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When the shape parameter,  a, is integral, generating 
gamma random variables with a digital computer is 
straightforward. There is no simple method for 
generating gamma random variates with non-integral 
shape parameters. A common procedure is to approxi- 
mately generate such random variables by use of  the 
so-called probability switch method. Another procedure, 
which is exact, is due to Jiihnk. This paper presents a 
rejection method for exactly generating gamma random 
variables when a is greater than 1. The efficiency of  
the rejection method is shown to be better than the 
efficiency of JiJhnk's method. The paper concludes that 
when a is non-integral the following mix cf  procedures 
yields the best combination of  accuracy and efficiency: 
(1) when a is less than 1, use J i ihnk's  method; (2) when 
1 is less than a and a is less than 5, use the rejection 
method; (3) when a is greater than 5, use the probabil- 
i ty switch method. 
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It is understood that when one says a method exactly gener- 
ates random variables on a computer, that the exactness is limited 
by the computer used, and the randomness of the underlying 
pseudo-random number generator, but not by the method itself. 

2 In this paper the phrase uniform random variable will be 
taken to be a random variable R, uniformly distributed between 
0 and 1. The notation r~ will be taken to mean the ith value of a 
uniform random variable. 

This paper compares  three methods  for  compute r  
generation of  gamma  r a n d o m  variables with non-  
integral shape parameters.  The gamma distr ibution 
in generalized fo rm can be written as 

g(y) = ( ~ ( y _ ~ ) ~ - x  exp( - -~ (y - -~) ) /F (o0) ,  (1) 
y>__ ~, a , ~ ,  > 0 .  

Note  that  it is sufficient to generate gamma  variables 
f rom the distr ibution 

f (x )  = (x~-Xe-'/F(a)), x > 0, a > 0, (2) 

and make a simple change of  variables 

y = (x/H) -t- ~ (3) 

to obtain the more  general distribution. Thus,  all 
methods  will be compared  by generating variables 
f rom (2). 

I f  the shape parameter  a is an integer, there is a 
simple procedure for generating gamma  variables [1]. 
However,  if o~ is non-integral,  there are considerable 
difficulties with the generating procedure.  For  some 
some time, no exact method  was known and approxi-  
mate  methods  were used. The most  c o m m o n  method,  
which is used by the SIMSCRIPT II [2] and GERT [3] simu- 
lation languages, is the so-called probabil i ty switch 
method  [1]. This me thod  proceeds as follows: 
1. Let  m be the largest integer less than a (denoted 
by m = [a]). 
2. Let  q = o ~ -  m. With probabil i ty q, generate 
gamma  variables with shape parameter  m + 1. 
3. With probabil i ty ( 1 -  q), generate gamma vari- 
ables with shape parameter  m. 

This mixture of  gamma  variables with integral 
shape parameters  which bracket  the true value of  
will approximate  the desired gamma  distr ibution.  
This method  will only work  when a >_ 1. 

Another  method  has been developed by J6hnk  
which will exactly 1 generate gamma variables with 
non-integral  shape parameters  [4, 5]. The a lgor i thm 
given below is a slight modificat ion of  J6hnk ' s  al- 
gor i thm (see [5, p. 3]), but  it achieves the same result 
and will be referred to as J6hnk ' s  method.  

Beta-variable Algorithm B(a, b +  l) 
Step 1. i = 1. 
Step 2. Generate  a uni form r a n d o m  number  2 r~ and 

l l a  set x = ri . 
Step 3. Generate  a uni form r andom number  r~+l and 

l / b  
y = r i + l .  

Step 4. If  x + y < I, go to 6; otherwise go to 5. 
Step 5. i--~ i + 2, go to 2. 
Step 6. Done.  x is a beta variate f rom B(a ,b+l ) .  
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Gamma-var iable  Algorithm with non-integral shape 
parameters 
Step 1. Set Z = - l o g  I I~g l  r~. The ri are uniform 

random numbers, z = 0 if o~ < 1. 
Step 2. Generate a random number x from B(o~--[a], 

2-~+f. /) ,  using the above beta algorithm. 
Step 3. Generate uniform random numbers rl and 

r2 , and set y = - - log (fir2). 
Step 4. (Z+xy) is the desired gamma variable. 

It  can easily be shown, by a t ransformation of vari- 
ables, that Step 4 does indeed yield a gamma random 
variable with the proper shape parameter.  Also note 
that if a < 1, Z = 0, and Steps 2 through 4 yield the 
proper gamma random variable. This statement is 
confirmed in Appendix B. Thus, J6hnk's  method is 
exact for all values of a. 

