L.D. Fosdick and
Algorithms A_.K. Cline, Editors

Submittal of an algorithm for consideration for publica-
tion in Communications of the ACM implies unrestricted
use of the algorithm within a computer is permissible.
Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted, provide that ACM’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

Algorithm 487

Exact Cumulative Distribution
of the Kolmogorov-Smirnov

Statistic for Small Samples
[S14]

John Pomeranz [Recd. 13 Mar. 1973]
Computer Sciences Department, Mathematical Sciences
Building, Purdue University, West Lafayette, IN 47907*

Key Words and Phrases : Kolmogorov-Smirnov test, K-S statistic,
goodness-of-fit testing

CR Categories: 8.1, 5.5

Language: Fortran

Description

The algorithm calculates the exact cumulative distribution of
the two-sided Kolmogorov-Smirnov statistic for samples with few
observations. The general problem for which the formula is needed
is to assess the probability that a particular sample comes from a
proposed distribution. The problem arises specifically in data
sampling and in discrete system simulation. Typically, some finite
number of observations are available, and some underlying dis-
tribution is being considered as characterizing the source of the ob-
servations.

The statistic used here simply measures the maximum deviation
between the proposed distribution and the empirical distribution
derived from the sample. Elementary rules for calculating this devia-
tion can be found in, e.g. Knuth [4, p. 41], Brunk {2, p. 267], or
Miller and Freund [5, p. 222]. Simply put, let Sx(x) be the fraction
of the N observations which are less than x. Let F(x) be the proposed
cumulative distribution of the source. Let

Ky = +/N X max | Sy(x) — F(x)|.

z
Usually Ky is called a two-sided Kolmogorov-Smirnov statistic.
Omitting the absolute value signs gives a one-sided statistic. For

computational ease we let Dy = Kx/+/N be the observed deviation,
unweighted by +/N.

* Present address: A.T.Kearney, Inc., 100 South Wacker Drive,
Chicago, IL 60606.

703

The inputs to the function are the sample size N and a critical
value D. The function value is the exact probability Pr{Dy < D} =
Pr{Ky < D+/N}.

The formulas used in the function are obtained directly from
Durbin [3, formulas (23) and (24)). To validate the function, an-
other was coded using matrices determined by Pomeranz [7], and
the two were identical to eight decimal places. Then the function was
used to generate Birnbaum’s Table 1 [1, pp. 428-30] for D = 1/N,
2/N, ..., J/N,J=min {N, 15},1 < N < 100. Eightentries differed
by 1078, apparently from roundoff error [1, p. 440). The final test
was of Miller’s Table 1 [6, pp. 113-15] of critical values in the ex-
treme tail for 1 < N < 100. (Miller’s approximation is based on the
one-sided statistic with doubled tail probabilities, which is accurate
in the extreme tail.) Newton’s method was used to determine the
values of D, which yield cumulative probabilities of .8, .9, .95, .98
and .99, for each N. Miller’s entries agreed within one in the fifth
decimal place for probabilities other than .8 and within four in the
fifth decimal place for the .8 probability. This supports Miller’s
claim [6, p. 120] and further allows the use of the column a = .10
(P = .80) in his Table 1 when an errorin D of 4 X 10~%is acceptable.
However, the two-sided statistic and the one-sided statistic [4, p. 44]
are significantly different outside the tail. For example, with a
sample size of 10, Pr{Kj, < .54} is approximately .12, but at the
same critical value for the one-sided statistic, the cumulative proba-
bility is .50.

Finally, using a CDC 6500, values were computed up to N =
140. The major limitation is the magnitude of the exponent re-
quired to represent N¥. Rearranging sums produced no changes.

References

1. Birnbatm, Z.W. Numerical tabulation of the distribution of
Kolmogorov’s statistic for finite sample size. J. Amer. Stat.
Assoc. 47, 259 (Sept. 1952), 425-4].

2. Brunk, H.D. A4n Introduction to Mathematical Statistics. Ginn
and Company, Lexington, Mass., 1960.

3. Durbin, J. The probability that the sample distribution
function lies between two parallel straight lines. Ann. Math.
Statist. 39, 2 (Apr. 1968), 398-411.

