CACLE - Automated Mitigation for Misconfiguration
Vulnerabilities in Cloud Systems

Douglas J. Millward
University of Essex, UK

ABSTRACT

Recent studies have highlighted the increasing risk to Cloud Sys-
tems of User Misconfiguration Errors. This paper provides an evolu-
tionary approach to identifying and mitigating such errors, known
as the Configuration and Checking Logic Engine. We demonstrate
its effectiveness utilizing test files from publicly available GitHub
repositories. The results show that not only is it as effective as
other solutions that check IaC templates, but it is also an order of
magnitude faster than existing approaches.

CCS CONCEPTS

. Software and its engineering; « Software testing and de-
bugging;; « Security and privacy; - Software and application
security;; « General and reference; « Design;; « Computing
methodologies; « Distributed computing methodologies;;

KEYWORDS

Additional Key Words and Phrases: cloud security, infrastructure
as code, automated vulnerability mitigation, user misconfiguration
errors

ACM Reference Format:

Douglas]J. Millward, Martin J. Reed, and Nkaepe Olaniyi. 2023. CACLE -
Automated Mitigation for Misconfiguration Vulnerabilities in Cloud Sys-
tems. In 2023 7th International Conference on Cloud and Big Data Computing
(ICCBDC 2023), August 17-19, 2023, Manchester, United Kingdom. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3616131.3616142

1 INTRODUCTION

“Shift-left” security is a relatively recently-coined phrase popular-
ized by the DevOps community recommending that security should
be embedded into the earliest phase of the development process
possible [1]. It signifies a commercial acceptance of security is-
sues that have been known in academia for over a decade [2] that
identifying and mitigating vulnerabilities in the earlier phases of
the development cycle is both faster and more effective. There are
an increasing number of causes of such vulnerabilities: poor or
incomplete requirements, inadequate requirements engineering,
and poor design being the most common and well-known. In the
past few years, a new cause of security vulnerabilities for cloud
computing systems has emerged - User Misconfiguration Errors

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

ICCBDC 2023, August 17-19, 2023, Manchester, United Kingdom
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0733-9/23/08.
https://doi.org/10.1145/3616131.3616142

Martin J. Reed
University of Essex, UK

Nkaepe Olaniyi
MKC Training Services Limited, Royal
School of Military Engineering, UK

(UMEs) [3]. This paper introduces the Configuration Analysis and
Checking Logic Engine (CACLE) which provides a new mechanism
for dealing with such errors. It also demonstrates the use of the
engine on a publicly available data set.

The key to the flexibility of the cloud is the use of Infrastruc-
ture as Code (IaC) [4]. IaC has also led to the process management
methodology known as DevOps [5] by providing a mechanism
to automatically configure system depen- dencies and provision
local and remote instances. This in turn has engendered a depen-
dency on configuration files and mechanisms which has led to the
rise of automated configuration tools such as Apache Brooklyn,
Chef, Puppet, and similar applications. In many ways, these tools
are double-edged swords in that they introduce new avenues for
security vulnerabilities (through UMEs) as well as providing a po-
tential channel for identifying and mitigating such vulnerabilities.
Utilizing this latter aspect is the focus of this research.

One of the drivers for the increase in UMEs is the changing na-
ture of the System Development Life Cycle [6]. The transition from
more traditional paradigms such as waterfall and spiral, through
agile models to modern DevOps approaches has heralded a move
to ever greater automation in the development life cycle. However,
along with this increase has been a commensurate decrease in the
informal communication processes highlighted by [6], and that
has meant a reduction in both the formal and informal security
checks that such communication engenders. A study [7] of the
practices and issues involved in configuration design and manage-
ment summarises both the impact of UMEs on large, international
companies such as Facebook and Google, as well as highlighting
the critical improvements required to reduce UMEs at a systemic
level. Although Zhang et al. [7] do not focus on security, there are
three recommendations from their research that are appropriate to
and align with the objectives of our paper:

e the provision of proactive parameter value checking and
validation - we focus specifically on security

e the provision of security checks in early execution phases

o the ability to generate up-to-date security configuration
use cases in the documentation.

