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Self-adaptation solutions need to periodically monitor, reason about, and adapt a running system. The
adaptation step involves generating an adaptation strategy and applying it to the running system whenever
an anomaly arises. In this article, we argue that, rather than generating individual adaptation strategies, the
goal should be to adapt the control logic of the running system in such a way that the system itself would
learn how to steer clear of future anomalies, without triggering self-adaptation too frequently. While the
need for adaptation is never eliminated, especially noting the uncertain and evolving environment of complex
systems, reducing the frequency of adaptation interventions is advantageous for various reasons, e.g., to
increase performance and to make a running system more robust.

We instantiate and empirically examine the above idea for software-defined networking – a key enabling
technology for modern data centres and Internet of Things applications. Using genetic programming (GP),
we propose a self-adaptation solution that continuously learns and updates the control constructs in the
data-forwarding logic of a software-defined network. Our evaluation, performed using open-source synthetic
and industrial data, indicates that, compared to a baseline adaptation technique that attempts to generate
individual adaptations, our GP-based approach is more effective in resolving network congestion, and further,
reduces the frequency of adaptation interventions over time. In addition, we show that, for networks with
the same topology, reusing over larger networks the knowledge that is learned on smaller networks leads to
significant improvements in the performance of our GP-based adaptation approach. Finally, we compare our
approach against a standard data-forwarding algorithm from the network literature, demonstrating that our
approach significantly reduces packet loss.

CCS Concepts: • Software and its engineering → Search-based software engineering; Empirical
software validation; • Computing methodologies→Machine learning algorithms.
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1 INTRODUCTION
A major challenge when engineering complex systems is to ensure that these systems meet their
quality-of-service criteria and are reliable in the face of uncertainty. Self-adaptation is a promising
approach for addressing this challenge. The idea behind self-adaptation is that engineers take an
existing system, specify its expected qualities and objectives as well as strategies to achieve these
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objectives, and build capabilities into the system in a way that enables the system to adjust itself to
changes during operation [40].
Many software-intensive systems can benefit from self-adaptivity. A particularly pertinent

domain where self-adaptation is useful is software-defined networking – a flexible network archi-
tecture that is prevalent in modern data centres and Internet of Things applications [32, 86, 94, 99].
A software-defined network (SDN) provides centralized programmable control over distributed
network resources, thereby allowing network operators to better manage network performance
and to react in real time to events in the network. Notably, many networks are prone to congestion
when there is a burst in demand. For instance, in an emergency management system, such bursts
may occur when a disaster situation, e.g., a flood, is unfolding. Taking advantage of the software
programmability of SDN controllers, our ultimate goal in this article is to develop a self-adaptive
approach for resolving network congestion.

Self-adaptation has been studied for many years [24, 55, 71, 79, 91]. The existing self-adaptation
approaches include model-based [31, 87], control-based [35], requirements-based [6], and more
recently, learning-based [42] solutions. At the heart of all self-adaptation solutions, there is a
planning step that generates or determines an adaptation strategy to adapt the running system once
an anomaly is detected [40]. Adaptation strategies may be composed of fixed and pre-defined actions
identified based on domain knowledge, or they may be new behaviours or entities introduced at run-
time [91]. Irrespective of the type of adaptation, the knowledge about how to generate adaptation
strategies is often concentrated in the planner: The running system is merely modified by the
planner to be able to handle an anomaly as seen in a specific time and context; the running system is
not necessarily improved in a way that it can better respond to future anomalies on its own. As we
illustrate in our motivating example of Section 2, having to repeatedly invoke the planner for each
adaptation can be both expensive and ineffective. The main idea that we put forward in this article
is as follows: The self-adaptation planner should attempt to improve the control logic of the running
system such that the system itself would learn how to steer clear of future anomalies, without triggering
self-adaptation too frequently. The need for self-adaptation is never entirely eliminated, especially
noting that the environment changes over time. Nonetheless, a system augmented with such a
self-adaptation planner is likely to be more efficient, more robust to changes in the environment
(e.g., varying network requests), and less in need of adaptation intervention. Furthermore, existing
self-adaptation research focuses on modifying a running system via producing individual and
concrete elements, e.g., configuration values [53]. In contrast, we take a generative approach [34],
modifying the logic of the running system which in turn generates the concrete elements.

Contributions.We propose a generative self-adaptation framework, named GenAdapt, that uses
genetic programming (GP) [58, 82] to realize the above-described vision of self-adaptation. GenAdapt
builds on the well-known MAPE-K loop [57, 71] to incrementally enhance the control logic of the
running systems. The idea is that by incremental adaptations (i.e., evolving a running system’s
logic), the running system becomes more robust to changes in the environment and requires less
frequent adaptation. GenAdapt requires as input a context-free grammar capturing the language in
which the configurable (adaptive) fragment of a system’s control logic has been expressed. It then
employs genetic programming to incrementally evolve the system’s control logic so that the system
responds better to environment changes observed over time. To ensure the continuity of learning
over time and to evolve the control logic in a way that better fits the environment in which the
system is operating, at each round of self-adaptation, we maintain in the MAPE-K knowledge base
a set of best solutions (alternative control-logic implementations) computed by GP. These solutions
are used to partially bootstrap GP in the future rounds of self-adaptation, thereby informing these
future rounds about the candidate solutions that best fit the environment uncertainty in the past.
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In this article, we instantiate GenAdapt to address congestion control for SDNs. In an SDN,
network control is transferred from local fixed-behaviour controllers distributed over a set of
switches to a centralized and programmable software controller [46]. More specifically, we address
the self-adaptation of SDN data-forwarding algorithms in order to resolve network congestion in
real time. We implement GenAdapt to enhance the programmable controller of an SDN. Noting that
GenAdapt relies on the MAPE-K loop, it performs the following tasks periodically: (i) monitoring
the SDN to check if it is congested and generating a model of the SDN to be used for congestion
resolution; (ii) applying GP to evolve the logic of the SDN data-forwarding algorithm such that
congestion is resolved and, further, the transmission delay and the changes introduced in the
existing data-transmission routes are minimized; and (iii) modifying existing transmission routes
to resolve the current congestion and updating the logic of SDN data forwarding to mitigate future
congestion. Exploiting the global network view provided by an SDN for modifying the controller
and resolving congestion in real time is not new. However, existing approaches adapt the network
management logic using pre-defined rules [43]. In contrast, our approach uses GP to modify the
data-forwarding control constructs in an evolving manner and without reliance on fixed rules.

We have implemented GenAdapt into a tool, which wemake publicly available [2]. As we describe
in more detail in Section 5, the GenAdapt tool interacts with (i) the (software-programmable)
controller of an SDN, (ii) a network emulator that simulates the network infrastructure, and (iii) a
traffic generator that emulates different types of requests from devices and network users.