4. Knuth, Donald E. The Art of Computer Programming

Volume 2/Seminumerical Algorithms. Addison-Wesley, Reading,
Mass., 1969.

5. Miller, Irwin, and Freund, John E. Probability and Statistics
for Engineers. Prentice-Hall, Englewood Cliffs, N.J., 1965.

6. Miller, Leslie H. Table of percentage points of Kolmogorov
statistics. J. Amer. Stat. Assoc. 5, 273 (Mar. 1956), 111-21.

7. Pomeranz, John E. Exact values of the two-sided Kolmogorov-
Smirnov cumulative distribution for finite sample size. Tech.

Rep. 88, Computer Sciences Department, Purdue U., Feb. 1973.

Algorithm

REAL FUNCTION PKS2(N, D)
INTEGER N
C N IS THE SAMPLE SIZE USED.
REAL D
C D IS THE MAXIMUM MAGNITUDE (OF THE DISCREPANCY
BETWEEN THE EMPIRICAL AND PROPOSED DISTRIBUTIONS)
IN EITHER THE POSITIVE OR NEGATIVE DIRECTION.
PKS2 IS THE EXACT PROBABILITY OF OBTAINING A
DEVIATION NC LARGER THAN D.
THESE FORMULAS APPEAR AS (23) AND (24) 1IN
J. DURBINe. THE PROBABILITY THAT THE SAMPLE
DISTRIBUTION FUNCTION LIES BETWEEN TWO PARALLEL
STRAIGHT LINES. ANNALS OF MATHEMATICAL STATISTICS
3%, 2(APRIL 1968),3%8-411.
DOUBLE PRECISION Q<141)>, FACT(141), SUMs, CI,
* FT, FU, FV
IF (N.EQ.J> GO TO 90
FN = FLOAT(N)
FND = FN*D
NDT = IFIX(Z2.*%FND)
IF (NDT.LT.1) GO TO 100
ND = IFIX(FND)
NDD = MING(2%ND,N)
NDP = ND + 1
NDDP = NDD + |
FACTC(1) = 1.
ClI = 1.
DO 18 I=1.N
FACTCI+1)> = FACT(I)*CI
CI = CI + 1.

aacaaaaaaca

Communications December 1974
of Volume 17
the ACM Number 12

http://crossmark.crossref.org/dialog/?doi=10.1145%2F361604.361628&domain=pdf&date_stamp=1974-12-01

10

2e

CONTINUE
Qcry = 1.
IF (NDD.EQ.8) GO TO S@
Cl = 1.
DO 2@ I=1,NDD
QCI+]1)> = CI**I/FACT(I+1)
CI = CI + 1.
CONTINUE
IF (NDP.GT.N) GO TO 88
FV = FLOAT(NDP) - FND
JMAX = IDINTC(FV) + |
DO 48 1=NDP,NDD

SUM = g.
FT = FND
K=1

FU = FV

DO 36 J=1,JMAX
SUM = SUM + FT#%(J-2)/FACT(J)*FU**K/

* FACT(K+1)
FT = FT + 1.
FU = FU - 1.
K=K-~-1
38 CONTINUE

49

50

60

79
8g

]

188

20

JOHN
KOLM
FINI
COoMP

aaaaaaoan

18

704

QCI+1) = QCI+1) = 2.%FND*SUM
JMAX = JMAX + |
FV = FV + [.

CONTINUE

IF (NDD.EQ@«N)> GO TO 8@

b0 7@ I=NDDP,N
SUM = @g.
SIGN = }.

FT = 2.%FND
DO 6@ J=),NDT

FT = FT - 1.

K=1-=-4Jd +]

= SUM + SIGN*FT#xJ/FACT(J+1)*Q(K)
SIGN = -SIGN

CONTINUE

@CI+1)> = S5UM
CONTINUE
PKS2 = QCN+1)*FACT(N+1)/FN**N
RETURN
PKS2 = 2+%D - 1.
RETURN
PKS2 = B.
RETURN
END

SUBROUTINE PRFAC
DOUBLE PRECISION PF(4,48)
DIMENSION DXAC4)
COMMON DX, DXA, PF, J
DATA 1 /1/
DO 16 J=1.4
IF (DXA(J).EQ.DX> RETURN
CONTINUE
J =1
I =1+
IF (I.EQe5) I =1
DXA(J)Y = DX
PF(Jo1) = 1.
DO 20 K=2,38
PF(JsK) = (PF(J,K-1)>*DX3>/FLOAT(K-1)
CONTINUE
RETURN
END