This paper provides a motivating example in the form of Apache
Brooklyn [8]. Brooklyn is one of the earliest automated configura-
tion management tools that are now widely used by cloud engineers
and designers. It is also one of the most flexible in that not only can
be it used to configure cloud functions, storage, and infrastructure
but it can also be used to orchestrate and deploy configurations to
multi-cloud or hybrid cloud systems. Brooklyn clearly segregates
configuration parameters (stored in YAML files) from the imple-
mentation and deployment scripts (which ultimately constitute
a curated set of templates known as blueprints) that are recom-
mended as starting points for new systems and applications. This

https://doi.org/10.1145/3616131.3616142
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3616131.3616142
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3616131.3616142&domain=pdf&date_stamp=2023-10-02

ICCBDC 2023, August 17-19, 2023, Manchester, United Kingdom

separation was one of the motivating factors behind this research.
It also led to additional important questions for this paper: how
secure are the blueprints as starting points, and how susceptible
are they to user misconfiguration errors?

The paper presents related work in Section 2 before presenting
an overview of the solution in Section 3. The solution is evaluated
against some real cloud application templates in Section 4 leading
to discussion and final conclusion in Sections 5 and 6.

2 BACKGROUND

Cloud computing has evolved over the past twenty years from a
model that fused together the cost benefits of virtualisation, the
service-based flexibility of on-demand utility computing, and the
always-on, high-availability network access of the internet to create
a new paradigm [9]. As cloud services became more popular, both
the cloud service providers (CSPs) and various third parties created
tools to make designing and managing cloud applications easier,
and to encourage new adopters. Apache Brooklyn, as well as being
one of the earliest configuration automation tools also offers a com-
bination of features not found in the other common configuration
managers such as Chef and Puppet(ref). It is particularly suited
as the focus of this research because of how it clearly segregates
the configuration from the implementation and deployment stages.
It also utilises standardised YAML-based specification languages
from the Organisation for the Advancement of Structured Infor-
mation Standards (OASIS) [10]. There have been numerous studies
concerning where security vulnerabilities are introduced into the
system life cycle. The publication by [11] discusses the issues of
security vulnerabilities in requirements management, while Lam-
port introduced Temporal Logic of Actions (TLA+) [12] which was
a formal specification language that he recommended (and used)
to ensure that systems were designed and implemented in a more
formal manner. Lamport himself argues that making proofs eas-
ier to understand requires only structure and naming [13]. More
recently, Behaviour Driven Development (BDD) [14] built on the
concept of structure and naming by introducing Cucumber and
Gherkin. These are a combination of unit-test software and specifi-
cation language, respectively, used for requirements gathering and
verification. Unlike TLA+, the specification language (Gherkin) is
more English-like and allows agile idioms such as user stories to be
used to form BDD scenarios which can be directly used in Cucum-
ber as unit tests. In this way, acceptance tests become executable
andpart of the automated testing suite. There are also automated
tools available for checking code quality, and dynamic and static
execution, not to mention security.

User misconfiguration errors (UMEs) are the latest in a long
line of security vulnerabilities that need to be addressed. UMEs,
according to [3] (using concepts from Amazon Web Services) can be
categorized into 6 groups: IAM (identity and access management)
misconfiguration; S3 bucket (i.e. storage) misconfiguration; Access
key misuse; Cognito (access token) misconfiguration; Elastic Block
Store (EBS - i.e. storage) encryption misconfiguration; and security
group misconfiguration (i.e. not restricting traffic to open ports).

Although recent technologies provide engineers with
infrastructure-as-code (IaC) security testing tools [15] that can
detect these types of vulnerabilities in IaC templates, such as

75

Douglas Millward et al.

Terraform and Cloud Formation code, fixing such errors in
the implementation and/or deployment phases of the system
development lifecycle is not ideal for a number of reasons. Firstly,
research by [16] reported that "requirements and architecture
design defects make up approximately 70% of all defects" but "80%
of these defects are discovered late in the development life cycle"
with a commensurate increase in software costs required to fix
said errors in the later phases [16]. Secondly, a study published
by Unit 42, an arm of Palo Alto Networks [17] found almost
200,000 IAC templates with the types of errors described herein,
validating the research by [16] and demonstrating how easily
such errors can be missed. Thirdly, fixing these errors in the later
phases of the development lifecycle may lead to the fixes being
subsequently overwritten if unpatched designs and/or source
code are redeployed. Finally, fixing such errors using late-phase
automatic checking tools misses an opportunity to improve
developer knowledge, education, and documentation by failing to
point out the errors they made in their initial configurations, as
the research by [7] reported.