Evaluation. We evaluate GenAdapt on 26 synthetic and one industrial IoT network. The indus-
trial network, which is the backbone of an IoT-based emergency management system [94], is prone
to congestion when the volume of demand increases during emergencies. We compare our frame-
work with two baselines: (1) a self-adaptive technique from the SEAMS community that attempts to
resolve congestion by generating individual adaptations (i.e., individual data-transmission routes)
without optimizing the SDN routing algorithms [94]; and (2) a standard data-forwarding algorithm
from the network community that uses pre-defined rules (heuristics) to optimize SDN control at
runtime and resolve congestion [1, 27].
Our results indicate that GenAdapt successfully resolves congestion in all the 26 networks

considered while the adaptive, but non-generative baseline fails to resolve congestion in four of
the networks with probabilities ranging from 10% to 66%. In addition, compared to this baseline,
GenAdapt reduces the average number of congestion occurrences, and hence, the number of
adaptation rounds necessary. Compared to the baseline from the network community, GenAdapt is
able to significantly reduce packet loss for the industrial network.

In addition, we empirically assess the impact of transferring to larger networks the best control
logic learned on smaller networks, when both the smaller and larger networks have the same
topology (e.g., both are full graphs). We observe that for a given topology, bootstrapping GenAdapt
with the best logic learned on a smaller network can significantly improve performance on a larger
network in terms of the number of adaptation invocations, the amount of packet loss and overall
duration the network remains congested. These results suggest the transferability of the learned
logic over networks that share the same topology but have different numbers of nodes. Finally, we
empirically demonstrate that the execution time of GenAdapt is linear in network size and the
amount of data traffic over time, thus making it suitable for online adaptation.

Comparison with conference version. This article extends a previous conference paper [61],
published at the 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2022). In comparison to this earlier publication, this current article provides the following
major extensions: (1) We provide a high-level description of the GenAdapt framework to convey –
as independently as possible from our application context (i.e., SDN data forwarding) – the main
characteristics of the framework; (2) We considerably expand our earlier empirical evaluation in
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terms of the number of synthetic networks considered, going from 18 networks to 26 networks,
and increasing the number of experiments by 50%. Extending our evaluation allows us to provide
additional insights on improving effectiveness of our framework by reusing adaptation solutions
across networks; (3) We empirically examine the bootstrapping of our framework and the impact
of applying over a larger network the control logic that has been learned on a smaller network;
(4) We provide a detailed description of our tool support; and, (5) We provide a more thorough
discussion of related work and threats to validity.

Structure. Section 2 motivates the paper. Section 3 provides an overview of our self-adaptation
framework, GenAdapt. Section 4 presents an instantiation of GenAdapt in the context of SDN
data forwarding. Section 5 presents our tool support. Section 6 describes our evaluation. Section 7
compares with related work. Section 8 concludes the paper.

2 MOTIVATING EXAMPLE
We motivate our approach through an example. Network-traffic management is about assigning
flow paths to network requests such that the entire network is optimally utilized [3, 5, 14, 76]. A
flow path is a directed path of network links. Many network systems use a standard, lightweight
data-forwarding algorithm, known as Open Shortest Path First (OSPF) [1, 27]. OSPF generates a
flow path for a data-transmission request by computing the shortest weighted path between the
source and destination nodes of the request.

Figure 1(a) shows a network with five nodes (switches) and six links. Suppose that there are six
requests, 𝑟1, . . . , 𝑟6 from source node 𝑠1 to destination node 𝑠2, and that they arrive in sequence (first
𝑟1, then 𝑟2, . . . ) with a few seconds in between. These requests keep running after arrival. Further,
all link weights are set to one. OSPF creates the flow path 𝑠1 → 𝑠2 for every request. Assume that
each flow utilizes 30% of the bandwidth of each link. Further, assume that we have a threshold of
80% for link utilization, above which we consider a link to be congested. Each link in our example
then has enough bandwidth to transmit two flows before it is considered congested. Consequently,
link 𝑠1 → 𝑠2 will be congested after the arrival of 𝑟3; see Figure 1(b). This leads to an invocation of
the self-adaptation planning step to resolve the congestion. A common approach for congestion
resolution is through combinatorial optimization, where some flow paths are re-routed such that
the data stream passing through each link remains below the utilization threshold [37, 45, 63]. This
optimization can be done using various methods, e.g., graph optimization [37], mixed-integer linear
programming [3], local search [36, 38], and genetic algorithms [94].
Optimization by re-routing flow paths has a major drawback. While optimizing at the level of

individual flow paths may solve the currently observed congestion, doing so does not improve the
logic of OSPF and thus does not contribute to congestion avoidance in the future. For instance, in
Figure 1(b), the arrival of 𝑟3 will cause congestion. Re-routing 𝑟3 over 𝑠1 → 𝑠3 → 𝑠2 will resolve
this congestion. But, upon the arrival of 𝑟4, OSPF will yet again select the flow path 𝑠1 → 𝑠2 for 𝑟4
(since this is the shortest path between 𝑠1 and 𝑠2) just to find the 𝑠1 → 𝑠2 link congested again. This
in turn necessitates the self-adaptation planning step to be invoked for 𝑟4 as well. In a similar vein,
the arrival of 𝑟5 and 𝑟6 will cause congestion, prompting further calls to self-adaptation planning.

Our proposal is that, at each round of self-adaptation where a congestion is detected, one should
focus on optimizing the logic of OSPF instead of optimizing flow paths. In this paper, we optimize
and update the link-weight formula that OSPF uses. The hypothesis here is that an optimized
link-weight formula not only can resolve the existing congestion, but can simultaneously also make
OSPF more intelligent towards congestion avoidance in the future, thus reducing the number of
times that the self-adaptation planning step has to be invoked. Below, we illustrate our approach
using the example of Figure 1.
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<latexit sha1_base64="TYN+hFdY8J1YuFNS6RU+XvMKLlw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhPBU9iNoF6EgBePEcwDkiXMTmaTIbOzy0yvEkI+wosHRbz6Pd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33rk2ohYPeA44X5EB0qEglG0Uqv8RG6IV+4VS27FnYOsEi8jJchQ7xW/uv2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvzJ/NwpObNKn4SxtqWQzNXfExMaGTOOAtsZURyaZW8m/ud1Ugyv/YlQSYpcscWiMJUEYzL7nfSF5gzl2BLKtLC3EjakmjK0CRVsCN7yy6ukWa14l5WL+2qp5mZx5OEETuEcPLiCGtxBHRrAYATP8ApvTuK8OO/Ox6I152Qzx/AHzucPOJWOIQ==</latexit>