FUNCTION CEIL(X)

IF (X.GE.B.) GO TO 1@
1 = =X

CEIL = -1

RETURN

I = X + 95999999
CEIL = 1

RETURN

END

FUNCTION PKS(N., EPS)

CALCULATE THE CUMULATIVE DISTRIBUTION OF THE
KOLMOGOROV-SMIRNOV STATISTIC USING THE FORMULAS OF

POMERANZ. EXACT VALUES OF THE TWO-SIDED

OGOROV- SMIRNOV CUMULATIVE DISTRIBUTION FOR
TE SAMPLE SIZE. TECHNICAL REPORT NUMBER 88,

UTER SCIENCES DEPARTMENT, PURDUE UNIVERSITY.
FEBRUARY 1973.

DOUBLE PRECISION PF(4,48), UC4@), V(40>
DOUBLE PRECISION SUM

DIMENSION DXAC4)

COMMON DX, DXA, PF, L

DATA MNP /48/

FN = N

RN = }.«./FN

K = EPS*FN + .Q068C38)
FK = X

IF¥ (ABS(FK-EPS*FN).GT..@22208¢21) GO TO 1@
K=K-~-1

FK = K

CONTINUE

DEL = EPS - FK#RN
XUP = RN - DEL
XLO = DEL
IF (ABS(XUP-XL0).LT..806806608])> XUP = XLO
XPREV = @.
DO 20 I=1,MNP
ucry = g.
28 CONTINUE
UCK+]) = 1.
IMIN = -K
38 X = AMINI](XUP,XLO)>
IF (X«GT..996669) X = |.
DX = X - XPREV
JMIN = CEIL((X-EPS)*FN~-.800600001)
IF (ABSC(FLOAT(JIMIN)=(X-EPS)*FN).LT..080800021)
* JMIN = JMIN + |
JMAX = (X+EPS)*FN + .28080001
IF (ABS(FLOAT(JMAX)-(X+EPS)*FN).LT..C0080881)
* JMAX = JMAX - |
JMAX = JMAX - JMIN + |}
CALL PRFAC
DO 68 J=),MNP
SUM = g8.
IF (J.GT.JMAX) GO TO 5@
1 =1
40 IP=dJ =~ 1+] 4+ JMIN « IMIN

SUM = SUM + UC1)*PF(L,IP)
I =1+
IF (CIMIN+I).LE.(JMIN+J)>> GO TO 40
sg VW = SUM
68 CONTINUE
DO 78 I=!,MNP
UCI) = V(D
78 CONTINUE
IMIN = JMIN
XPREV = X
IF (X+EQ.XUP) XUP = XUP + RN
IF (X+EQeXLO) XLO = XLO + RN
IF (X.LT.1.> GO TO 38
DO 88 I=1,N
UCK+1)> = UCK+1)*FLOAT(I)
80 CONTINUE
PKS = U(K+1)
RETURN
END

Algorithm 488

A Gaussian Pseudo-Random
Number Generator [G3]

Richard P. Brent [Recd. 9 Nov. 1973, and 19 Dec.1973]
Computer Centre, Australian National University,
Canberra, Australia

Key Words and Phrases: random numbers, pseudo-random num-
bers, Gaussian distribution, normal distribution

CR Categories: 5.39, 5.5

Language: Fortran

Description

Introduction. Successive calls to the Fortran function GRAND
return independent, normally distributed pseudo-random numbers
with zero mean and uni¢ standard deviation. It is assumed that a
Fortran function RAND is available to generate pseudo-random
numbers which are independent and uniformly distributed on
[0, 1). Thus, GRAND may be regarded as a function which converts
uniformly distributed numbers to normally distributed numbers.

Outline of the method. GRAND is based on the following algo-
rithm (Algorithm A) for sampling from a distribution with density
function f(x) = K exp (—G(x)) on [a, b), where

0<G6(x <1 oy
on [q, b), and the function G(x) is easy to compute:

Step 1. If the first call, then take a sample « from the uniform dis-
tribution on [0, 1); otherwise u has been saved from a previous

call.
Step 2. Set x < a + (b — a)u and uy «— G(x).
Step 3. Take independent samples u , ., ... from the uniform

distribution on [0, 1) until, for some & > 1, 1 < u .

