log(1/δ)/ϵ2)
permutations π of Dn and computing the average
value of q(Dx∪πf∪{f})−q(Dx∪πf), assuming that
q itself is answerable in polynomial time. Note that
this assumption is true for the most common query
classes such as UCQs, Datalog, etc. Formally:

Proposition 1. If q can be answered in polyno-
mial time, then ShapleyQ(q) has an additive FPRAS.

An additive FPRAS might be insufficient when
the values to approximate are very small. Nev-
ertheless, for a large class of queries, the Shapley
values cannot in fact be too small [43]. Specifi-
cally, a (Boolean) query q is said to have the gap
property if the Shapley value of any fact is either
zero or is “not too small,” that is, at least the re-
ciprocal of a polynomial. Then, for a query with
polynomial-time evaluation and the gap property,
the additive FPRAS from Proposition 1 can be eas-
ily transformed into a multiplicative FPRAS. As
it turns out, all UCQs have the gap property [43,
Proposition 4.12].

Proposition 2. If q has polynomial-time evalu-
ation and the gap property, then ShapleyQ(q) admits
a multiplicative FPRAS. This holds for all UCQs.

Not all queries satisfy the gap property. For in-
stance, some CQs with negated atoms (that we de-
note by CQ¬) may lack this property. In fact, by
establishing a connection between the existence of a
multiplicative FPRAS for ShapleyQ(q) and what is
called the relevance problem for q, Reshef et al. [59]
were able to exhibit a CQ¬ that does not admit
any multiplicative FPRAS (unless P = RP, which
is widely believed to be false). So far, however, no
dichotomy is known on the existence of a multiplica-
tive FPRAS for CQ¬s (or even self-join–free CQ¬s).
In fact, we do not know any example of a CQ¬ that
does not have the gap property but nevertheless ad-
mits a multiplicative FPRAS.

3.3 Remarks
We conclude with several remarks on the Shap-
ley value for database queries. Interestingly, the
state of affairs for approximate Shapley computa-
tion contrasts with what happens with the SHAP

score in machine learning. Arenas et al. [4] have
recently shown that the SHAP score does not ad-
mit a multiplicative FPRAS (under conventional as-
sumptions in complexity theory), even for very sim-
ple monotone Boolean models (namely, monotone
2-DNFs) [4, Theorem 9].

A possible alternative to the computation of the
Shapley value is to rank the endogenous facts ac-
cording to their Shapley value, while possibly avoid-
ing the actual computation of these values. Indeed,
as far as we know, there could exist queries q such
that ShapleyQ(q) is hard to approximate while the
ranking problem is tractable, or vice-versa. Deutch
et al. [24] proposed a fast heuristic to solve this
problem, and this heuristic seems to work well em-
pirically. Arad et al. [2] employed machine learning
to learn this ranking. Yet, as of today, a formal
study of the complexity of the ranking problem is
lacking. For instance, we do not know whether there
are queries with intractable Shapley but tractable
ranking. Again, this contrasts with what is known
on the SHAP-score from machine learning, as it has
been shown that the ranking problem for this score
is unlikely to be in BPP even for simple monotone
Boolean models; see [4, Theorem 16].

Finally, Khalil and Kimelfeld [40] have recently
studied the complexity of the Shapley value in the
context of graphs with labeled edges. Their prob-
lem is similar to what we discussed in this section,
except that the players are the (endogenous) edges
and/or vertices of the graph, and the queries are
Regular Path Queries (RPQs) and Conjunctions of
RPQs (CRPQs). An RPQ is associated with a reg-
ular expression γ, and a pair (u, v) of vertices is an
answer if any path from u to v conforms to γ. They
established dichotomies for exact and approximate
calculation of the Shapley value. For example, un-
der conventional complexity assumptions, an RPQ
has a multiplicative FPRAS if and only if the reg-
ular expression recognizes a finite language.

4 Contribution to Database Inconsistency
It is often wrong to assume that the database is
clean of errors and conforms to our integrity con-
straints. Data might be the result of integrating
unreliable sources (e.g., social media) that contain
mistakes and conflicting information. Moreover, the
content of the database may be produced by error-
prone procedures (e.g., natural-language or image
processing). Given this nature of data, measures of
database inconsistency quantify the extent to which
the database violates a given set of integrity con-
straints [8, 45, 48]. Inconsistency measures can be
used, for example, to estimate the reliability of new

datasets [18] or to build progress indicators for data-
cleaning systems [48]. Moreover, such measures can
be used to attribute to database facts a level of
responsibility to inconsistency, and so to prioritize
facts in the explanation, inspection, or resolution of
database inconsistency; this task is what we discuss
in this part.