2.1 Motivation

There have been a number of papers published recently that high-
light UMEs, As already discussed, [7] argue not just for testing tools
but also earlier and more proactive checking tools, as well as for
tools that can update UME use-cases in the system’s documentation.
Zhang et al. [18] discuss the issues of UME’s in industrial control
systems, and present a tool (SMFCONF) to address them. Guffey
and Li [3], as discussed previously, present a study of the types of
UMEs commonly encountered in cloud systems. This recent tranche
of papers reflects the growing acknowledgment of the importance
of, and risks associated with, UMEs.

2.2 Limitations of Existing Work

As previously mentioned, there are a number of commercial tools
that check IaC templates for errors [15], including but not exclu-
sively focusing on security. Recently, research by [19] brought to-
gether a number of tools to specifically check various IaC templates
for security errors. The additional contribution of this paper is to
perform similar checks, concentrating on the UMEs enumerated by
[3], but performing these checks on the configuration file rather
than the full IaC template itself. Our research shows that this ”shift
left” approach reduces the scan times by an order of magnitude and
still detects the same errors.

3 OVERVIEW OF PROPOSED SOLUTION

In recent years, configuration and orchestration tools such as
Apache Brooklyn [8] have added an element of modeling to the
conceptualization phase, supplemented by specification modeling
languages from OASIS, such as CAMP and TOSCA [20]. However,
as discussed above, the (unintended) consequence of the facilitation
of cloud system design is an increase in cloud security vulnera-
bilities attributable to UMEs, for the most part [21]. This work
investigates the use of automated tools to help detect and amelio-
rate the effects of such UMEs while also attempting to improve the
security knowledge and education of users. It does so by building a
system termed CACLE - a knowledge-based security verification

CACLE - Automated Mitigation for Misconfiguration Vulnerabilities in Cloud Systems ICCBDC 2023, August 17-19, 2023, Manchester, United Kingdom

User: builds system via GUI; uses
feedback to improve design

" Function [A] has

- gy {secunty erors}
o Recommendation:
] "] Modify [A] to use
e " {mitigation}
Cloud | Type: DBSEIVEr |
Qrchestrator = Name: MySQL Feedback
(e.g. Brooklyn) = User: root Delivery
= Password: "Secret"
System
- | Type: WebServer]
= User: usergg
= Password: "™
= Connection: HTTP
¢ s ica [Type:AppSewer
ecification -
OASIS DSL Def;ompos'rtion - Nare: Couchbase R:Jlef:s Based
Specification Svst = User: Root nference
(e.g. TOSCA) ystem - Password: "Pagsword" Engine
= Connection: https 3
Security Rules
(e.g. from
Functional blocks Ontology)
extracted from
specification

Project Scope

Figure 1: CACLE System Schematic showing Decomposer, Inferencing Engine, and Compliance Report

system, using security principles implemented as logic rules applied
as part of an inference engine.

3.1 Modelling and Specification Languages

With regard to cloud environment configurations, the current stan-
dard offerings from OASIS are CAMP and TOSCA [8]. CAMP is a
domain-specific language used to deploy application configurations
to multi-cloud platforms, in particular, hybrid clouds, and was the
forerunner of TOSCA. According to [8], TOSCA, along with CAMP,
was designed to "define methodologies to describe and wrap the
structure of cloud applications (components and relationships)".
However, although the TOSCA standard, in particular, has been
posited as a potential solution to the hybrid cloud challenge [22],
the lack of homogeneous implementations between the various
vendors has meant that a suite of tools compatible with all tem-
plate versions is difficult to create. As other studies have shown
[19], allowing for the additional processing overhead required to
check the functional blocks and scripts required for a full deploy-
ment tends to increase the security checking time by an order of
magnitude. Therefore, this paper proposes that rather than attempt
to reason over the whole application configuration, we concentrate
on extracting the essential security parameters for each component
within the design - an approach based on research around com-
posable systems [23]. This research has a wider relevance because
TOSCA templates have also been used to create specifications for
unikernels [24] and Internet of Things (IoT) systems [25], and it
is suggested that this research may likewise be utilized in those
domains as well.

76

3.2 System Description

The verification system starts with a script written in Python that
extracts the pertinent security parameters from functional blocks
within the YAML specification scripts. This approach was based on
functional decomposition. These parameter sets are then passed on
to the inference engine, which checks the parameters for security
errors using a set of logic clauses. A schematic of the system is
shown in Figure 1.