Communications December 1974
of Volume 17
the ACM Number 12

Step 4. Set u «— (ue — u—1) /(1 — w21).
Step 5. If k is even go to Step 2, otherwise return x.

The reason why Algorithm A is correct is explained in Ahrens
and Dieter [2], Forsythe [4], and Von Neumann [6]. The only
point which needs explanation here is that, at Step 4, we can form
a new uniform variate from u;_, and « , thus avoiding an extra
call to the uniform random number generator. This is permissible
since at Step 4 it is clear (from Step 3) that (u — w1)/(1 —
u;1) is distributed uniformly and independent of x and k. (The
fact that it is dependent on u; is irrelevant.)

Let a; be defined by (2/7) [a;exp (— iP)dt = 2~ for
i=20,1,.... To sample from the positive normal distribution
(Algorithm B), we may choose i > 1 with probability 2= (easily
done by inspecting the leading bits in a uniformly distributed
number) and then use Algorithm A to generate a sample from

lai1, ai), with G(x) = 4(x* — a:_). It is easy to verify that
condition (1) is satisfied, in fact
L(a? — i) < log (2). V)

Finally, to sample from the normal distribution (Algorithm
C), we generate a sample from the positive normal distribution
and then attach a random sign.

Comments on the method. The algorithm is exact, apart from
the inevitable effect of computing with floating-point numbers
with a finite word-length. Thus, the method is preferable to meth-
ods which depend on the central limit theorem or use approxima-
tions to the inverse distribution function.

Let N be the expected number of calls to a uniform random
number generator when Algorithm A is executed. If the expected
value of & at Step 3 is E, and the probability that k is even is P,
then N = E+ N P,so N = E/(1 — P). From Forsythe [4, eq.
(1)), E = (b — a) [o* exp (G(x))dx and

1 b
‘—P=—f exp (—G(x)) dx, so
b—al,

b b
N = f exp (G(x)) dx / f exp (—G(x)) dx. ®)

From (3) and the choice of a;, the expected number of calls to a
uniform random number generator when Algorithm C is executed is

> 2“'[exp GG — afy) dx/f exp (—1(x* — ai_y)) dx
ai—1 a;j—1

=1
~ 1.37446. €Y

This is lower than 4.03585 for the algorithm given in Forsythe [4],
or 2.53947 for the improved version (FT) given in Ahrens and
Dieter {2]. It is even slightly lower than 1.38009 for the algorithm
FL, of [2], and FL, requires a larger table than Algorithm C.
Thus, Algorithm C should be quite fast, and comparable to the best
algorithms described by Ahrens and Dieter [1]. The number (4)
could be reduced by increasing the table size (as in the algorithms
FL,, FL;, and FL4 of [2]), but this hardly seems worthwhile.
Exact timing comparisons depend on the machine and uniform
random number generator used. (If a very fast uniform generator
is used, then Step 4 of Algorithm A may take longer than generat-
ing a new uniform deviate.)

The loss of accuracy caused by Step 4 of Algorithm A is not
serious. We may say that logs (1 — ux_)™! “bits of accuracy” are
lost, and in our application we have, from (2) and Step 3 of Algo-
rithm A, log (2) > uo > -+ > w1, so the number of bits lost is
less than log, (1 — log (2))7! < 2.

Test vresults. If x is normally distributed then u =
(@)t 7 _exp (— 3#)dt is uniformly distributed on (0, 1).
Hence, standard tests for uniformity may be applied to the trans-
formed variate u. Several statistical tests were performed, using a
Univac 1108 with both single-precision (27-bit fraction) and double-
precision (60-bit fraction). For example, we tested two-dimensional
uniformity by taking 10® pairs (u, «’), plotting them in the unit
square, and performing the Chi-squared test on the observed num-

705

bers falling within each of 100 by 100 smaller squares. This test
should show up any lack of independence in pairs of successive
uniform deviates. We tested one-dimensional uniformity similarly,
taking 10° trials and subdividing (0, 1) into 1,000 smaller intervals.
The values of x% obtained were not significant at the 5 percent level.
It is worth noting that the method of summing 12 numbers dis-
tributed uniformly on (—1/2, 1/2) failed the latter test, giving
x3s = 1351. (The probability of such a value being exceeded by
chance is less than 10711.)