The attribution of responsibility to the incon-
sistency of the database relies on two main com-
ponents: (1) an inconsistency measure and (2) a
responsibility-sharing mechanism. For the former,
we discuss several alternatives in the next section.
For the latter, we use the Shapley value.

4.1 Inconsistency Measures
The measurement of the inconsistency of informa-
tion has been extensively studied by the Knowledge
Representation (KR) and Logic communities [27,
36,38,42,66], where several different measures have
been introduced. Some of these have been adapted
to the database setting [45].

In general, an inconsistency measure I is a func-
tion that maps pairs (D,∆) of a database D and
a set ∆ of integrity constraints (ICs) to numbers
I(D,∆) ∈ [0,∞). Intuitively, the higher I(D,∆)
is, the stronger D violates ∆. We make only the
(reasonable) assumption that I(D,∆) is zero when-
ever D is empty. Here again, we use the Shapley
value framework, where this time the set of players
is the whole database, and the utility is the func-
tion GD,∆,I : P(D) → {0, 1} that maps every sub-
set D′ ⊆ D to the value I(D′,∆). Hence, applying
Equation (1), the Shapley value of a fact f of D
w.r.t. ∆, denoted Shapley I(D,∆, I, f), is defined as

Shapley I(D,∆, I, f) := Shapley(D,GD,∆,I , f)

=
1

|D|!
∑

π∈ΠD

(I(πf ∪ {f},∆)− I(πf ,∆)) .

Following Livshits and Kimelfeld [45], here we do
not distinguish between exogenous and endogenous
facts—all facts are considered endogenous (and all
definitions naturally extend to account for exoge-
nous facts).

Livshits and Kimelfeld [45] studied the Shapley
value for several inconsistency measures that were
previously explored in the context of databases and
knowledge bases. (See [48] for a study of the be-
havior of these measures from both a practical and
a theoretical perspective.) In the following defini-
tions, D denotes a database and ∆ a set of ICs.

1. Id, called the drastic measure [66] takes the
value 1 if the database is inconsistent and the
value 0 otherwise.

2. IMI counts the minimal inconsistent subsets of
the database [37,38]. In notation, IMI(D,∆) :=
|MI(D,∆)| where MI(D,∆) is the set of all in-
consistent subsets E ⊆ D such that E′ |= ∆
for all E′ ⊂ E.

3. IP counts the problematic facts, where a fact
is problematic if it belongs to a minimal incon-
sistent subset [28]. In notation, IP(D,∆) :=
|
⋃

E∈MI(D,∆) E|.

4. IR is the minimal number of facts that should
be deleted from the database in order to sat-
isfy ∆ [8, 26, 29]. In notation, IR(D,∆) :=
minE⊆D,D\E|=∆(|E|).

5. IMC counts the maximal consistent subsets [28,
30] (also called subset repairs [5]). In notation,
IMC(D,∆) := |MC(D,∆)| where MC(D,∆) is
the set of all consistent subsets E ⊆ D such
that E′ ̸|= ∆ whenever E ⊂ E′.

Intuitively, the measure Id is simply an indicator
of inconsistency. The measure IMI counts the vio-
lations (i.e., the minimal sets of facts that jointly
violate the constraints) and the measure IP counts
the facts involved in such violations (and a fact
is counted once even if it occurs in multiple vio-
lations). For both measures, the higher the number
is, the more the constraints are violated; hence, the
more inconsistent the database is. The measure IR
quantifies the distance of the database from a con-
sistent one—the more facts we have to remove to
obtain consistency, the higher the measure is. Fi-
nally, the measure IMC counts the subset repairs;
that is, all the different ways to obtain a consistent
database by deleting a minimal set of facts—the
more repairs there are, the more inconsistent the
database is.