3.3 Graphs and Algorithms

The TOSCA and CAMP specification and modeling languages are
good examples of a standard that can be used to provide platform-
agnostic designs. However, they tend to have too much ‘syntactic
sugar’ [26], especially from the perspective of security verification.
To perform a security evaluation of a cloud specification, the system
under consideration requires only the details of the functional
blocks that will form the constituent parts of the proposed system.
This solution was designed to parse the configuration files and
decompose them into their constituent elements. The components
of each element were then reviewed by the rules-based inference
engine which made decisions based on a set of security rules, which
in turn generated a report that enumerated the existing security
vulnerabilities found in the templates and recommended potential
mitigations. A graph representing the data flows is given in Figure
2.

The security rules utilized as part of CACLE are represented in
an easily comprehensible, executable format that allows inferences
to be made based on a security policy. These were based on previous

ICCBDC 2023, August 17-19, 2023, Manchester, United Kingdom

Douglas Millward et al.

/'

e

v

{ Check Parameter Block }

—a »

Security Groups

ikt e PortNum=1024

Increment BUcount

All Bad Params

~(LP*SG*SP"BP"WF)
Increment ABcount

Increment BPcount

Separation of Privilege

BEEERE

Bell LaPadula

8>F, P (PBBIER /0D > 12

Increment Bloount Increment WFcount

All Good Params

(LPASG*SP*BPWF)
Increment AGeount

{ Collect results and create message string J

Figure 2: CACLE System Logic Graph

Table 1: Security Principles and Clauses

Principle Logic Clause

Least Privilege
Separation of Privilege
Work Factor

Bell LaPadula Check (UP, FP)

User(X) ¢ (SuperUser)
GoodPW(X) A Goodtoken(Y)
(X ¢ (BadList) A Length(X) > N)

research (eg. [27]) that posited the use of first-order logic statements
(FOL) as a suitable mechanism in which to implement security rules
as part of a knowledge-based inferencing system. To demonstrate
the principle, this project implemented a subset of the rules detailed
in Table 1, namely least privilege and work factor. These clauses
were implemented using Maude rewriting logic rules, as a more
modern and flexible alternative to more traditional formats such as
Prolog and Datalog.

3.4 Implementation

The specification decomposition application was implemented in
Python, based on an algorithm by Birchard [28]. It extracted the
functional blocks and associated security attributes and passed them
on to the rules engine. The inference engine was implemented in
Maude, consisting of a set of equational and rewrite logic rules rep-
resenting the security principles discussed previously. The recom-
mendations of the inference engine represented as a vector string of
characters, were passed back to a simple web service implemented
using the Python flask web application framework [29].

71

4 EVALUATION

4.1 Experimental Setup

Over one hundred candidate TOSCA and CAMP YAML files were
gathered from various GIT repositories including Alien4Cloud,
OASIS-Open, and Apache Brooklyn. All tests were carried out on a
MacBook Air M2 2022 with 16GB of RAM, using Python version
3.9.6 and Maude version 3.1.

4.2 Evaluation methodology

As discussed previously, files were gathered from publicly available
GitHub repositories. The initial objective was to utilize files from
multiple vendors. However, despite the fact that TOSCA promotes
itself as a standard for hybrid, multi-cloud, and even IOT system
designs, the reality was that the different templates and structures
used by different vendors made a single decomposition system
unfeasible. Indeed, there is not even a parser that can verify all
the various templates [30]. Ultimately, this evaluation settled on
using files that adhered to the older CAMP specification, produced
as ‘blueprints’ by the Apache Brooklyn project [8], as discussed
previously. Due to their nature, these files exhibited greater unifor-
mity and provided a repeatable structure that the decomposition

CACLE - Automated Mitigation for Misconfiguration Vulnerabilities in Cloud Systems

. Breakdown of Object Types
0

28

20

15

10

5 X

clusier Dalabiase Slorage Java ‘WebApp General

(a) Types of application specification files included

ICCBDC 2023, August 17-19, 2023, Manchester, United Kingdom

m Al Bad

m Good Two bad params = Single faults

{b) Number of Parameter Sets with UMEs detected

Figure 3: Analysis of the Cloud Applications and Parameter Sets

Table 2: Comparison of Security Misconfiguration Errors

Category Unit 42 [17] CACLE
Weak Passwords 53 % 64.5 %
Exposed Ports 76 % 85 %
Excessive Permissions 99 % 98 %

system utilized to extract the essential security information from
the template functional blocks.