w = 1

<latexit sha1_base64="TYN+hFdY8J1YuFNS6RU+XvMKLlw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhPBU9iNoF6EgBePEcwDkiXMTmaTIbOzy0yvEkI+wosHRbz6Pd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33rk2ohYPeA44X5EB0qEglG0Uqv8RG6IV+4VS27FnYOsEi8jJchQ7xW/uv2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvzJ/NwpObNKn4SxtqWQzNXfExMaGTOOAtsZURyaZW8m/ud1Ugyv/YlQSYpcscWiMJUEYzL7nfSF5gzl2BLKtLC3EjakmjK0CRVsCN7yy6ukWa14l5WL+2qp5mZx5OEETuEcPLiCGtxBHRrAYATP8ApvTuK8OO/Ox6I152Qzx/AHzucPOJWOIQ==</latexit>

w
=

1w
=

1

<latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit>

w
=

4
<latexit sha1_base64="yk159hychE8xCZSXjIetLea6Nxg=">AAACD3icbVDLSsNAFL2prxpfqS7dDLaCq5IUQTdCwY3LCvYBbSiTyaQdOnkwM7GW0I/wA9zqJ7gTt36CX+BvOG2zsK0HBg7nnnMvc7yEM6ls+9sobGxube8Ud829/YPDI6t03JJxKghtkpjHouNhSTmLaFMxxWknERSHHqdtb3Q7m7cfqZAsjh7UJKFuiAcRCxjBSkt9q1TpzZdkgvpTNL65rPStsl2150DrxMlJGXI0+tZPz49JGtJIEY6l7Dp2otwMC8UIp1Ozl0qaYDLCA9rVNMIhlW42vzpF51rxURAL/SKF5urfRIZDKSehp50hVkO5NHtaLDFXAzPnf4FuqoJrN2NRkioakcX1IOVIxWhWDvKZoETxiSaYCKY/gMgQC0yUrtDUzTirPayTVq3q2FXnvlau23lHRTiFM7gAB66gDnfQgCYQGMMLvMKb8Wy8Gx/G58JaMPLMCSzB+PoFZoub1Q==</latexit><latexit sha1_base64="yk159hychE8xCZSXjIetLea6Nxg=">AAACD3icbVDLSsNAFL2prxpfqS7dDLaCq5IUQTdCwY3LCvYBbSiTyaQdOnkwM7GW0I/wA9zqJ7gTt36CX+BvOG2zsK0HBg7nnnMvc7yEM6ls+9sobGxube8Ud829/YPDI6t03JJxKghtkpjHouNhSTmLaFMxxWknERSHHqdtb3Q7m7cfqZAsjh7UJKFuiAcRCxjBSkt9q1TpzZdkgvpTNL65rPStsl2150DrxMlJGXI0+tZPz49JGtJIEY6l7Dp2otwMC8UIp1Ozl0qaYDLCA9rVNMIhlW42vzpF51rxURAL/SKF5urfRIZDKSehp50hVkO5NHtaLDFXAzPnf4FuqoJrN2NRkioakcX1IOVIxWhWDvKZoETxiSaYCKY/gMgQC0yUrtDUzTirPayTVq3q2FXnvlau23lHRTiFM7gAB66gDnfQgCYQGMMLvMKb8Wy8Gx/G58JaMPLMCSzB+PoFZoub1Q==</latexit><latexit sha1_base64="yk159hychE8xCZSXjIetLea6Nxg=">AAACD3icbVDLSsNAFL2prxpfqS7dDLaCq5IUQTdCwY3LCvYBbSiTyaQdOnkwM7GW0I/wA9zqJ7gTt36CX+BvOG2zsK0HBg7nnnMvc7yEM6ls+9sobGxube8Ud829/YPDI6t03JJxKghtkpjHouNhSTmLaFMxxWknERSHHqdtb3Q7m7cfqZAsjh7UJKFuiAcRCxjBSkt9q1TpzZdkgvpTNL65rPStsl2150DrxMlJGXI0+tZPz49JGtJIEY6l7Dp2otwMC8UIp1Ozl0qaYDLCA9rVNMIhlW42vzpF51rxURAL/SKF5urfRIZDKSehp50hVkO5NHtaLDFXAzPnf4FuqoJrN2NRkioakcX1IOVIxWhWDvKZoETxiSaYCKY/gMgQC0yUrtDUzTirPayTVq3q2FXnvlau23lHRTiFM7gAB66gDnfQgCYQGMMLvMKb8Wy8Gx/G58JaMPLMCSzB+PoFZoub1Q==</latexit><latexit sha1_base64="yk159hychE8xCZSXjIetLea6Nxg=">AAACD3icbVDLSsNAFL2prxpfqS7dDLaCq5IUQTdCwY3LCvYBbSiTyaQdOnkwM7GW0I/wA9zqJ7gTt36CX+BvOG2zsK0HBg7nnnMvc7yEM6ls+9sobGxube8Ud829/YPDI6t03JJxKghtkpjHouNhSTmLaFMxxWknERSHHqdtb3Q7m7cfqZAsjh7UJKFuiAcRCxjBSkt9q1TpzZdkgvpTNL65rPStsl2150DrxMlJGXI0+tZPz49JGtJIEY6l7Dp2otwMC8UIp1Ozl0qaYDLCA9rVNMIhlW42vzpF51rxURAL/SKF5urfRIZDKSehp50hVkO5NHtaLDFXAzPnf4FuqoJrN2NRkioakcX1IOVIxWhWDvKZoETxiSaYCKY/gMgQC0yUrtDUzTirPayTVq3q2FXnvlau23lHRTiFM7gAB66gDnfQgCYQGMMLvMKb8Wy8Gx/G58JaMPLMCSzB+PoFZoub1Q==</latexit>

<latexit sha1_base64="TYN+hFdY8J1YuFNS6RU+XvMKLlw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhPBU9iNoF6EgBePEcwDkiXMTmaTIbOzy0yvEkI+wosHRbz6Pd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33rk2ohYPeA44X5EB0qEglG0Uqv8RG6IV+4VS27FnYOsEi8jJchQ7xW/uv2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvzJ/NwpObNKn4SxtqWQzNXfExMaGTOOAtsZURyaZW8m/ud1Ugyv/YlQSYpcscWiMJUEYzL7nfSF5gzl2BLKtLC3EjakmjK0CRVsCN7yy6ukWa14l5WL+2qp5mZx5OEETuEcPLiCGtxBHRrAYATP8ApvTuK8OO/Ox6I152Qzx/AHzucPOJWOIQ==</latexit> w
=