Naturally, test results depend on the particular uniform gen-
erator RAND which is used. GRAND will not produce independent
normally distributed deviates unless RAND supplies it with inde-
pendent uniformly distributed deviates! For our tests we used an
additive uniform generator of the form u, = u,_1 + ts_1zr (mod 2%)
with w = 27 or 60 (see Brent [3] and Knuth [5]), but a good linear
congruential generator should also be adequate for most applica-
tions.

Comparison with Algorithm 334. The fastest exact method
previously published in Communications is Algorithm 334 [7].
We timed function GRAND, subroutine NORM (a Fortran transla-
tion of Algorithm 334), and function RAND (the uniform random
number generator called by GRAND and NORM). The mean
execution times obtained from 500,000 trials on a Univac 1108
were 172, 376 and 59 usec respectively. Since NORM returns two
normally distributed numbers, GRAND was effectively 9 percent
faster than NORM. Based on comparisons in {2], we estimate
that the saving would be greater if both routines were coded in
assembly language, for much of the execution time of NORM is
taken up in evaluating a square-root and logarithm which are
already coded in assembly language.

GRAND requires about 1.38 uniform deviates per normal de-
viate, and NORM requires 4/r + 1/2 ~ 1.77. Thus, we may es-
timate that if a uniform generator taking U usec per call were used,
the time per normal deviate would be (91 + 1.38U) usec for
GRAND and (83 + 1.77U) usec for NORM. Hence, GRAND
should be faster for U > 20.

References

1. Abhrens, J.H., and Dieter, U. Computer methods for sampling
from the exponential and normal distributions. Comm. ACM 15,
10 (Oct. 1972), 873-882.

2. Abhrens, J.H., and Dieter, U. Pseudo-random Numbers
(preliminary version). Preprint of book to be published by
Springer, Part 2, Chs. 6-8.

3. Brent, R.P. Algorithms for Minimization Without Derivatives.
Prentice-Hall, Englewood Cliffs, N.J., 1973, pp. 163-164.

4. Forsythe, G.E. Von Neumann’s comparison method for
random sampling from the normal and other distributions. Marh.
Comp. 26, 120 (Oct. 1972), 817-826.

5. Knuth, D.E. The Art of Computer Programming, Vol. 2.
Addison-Wesley, Reading, Mass., 1969, pp. 26, 34, 464.

6. Von Neumann, J. Various techniques used in connection with
random digits. In Collected Works, Vol. 5, Pergamon Press, New
York, 1963, pp. 768-770.

7. Bell, J.R. Algorithm 334, Normal random deviates. Comm.
ACM 11,7 (July 1968), 498.

Algorithm

FUNCTION GRAND(N)
EXCEPT ON THE FIRST CALL GRAND RETURNS A
PSEUDO-RANDOM NUMBER HAVING A GAUSSIAN (I.E.
NCPMAL) DISTRIBUTION WITH ZERO MEAN AND UNIT
STANDARD DEVIATION. THUS, THE DENSITY IS F(X) =
EXP(-%.5%X*%2)/SQRT(2.8*P1>. THE FIRST CALL
INITIALIZES GRAND AND RETURNS ZERO.
THE PARAMETER N IS DUMMY.
GRAND CALLS A FUNGTION RAND, AND IT IS ASSUMED THAT
SUCCESSIVE CALLS TO RAND(@) GIVE INDEPENDENT
PSEUDO- RANDOM NUMBERS DISTRIBUTED UNIFORMLY ON (@.
1>, POSSIBLY INCLUDING & (BUT NOT 1).
THE METEQCD USED WAS SUGGESTED BY VON NEUMANN, AND
IMPROVED BY FORSYTHE, AHRENS, DIETER AND BRENT.
ON THE AVERAGE THERE ARE 1.37746 CALLS OF RAND FOR
EACH CALL OF GRAND.
WARNING - DIMENSION AND DATA STATEMENTS BELOW ARE

MACHINE-DEPENDENT.