As discussed above, the inference engine tested for least privi-
lege (i.e. functions should not be executed under the administrator
or superuser role), fail-safe defaults (i.e. any open ports should
be specifically selected as well as not utilizing system port ad-
dresses), and work factor (i.e. a computational function derived
from the complexity of the passwords selected). A comparison
of how these tests mapped onto the UME categories from [3] is
given in a later section. The blueprints included a varied selection
of application specifications including database servers, storage
appliances and collections (including buckets and cloud storage),
Java application and Web application servers, general infrastruc-
ture components (such as routers and virtual network devices), and
clustered instances of application servers. This gave a wide selec-
tion of devices and applications that are often the subject of UMEs.
The selection of applications is shown in the bar chart, (Figure
3a). Subsequently, the files were searched looking for the ‘services’
keyword, and then the name (id), username(‘adminUsername’),
password(‘adminPassword’), and port number(‘port’) fields and
associated data were extracted. These were validated individually
against the security rules and any non-conformance or data omis-
sions were recorded. The recommendations from the inferencing
engine were then manually compared with the gathered templates
to verify that all the in-scope UMEs were successfully identified.

4.3 Results

The rules engine tested each parameter field for transgressions
against the stated rules with results shown in Table 2. Of the 124
files that were processed, 119 were successfully decomposed, and
5 exhibited extraction errors which meant that they could not be
processed further. Of the testable files, the rules engine examined

78

354 parameters and found that 98% of the sets tested exhibited
some security faults or errors (the 2 percent without faults were
sets added by the researchers to confirm sets with no UMEs were
successfully detected). A breakdown of the number of parameter
sets with different errors is shown in Figure 3b. Allbad denotes
the number of sets where all parameters were misconfigured; Two
bad denotes parameter sets with two misconfigured parameters,
single faults is the number of sets with only one misconfigured
parameter and Good shows the number of parameter sets with no
misconfigured parameters. Individual error counts are summarised
in Table 2. These results were compared to data published by Unit
42, the security/ consulting group of Palo Alto [17]. The results
were as displayed in Table 2 and an explanation of the results is
given below.

Password Strength: This research tested that passwords were

not in an excluded/ blocked list and that the length was

greater than 12 characters. Unit 42 only tested for a password
length of 14 characters or more but did not employ a blocked

list (This is equivalent to the IAM UME from [3]).

Exposed Ports: This research tested for any exposure of sys-

tem ports (i.e. numerically less than 1024) as being a potential

security risk. Unit 42 only tested for SSH and RDP (This is

equivalent to the security group UME from [3]).

o Excessive Permissions: Unit 42 tested for specific cloud sys-
tem roles. CAMP is not an infrastructure-specific specifica-
tion language and furthermore is vendor agnostic. Therefore,
this research tested for names in an excluded/blocked list
OR where default names were used/assumed OR where pass-
words were missing or easily guessable. (This effectively
amalgamates the IAM and storage categories from [3]).

e From a performance perspective, in performing the above

tests, the Maude system executed checks on data from 119

ICCBDC 2023, August 17-19, 2023, Manchester, United Kingdom

files in 58ms. The research by [19] tested 130 files in 5.13s
(using their compatibility matrix) and 6.69s (without the
matrix). This is more than an order of magnitude slower
than the tests carried out by this team - although the former
research did test a wider range of file types.

As the results show, virtually all of the sets tested had one or
more basic security errors. These were successfully detected by the
rules engine and flagged (with mitigations) to the user.

5 DISCUSSION

The initial premise of this research was to investigate whether
testing the security of system design at the conceptual- ization
phase of the system development life cycle could help reduce the
number of UMEs found in modern systems, which ultimately lead
to significant security errors. From that perspective, and in com-
parison with the results published by [17], the results suggest that
testing of the configuration phase detects the same degree of secu-
rity issues as testing at later phases. The differences in the results
have been discussed above and can be attributed to variations in
the test parameters and the scope of the design encapsulated by
the specification template. TOSCA, ultimately, did not live up to
the promise of its definition which, as with many other standards
created by committees, was poorly supported by actual users of
the templates. The result of this was that this research used an
older standard as the subject of its tests. More importantly, the lack
of standardization in TOSCA templates means that a much more
sophisticated - and complex - decomposition application would be
required to do similar research.