1 w
=

1
<latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit>

<latexit sha1_base64="TYN+hFdY8J1YuFNS6RU+XvMKLlw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhPBU9iNoF6EgBePEcwDkiXMTmaTIbOzy0yvEkI+wosHRbz6Pd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33rk2ohYPeA44X5EB0qEglG0Uqv8RG6IV+4VS27FnYOsEi8jJchQ7xW/uv2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvzJ/NwpObNKn4SxtqWQzNXfExMaGTOOAtsZURyaZW8m/ud1Ugyv/YlQSYpcscWiMJUEYzL7nfSF5gzl2BLKtLC3EjakmjK0CRVsCN7yy6ukWa14l5WL+2qp5mZx5OEETuEcPLiCGtxBHRrAYATP8ApvTuK8OO/Ox6I152Qzx/AHzucPOJWOIQ==</latexit>

w = 1

<latexit sha1_base64="TYN+hFdY8J1YuFNS6RU+XvMKLlw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhPBU9iNoF6EgBePEcwDkiXMTmaTIbOzy0yvEkI+wosHRbz6Pd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33rk2ohYPeA44X5EB0qEglG0Uqv8RG6IV+4VS27FnYOsEi8jJchQ7xW/uv2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvzJ/NwpObNKn4SxtqWQzNXfExMaGTOOAtsZURyaZW8m/ud1Ugyv/YlQSYpcscWiMJUEYzL7nfSF5gzl2BLKtLC3EjakmjK0CRVsCN7yy6ukWa14l5WL+2qp5mZx5OEETuEcPLiCGtxBHRrAYATP8ApvTuK8OO/Ox6I152Qzx/AHzucPOJWOIQ==</latexit> w
=

1

w
=

1
<latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit>

<latexit sha1_base64="TYN+hFdY8J1YuFNS6RU+XvMKLlw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhPBU9iNoF6EgBePEcwDkiXMTmaTIbOzy0yvEkI+wosHRbz6Pd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33rk2ohYPeA44X5EB0qEglG0Uqv8RG6IV+4VS27FnYOsEi8jJchQ7xW/uv2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvzJ/NwpObNKn4SxtqWQzNXfExMaGTOOAtsZURyaZW8m/ud1Ugyv/YlQSYpcscWiMJUEYzL7nfSF5gzl2BLKtLC3EjakmjK0CRVsCN7yy6ukWa14l5WL+2qp5mZx5OEETuEcPLiCGtxBHRrAYATP8ApvTuK8OO/Ox6I152Qzx/AHzucPOJWOIQ==</latexit>

w = 1

<latexit sha1_base64="TYN+hFdY8J1YuFNS6RU+XvMKLlw=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBhPBU9iNoF6EgBePEcwDkiXMTmaTIbOzy0yvEkI+wosHRbz6Pd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33rk2ohYPeA44X5EB0qEglG0Uqv8RG6IV+4VS27FnYOsEi8jJchQ7xW/uv2YpRFXyCQ1puO5CfoTqlEwyaeFbmp4QtmIDnjHUkUjbvzJ/NwpObNKn4SxtqWQzNXfExMaGTOOAtsZURyaZW8m/ud1Ugyv/YlQSYpcscWiMJUEYzL7nfSF5gzl2BLKtLC3EjakmjK0CRVsCN7yy6ukWa14l5WL+2qp5mZx5OEETuEcPLiCGtxBHRrAYATP8ApvTuK8OO/Ox6I152Qzx/AHzucPOJWOIQ==</latexit>

w
=

1w
=

1

<latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit><latexit sha1_base64="PxR4Kw8CYwEdBPAOGpVaxa3J79o=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUxIbCwx8YAELmRv2YMNe3uX3TkNIfwGGwuNsfUH2flvXOAKBV8yyct7M5mZF6ZSGHTdb6ewsbm1vVPcLe3tHxwelY9PWibJNOM+S2SiOyE1XArFfRQoeSfVnMah5O1wfDv3249cG5GoB5ykPIjpUIlIMIpW8qtPN161X664NXcBsk68nFQgR7Nf/uoNEpbFXCGT1Jiu56YYTKlGwSSflXqZ4SllYzrkXUsVjbkJpotjZ+TCKgMSJdqWQrJQf09MaWzMJA5tZ0xxZFa9ufif180wug6mQqUZcsWWi6JMEkzI/HMyEJozlBNLKNPC3krYiGrK0OZTsiF4qy+vk1a95rk1775eabh5HEU4g3O4BA+uoAF30AQfGAh4hld4c5Tz4rw7H8vWgpPPnMIfOJ8/iN2NxQ==</latexit>

w = 4
<latexit sha1_base64="J5x7CslcjdB29TLFHzwLHVgwbFc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUQS9CwYvHCrYV2lA220m7dLMJuxulhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBaxegioRsEltgw3Ah8ShTQKBHaC8c3M7zyi0jyW92aSoB/RoeQhZ9RYqVN9ItfkotovV9yaOwdZJV5OKpCj2S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzslZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TgZcITNiYgllittbCRtRRZmxCZVsCN7yy6ukXa95bs27q1ca9TyOIpzAKZyDB5fQgFtoQgsYjOEZXuHNSZwX5935WLQWnHzmGP7A+fwBOyKOHg==</latexit><latexit sha1_base64="J5x7CslcjdB29TLFHzwLHVgwbFc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUQS9CwYvHCrYV2lA220m7dLMJuxulhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBaxegioRsEltgw3Ah8ShTQKBHaC8c3M7zyi0jyW92aSoB/RoeQhZ9RYqVN9ItfkotovV9yaOwdZJV5OKpCj2S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzslZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TgZcITNiYgllittbCRtRRZmxCZVsCN7yy6ukXa95bs27q1ca9TyOIpzAKZyDB5fQgFtoQgsYjOEZXuHNSZwX5935WLQWnHzmGP7A+fwBOyKOHg==</latexit><latexit sha1_base64="J5x7CslcjdB29TLFHzwLHVgwbFc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUQS9CwYvHCrYV2lA220m7dLMJuxulhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBaxegioRsEltgw3Ah8ShTQKBHaC8c3M7zyi0jyW92aSoB/RoeQhZ9RYqVN9ItfkotovV9yaOwdZJV5OKpCj2S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzslZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TgZcITNiYgllittbCRtRRZmxCZVsCN7yy6ukXa95bs27q1ca9TyOIpzAKZyDB5fQgFtoQgsYjOEZXuHNSZwX5935WLQWnHzmGP7A+fwBOyKOHg==</latexit><latexit sha1_base64="J5x7CslcjdB29TLFHzwLHVgwbFc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUQS9CwYvHCrYV2lA220m7dLMJuxulhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBaxegioRsEltgw3Ah8ShTQKBHaC8c3M7zyi0jyW92aSoB/RoeQhZ9RYqVN9ItfkotovV9yaOwdZJV5OKpCj2S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzslZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TgZcITNiYgllittbCRtRRZmxCZVsCN7yy6ukXa95bs27q1ca9TyOIpzAKZyDB5fQgFtoQgsYjOEZXuHNSZwX5935WLQWnHzmGP7A+fwBOyKOHg==</latexit>