Berman [5] compared the efficiency of J6hnk's  
method with the probabili ty switch method. He found 
that for values of a f rom 1.5 to 10.5 in steps of 1.0, 
J6hnk's  method required f rom 2.1 to 3.1 times as long 
as the probabili ty switch method. The actual time re- 
quired for JShnk's method was less than 2 cpu sec 
greater than the probabili ty switch method for generat- 
ing 1000 random variates on an IBM 360/65. This 
amount  of time increase is not unimportant  when con- 
sidered over a period of time, if the method is used in a 
number  of large simulation runs. 

Berman's  recommendat ion was that, except when 
computat ional  efficiency is much more important  than 
accuracy, J6hnk's  method be used for 1.0 < a < 5.0. 
The probabili ty switch method should be used for 

> 5.0. The accuracy of the probabili ty switch method 
is quite good for a > 5.0. (Note that when a is an 
integer, both methods reduce to the same thing.) 

An alternate method will now be derived, based on 
the rejection technique [6]. 

General Rejection Method 

Let n(x) and m(y) be probabili ty density functions, 
and let T(x) be an arbitrary function. Then: 

Step 1. Select, at random, an x out of  n(x). 
Step 2. Select, independently, a y out of m(y). 
Step 3. I f  y < T(x), accept x. Otherwise repeat Steps 

1 and 2. 

Justification: Le t f (x )  be the desired probability density 
for the accepted values of the random variable x. 
f(x) is, of course, a conditional distribution, but the 
condition that x is an accepted value will not be spe- 
cifically indicated by notation. 

The probabili ty of  selecting an x with a value in the 
interval (x,x-q-dx) is n(x) dx. The probabili ty of  accept- 
ing this selected value is 

probabil i ty y < T(x) = M[T(x)] 

where M(y) is the cumulative distribution function 
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for the random variable Y. Thus, the probabili ty of 
selecting an x in the interval (x,x+dx) and accepting 
this value is: 

M[T(x)]n(x) dx (4) 

The probability of accepting any value of x on any 
given trial is 

E = f ~  M[r(x)]n(x) dx. (5) 

The rejection process is a sequence of Bernoulli trials, 
and E represents the expected fraction of variables 
accepted in a sequence of trials. Thus, E is called the 
efficiency of the test. 

Applying the above results, it can be seen that the 
probabili ty that an accepted value of X is in the interval 
(x, x+dx) is: 

f(x) dx = (M[T(x)]n(x) dx/E). (6) 

It  is clear that if a rejection technique is to be useful 
it must be efficient. Therefore, it should be easy to 
sample f rom the distributions n(x) and m(y), and E 
must be as close to one as possible. In addition 

M[T(x) ]n(x) 

must be a function that is nonzero over the range of 
x that is desired for f(x). It is rather difficult to es- 
tablish procedures for designing a rejection technique, 
based on the general procedure just described, that  is 
most  efficient for any given desired distribution f(x). 
There are simply too many degrees of freedom in the 
choice of  procedure? A somewhat  simpler procedure 
can be derived by letting Y be a uniform random vari- 
able. Thus, in the notation of the previous rejection 
procedure M[T(x)] = T(x), where T(x) bounded so 
that T(x) < 1. In order to make the design of the 
rejection procedure simple, T(x) is defined as: 

T(x) = f(x)/Kn(x) (7) 

where K is greater than or equal to the maximum value 
off(x)/n(x). Since f(x) and n(x) are nonzero for the 
same values of x, it can easily be seen that K > 1. 
Otherwise, 

f(x)/n(x) < K < 1 (8) 

for all x. This would imply 

f~ , f (x )  dx < f~_. n(x) dx. (9) 

Equation (9) is a contradiction, since f(x) and n(x) 
are both probabili ty density functions. The simplified 
rejection procedure can now be described as follows: 

Step 1. Select at r andom an x f rom the probabil i ty 
density function n(x). 

Step 2. Generate a uniform random number  r. 
Step 3. I f  r < f(x)/Kn(x), accept x. Otherwise repeat 

Steps 1 and 2. 

3 Note in Appendix B that the beta-variable algorithm of 
J6hnk's method is an example of this type of rejection technique. 
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The efficiency of this rejection procedure is: 

E = f ~  ( f (x) /Kn(x))n(x)  dx = f : ~ f ( x ) / K  = 1/K 
(10) 

Thus, the efficiency is the minimum value of n(x) / f (x) .  
This suggests that n(x) should be chosen to be "simi- 
lar"  to f ( x )  so that the minimum of n(x) / f (x)  is close 
to 1. However, n(x) must be easy to sample from by 
use of a computer,  or the purpose of choosing n(x) 
"similar" to f ( x )  will be defeated. 