Another limitation encountered during this study was the Brook-
lyn blueprint templates. While these files may well be suitable for
inexperienced users from a technical/infrastructure perspective,
this research clearly shows that they do not meet even the most
basic security requirements. Therefore, it is the authors’ opinion
that this is a serious omission because the typical user of such
templates is often the same inexperienced cloud designer that is
the subject of this research. Many blocks did not specify a user-
name or a password. Even when they did specify a name, it was
usually the superuser - a selection that countermands the most
basic security tenet of least privilege. Additionally, even when a
password was specified, it was either in the blocked list of most
common passwords [31] or it was too short to meet modern ac-
cepted standards (such as those utilized by Unit 42 [17]). In fact, the
only passwords that passed the test were the ones included to verify
the system by the researchers. Finally, the last test concerned ex-
posed ports. This research tested for any exposure of system ports
because they both expose the services available and also provide a
route for privilege escalation via published exploits - this is in the
same vein as the security group UME discussed by [3]. Ultimately,
the two sub-questions raised by the research, namely how secure
are blueprints as starting points, and how susceptible are they to
user misconfiguration errors, have been addressed by the results
above. The default position of the templates is insecure, and because
there is no checking or filtering between the configuration files and
the blueprints used to create cloud (or IOT) systems, the eventual
state is insecure as well. This would indicate a need for a checking
solution (such as CACLE) to be interposed between the source files

79

Douglas Millward et al.

and the deployed files. This would be relatively easy to accomplish
in the Brooklyn environment.

Another major omission of both the TOSCA and CAMP tem-
plates was the lack of support for roles and access control. This
constituted another limitation of the proposed ‘standard’ because,
as this research reveals, the limited amount of security information
contained in the current templates severely restricts the amount
and type of security validation tests that can be carried out on
these files. Some work around adding additional security features
to TOSCA has already been carried out by [24].

For the final stage - delivering messages to the user - the Maude-
based inference engine assessed the security posture of the design
specification and encoded it into a character representation. This
resulting tag pattern was passed to a Python-based system that
provided the user interface and also interpreted the results, pro-
ducing feedback message(s) that could be read and acted on by the
designer. This delivery system leverages the SWIG-based Python-
Maude language bindings [32] to transfer the recommendations
created by logic in Maude over to Python. In this way, the solution
makes use of the best of both systems: using Maude to process
logic and perform the inference, and using Python to store and
process the text (and take advantage of libraries such as Babel for
localization and internationalization), as well as implementing the
delivery system to the user via built-in web components such as
Flask. Further research is recommended, possibly using groups of
users, to identify the best way of expressing and delivering the
recommendations.

6 CONCLUSION

As discussed in the introduction, this research was designed to
achieve three objectives:

e the provision of proactive parameter value checking and
validation - focusing specifically on security

o the provision of security checks in early execution phases

e the ability to generate up-to-date security configuration
use cases in the documentation.

The findings (see Table 2) indicate that validating at the concep-
tual design stage finds a very similar percentage of security defects
to solutions that detect faults at a much later phase of the system
development life cycle (such as those described by [15] or [17]). The
results also show that the approach developed by the researchers
has the potential to check for errors and produce recommendations
much more quickly than existing solutions. Additionally, this could
be further accelerated, if required, by the use of parallel processing
due to the fact that parameters are checked independently and the
recommendation section is the only place the results need to be
combined and aligned. As discussed previously, the limitations of
the TOSCA ‘standard’ (and in particular the lack of security param-
eters) restrict the number and type of tests that can be performed
at the moment.

Additionally, the use of logic statements to represent security
rules means that the range of rules that could be included can be
easily expanded and the system is easily extended by the use of stan-
dard import functions in the Maude System. It is beyond the scope
of this paper to investigate how effective the recommendations
produced were. That will be left to subsequent research.

CACLE - Automated Mitigation for Misconfiguration Vulnerabilities in Cloud Systems

REFERENCES

[1] G. Alvarenga. What is Shift Left Security. Jan. 2022. https://www.crowdstrike.

[2

l6

[16

]

]

=

com/cybersecurity-101/shift-left-security/.

D. M. Berry. “Formal methods: The very idea - Some thoughts about why they
work when they work”. In: Science of Computer Programming 42.1 (Jan. 2002), pp.
11-27.

J. Guffey and Y. Li. “Cloud Service Misconfigurations: Emerging Threats, Enter-
prise Data Breaches and Solutions”. In: 2023 IEEE 13th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, Mar. 2023, pp. 0806—
0812.: https://ieeexplore.ieee.org/document/ 10099296/.

M. Guerriero et al. “Adoption, Support, and Challenges of Infrastructure-as-
Code: Insights from Industry”. In: 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, Sept. 2019, pp. 580-589. : https://
ieeexplore.ieee.org/document/8919181/.