4.2 Complexity of Exact Computation
We proceed to discuss the complexity of computing
the value Shapley I(D,∆, I, f) for each one of the
aforementioned inconsistency measures I, as stud-
ied by Livshits and Kimelfeld [45]. Their study con-
sidered the case where ∆ is a set of FDs. We con-
sider again the data complexity of computing the
Shapley value; this time, the schema, set of FDs,
and inconsistency measure are considered fixed, and
the input consists of a database D and a fact f . Ac-
cordingly, and again slightly abusing notation, we
denote Shapley I(∆, I) the corresponding computa-
tional problems.

Problem: Shapley I(∆, I)
Param: Set ∆ of ICs, inconsistency m. I
Input: Database D and fact f ∈ D
Goal: Compute Shapley I(D,∆, I, f)

It turns our that each of the inconsistency mea-
sures entails quite a unique picture of complexity.

The measure Id. While the drastic measure is the
simplest one conceptually, it might be intractable
to compute the Shapley value of a fact w.r.t. Id
even for simple FD sets. Livshits and Kimelfeld [45]
established a dichotomy in data complexity for this
measure, based on the definition of left-hand-side
chain [44]. An FD set ∆ has a left-hand-side chain
(lhs chain, for short) if for every two FDs X → Y
and X ′ → Y ′ in ∆, either X ⊆ X ′ or X ′ ⊆ X.

Theorem 3. Let ∆ be a set of FDs. If ∆ is
equivalent to an FD set with an lhs chain, then
Shapley I(∆, Id) is in FP. Otherwise, the problem
is FP#P-complete.

Theorem 3 implies, for example, that the Shap-
ley value can be computed efficiently for the set
{A → B,AC → D}, but not for {A → B,B → A}.
As a proof technique, they show hardness directly
only for {A → B,B → A}. For any other in-
tractable FD set, hardness is established via the
so called fact-wise reductions [41]. Such reductions
essentially map databases over one schema and set
of ICs to databases over another schema and set
of ICs while preserving (in)consistency. The posi-
tive side of Theorem 3 is established via dynamic
programming.

We note that the tractability criterion of Theo-
rem 3 is the same as the tractability criterion for
the problem of counting subset repairs (or, equiva-
lently, maximal consistent subsets), and is decidable
in polynomial time [44].

The measure IMI. For a set ∆ of FDs, it is easy
to see that IMI simply counts the pairs of facts of
the database that jointly violate the FDs. Hence,
for a fact f and some permutation π, we have that
IMI(πf∪{f},∆)−IMI(πf ,∆) is precisely the number
of facts in πf that are in conflict with f . This simple
observation implies the tractability of IMI.

Theorem 4. [45] Shapley I(∆, IMI) is in FP for
every set ∆ of FDs.

The measure IP. For this measure, we have that
IP(πf ∪ {f},∆)− IP(πf ,∆) is the number of facts
in πf that: (1) are in conflict with f , and (2) are

Table 1: The complexity of the (exact ; approximate) Shapley value of different inconsistency
measures.

lhs chain no lhs chain, PTime cardinality repair other

Id PTime FP#P-complete ; FPRAS
IMI PTime
IP PTime
IR PTime ? ; FPRAS NP-hard [46] ; no FPRAS
IMC PTime FP#P-complete [44] ; ?

not in conflict with any other fact of πf (as, oth-
erwise, they are considered “problematic” already
before adding the fact f to the picture). Based on
this observation, we conclude the following.

Theorem 5. [45] Shapley I(∆, IP) is in FP for
every set ∆ of FDs.

The measure IR. The measure IR is the only one
for which we lack the full complexity picture; how-
ever, it is known that there are substantial sets of
FDs for which this measure is tractable and others
for which it is intractable. The hard cases follow
from a prior work on the related problem of comput-
ing the cost of a cardinality repair (i.e., the minimal
number of facts to remove to obtain consistency),
as we explain next.

Livshits et al. [46] established a dichotomy for
finding a cardinality repair, where the tractability
criterion is based on a polynomial-time algorithm,
Simplify, that simplifies the FD set in an iterative
manner until no further simplification can be ap-
plied. If the result of Simplify(∆) is an empty FD
set, then the problem is solvable in polynomial time;
otherwise, it is NP-hard. Now, one of the basic
properties of the Shapley value is “efficiency”—the
sum of the Shapley values over all the players equals
the total wealth [63]. This property implies that for
an inconsistency measure I, it holds that∑

f∈D

Shapley I(D,∆, I, f) = I(D,∆) .

