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ABSTRACT
This paper presents EmbHD, a library for embedded Hy-
perdimensional Computing research on severely resource-
constrained computing devices. The increasing demand for
power-efficient and low-latency machine learning in mo-
bile applications has driven the need for offloading compu-
tation onto edge devices. The library aims to enable effi-
cient machine learning inference and training on resource-
constrainedmicrocontrollers by leveraging hardware-optimized
Hyperdimensional operations.

CCS CONCEPTS
• Computer systems organization → Embedded soft-
ware; • Computing methodologies→ Machine learning.
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1 INTRODUCTION
The growing need for power-efficient, low-latency machine 
learning (ML) in mobile applications has been the driving
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force behind the push for offloading computation onto the
"edge" [2]. Many of these mobile applications fall into the
category of the Internet of Things (IoT), an area dominated by
smart-sensing devices which primarily perform inferences
on sensor data [9]. Deployments such as these simply do not
(or ideally, should not) require cloud computing resources;
a service which requires a non-trivial amount of energy to
access.

The timeless engineering challenge has been understand-
ing how we can get the most out of our mobile devices.
What is the greatest amount of useful computation we can
do for the least amount of power? This type of performance
maximization involves both hardware and software optimiza-
tions. In terms of hardware, one of the most impactful design
choices one can make is the target computer.

Fully-fledged multi-core systems with application proces-
sors may offer the best raw speed, but can be power hun-
gry and expensive at scale. Most IoT deployments opt for
more energy-efficient cores that trade lesser performance
for greater sustainability. Historically relegated to simple 8
and 16-bit machines, the newest generation of MCUs have
seen a transition to more capable 32-bit processors, with
the ARM Cortex-M family being amongst the most popular.
While these single-core systems running at tens of MHz may
sit towards the bottom of the computational performance
ladder, they are unparalleled in power-efficiency.
Figuring out how to run modern edge computing work-

loads (ie. ML inference) on resource-constrained MCUs has
been an active area of research in recent years. Since 2019
this concept has become known as TinyML, which seeks to
open the prospect of "executing optimized ML models on
ultra-low-power (<1mW) MCUs with minimal power con-
sumption" [4]. MCU-class devices typically operate with
<100KB of memory and 1-2MB of flash storage. The ability
to perform the same ML task that would run on a multi-core
system on an MCU instead, is quite powerful. The energy
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spent per event would be on the order of milliwatts instead
of watts.

Current TinyML solutions such as TensorFlow Lite Micro
(TFLM) offer a workflow in which one can train and export
a quantized ML model to an MCU for inference [11]. This
paper proposes an alternative to traditional embedded
neural network ML libraries by employing hardware-
optimized Hyperdimensional Computing (HDC) oper-
ations in order to support efficient ML inference and
training on an MCU using statically allocated memory.

2 HYPERDIMENSIONAL COMPUTING
Hyperdimensional Computing is a "brain-inspired" form of
computation that takes advantage of random, high-dimensional
(D ≥ 10,000) binary vectors [8] known as hypervectors. Al-
though in its infancy, HDC has been gaining attention as an
alternative or replacement to traditional machine learning
algorithms [5]. Compared to conventional neural networks,
operations on binary hypervectors are highly efficient and
hardware friendly as they only require basic bitwise opera-
tions (OR and XOR).

2.1 Operations
Hyperdimensional Computing can be imagined as a pseudo-
instruction-set-architecture for a computer that operates on
very large registers (hypervectors). Binding and bundling are
two of the most commonly used operations, or instructions,
in HDC.

Binding. A function denoted as ⊗ : H𝑎 ×H𝑏 → H𝑦 which
takes two points 𝑎 and 𝑏 in hyperspace (hyperdimensional
space)H and outputs a point 𝑦 which is dissimilar to both
input points [12]. Binding is reversible and is used to asso-
ciate two hypervectors together. For binary hypervectors,
elements can be bound with XOR operations.

Bundling. A function denoted as ⊕ : H𝑎 +H𝑏 → H𝑦 which
takes two points 𝑎 and𝑏 in hyperspaceH and outputs a point
𝑦 which is similar to both input points [12]. Bundling is used
to combine a set of points. For binary hypervectors, elements
can be bundled with OR operations.