A. Rahman, R. Mahdavi-Hezaveh, and L. Williams. “A systematic mapping
study of infrastructure as code research”. In: Information and Software Tech-
nology 108 (Apr. 2019), pp. 65-77.: https://linkinghub.elsevier.com/retrieve/pii/
50950584918302507.

C. A. Cois,]. Yankel, and A. Connell. “Modern DevOps: Optimizing software
development through effective system interactions”. In: 2014 IEEE International
Professional Communication Conference (IPCC). IEEE, Oct. 2014, pp. 1-7.: https:
//ieeexplore.ieee.org/document/7020388/.

Y. Zhang et al. “An Evolutionary Study of Configuration Design and Implemen-
tation in Cloud Systems”. In: (Feb. 2021). http://arxiv.org/abs/ 2102.07052.

J. Carrasco et al. “Bidimensional Cross-Cloud Management with TOSCA and
Brooklyn”. In: 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). IEEE, June 2016, pp. 951-955. http://ieeexplore.ieee.org/document/
7820380/

B. Varghese. History of the cloud. Mar. 2019.: https://www.bcs.org/articles-
opinion-and-research/history-of-the-cloud/.

A. Brogi, A. Di Tommaso, and J. Soldani. “Validating TOSCA application topolo-
gies”. In:. MODELSWARD 2017 - Proceedings of the 5th International Confer-
ence on Model-Driven Engineering and Software Development. Vol. 2017-January.
SciTePress, 2017, pp. 667-678.

I Kwan and D. M. Berry. Specify First or Build First? Empirical Studies of Re-
quirements Engineering Activities: A Survey. Tech. rep. Waterloo: University of
Waterloo, 2009.

L. Lamport. “Real-Time Model Checking is Really Simple”. In: Microsoft Research
(2005).

L. Lamport. “How to Write a 21 st Century Proof”. In: ().

C. Solis, X. Wang, and C. Solis. A study of the characteristics of behaviour driven
development A study of the characteristics of behaviour driven development A
Study of the Characteristics of Behaviour Driven Development. Tech. rep. 2011,
pp. 383-387.: https://hdlLhandle.net/10344/1256.

D. P. Acharya. 5 Tools to Scan Infrastructure as Code for Vulnerabilities. 2023.:
https://geekflare.com/iac-security-scanner/.

P. Feiler et al. “Four Pillars for Improving the Quality of Safety-Critical Software-
Reliant Systems”. In: SEI-CMU (2013), pp. 1-17. : www.sei. cmu.edu.

80

(17

[18

[19]

[21]

[22]

[23]

[24]

[25

[27]

[28

[29]

ICCBDC 2023, August 17-19, 2023, Manchester, United Kingdom

M. Chiodi. Cloud Threat Report: Putting the Sec in DevOps. Tech. rep. Santa Clara:
Unit 42, Apr. 2020.

Q. Zhang et al. “Automated Runtime Mitigation for Misconfiguration Vulnerabil-
ities in Industrial Control Systems”. In: 25th International Symposium on Research
in Attacks, Intrusions and Defenses. New York, NY, USA: ACM, Oct. 2022, pp.
333-349. : https://dlL.acm.org/doi/10.1145/ 3545948.3545954.

N. Petrovic, M. Cankar, and A. Luzar. “Automated Approach to IaC Code Inspec-
tion Using Python-Based DevSecOps Tool”. In: 2022 30th Telecommunications
Forum, TELFOR 2022 - Proceedings. Institute of Electrical and Electronics Engi-
neers Inc., 2022.

A. Brogi, J. Soldani, and P. W. Wang. “TOSCA in a nutshell: Promises and per-
spectives”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8745 LNCS.
Springer Verlag, 2014, pp. 171-186.

U.D. Ani, H. He, and A. Tiwari. “Vulnerability-Based Impact Criticality Estimation
for Industrial Control Systems”. In: 2020 International Conference on Cyber Security
and Protection of Digital Services (Cyber Security). IEEE, June 2020, pp. 1-8. :
https://ieeexplore.ieee.org/document/9138886/.

M. Bowker and B. Laliberte. Strategies for optimizing on-premises and public cloud
infrastructure. ESG, 2020.

V. Roussev, P. Dewan, and V. Jain. “Composable collaboration infrastructures
based on programming patterns”. In: Proceedings of the 2000 ACM conference on
Computer supported cooperative work. New York, NY, USA: ACM, Dec. 2000, pp.
117-126. : https://dl.acm.org/doi/10.1145/ 358916.358982.