Thus, whenever the measure itself is hard to com-
pute, so is the Shapley value of facts. This leads to
the following result.

Theorem 6. Let ∆ be a set of FDs. If the pro-
cedure Simplify(∆) of Livshits et al. [46] returns a
nonempty set, then Shapley I(∆, IR) is NP-hard.

As in the case of the drastic measure, it can be
shown, via a dynamic programming algorithm, that
for an FD set with an lhs chain, the measure IR is
tractable.

Theorem 7. Let ∆ be a set of FDs. If ∆ is
equivalent to an FD set with an lhs chain, then
Shapley I(∆, IR) is in FP.

It remains unknown what is the complexity of the
problem for FD sets that fall outside the two cases
covered by Theorems 6 and 7.

Open Problem 2. What is the data complexity
of Shapley I(∆, IR) for any set ∆ of FDs such that ∆
has no lhs chain (up to equivalence) and Simplify(∆)
returns an empty set?

In particular, the problem is open for the FD set
{A → B,B → A} over the relation symbol R(A,B).

The measure IMC. As we explained for the pre-
vious measure, the efficiency property of the Shap-
ley value allows us to conclude that the problem
Shapley I(∆, IMC) is hard whenever it is hard to cal-
culate IMC(D,∆). Livshits et al. [47] have shown
that the subset repairs (i.e., maximal consistent sub-
sets) can be counted in polynomial time for FD sets
with an lhs chain (up to equivalence), and is #P-
complete for any other FD set. Hence, an lhs chain
is a necessary condition for tractability. As in the
case of the measures Id and IR, it can be shown
that this is also a sufficient condition using a dy-
namic programming algorithm. Hence, the follow-
ing holds.

Theorem 8. [45] Let ∆ be a set of FDs. If ∆
is equivalent to an FD set with an lhs chain, then
Shapley I(∆, IMC) is in FP. Otherwise, the problem
is FP#P-complete.

The complexity results of this section are sum-
marized in Table 1. (The results on approximation
are discussed in the next section.)

4.3 Complexity of Approximation
We have seen that, as far as exact computation is
concerned, IMI and IP are tractable for every set
of FDs, but the measures Id, IR, and IMC can be

intractable even for simple sets of FDs. There-
fore, we now discuss the approximate computation
of Shapley I. Again, the complexity results are of
Livshits and Kimelfeld [45].

As in the case of ShapleyQ, using the Chernoff-
Hoeffding bound and a Monte-Carlo approach, one
can easily obtain an additive FPRAS for computing
Shapley I(D,∆, I, f), assuming that I(D,∆) can be
computed in polynomial time, given D. A multi-
plicative FPRAS can be obtained using the same
procedure if a corresponding “gap” property holds,
meaning that when the Shapley value is not zero, it
is guaranteed to be “large enough”.

For instance, in the case of the drastic measure,
it can be shown that for all databases D and facts
f , Shapley I(D,∆, Id, f) is either zero or at least

1
|D|·(|D|−1) . Since Id(D,∆) can be computed in
polynomial time for every ∆, we conclude that:

Proposition 3. Shapley I(∆, Id) has an additive
and a multiplicative FPRAS for every set ∆ of FDs.

Regarding IR, when it can be computed in poly-
nomial time (i.e., when Simplify(∆) = ∅), we can
similarly show that Shapley I(∆, IR) has both an ad-
ditive and a multiplicative FPRAS. The gap prop-
erty holds here as well: Shapley I(D,∆, IR, f) = 0
or Shapley I(D,∆, IR, f) ≥ 1

|D|·(|D|−1) . In contrast,
when IR is intractable, it is not only NP-hard, but
also APX-complete. Consequently, there exists a
polynomial-time constant-ratio approximation for
IR(D,∆), but for some ϵ > 1 there is no (random-
ized) ϵ-approximation or else NP = RP. Then, the
fact that Shapley I(D,∆, IR, f) ≥ 0 implies that the
existence of a multiplicative FPRAS for the value
Shapley I(D,∆, IR, f) would imply the existence of
a multiplicative FPRAS for IR(D,∆) via the effi-
ciency property of the Shapley value. Therefore,
the following holds.