2.2 Encoding
In order to use HDC for ML, a mapping from one’s data to
hyperspace must be created, which is known as encoding [8].
There are certain helpful mathematical properties of vectors
in hyperspace which influence the optimal encoding method.

Random Hypervectors. Given a dimension large enough,
any two randomly chosen hypervectors will be approxi-
mately orthogonal [8]. If 𝐷 = 10, 000, then each hypervector
differs by about 5,000 bits from each other. These are known
as random hypervectors. Because we are operating on binary

hypervectors, one can calculate the distance between any
two hypervectors by finding their hamming distance. Ran-
dom hypervectors are useful when representing data whose
values have no correlation with each other.

Level Hypervectors. If one were to take a single random
hypervector 𝑁0 and then flip a few bits to create another
hypervector 𝑁1 ≈ 𝑁0, then 𝑁1 ≠ 𝑁0 but it would remain
similar. Let 𝑘 be the integer denoting the index in which a
hypervector was created. If one were to repeat this process
in which each new hypervector is a copy of the last with the
addition of a few random bit flips, any hypervector 𝑁𝑘 will
be similar to other hypervectors whose index lies within a
certain close range. But as a hypervector’s index lies further
away from 𝑘 , the pair become increasingly dissimilar. Two
indices far away from each other will have little to no sim-
ilarity. These are known as level hypervectors and they are
useful when representing data in a spectrum where similar
values in reality should preserve similarity in hyperspace.

Figure 1: HDC Encoding

Although other approaches exist, mapping data to random
and level hypervectors is one of the most common encoding
methods for HDC. Both of these hypervector types are suffi-
cient for encoding many 2D samples which consist of feature
vectors {𝑓0, 𝑓1, . . . 𝑓𝑛}. A specific feature’s index in this vec-
tor is mapped to a corresponding random hypervector, and
a feature’s value is associated with a level hypervector. An
index and value hypervector are bound for each feature and
then all of the products are bundled into a single hypervector
representing the encoded sample. This process can be as seen
in Figure 1.

Training and Inference
After encoding a sample, the resulting feature vector can
then be bundled with a class hypervector corresponding to
the feature’s label during training. As training progresses,
each class hypervector becomes increasingly similar to its
constituent sample hypervectors. These class hypervectors
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essentially become the weights of our ML model which can
be updated with a single bundling operation. In order to
classify a sample hypervector, we can simply see which class
hypervector it is most similar to.
An additional benefit of operating on large hypervectors

is that they are inherently robust to random bit-flips. Recent
work has shown that quality loss on noisy hardware is con-
siderably greater for deep neural networks when compared
to HDC [7]. This is particularly beneficial for intermittent
computing systems which do not have reliable sources of
energy and may experience data corruption during failures.

3 TENSORFLOW LITE MICRO
TensorFlow Lite Micro (TFLM) is one of the most popular
open-source ML frameworks for embedded systems. Devel-
oped in 2020, it aims to address the limitations of prior ML
tools [3]. TFLM provides a pipeline for training and export-
ing statically-allocated, quantized neural network models to
microcontrollers, as well as a target-optimized interpreter
for running inferences on the model.

4 EMBHD
This paper proposes an alternative workflow for training
and running ML models on microcontrollers by relying on
Hyperdimensional Computing instead of traditional neural
networks. EmbHD is essentially a hyperdimensional virtual
machine written in C that enables HDC operations on mi-
crocontrollers.
Currently, MCUs have been constrained to only running

ML inferences locally. Training algorithms such as gradient
descent are too resource heavy and slow to efficiently run on
MCUs during deployment. With HDC, model updates can
happen with a single addition which greatly simplifies the
training process. Enabling on-device training helps to make
MCUs more capable edge computing machines and can open
the door for smarter IoT applications.

4.1 System Design
EmbHD is built upon a generalized matrix operation-based
framework. Although this library is primarily for Hyperdi-
mensional Computing, matrix representations are preferred
for maximum code re-usability for other applications and
for future additions to the library that may extend beyond
HDC.