w
=

4

<latexit sha1_base64="yk159hychE8xCZSXjIetLea6Nxg=">AAACD3icbVDLSsNAFL2prxpfqS7dDLaCq5IUQTdCwY3LCvYBbSiTyaQdOnkwM7GW0I/wA9zqJ7gTt36CX+BvOG2zsK0HBg7nnnMvc7yEM6ls+9sobGxube8Ud829/YPDI6t03JJxKghtkpjHouNhSTmLaFMxxWknERSHHqdtb3Q7m7cfqZAsjh7UJKFuiAcRCxjBSkt9q1TpzZdkgvpTNL65rPStsl2150DrxMlJGXI0+tZPz49JGtJIEY6l7Dp2otwMC8UIp1Ozl0qaYDLCA9rVNMIhlW42vzpF51rxURAL/SKF5urfRIZDKSehp50hVkO5NHtaLDFXAzPnf4FuqoJrN2NRkioakcX1IOVIxWhWDvKZoETxiSaYCKY/gMgQC0yUrtDUzTirPayTVq3q2FXnvlau23lHRTiFM7gAB66gDnfQgCYQGMMLvMKb8Wy8Gx/G58JaMPLMCSzB+PoFZoub1Q==</latexit><latexit sha1_base64="yk159hychE8xCZSXjIetLea6Nxg=">AAACD3icbVDLSsNAFL2prxpfqS7dDLaCq5IUQTdCwY3LCvYBbSiTyaQdOnkwM7GW0I/wA9zqJ7gTt36CX+BvOG2zsK0HBg7nnnMvc7yEM6ls+9sobGxube8Ud829/YPDI6t03JJxKghtkpjHouNhSTmLaFMxxWknERSHHqdtb3Q7m7cfqZAsjh7UJKFuiAcRCxjBSkt9q1TpzZdkgvpTNL65rPStsl2150DrxMlJGXI0+tZPz49JGtJIEY6l7Dp2otwMC8UIp1Ozl0qaYDLCA9rVNMIhlW42vzpF51rxURAL/SKF5urfRIZDKSehp50hVkO5NHtaLDFXAzPnf4FuqoJrN2NRkioakcX1IOVIxWhWDvKZoETxiSaYCKY/gMgQC0yUrtDUzTirPayTVq3q2FXnvlau23lHRTiFM7gAB66gDnfQgCYQGMMLvMKb8Wy8Gx/G58JaMPLMCSzB+PoFZoub1Q==</latexit><latexit sha1_base64="yk159hychE8xCZSXjIetLea6Nxg=">AAACD3icbVDLSsNAFL2prxpfqS7dDLaCq5IUQTdCwY3LCvYBbSiTyaQdOnkwM7GW0I/wA9zqJ7gTt36CX+BvOG2zsK0HBg7nnnMvc7yEM6ls+9sobGxube8Ud829/YPDI6t03JJxKghtkpjHouNhSTmLaFMxxWknERSHHqdtb3Q7m7cfqZAsjh7UJKFuiAcRCxjBSkt9q1TpzZdkgvpTNL65rPStsl2150DrxMlJGXI0+tZPz49JGtJIEY6l7Dp2otwMC8UIp1Ozl0qaYDLCA9rVNMIhlW42vzpF51rxURAL/SKF5urfRIZDKSehp50hVkO5NHtaLDFXAzPnf4FuqoJrN2NRkioakcX1IOVIxWhWDvKZoETxiSaYCKY/gMgQC0yUrtDUzTirPayTVq3q2FXnvlau23lHRTiFM7gAB66gDnfQgCYQGMMLvMKb8Wy8Gx/G58JaMPLMCSzB+PoFZoub1Q==</latexit><latexit sha1_base64="yk159hychE8xCZSXjIetLea6Nxg=">AAACD3icbVDLSsNAFL2prxpfqS7dDLaCq5IUQTdCwY3LCvYBbSiTyaQdOnkwM7GW0I/wA9zqJ7gTt36CX+BvOG2zsK0HBg7nnnMvc7yEM6ls+9sobGxube8Ud829/YPDI6t03JJxKghtkpjHouNhSTmLaFMxxWknERSHHqdtb3Q7m7cfqZAsjh7UJKFuiAcRCxjBSkt9q1TpzZdkgvpTNL65rPStsl2150DrxMlJGXI0+tZPz49JGtJIEY6l7Dp2otwMC8UIp1Ozl0qaYDLCA9rVNMIhlW42vzpF51rxURAL/SKF5urfRIZDKSehp50hVkO5NHtaLDFXAzPnf4FuqoJrN2NRkioakcX1IOVIxWhWDvKZoETxiSaYCKY/gMgQC0yUrtDUzTirPayTVq3q2FXnvlau23lHRTiFM7gAB66gDnfQgCYQGMMLvMKb8Wy8Gx/G58JaMPLMCSzB+PoFZoub1Q==</latexit>

<latexit sha1_base64="rg9avttdbWpm+EceIytk3eUXqyk="></latexit>s1
<latexit sha1_base64="WpYBeCKACS3/n/2D1S8iRGJWNyg="></latexit>s2

<latexit sha1_base64="voGlaBZ2TT3bzE0s5KYSCDXC26U="></latexit>s3

<latexit sha1_base64="N+2T7tbNGX4dtlEeMMBnOeEa2E8="></latexit>s4
<latexit sha1_base64="OUjEKK11BcjuQyzNz23eoMLRPTU="></latexit>s5

• Six network requests (r1, . . . , r6) from
s1 (source) to s2 (destination) arriving
consecutively and in short order

• Each link has enough bandwidth to
transmit two requests only

<latexit sha1_base64="7n2tZYVgCMXjCT+p4bltoLx1Dq4="></latexit>

<latexit sha1_base64="rg9avttdbWpm+EceIytk3eUXqyk="></latexit>s1
<latexit sha1_base64="WpYBeCKACS3/n/2D1S8iRGJWNyg=">AAACXnicZZDNSgMxFIXT8a+OVqtuBDfFIoiLMlPxZ1mQiu4UrQpNKZn0Tg3OJEOSqdYwj+BW38AH8S3c+ShmWhFGzyaXk3s+DjdIIqa0532WnJnZufmF8qK7tFxZWa2urd8okUoKHSoiIe8CoiBiHDqa6QjuEgkkDiK4DR5O8v/bEUjFBL/W4wR6MRlyFjJKtLWuVL/Zr9a9hjdR7f/g/wz1VuUj3Tl13y/6a6U2HgiaxsA1jYhSXSp4CBI4hZ45b7fbWhKeuThVkBD6QIZgJkULVjcZhBqeemYoSXLP6FMxkMqoaBApyThzXczhkYo4JnxgMESQt8i6fs8YHAqhudCg2DNgy9YqNHU/y7JiKGac5cHfFNd5whxkxsvcWg3bawLVuV+kFDHK7oiE0QkGj5QtCnum0bRgnBCJuWB8YMuZCYTZNwgVSAaqNsXZw/t/z/x/uGk2/MPG/qVfbx2jqcpoC22jXeSjI9RCZ+gCdRBFQ/SCXtFb6cuZdyrO6nTVKf1kNlBBzuY3JlW9Jg==</latexit>s2

<latexit sha1_base64="voGlaBZ2TT3bzE0s5KYSCDXC26U="></latexit>s3
<latexit sha1_base64="N+2T7tbNGX4dtlEeMMBnOeEa2E8="></latexit>s4

<latexit sha1_base64="OUjEKK11BcjuQyzNz23eoMLRPTU="></latexit>s5

<latexit sha1_base64="H3BjLVk/EJEiAag8GqAuvJBIpqE="></latexit>r3
<latexit sha1_base64="ey0JyHDt+RTbkLd7WGxa5WrWEOU="></latexit>r2

<latexit sha1_base64="PaByBY/gz5zdSEIdX+1eGyLKu04="></latexit>r1

<latexit sha1_base64="j6tUqvmllSYOQ8uZddfWcF8NxEo="></latexit>

Congestion!