M. Compastié et al. “A TOSCA-Oriented Software-Defined Security Approach for
Unikernel-Based Protected Clouds”. In: IEEE Conference on Network Softwarisation.

2019, pp. 151-159. https://hal.archives-ouvertes.fr/hal-02271520.
S. Choudhuri. “A Case for Unikernels in IoT: Enhancing Security and Perfor-

mance”. In: Internet of Things: Enabling Technologies, Security and Social Implica-
tions. Springer, Singapore, 2021, pp. 85-91. http://link.springer.com/10.1007/978-
981-15-8621-7_7.

P. J. Landin. “The Mechanical Evaluation of Expressions”. In: The Computer
Journal 6.4 (Jan. 1964), pp. 308-320. https://academic.oup.com/ comjnl/article-
lookup/doi/10.1093/comjnl/6.4.308.

J. Mclean. Security Models. Tech. rep. 1994, pp. 1136-1145. http://citeseerx.ist.psu.
edu/viewdoc/download?doi$=$10.1.1.34.8561&rep$=$rep1&type$=$pdf.

T. Birchard. Extract Nested Data From Complex JSON. Oct. 2018. https://
hackersandslackers.com/extract-data-from-complex-json-python/.

M. R. Mufid et al. “Design an MVC Model using Python for Flask Framework
Development”. In: 2019 International Electronics Symposium (IES). IEEE, Sept.
2019, pp. 214-219. https://ieeexplore.ieee.org/document/8901656/.

J. DesLauriers et al. “Cloud apps to-go: Cloud portability with TOSCA and Mi-
CADO?”. In: Concurrency and Computation: Practice and Experience

33.19 (Oct. 2021). https://onlinelibrary.wiley.com/doi/10.1002/cpe.6093.

Anon. Top 200 Most Common Password List. 2022. https://nordpass.com/most-
common-passwords-list/.

R. Rubio. “Maude as a Library: An Efficient All-Purpose Programming Interface”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 13252 LNCS (2022),
Pp. 274-294. https://link.springer.com/chapter/10.1007/ 978-3-031-12441-9_14.

https://www.crowdstrike.com/cybersecurity-101/shift-left-security/
https://www.crowdstrike.com/cybersecurity-101/shift-left-security/
https://ieeexplore.ieee.org/document/
https://ieeexplore.ieee.org/document/8919181/
https://ieeexplore.ieee.org/document/8919181/
https://linkinghub.elsevier.com/retrieve/pii/S0950584918302507
https://linkinghub.elsevier.com/retrieve/pii/S0950584918302507
https://ieeexplore.ieee.org/document/7020388/
https://ieeexplore.ieee.org/document/7020388/
http://arxiv.org/abs/
http://ieeexplore.ieee.org/document/7820380/
http://ieeexplore.ieee.org/document/7820380/
https://www.bcs.org/articles-opinion-and-research/history-of-the-cloud/
https://www.bcs.org/articles-opinion-and-research/history-of-the-cloud/
https://hdl.handle.net/10344/1256
https://geekflare.com/iac-security-scanner/
https://dl.acm.org/doi/10.1145/
https://ieeexplore.ieee.org/document/9138886/
https://dl.acm.org/doi/10.1145/
https://hal.archives-ouvertes.fr/hal-02271520
http://link.springer.com/10.1007/978-981-15-8621-7_7
http://link.springer.com/10.1007/978-981-15-8621-7_7
https://academic.oup.com/
http://citeseerx.ist.psu.edu/viewdoc/download?doi$=$10.1.1.34.8561&rep$=$rep1& type$=$pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi$=$10.1.1.34.8561&rep$=$rep1& type$=$pdf
https://hackersandslackers.com/extract-data-from-complex-json-python/
https://hackersandslackers.com/extract-data-from-complex-json-python/
https://ieeexplore.ieee.org/document/8901656/
https://onlinelibrary.wiley.com/doi/10.1002/cpe.6093
https://nordpass.com/most-common-passwords-list/
https://nordpass.com/most-common-passwords-list/
https://link.springer.com/chapter/10.1007/

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Motivation
	2.2 Limitations of Existing Work

	3 OVERVIEW OF PROPOSED SOLUTION
	3.1 Modelling and Specification Languages
	3.2 System Description
	3.3 Graphs and Algorithms
	3.4 Implementation

	4 EVALUATION
	4.1 Experimental Setup
	4.2 Evaluation methodology
	4.3 Results

	5 DISCUSSION
	6 CONCLUSION
	References