C DIMENSION OF D MUST BE AT LEAST THE NUMBER QF BITS
C IN THE FRACTION OF A FLOATING-POINT NUMBER.

aaaaoooaoaoaoaoaao0Qaa

Communications December 1974
of Volume 17
the ACM Number 12

THUS, ON MOST MACHINES THE DATA STATEMENT BELOW

CAN BE TRUNCATED.
1F THE INTEGRAL OF SQRT(2.8/PI)%EXP(~-Z.5*%X*x2) FROM

ACIY TO INFINITY IS 2%x(-I1), THEN D(I) = A(I) -

ACI=1).

DIMENSION D(6g)>
DATA D(1), D(2>, D€(3>, DC4), D(5), D(6), D(7),

D(8>, D(9), DC(1GB)» DC11), DC12), DCI3),

D(14), DC15), DC16>s DCI73, DCI18)» D19,

D(26), D(21), D(223>, D(23>, D(24), D(E5).,

D(26), D(27), D(28)>, D(29>, D30, D31,

D(32) /0.674489750,08.475859630,0.383771164,

«328611323,2.251142827,8.263684322,

« 242508452,8.225567444,0.2]1) 634166,

«+199924267,02.185918758,08.181225181,

«1736014C0,0.166841506%,08.16879672%,

»155345717,0.156405384,3.145%62577,

B.141770033,0.1375€3174,08.134441762,

2.131172158,0.128125965,2.125275089¢,

2.1226]12883,0.120103560,08.117741707,

@.115511892,08.113402346,06.111402722.,

B.109563852,0.107657617/

DATA D(332» D(34), D(35), D(36), D(37>, D(38),
D(3%), DC4B), DC4l), Dw42), DC43), D44,
DC4aS), DC46), D(47)>, DC48). DC4$)» D(S58).
D(S1), D(52), D(S3>, D(S4), D(55), D(56).,
D(57Y, D(SBY» D(59), D(6B)

/B 105976772,0.104334843,2.102766212,
G.1012€650652,0.899827234,0.098448282,
?.897124309,0.695851778,0.0694€2746!,
B.053448467,0.085231190%,06.251215482,
0.050156838,6.089133867,0.0688)4461%,
G.PB7187293,0.£68¢260215,0.285361834,
T.084450706,08.283645487,2.382824524,
B.082027847,0.0812531€2,0.C8345S844,
B.379766932,6.679053527,0-078358781.,
B.F7768189S7
END OF MACHINE-DEPENDENT STATEMENTS
U MUST BE PRESERVED BETWEEN CALLS.

DATA U /8.8/
C INITIALIZE DISPLACEMENT A AND COUNTER I.

A= 2.0

1 =2
INCREMENT COUNTER AND DISPLACEMENT IF LEADING BIT
QF U 1S5 ONE.
16 U=1U+U

IF (U.LT.1.€> GO TO 28

[sRsReNeNe)
LR R R BE K 2K BE BRI O A IR 2K
(SSRGS

E R IR SR B R B IR I 2R 2 A

aa

Q0

U=1U-=- 1.8
I =1+
A=A - D)
GO TO 1@

C FORM W UNIFORM ON @& .LE. W .LT.
28 W = D(I+]1)*U
FORM V = Be5%((W=~A)¥*2 - Ax*x2).
«LT. LOG(2).
V = Wkx(B.5x¥~A)
C GENERATE NEW UNIFORM U.
30 U = RAND(E)
ACCEPT ¥ AS A RANDOM SAMPLE IF V .LE. U.
IF (V.LE.U) GO TO 40
GENERATE RANDOM V.
V = RAND(®)>
LOOP IF U «GT. V.
IF (U.GT.V) GO TO 3@
REJECT W AND FORM A NEW UNIFORM U FROM V AND U.
U = (v=-0/s<¢1.6-U0
GO TO 2@
C FORM NEW U (TO BE USED ON NEXT CALL) FROM U AND V.
49 U = (U-Vy/Cl.g-V)

D(1+1) FROM U.

NOTE THAT 6 .LE. V

a0

a o < Q

C USE FIRST BIT OF U FOR SIGN., RETURN NORMAL VARIATE.