Theorem 9. Let ∆ be a set of FDs.

1. If Simplify(∆) = ∅, then Shapley I(∆, IR) has
both an additive and a multiplicative FPRAS.

2. Otherwise, Shapley I(∆, IR) has neither a mul-
tiplicative nor an additive FPRAS, assuming
RP ̸= NP.

Interestingly, it is still unknown whether there is
any polynomial-time constant-ratio multiplicative
approximation for Shapley I(D,∆, IR, f) for any FD
set in the intractable side of Theorem 9.

Open Problem 3. For any set ∆ of FDs such
that Simplify(∆) is nonempty, is there a polynomial-
time constant-ratio multiplicative approximation for
Shapley I(D,∆, IR, f)?

Finally, the complexity picture for the approxi-
mate computation of the Shapley value w.r.t. IMC

is rather incomplete. This is because counting the
maximal consistent subsets w.r.t. {A → B,B → A}
over R(A,B) is the same as counting the maxi-
mal matchings of a bipartite graph. As the values
Shapley I(D,∆, IMC, f) are nonnegative and sum up
to the number of maximal consistent subset (via the
efficiency property), we conclude that an FPRAS
for Shapley I(D,∆, IMC, f) implies an FPRAS for
the number of maximal matchings. To the best of
our knowledge, existence of the latter is an open
problem. The same holds for any FD set ∆′ that
is not equivalent to an FD set with an lhs chain,
since there is a fact-wise reduction from ∆ to such
∆′ [44]. Hence, the following remains unknown.

Open Problem 4. For any FD set ∆ that has
no lhs chain, is there a multiplicative FPRAS for
Shapley I(∆, IMC)?

Actually, Open Problem 1 is solved in one special
case. It has been recently shown that the problem of
counting the maximal consistent subsets for the FD
set {A → B,C → D} over R(A,B,C,D) does not
admit an FPRAS, unless NP = RP [16]. Therefore,
we conclude that the same holds for the problem of
computing Shapley I(D, {A → B,C → D}, IMC, f).

As said earlier, Table 1 summarizes the complex-
ity results for both the exact and approximate vari-
ants of the problems we studied here.

4.4 Contribution to Cleaning Actions
We presented the theoretical results of Livshits and
Kimelfeld [45] on the contribution of facts to incon-
sistency. The application of the Shapley value to
machinery for data repairing has been proposed and
studied by Deutch et al. [23] from a different angle
and a practical treatment. They aimed for explain-
ing the individual actions of a data-repairing sys-
tem, and particularly its decision to change a given
entry in the database. They used the Shapley value
to quantify the contribution of relation cells and the
ICs to the decision to change a value. Hence, cells
and ICs are the players in the coalitional game of
causing the repairing algorithm to change a given
cell. While their solutions do not have theoretical
guarantees, they give heuristics that apply for a gen-
eral setting: ICs can be any set of denial constraints
(that widely generalize FDs) and repairing can be
done by an arbitrary black-box algorithm.

5 Concluding Remarks
We presented recent work on the application of the
Shapley value to database tasks. Our focus has

been on the theoretical analysis of the complexity
of the underlying computational problems, and we
discussed mainly two of them: computing the con-
tribution of a fact to a query answer, and comput-
ing its contribution to inconsistency. While there
has been considerable research effort on the prac-
tical realization of the first challenge [2, 22, 24, 25],
the practical aspects of the contribution to incon-
sistency are yet to be explored (with the exception
of Deutch et al. [23] that, as we explained, studied a
problem that is related but different). Hence, many
problems remain for future research, both on the
theoretical side (e.g., the open problems we listed
throughout the manuscript) and the practical one.

Notably, the framework for applying the Shap-
ley value to measuring contribution to query an-
swers [43] has been applied for proposing new bib-
liometric metrics [25]. The authors did not use the
algorithms proposed by Deutch et al. [24] (which
are the most efficient to date, to the best of our
knowledge), but instead computed the values di-
rectly from the definition. In this context, we be-
lieve that it is important to facilitate the use of ex-
isting algorithms by incorporating them into Post-
gres extensions such as ProvSQL [62].