The simplified rejection procedure will now be 
applied to the generation of random variables from 
the gamma distribution with a non-integral shape 
parameter  a > 1. 

The distribution n(x) is chosen to be 

n(x) = (px'~-le-~/(m--1)!) + ((1--p)xme-~/m!),  (11) 
x > O  

where m = [a] and 0 < p < 1. Thus samples from 
the distribution n(x) can be simulated by (see [1]) 

x = -- ln ( I I L 1  r~) (12) 

with probability p, and 

x = - I n  (117+11 r,) (13) 

with probabili ty 1 - p. The set {r~} is a set of uniform 
random numbers. Thus, 

f ( x ) / n ( x )  = ((x"- le-~/P(a)) / ( (pxm-le-X/(m - 1)I) (14) 
+ ( ( l -p )xme-~ /ml ) ) ) .  

Let q = o~-- m. Then (14) may be written 

f ( x ) / n ( x )  = ( ( m -  1) !xq/ [p+(x /m)(1  --p)]F(m+q)).  
(15) 

It is clear that for x > O, f ( x ) / n ( x )  is a concave func- 
tion. The maximum o f f ( x ) / n ( x )  occurs at 

x = m ( l ~ ) ( l ~ ) .  (16) 

Substituting (16) into (15) yields 

max ( f ( x ) / n ( x ) )  = (mq(rn - I ) ! q q ( l - q ) l - q /  
(17) 

r (m+q)p l -q(1- -p)q)  = a(m,p,q). 

Since the question of what to choose for p has been 
left open, p is now chosen in order to minimize a(m, 
p, q). This will yield the most  efficient rejection proce- 
dure. It  is clear that a(m, p, q) is convex for a fixed q 
and m and for 0 _< p _< 1. The minimum occurs at 
p = 1 -- q. Thus, 

e(m,q) & min [max ( f (x) /n(x))]  = a(m,l--q,q)  
p • (18) 

= ( m -  1)!mO/r(m+q). 

Equation (18) yields the smallest value for K, and 
therefore the most efficient rejection procedure. Sub- 
stituting (18) for K and combining this result with 
(15) yields 

f ( x ) / K n ( x )  = (x/m)q/(1 + [(x/m) -- llq). (19) 

A summary  of the revised rejection procedure is as 
follows: 
1. Given a > 1, compute q = a - - m ,  
where m = [a]. 
2. With probabili ty q, compute 

x = --In ( I I~+~ r,) 

with probabili ty I - q, compute 

x = - - ln  (II~'=l ri) 

where the set {r~} is a set of uniform random numbers. 
3. Generate another uniform random number  r. I f  

r <_ ( ( x / m ) q / ( l + [ ( x / m ) -  1]q)) 

accept x. Otherwise reject x and go back to step 2. 
The efficiency of the rejection procedure is 1/e(m,q). 
It  is shown in Appendix A that 
min,~.q [1/e(m,q)] ~---.886. 

Thus, the minimum efficiency of the rejection 
procedure is 88.6 percent. This minimum occurs at 
m = 1, and rapidly increases toward 100 percent as 
m gets large. Table II  shows the efficiency versus m 
for values up to m = 5. At m = 5, the efficiency is 
98 percent. This means that a random variable is 
rarely rejected for a > 5, and the rejection procedure 
is essentially the probabili ty switch method. Since the 
rejection procedure is exact, this explains why the prob- 
ability switch method yields such good results for 
a > 5, and is the recommended procedure by Berman 
[5]. However, it will be shown that the described re- 
jection procedure is more efficient than J6hnks method 
for all values of o~ > 1, and is therefore the recom- 
mended procedure for all values of  o~ > I. 