U= U=+ U
IF (U.LT.1.2) GO TO S@
U=U-=- 1.8
GRAND = W - A
RETURN

S8 GRAND = A - W
RETURN
END

Remark on Algorithm 420 [J6]

Hidden-Line Plotting Program [Hugh Williamson,
Comm. ACM 15 (Feb. 1972) 100-103]) and Remark on
Algorithm 420 [T.M.R. Ellis, Comm. ACM 17 (June
1974), 324-325]

T.M.R. Ellis [Recd. 8 July 1974] Computing Services,
University of Sheffield, England

There was an unfortunate printing error in my Remark on
Algorithm 420 which made nonsense of the whole thing. The state-
ment which should be inserted to correct the error discussed should,
of course, be:

IF(F1.EQ.F2) GO TO 1005

and not: IF(F1.EQ.FZ) GO TO 1005 as printed.

706

Remark on Algorithm 426
Merge Sort Algorithm [M1]
[C. Bron, Comm. ACM 15 (May 1972), 357-358]

C. Bron [Recd. 5 Nov. 1973]
Technological University of Twente, P.O. Box 217,
Enschede, The Netherlands

A remark in [3 p. 158) suggested to the author that Algorithm
426 needs only very minor modifications in order to handle the
sorting of records that are chained to begin with. The algorithm then
rearranges the chain and needs no additional array to store chaining
information. Furthermore, the assumption that we should be able
to associate each of the integers from 1 to n with each of the n
records to be sorted is no longer necessary [2].

References

1. Bron, C. Algorithm 426, Merge Sort Algorithm. Comm. ACM
15 (May 1972), 358.

2. Bron, C. An “In Situ” Merge Sort Algorithm. Tech. Note

CB 64, Technological University of Twente, Enschede. The
Netherlands.

3. Martin, W.A. Sorting. Comp. Surv. 3 (1971), 147-174.

Remark on Algorithm 456 [H]
Routing Problem
[Zden&k Fencl, Comm. ACM 16 (Sept. 1973), 572

Gerhard Tesch [Recd. 15 Oct. 1973] VFW Vereinigte
Flugtechnische Werke GMBH, 28 Bremen 1, Hunefeld-
strasse 1-5, Germany and Zden&k Fencl, M.I.T., De-
partment of Urban Studies, R. 9-643, Cambridge, Mass.

Some confusion arose from the description of the algorithm
capability. It should have been stated that the generated tour must
pass through each of the n nodes once and only once, although this
is the base for the definition of the traveling salesman problem. This
algorithm solves an extended traveling salesman problem in which
the end node does not have to be the start node. Such connections
may be sought in the design automation of serial printed circuits as
well as in transportation problems. The traveling salesman problem
is discussed in (3, p. 232] and methods of solution are surveyed in [1].

The users who seek the shortest paths in electric networks (the
shortest connection between the two specified nodes in a net without
regard to the number of nodes to be connected) are referred to
Ford’s shortest path algorithm [2, p. 69] and Dantzig’s shortest path
algorithm {3, p. 175]. There is a set of three efficient Algol algorithms
by J. Boothroyd [4] handling the shortest path problem as defined
in [2, p. 69] and [3, p. 175]. These Algol algorithms can be modified
so that even the number of nodes may be minimized or a restriction
of some nodes may be imposed, etc.

Another type of shortest path algorithm is Lee’s algorithm [5
and 6]. This algorithm is applicable for the orthogonal routing of
printed circuit boards.

References

1. Bellmore, M., and Nemhauser, G.L. The traveling salesman
problem: A survey. Oper. Res. 16 (1968), 538-558.

2, Berge, C. The Theory of Graphs and Its Applications.
Wiley, New York, 1962.

3. Berge, C., and Ghouila-Houri, A. Programming, Games
and Transportation Networks. Wiley, New York, 1965,

4. Boothroyd, J. Algorithms 22, 23, 24. Shortest path. Comp. J.
10 (1967), 306-308.

5. Lee, C.J. An algorithm for path connections and its applications.
IEEE Trans. Elect. Comput. EC-10 (Sept, 1961), 346-365.

6. Akers, S.B. A modification of Lee’s path connection algorithm.
1EEE Trans. Elect. Comput. (Feb. 1967), 97-98.

Communications December 1974
of Volume 17
the ACM Number 12