Acknowledgements. Much of the work that we
described in this survey was supported by the Is-
rael Science Foundation (ISF), Grant 768/19, and
the German Research Foundation (DFG) Project
412400621 (DIP program). L. Bertossi has been
funded by ANID - Millennium Science Initiative
Program- Code ICN17002.

6 References
[1] A. Amarilli. Uniform reliability for unbounded

homomorphism-closed graph queries. In ICDT, volume
255 of LIPIcs, pages 14:1–14:17, 2023.

[2] D. Arad, D. Deutch, and N. Frost. LearnShapley:
Learning to predict rankings of facts contribution
based on query logs. In CIKM, pages 4788–4792, 2022.

[3] M. Arenas, P. Barceló, L. Bertossi, and M. Monet. The
tractability of SHAP-score-based explanations for
classification over deterministic and decomposable
boolean circuits. In AAAI, pages 6670–6678, 2021.

[4] M. Arenas, P. Barceló, L. Bertossi, and M. Monet. On
the complexity of SHAP-score-based explanations:
Tractability via knowledge compilation and
non-approximability results. Journal of Machine
Learning Research, 24(63):1–58, 2023.

[5] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent
query answers in inconsistent databases. In PODS,
pages 68–79. ACM Press, 1999.

[6] O. Benjelloun, A. D. Sarma, A. Y. Halevy,
M. Theobald, and J. Widom. Databases with
uncertainty and lineage. VLDB J., 17(2):243–264,
2008.

[7] L. Bertossi. Database repairs and consistent query
answering: Origins and further developments. In

D. Suciu, S. Skritek, and C. Koch, editors, PODS,
pages 48–58. ACM, 2019.

[8] L. Bertossi. Repair-based degrees of database
inconsistency. In LPNMR, volume 11481 of LNCS,
pages 195–209. Springer, 2019.

[9] L. Bertossi. Specifying and computing causes for query
answers in databases via database repairs and
repair-programs. Knowl. Inf. Syst., 63(1):199–231,
2021.

[10] L. Bertossi. Attribution-scores and causal
counterfactuals as explanations in artificial
intelligence. In Bertossi, L., Xiao, G. (eds.) Reasoning
Web. Causality, Explanations and Declarative
Knowledge. Springer LNCS 13759, pages 1–23, 2023.

[11] L. Bertossi, J. Li, M. Schleich, D. Suciu, and
Z. Vagena. Causality-based explanation of
classification outcomes. In DEEM@SIGMOD, pages
6:1–6:10. ACM, 2020.

[12] L. Bertossi and B. Salimi. Causes for query answers
from databases: Datalog abduction, view-updates, and
integrity constraints. Int. J. Approx. Reason.,
90:226–252, 2017.

[13] L. Bertossi and B. Salimi. From causes for database
queries to repairs and model-based diagnosis and back.
Theory Comput. Syst., 61(1):191–232, 2017.

[14] P. Buneman and W. Tan. Data provenance: What
next? SIGMOD Rec., 47(3):5–16, 2018.

[15] N. Burkart and M. F. Huber. A survey on the
explainability of supervised machine learning. J. Artif.
Intell. Res., 70:245–317, 2021.

[16] M. Calautti, E. Livshits, A. Pieris, and M. Schneider.
Counting database repairs entailing a query: The case
of functional dependencies. In PODS, pages 403–412.
ACM, 2022.

[17] H. Chockler and J. Y. Halpern. Responsibility and
blame: A structural-model approach. J. Artif. Intell.
Res., 22:93–115, 2004.

[18] L. Cholvy, L. Perrussel, W. Raynaut, and J.-M.
Thévenin. Towards consistency-based reliability
assessment. In AAMAS, pages 1643–1644. ACM, 2015.

[19] N. Dalvi and D. Suciu. The dichotomy of probabilistic
inference for unions of conjunctive queries. Journal of
the ACM (JACM), 59(6):1–87, 2013.

[20] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic
databases: Diamonds in the dirt. Commun. ACM,
52(7):86–94, 2009.

[21] A. Darwiche. New advances in compiling CNF to
decomposable negation normal form. In Proceedings of
ECAI, pages 328–332. Citeseer, 2004.

[22] S. B. Davidson, D. Deutch, N. Frost, B. Kimelfeld,
O. Koren, and M. Monet. ShapGraph: An holistic view
of explanations through provenance graphs and
Shapley values. In SIGMOD Conference, pages
2373–2376. ACM, 2022.