Hypervector Representations. EmbHD uses a human-
readable format for storing hypervector parameters and data
in the form of matrices. Matrices are structs which contain
an array of MData structs that provide a simple way to ac-
cess a wide range of 32-bit data representations without
type-casting. Consequently, all matrices are 32-bit-aligned.
A single matrix is sufficient to represent a hypervector, or

an entire hyperspace. Here is an example of how to create a
𝐷 = 10, 000 binary hypervector using an MData array and a
Matrix struct:

MData binary_hv_data[313];
Matrix binary_hv = {

.dtype = MBin,

.height = 1,

.width = 10000,

.size = 313,

.data = binary_hv_data;
};

Matrices can exist in both volatile and non-volatile mem-
ory. EmbHD also has a Python library to export PyTorch
Tensors to a Matrix H file which can be included in one’s
application source code.

HDC Operations. Because EmbHD is built upon a general
matrix data representation, it contains functions for adding
and multiplying matrices which are effectively the same
as bundling and binding for Hyperdimensional Computing.
These functions are called MAdd and MMult respectively, and
they (as well as other matrix functions in EmbHD) operate
on single matrix rows at a time. Here’s an example of how
to multiply two rows:

MMult(&dest, 0, &src0, 0, &src1, 0);

In this example, we are multiplying the first row of the
src0matrix with the first row of the src1matrix and storing
the result in the first row of the dest matrix. In terms of
HDC, we can consider both src0 and src1 to be hyperspaces
and we are selecting two hypervectors from each of them to
bind.
Although EmbHD can be compiled for many different

architectures, it was designed with the popular ARM Cortex-
M4 in mind. This processor’s DSP instructions make it an
ideal target for low-power HDCML applications. The energy
savings from these DSP instuctions can be seen in Figure 2
which compares the Cortex-M4’s DSP instructions versus
the equivalent emulated code to perform the same task.

Because HDC operations involve adding and multiplying
large hypervectors, DSP instructions can help to parralelize
this when using integer data representations. Using binary
hypervectors offer even more parralelization as one can op-
erate on 32 dimensions per each processor instruction.

4.2 Training
Training anHDCmodel can be done both offline or on-device.
EmbHD was designed to pair well with the Python Hyperdi-
mensional Computing library TorchHD [6]. Similarly to the
Tensorflow to TensorFlow Lite Micro pipeline, one can train
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Figure 2: Comparing Cortex-M4 DSP instructions with
manual loops

an HDC ML model in TorchHD and export it to a Matrix
representation for use with EmbHD.
Regardless of whether one chooses to train offline or on-

device, one must still export the hypervectors necessary for
encoding sample data. This can also be done with TorchHD
like so:

import torch, torchhd
import export_matrix_lib

DIMENSION = 10000
NUM_HV = 100

hv = torchhd.random(NUM_HV, DIMENSION)
convert_mdata(hv, "randhv", static=True)

In this example we create a random hyperspace of 𝐷 =

10, 000 which contains 100 hypervectors using TorchHD.
We then call the EmbHD function convert_mdata which
will convert the Tensor returned by TorchHD into Matrix
representation. The second string argument sets the variable
name of the Matrix struct for reference in the application
source code. The final argument static is a Boolean which
tells the function to add additional C attributes to place the
generated Matrix into flash memory if set to True.
For the purposes of encoding, one can pre-generate and

export random and level hyperspaces and store them in flash
memory as they will never change. If training on-device, the
weights (or class) Matrix can be stored in RAM to allow for
model updates.

Table 1: Details of themicrocontroller testing platform,
a SparkFun RedBoard Artemis.

CPU RAM Flash Clock
ARM Cortex-M4F 1M 384K 48/96MHz

Table 2: Datasets Used for Comparison. MNIST is im-
ages of handwritten numbers, and ISOLET is record-
ings of spoken letters.