<latexit sha1_base64="ey0JyHDt+RTbkLd7WGxa5WrWEOU="></latexit>r2
<latexit sha1_base64="PaByBY/gz5zdSEIdX+1eGyLKu04="></latexit>r1

<latexit sha1_base64="ey0JyHDt+RTbkLd7WGxa5WrWEOU="></latexit>r2
<latexit sha1_base64="PaByBY/gz5zdSEIdX+1eGyLKu04="></latexit>r1

<latexit sha1_base64="xdy2sD1rwJEQLM0CskWgipRqcJ0=">AAACd3icZZHLSgMxFIbT8T7equ504WBFxEWZqahbRQq6U7AqNKVk0jM1NJMMSVovYcCncauv46O4M1OLMHo2Ofw5/8efkzjjTJsw/Kx4U9Mzs3PzC/7i0vLKanVt/VbLoaLQopJLdR8TDZwJaBlmONxnCkgac7iLB+fF/d0IlGZS3JjnDDop6QuWMEqMk7rVzbPEgArMAwREKTYiPJBJsKu6h7vdai2sh+MK/jfRpKmhSV111ypN3JN0mIIwlBOt21SKBBQICh172Ww2jSIi9/FQQ0bogPTBjl9QktpZz0V66ti+ItkDo09lw1DxsuBik+fc97GARyrTlIiexcChSJG3o461OJHSCGlAsxfAjm10YmtRnudlU8oEK4y/LmEKhz3KbZj7QYDdmoGaQi9TyhjtZmTG6BiDR9oFhQNbbzgwzojCQjLRc+HsGMLcGScaFAMd/ODc4qO/a/7f3Dbq0XH98LpROw0nXzCPttAO2kcROkGn6AJdoRai6BW9oXf0Ufnytr09b/9n1KtMPBuoVF70DQpIw1g=</latexit>

After the arrival of r3

<latexit sha1_base64="jC9nWf/8PknJkQv2iahPLsTQUtI=">AAACd3icZZHLSgMxFIbT8T7equ504WBFxEWZqbetIgXdKVgVmlIy6ZkazCRDktZLGPBp3Orr+CjuzNQijJ5NDn/O//HnJM440yYMPyvexOTU9MzsnD+/sLi0XF1ZvdFyoCi0qORS3cVEA2cCWoYZDneZApLGHG7jh7Pi/nYISjMprs1zBp2U9AVLGCXGSd3q+mliQAXmHgKiFBsSHsgk2Fbdg+1utRbWw1EF/5to3NTQuC67K5Um7kk6SEEYyonWbSpFAgoEhY69aDabRhGR+3igISP0gfTBjl5QktpZz0V66ti+Itk9o09lw0DxsuBik+fc97GARyrTlIiexcChSJG3o461OJHSCGlAsxfAjm10YmtRnudlU8oEK4y/LmEKhz3MbZj7QYDdmoGaQi9TyhjtZmTG6AiDh9oFhT1bbzgwzojCQjLRc+HsCMLcGScaFAMd/ODc4qO/a/7f3DTq0VF9/6pROwnHXzCLNtAW2kUROkYn6Bxdohai6BW9oXf0UfnyNr0db/dn1KuMPWuoVF70DQxBw1k=</latexit>

After the arrival of r4

<latexit sha1_base64="H3BjLVk/EJEiAag8GqAuvJBIpqE=">AAACXnicdZDNahsxFIXlSZqfadPEKYVANkO9KV0Mkl3nZ2cohnaXkDoJWMZo5DuuyIw0SHL+xDxCtsnz5CUCWbVv0mjstjCLno0uR/d8HG5SZMJYjJ8bwdLyq5XVtfXw9ZuNt5tbze1To2aaw4CrTOnzhBnIhISBFTaD80IDy5MMzpKLL9X/2SVoI5T8bm8KGOVsKkUqOLPeOtHjznirhWNCCMYHEY47uH3wuRow7mJyGBE/VGr1lp5+P77/CUfjZqNPJ4rPcpCWZ8yYIVcyBQ2Sw8h96/f7VjNZhnRmoGD8gk3BzYvWrGExSS1cj9xUs+KH4Nf1wExndYNpzW7KMKQSrrjKcyYnjkIGVYtySEbO0VQpK5UFI26BerY1qWuRsizroVxIUQX/paStEq5bOlyGUUT9NYHbyq9T6hjjd1Qh+BxDL40vCp9c3PZgWjBNpRJy4su5OUT4N0kNaAEmWuD84f9eN/r/cNqOyV7cOSatHkYLraFd9AF9RATtox76io7QAHE0RXfoHj00fgUrwUawuVgNGn8y71BNwc4LWKe+5A==</latexit>r3

<latexit sha1_base64="bbte2K99V0qo5ul/SZhY5w1BUao="></latexit>

GP-derived w = b (1.5threshold)2

(1.5threshold�util(e,t))2 c

<latexit sha1_base64="rg9avttdbWpm+EceIytk3eUXqyk="></latexit>s1
<latexit sha1_base64="WpYBeCKACS3/n/2D1S8iRGJWNyg="></latexit>s2

<latexit sha1_base64="voGlaBZ2TT3bzE0s5KYSCDXC26U="></latexit>s3

<latexit sha1_base64="N+2T7tbNGX4dtlEeMMBnOeEa2E8="></latexit>s4
<latexit sha1_base64="OUjEKK11BcjuQyzNz23eoMLRPTU="></latexit>s5

<latexit sha1_base64="rg9avttdbWpm+EceIytk3eUXqyk="></latexit>s1

<latexit sha1_base64="N+2T7tbNGX4dtlEeMMBnOeEa2E8="></latexit>s4
<latexit sha1_base64="OUjEKK11BcjuQyzNz23eoMLRPTU="></latexit>s5

<latexit sha1_base64="voGlaBZ2TT3bzE0s5KYSCDXC26U="></latexit>s3

<latexit sha1_base64="WpYBeCKACS3/n/2D1S8iRGJWNyg="></latexit>s2
<latexit sha1_base64="H3BjLVk/EJEiAag8GqAuvJBIpqE="></latexit>r3

<latexit sha1_base64="J0aTEgXi5EdTZHvDmdkiAy6Nm7Q="></latexit>r4

<latexit sha1_base64="Vj/wY1RkMejJHsvLrGSzO9Mztjs="></latexit>

The flow paths for r5 and r6 are discussed
in the text but not shown here due to space.