[23] D. Deutch, N. Frost, A. Gilad, and O. Sheffer.
Explanations for data repair through Shapley values.
In CIKM, pages 362–371. ACM, 2021.

[24] D. Deutch, N. Frost, B. Kimelfeld, and M. Monet.
Computing the Shapley value of facts in query
answering. In SIGMOD, pages 1570–1583, 2022.

[25] D. Dosso, S. B. Davidson, and G. Silvello. Credit
distribution in relational scientific databases.
Information Systems, 109:102060, 2022.

[26] O. Goldreich, S. Goldwasser, and D. Ron. Property
testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998.

[27] J. Grant and A. Hunter. Measuring inconsistency in
knowledgebases. J. Intell. Inf. Syst., 27(2):159–184,
2006.

[28] J. Grant and A. Hunter. Measuring consistency gain
and information loss in stepwise inconsistency

resolution. In ECSQARU, volume 6717 of LNCS,
pages 362–373. Springer, 2011.

[29] J. Grant and A. Hunter. Distance-based measures of
inconsistency. In ECSQARU, volume 7958 of LNCS,
pages 230–241. Springer, 2013.

[30] J. Grant and A. Hunter. Analysing inconsistent
information using distance-based measures. Int. J.
Approx. Reasoning, 89:3–26, 2017.

[31] T. J. Green and V. Tannen. The semiring framework
for database provenance. In E. Sallinger, J. V. den
Bussche, and F. Geerts, editors, PODS, pages 93–99.
ACM, 2017.

[32] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini,
F. Giannotti, and D. Pedreschi. A survey of methods
for explaining black box models. ACM Comput. Surv.,
51(5):93:1–93:42, 2019.

[33] J. Y. Halpern. Actual Causality. MIT Press, 2016.
[34] J. Y. Halpern and J. Pearl. Causes and explanations:

A structural-model approach. part i: Causes. British
Journal for the Philosophy of Science, 56(4):843–887,
2005.

[35] J. Y. Halpern and J. Pearl. Causes and explanations:
A structural-model approach. part ii: Explanations.
British Journal for the Philosophy of Science,
56(4):889–911, 2005.

[36] A. Hunter and S. Konieczny. Shapley inconsistency
values. In KR, pages 249–259. AAAI Press, 2006.

[37] A. Hunter and S. Konieczny. Measuring inconsistency
through minimal inconsistent sets. In KR, pages
358–366. AAAI Press, 2008.

[38] A. Hunter and S. Konieczny. On the measure of
conflicts: Shapley inconsistency values. Artif. Intell.,
174(14):1007–1026, 2010.

[39] G. W. Imbens and D. B. Rubin. Causal Inference for
Statistics, Social, and Biomedical Sciences: An
Introduction. Cambridge University Press, 2015.

[40] M. Khalil and B. Kimelfeld. The complexity of the
Shapley value for regular path queries. arXiv preprint
arXiv:2212.07720, 2022.

[41] B. Kimelfeld, J. Vondrák, and R. Williams.
Maximizing conjunctive views in deletion propagation.
In PODS, pages 187–198. ACM, 2011.

[42] S. Konieczny, J. Lang, and P. Marquis. Quantifying
information and contradiction in propositional logic
through test actions. In IJCAI, pages 106–111. Morgan
Kaufmann, 2003.

[43] E. Livshits, L. Bertossi, B. Kimelfeld, and M. Sebag.
The Shapley value of tuples in query answering. Log.
Methods Comput. Sci., 17(3), 2021.

[44] E. Livshits and B. Kimelfeld. Counting and
enumerating (preferred) database repairs. In PODS,
pages 289–301. ACM, 2017.

[45] E. Livshits and B. Kimelfeld. The Shapley value of
inconsistency measures for functional dependencies.
Log. Methods Comput. Sci., 18(2), 2022.

[46] E. Livshits, B. Kimelfeld, and S. Roy. Computing
optimal repairs for functional dependencies. ACM
Trans. Database Syst., 45(1):4: 1–4: 46, 2020.

[47] E. Livshits, B. Kimelfeld, and J. Wijsen. Counting
subset repairs with functional dependencies. J.
Comput. Syst. Sci., 117:154–164, 2021.