Name |Features| |Classes| |Training| |Testing|
MNIST 768 10 60,000 10,000
ISOLET 617 26 6,238 1,559

4.3 Inference
After a sample datum has been encoded to hypervector form,
inference can be performed by finding which class hyper-
vector the encoded sample is closest to. When using binary
hypervectors, one can find this by using hamming distance.
With EmbHD this looks like the following:

unsigned int distance;
MHamDist(&distance, &src0, 0, &src1, 0);

MHamDist gives us the number of differrent bits between
the first row of thematrix src0 and the first row of thematrix
src1, or in terms of HDC it gives us the distance between the
first hypervectors in the src0 and src1 hyperspaces. This
distance is stored by reference to an integer variable.

5 EVALUATION
To evaluate the performance of EmbHD and the trade-offs be-
tween using HDC versus traditional neural network libraries,
we compare EmbHD with one of the most popular embed-
ded neural network ML libraries: TensorFlow Lite Micro.
Both EmbHD and TFLM were compared on a SparkFun Red-
Board Artemis development board which contains an Ambiq
Apollo3 microcontroller. The specifications of this MCU can
be seen in Table 1. EmbHD was compiled with ARM DSP
instructions enabled and the TFLM cortex_m_generic target
was compiled with the ARM CMSIS-NN optimized kernel.

5.1 Experimental Setup
The performance of EmbHD and TensorFlow Lite Micro were
compared over the MNIST and ISOLET datasets. Character-
istics for these datasets can be found in Table 2. TorchHD
was used to train models offline for EmbHD using baseline
single-pass HDC. The standard TensorFlow to TensorFlow
Lite Micro pipeline was used to train neural network models
offline for TFLM. EmbHD was compared with TFLM using
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Table 3: Performance Results of EmbHD and TFLM

Dataset Library Parameters Accuracy µJ per Inference

MNIST
TFLM Float 1 hidden layer of 64 nodes 96% 20.6
TFLM Quant 96% 6.05
EmbHD 𝐷 = 7, 000 80% 2036.68

ISOLET
TFLM Float 1 hidden layer of 128 nodes 95% 32.82
TFLM Quant 95% 11.17
EmbHD 𝐷 = 10, 000 81% 1999.86

Figure 3: Energy comparison of TensorFlow Lite Micro
versus EmbHDper ML inference

both floating point and quantized integer weights. All three
models had their performance averaged over 10 inferences
and had their power consumption measured using a Rocket-
Logger.

5.2 Results
The results of the library comparisons over the MNIST and
ISOLET datasets can be found in Table 3. The "Parameters"
column in this table describes the how the models were
created. The "Accuracy" column lists each model’s respective
accuracy over the entire testing data for each dataset. The last
column "µJ per Inference" is the average energy expended
per each model inference on the Apollo3 microcontroller
used for testing.

At the surface level, EmbHD performed signifcantly worse
than TFLM using floats and quantized weights. On both
datasets EmbHD saw about 15% lower accuracy than TFLM
and saw two orders of magnitude more energy expended
per inference, as can be seen in Figure 3. These results aren’t
too surprising as Hyperdimensional Computing is still a

young area of machine learning and we are still trying to
understand the best methods for using it. There already exist
many considerable improvements [1, 7, 10] over baseline
HDC, however many of these use HDC in addition to a
neural network front-end. This paper is primarily focused
on comparing the pure spirit of HDC to traditional embedded
neural network libraries.

Instead, it makes more sense to reason about these results
as trade-offs. Unlike traditional ML libraries like TensorFlow
Lite Micro, EmbHD allows one to actually train a model on
a deployed microcontroller. This comes at a cost of accuracy
and energy. Although Hyperdimensional Computing is in-
herently highly hardware friendly and highly parallel, it still
requires significantly more mathematical operations per en-
coding and inference when compared to a small single-layer
neural network.

6 CONCLUSION
EmbHD is not a direct replacement for libraries such as Ten-
sorFlow LiteMicro, but it serves as an alternativewith unique
characteristics distinct from neural network libraries. For
edge computing applications that require devices to be able
to autonomously update their models, Hyperdimensional
Computing can offer a promising future. The ultimate goal
of EmbHD is to make future HDC research on the edge easier
and to provide a starting point for others looking to move
their HDC work onto an embedded system.
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