Fig. 1. (a) A simple network alongside the description of network requests; (b) Output of a baseline data-
forwarding algorithm; and (c) Output of data-forwarding after adaptation by our approach using genetic
programming.

We use genetic programming (GP) for self-adaptation planning, whereby we dynamically learn
link-weight functions that not only help resolve an existing congestion but also help steer clear of
future ones. Initially, and for requests 𝑟1 and 𝑟2, our approach does exactly as the standard OSPF
would do, since there is no congestion. Upon the arrival of 𝑟3 and the detection of congestion, i.e.,
the situation in Figure 1(b), our self-adaptation approach kicks in and automatically computes
a link-weight formula to reroute some of the requests in order to resolve the congestion. For
example, one possible formula that our approach could generate is : (1.5threshold )2

(1.5threshold−util (𝑒,𝑡 ) )2 . This
formula would be stored in memory as a parse tree and called to compute the weight for each link
when a new request arrives. In this formula, util(𝑒, 𝑡) is the utilization percentage of link 𝑒 at time 𝑡 ,
and threshold is a constant parameter describing the utilization threshold above which the network
is considered to be congested. The weight values generated for the links are first taken as absolute
values and then rounded down to integers. This ensures that only positive integer weights are
assigned to the links. In our example, threshold = 0.8, and for each link, util(𝑒, 𝑡) is 0.3 if one flow
passes through 𝑒 , and is 0.6 if two flows pass through 𝑒 . Given that 𝑟1 and 𝑟2 are already routed
through 𝑠1 → 𝑠2, the weight of 𝑠1 → 𝑠2 computed by this formula becomes𝑤 = 4; see Figure 1(c)
after 𝑟3’s arrival. As a result, OSPF selects path 𝑠1 → 𝑠3 → 𝑠2 for 𝑟3 which successfully resolves
the current congestion observed in Figure 1(b). This, however, does not increase the weights for
𝑠1 → 𝑠3 and 𝑠3 → 𝑠2, since these links are utilized at 30%, and their weights remain at 1. Once 𝑟4
arrives, OSPF directs 𝑟4 to 𝑠1 → 𝑠3 → 𝑠2 as it is the shortest weighted path between 𝑠1 and 𝑠4. This
will not cause any congestion, but the weights for 𝑠1 → 𝑠3 and 𝑠3 → 𝑠2 increase to𝑤 = 4 since these
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links are now utilized at 60%. Finally, OSPF will direct the last two requests 𝑟5 and 𝑟6 to the longer
path 𝑠1 → 𝑠4 → 𝑠5 → 𝑠2, since, now, this path is the shortest weighted path between 𝑠1 and 𝑠2.
As shown above, using our GP-learned link-weight formula, OSPF is now able to manage flow

paths without causing any congestion and without having to re-invoke the self-adaptation planning
step beyond the single invocation after the arrival of 𝑟3.

We note that there are several techniques that modify network parameters at runtime to resolve
congestion in SDN (e.g., [43, 84]). These techniques, however, rely on pre-defined rules. For example,
to make OSPF – discussed above – adaptive, a typical approach is to define a network-weight
function [89]. This function can involve parameters that change at runtime and based on the state of
the network. However, the structure of the function is fixed. Consequently, the function may not be
suitable for all networks with different characteristics and inputs. To address this limitation, we use
GP to learn and evolve the function structure instead of relying on a fixed, manually crafted function.
Our approach is generative and seeks to identify a higher-order structure, specifically a link-weight
formula, that results in optimal adaptation solutions. The generated link-weight formula is used to
determine the flow paths for incoming requests. In Section 6, we compare our GP-based approach
with OSPF configured using an optimized weight function suggested by Cisco standards [1, 27]. As
we show there, OSPF’s optimized weight function cannot address the congestion caused by the
network-request bursts in our industrial case study.

In this paper, we focus on situations where congestion can be resolved by re-routing – in other
words, when the network topology is such that alternative flow paths can be created for some
requests. Given our focus, OSPF is a natural comparison baseline, noting that, in OSPF, congestion
is resolved by re-routing. When alternative flow paths do not exist, congestion resolution can be
addressed only via traffic shaping [43], i.e., via modifying the network traffic. Our approach does
not alter the network traffic. We therefore do not compare against congestion-resolution baselines
that use traffic shaping.

3 FRAMEWORK OVERVIEW
Figure 2 shows an overview of GenAdapt – our generative self-adaptation framework. The main
goal of GenAdapt is to adapt a running system by dynamically improving its control logic (e.g., a
formula or a logical condition based on which the system makes a decision). GenAdapt aims to
improve the designated logic in response to environmental changes and find a trade-off between
self-adaptation objectives. For example, in the context of SDN data forwarding, the control logic that
GenAdapt is improving is the link-weight function used by the SDN’s data-forwarding algorithm,
as illustrated in Section 2. At each round of self-adaptation, GenAdapt evolves the link-weight
function with the goal of satisfying a trade-off between three objectives related to the network’s
quality of service; these objectives will be defined and formalized in Section 4.2.

GenAdapt leverages MAPE-K [57, 71]– the well-known self-adaptation control-loop. As shown
in Figure 2, MAPE-K has four main steps:

(1) Monitoring the system and its environment: At this step, GenAdapt periodically receives the
following information from the running system: (I) the state of the system at the current time, and
(II) certain metrics that enable GenAdapt to monitor for the occurrence of anomalies (i.e., violations
of self-adaptation goals).
(2) Analyzing the information collected from the system and its environment and deciding

whether adaptation is needed. At this stage, GenAdapt uses the system state and the metrics
collected at the monitoring step to decide if some system goal has been violated, in which case the
planning step needs to be triggered.
(3) Planning to adapt the system to address any violations observed during the previous step.