[48] E. Livshits, R. Kochirgan, S. Tsur, I. F. Ilyas,
B. Kimelfeld, and S. Roy. Properties of inconsistency
measures for databases. In SIGMOD, pages 1182–1194.
ACM, 2021.

[49] S. M. Lundberg, G. G. Erion, H. Chen, A. J. DeGrave,
J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,

N. Bansal, and S. Lee. From local explanations to
global understanding with explainable AI for trees.
Nat. Mach. Intell., 2(1):56–67, 2020.

[50] S. M. Lundberg and S. Lee. A unified approach to
interpreting model predictions. In NIPS, pages
4765–4774, 2017.

[51] R. T. B. Ma, D. Chiu, J. C. Lui, V. Misra, and
D. Rubenstein. Internet economics: The use of Shapley
value for ISP settlement. IEEE/ACM Trans. Netw.,
18(3):775–787, 2010.

[52] A. Meliou, W. Gatterbauer, K. F. Moore, and
D. Suciu. The complexity of causality and
responsibility for query answers and non-answers.
Proc. VLDB Endow., 4(1):34–45, 2010.

[53] D. Minh, H. Wang, Y. Li, and T. Nguyen. Explainable
artificial intelligence: a comprehensive review.
Artificial Intelligence Review, 55, 11 2021.

[54] C. Molnar. Interpretable Machine Learning.
https://christophm.github.io/interpretable-ml-book/,
2019.

[55] M. Monet. Solving a special case of the intensional vs
extensional conjecture in probabilistic databases. In
Proceedings of PODS, pages 149–163, 2020.

[56] S. Moretti, F. Patrone, and S. Bonassi. The class of
microarray games and the relevance index for genes.
Top, 15(2):256–280, 2007.

[57] R. Narayanam and Y. Narahari. A Shapley
value-based approach to discover influential nodes in
social networks. IEEE Trans Autom. Sci. Eng.,
8(1):130–147, 2011.

[58] J. Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition, 2009.

[59] A. Reshef, B. Kimelfeld, and E. Livshits. The impact
of negation on the complexity of the Shapley value in
conjunctive queries. In PODS, pages 285–297. ACM,
2020.

[60] A. E. Roth, editor. The Shapley value : essays in
honor of Lloyd S. Shapley. Cambridge University
Press, 1988.

[61] B. Salimi, L. Bertossi, D. Suciu, and G. V. den Broeck.
Quantifying causal effects on query answering in
databases. In TaPP. USENIX Association, 2016.

[62] P. Senellart, L. Jachiet, S. Maniu, and Y. Ramusat.
ProvSQL: Provenance and probability management in
PostgreSQL. Proc. VLDB Endow., 11(12):2034–2037,
2018.

[63] L. S. Shapley. A value for n-person games. In H. W.
Kuhn and A. W. Tucker, editors, Contributions to the
Theory of Games II, pages 307–317. Princeton
University Press, Princeton, 1953.

[64] P. Struss. Model-based problem solving. In Handbook
of Knowledge Representation, 2008.

[65] D. Suciu, D. Olteanu, C. Ré, and C. Koch.
Probabilistic Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[66] M. Thimm. On the compliance of rationality
postulates for inconsistency measures: A more or less
complete picture. KI, 31(1):31–39, 2017.

[67] T. van Campen, H. Hamers, B. Husslage, and
R. Lindelauf. A new approximation method for the
Shapley value applied to the WTC 9/11 terrorist
attack. Soc. Netw. Anal. Min., 8(1):3:1–3:12, 2018.

[68] G. Van den Broeck, A. Lykov, M. Schleich, and
D. Suciu. On the tractability of SHAP explanations. J.
Artif. Intell. Res., 74:851–886, 2022.

[69] M. Y. Vardi. The complexity of relational query
languages. In STOC, pages 137–146. ACM, 1982.

	Introduction
	Basic Concepts
	Contribution to Database Queries
	Exact Computation
	Reduction to Probabilistic Databases
	Calculation via Knowledge Compilation
	Hardness and Dichotomy

	Approximation
	Remarks

	Contribution to Database Inconsistency
	Inconsistency Measures
	Complexity of Exact Computation
	Complexity of Approximation
	Contribution to Cleaning Actions

	Concluding Remarks
	References