Comparison of Efficiency of Rejection Procedure with 
J6hnk's  Method 

It is shown in Appendix B that the beta-variable 
algorithm in J6hnk's  method has a minimum efficiency 
at values of q = a - m = 1/2. Since the rejection 
procedure in this paper has a minimum efficiency at 
q ~ 1/2, the two methods will be compared most  
realistically for values of  a = m + 1/2. Table I gives 
values of the ratio of average time required to gener- 
ate 1000 random variates by J6hnk's method (0) 
and by the proposed rejection procedure (tr). For  com- 
parison purposes the ratio t f f t ,  is also shown, where 
t8 is the average time required to generate 1000 random 
variates by the probabili ty switch method. The com- 
puter results were obtained using a GE 235 computer.  
The actual time differences will vary with the com- 
puter, but the ratio is not likely to change much. For  
example, the ratios tffts in Table I are very close to 
those cited by Berman [5], even though Berman used 
an IBM 360/65. 
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Table I. Ratios of Generation Times for J6hnk's Method (t,i) 
the Probability Switch Method (t,), and the Rejection Method 
(tr) 

a 1.5 2.5 3.5 4.5 
tj/t, 1.63 1.61 1.58 1.56 
ty/t, 3.08 2.89 2.74 2.61 

Table II. Values of q* and Efficiency, E, Versus m 

m q* 1/e(m,q*) = E 
1 .462 .886 
2 .479 .940 
3 .491 .960 
4 .495 .970 
5 .498 .980 

Conclusions 

The rejection procedure proposed in this paper 
cannot  be used for o~ < 1. A rejection procedure can 
be devised which will work for a < 1, but the author 
has been unable to devise one that is more efficient 
than J6hnk's  method. Thus, the following scheme is 
recommended.  
1. Use J6hnk's  procedure for a < 1. 
2. Use the rejection procedure of this paper for 1 < 
a < 5 .  
3. Use the probabili ty switch method for a > 5. 
I t  is a simple matter  to write a For t ran program that 
incorporates all procedures as well as handling the 
case where a is an integer. A flowchart for such a pro- 
gram is given in Appendix C. 

Appendix A 

At q = 1 and q = 0, it is clear f r o m e q .  (18) that 
e(m,q) = 1. Since e(m,q) >_ 1 for all values of q and 
m, it follows that for a fixed m e(m,q) has a maximum 
between q = 0 and q = 1. We find this maximum by 
solving the equation 

Oe(rn'q) - 0 =  0 I ( 7 ( q l ) ! m q l  (A1) 
dq ~q m) J" 

Performing the above differentiation results in 

~V(mq-q) = In m (A2) 

where ~I,(.) is the Psi function [7]. The solution of 
(A2), subject to 0 _< q _< 1, maximizes e(m,q) for 
fixed m. This optimal solution will be denoted by 
q*(m). 

Eq. (A1) was solved numerically for m = 1, 2, 3, 4, 
5. The solutions and resultant efficiency are given in 

Table II. I t  is of interest to find an asymptotic solution 
of (A1) and the resultant symptotic value of e(m,q*). 

An asymptotic formula for ~(mq-q) can be written 
(see [7]) 

• (m+q) ~ In (mq-q) -- (1/2(m-kq)) 
-- ( l /12(mq-q) z) 
q- (I/120(m-kq)'*) (1/252(m-bq) 6) -b . . .  

(A3) 

I f  [q ]  - I, then as m gets large we may write 

In (re+q) = In m q- (q/m) -- (q2/2m2) -1- . . .  (A4) 

(1/2(mq-q) 2) = (1/2m) -- (q/2m 2) --b . . .  (A5) 

(1/12(mq-q) 2) = (1/12m 2) d- . - .  (A6) 

Thus, f rom (A2)-(A6) 

In m ~ In m-1- ( ( q - 1 / 2 ) / m )  q- ( ( -q2 /2 )+(q /2 )  
- - (1 /12) ) l /m  2. (A7) 

The solution of (A7) yields 

q* = (1/2) -- (1/24m). (A8) 

Now consider 

e(m,q*) = ( (m--  1)!mq*/F(m+q*)).  (A9) 

In general, an asymptotic formula for F(Z)  is (see 
[7]) 

P(Z) ~ e-ZZZ-~(27r)~[l+(1/12Z)+(1/288Z 2) (A10) 
-- (139/51840Z 3) -  (571/248230Z4)+ . . .  ]. 

It  is clear that the expression in brackets in (A7) is 
closer to l when Z = m -4- q* than it is when Z = m. 
Since ( m - l ) !  = r(m), it follows that 

e(m,q*) = (e~*m=-½mq* /(m-bq*)m+~*-½). ( A l l )  

Thus, 

In [e(m,q*) ] 
~--- q* -k- (m-q-q*--1/2) In m 

-- (m-k-q*--I/2) In (m+q*) (A12) 
_~ q* -- (m-t -q*-  1/2)[(q*/m) - ((q*)2/2m2)]. 

Substituting (A8) into (A12), we obtain 

In [e(m,q*)] ~ (1/8m) = ° 

Therefore, 

e(m,q*) -~ 1 --}- (1/8m). (A13) 

Although (A8) and (AI3) are asymptotic solutions, 
it can be seen by comparison with the results in Table 
I I  that they are surprisingly accurate, even for m = 1. 
Thus, q* rapidly approaches 1/2, and e(m,q*) rapidly 
approaches 1 as m increases. 

Appendix B 

The rejection procedure used in J6hnk's  algorithm 
for generating beta random variables can be described 
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as a general  re jec t ion  p r o c e d u r e  with 

n(x) = ax  ~-1, 0 < x <  1, (B1) 

m(y)  = by b-l, 0 < y_<  1, (B2) 

T(x) = 1 - x ,  (B3)  

M[T(x)]  = ( l - - x )  b. (B4)  

Thus  

Ef(x)  dx  = a ( 1 - x ) b x  ~-1 dx  

E = f01 a ( 1 - - x ) b x  ~-1 dx  

E = ( aF (b -k  1 ) F ( a ) / P ( a + b q -  1)), (B5) 

a n d  

f ( x )  = ( r ( a + b + l ) ( 1 - x ) b x ° - T r ( a ) r ( b + l ) ) .  (B6) 

Step 3 of  J6hnk ' s  m e t h o d  for  genera t ing  g a m m a  
r a n d o m  var iables  will genera te  r a n d o m  var iables  
with the  p robab i l i t y  densi ty  funct ion  

g(y)  = y e - ' ,  y >__ O. (B7) 

THEOREM. Let  x have the distribution given by (B6) 
with a = e~, b = 1 - a. Let  y have the distribution 
given by (B7), Then v = x y  has the distribution 

va- le- ' /P(ot) ,  v >__ O. 

PROOF. Let  u = y, v = xy.  Then  x = v/u, y = u. 
The  Jacob ian  o f  this  t r a n s f o r m a t i o n  is 

J=l -v/u=l 1/0u =--l/u. 

The  jo in t  d i s t r ibu t ion  of  (u,v) is therefore  given by  

h(u,v) du dv = ( r ( a + b +  1 ) / F ( a ) P ( b +  1)) 
(1 -- v/u)b(v/u)a-l  e -u du dr. 

S i n c e a  = c~,b = 1 - o~, 

h( u,v) du dv = ( ( u -  v ) ' - % ~ - ' e - ~ / F ( a ) I ' ( 2 - a )  ) du dv, 
0 < v < u .  

Appendix C. Flowchart for Gamma Random Variable 
Generator 

Genera te  Or 

G =--log i 
no 

yes 

I 

q= 0~-- m J Y =--log (rlr2) 
I 

~ n g  yes , 
Generat~m+l\ I 

\i=ll 

put 
yes .~ 

no ~ .  ~Os 

) =--log i11=~ i 

Generate  
B(a ,2 -a )  

The  marg ina l  d i s t r ibu t ion  for  v is c o m p u t e d  as fo l lows:  

o~(v) = f 7  h(u,v) su, 
= ( v ~ - l / r ( ~ ) r ( 2 - ~ ) ) f :  ( u - v ) l - ~ e  -~ du, 
= (v~-le- ' /r( ,~)) ,  v >__ O. 

Thus,  J6hnk ' s  m e t h o d  generates  var iables  with the  
des i red  d i s t r ibu t ion  for  a < 1. I t  is easy to general ize 
the  above  p r o o f  for  the case where a > 1, bu t  in this  
pape r  it  is r e c o m m e n d e d  tha t  J6hnk ' s  a lgo r i thm no t  
be used when a > 1. 

I t  is des i rable  to cons ider  the m i n i m u m  efficiency 
of  J6hnk ' s  p rocedure  for  genera t ing  be ta  r a n d o m  vari-  
ables.  Cons ide r  (B5) with a = q, b = 1 - q, 0 < 
q_< 1. W h e n  q = 0 or  q = 1, E =  F(2)I ' (1)  = 1. 
Since E < 1, E has  a m i n i m u m  for 0 < q < 1. I t  
can easily be shown tha t  OE/Oq = 0 impl ies  tha t  

, I , ( l + q )  = ~ ( 2 - - q ) .  (BS) 

The  so lu t ion  of  (B8) is q = 1/2. W h e n  q = 1/2, 
E = [ r ( 3 / 2 ) ]  2 = , i f 4  ~ .785.  
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