This step employs a genetic programming (GP) algorithm to evolve the control logic of the running
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Fig. 2. Overview of the GenAdapt Framework.

system such that when the system uses that evolved logic, the observed violation is no longer
present, or its severity has been reduced. The GP algorithm employed in the planning step requires,
in addition to the inputs received periodically from the running system, two further inputs: First,
GP requires a context-free grammar specifying the language (template) for the control logic that
is subject to modification. For example, we use a grammar defining valid mathematical formulas
consisting of basic arithmetic operations and network parameters to specify a template for candidate
link-weight functions in SDN data forwarding. Second, GP requires a set of prioritized adaptation
objectives. The objectives should be defined so that optimizing them eliminates or reduces the
violation that triggered adaptation. The GP algorithm aims to satisfy the objectives based on their
order of priority. For objectives with the same priority, the planning step aims to find a trade-off
solution that equally satisfies them. The grammar and the prioritized set of objectives should be
provided at the outset and prior to launching GenAdapt.
(4) Executing the adaptation by applying it to the system. This step applies to the running

system the adaptation (i.e., the adapted control logic) computed by the planning step. The desired
outcome here is that adaptation should not only address the current observed anomaly but should
further make the running system more robust so that the system itself can steer clear of anomalous
situations that may arise again.

Our main focus is to improve the planning step of self-adaptation through the application of GP.
In designing our GP algorithm for the planning step, we consider two important factors:
First, for GP to assess the adaptation objectives for candidate solutions, the system should be

executed for each candidate. Since we cannot execute the system in the adaptation loop to compute
objectives for every candidate generated during search, we use the system state collected from
the running system at the monitoring step to compute the objectives. The underlying assumption
here is that the main parameters of the system remain unchanged for the duration of running the
self-adaptation loop.

Second, GenAdapt uses a knowledge base to store the best control logic computed at each round
of the planning step. Best solutions generated by previous invocations of GenAdapt are reused in
the initial population of GP whenever the planning step is re-invoked. Reusing as bootstrap some
of the best solutions from the previous round ensures continuity and incrementality in learning
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Fig. 3. The managed system interacting with GenAdapt may be a real or a testbed system.

adaptation solutions across multiple rounds of self-adaptation. Reusing the best solutions further
aims to ensure that computed adaptations can effectively address uncertainties observed over a
long period instead of being focused or over-fitted to the uncertainties observed in a short period.

For example, the formula in Figure 1(c) is generated as one of the best solutions at the adaptation
round invoked upon the arrival of 𝑟3 and is stored in the knowledge base. In future rounds of
self-adaptation, we will use this formula to bootstrap the initial population of GP. Our conjecture is
that this formula will likely solve future occurrences of congestion with minor mutations. We test
this conjecture in our empirical evaluation for the SDN domain (see RQ1 and RQ2 in Section 6). We
note that certain elements of GenAdapt might have SDN-specific characteristics, and it is important
to recognize that our approach might not be applicable across all domains.

4 SELF-ADAPTATION FOR SDN
We apply GenAdapt to make the data-forwarding logic of SDN controllers self-adaptive. For this,
we implement GenAdapt as an add-on to the programmable SDN control layer. In an SDN, the
control layer has a global view of the entire network and can dynamically modify the network at
runtime. The routing logic of an SDN is centralized, decoupled from data and network hardware,
and expressed using software code at the control layer. Given the separation of control logic from
data planes and forwarding hardware, changing link weights can be programmed at the control
layer in a way that the changes do not affect the existing network flows and instead are used only
for routing new flows [10]. Dynamically modifying link weights therefore does not jeopardize
network stability.

Figure 3 shows a schematic view of an SDN (managed system) interacting with GenAdapt. The
managed system can be either a system involving actual hardware, or a realistic testbed. In our
work, GenAdapt interacts with a high-fidelity testbed that includes an actual, carrier-grade SDN
controller and a simulated network. Using a simulated network rather than an actual network
infrastructure is a common approach when designing and evaluating self-adaptation techniques.
This enables us to experiment with a multitude of network systems rather than merely one fixed
network setup [18, 44, 53, 95].
As shown on the right side of Figure 3, our testbed combines three components: An SDN

controller capturing the software-defined controller of a network system [13]; a network emulator
that simulates the network infrastructure including links, nodes and their properties [60]; and a
traffic generator [19] that emulates different types of requests generated by IoT devices and sensors.
To assess the fitness values, i.e., adaptation objectives, we cannot use the actual testbed and its

environment for each candidate solution, i.e., each candidate link-weight function, since this system
is real-time (wall-clock-time) and requires a fewmilliseconds to compute the behaviour of a network
for each candidate link-weight formula. Our GP algorithm, when invoked, needs to explore a large
number of candidate formulas. To do so efficiently, we use surrogate computations that approximate
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Fig. 4. Domain model for self-adaptive SDN.

the fitness values [68, 70, 75]. Specifically, as we detail in Section 4.2, GenAdapt computes the
fitness for each candidate solution using a snapshot of the system and its environment from the
testbed, assuming that the system does not change during a small time period. We set the maximum
time budget for adaptation to one second, the smallest monitoring interval permitted by our SDN
controller as we discuss in Section 5. With regard to the general applicability of this assumption,
we note that determining the time budget for self-adaptation requires careful consideration of
the particular characteristics of the application domain; one needs to strike a balance where the
allocated time is neither too short, impeding genetic improvement, nor too long, resulting in an
outdated system state during the monitoring step.

Figure 4 shows a domain model consisting of two packages: One package, discussed in Section 4.1,
captures the main elements of an SDN and its environment, and the other, discussed in Section 4.2,
specifies the structure of GenAdapt. As indicated in the figure, the data-forwarding logic of SDN
controllers is captured using link-weight functions.

4.1 Domain Model for Self-adaptive SDN
The SDN and Environment package captures the static structure of a network as well as its dynamic
behaviour over time. The environment of an SDN is comprised of IoT and edge devices which are
connected to the network and which generate data-transmission requests (requests, for short) that
the network needs to fulfil.

Definition 4.1 (Data-transmission Request). A data-transmission request 𝑟 specifies a data stream
sent by a network node 𝑠 to a network node 𝑑 . We denote the source node of 𝑟 by 𝑟 .𝑠 and the
destination node of 𝑟 by 𝑟 .𝑑 . Let [0..𝑇 ] be a time interval. We denote the (data) bandwidth of 𝑟 at
time 𝑡 ∈ [0..𝑇 ] by 𝑟 .𝑏𝑑 (𝑡). The bandwidth is the amount of data transmitted from 𝑟 .𝑠 to 𝑟 .𝑑 over
time. We measure bandwidth in megabits per second (Mbps). The request bandwidth may vary
over time (marked as “dynamic” in Figure 4).

In Figure 4, the network part of an SDN is delineated with a dashed rectangle labelled Network
and includes the Network Structure, Link, Node and Flow entities. Specifically, a network is a tuple
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𝐺 = (𝑉 , 𝐸), where 𝑉 is a set of nodes, and 𝐸 ⊆ 𝑉 ×𝑉 is a set of directed links between nodes. Note
that each (undirected) link in Figure 1 represents two directed links. Network links have a nominal
maximum bandwidth and maximum transmission delay assigned to them based on their physical
features and types. The bandwidth of a link is the maximum capacity of the link for transmitting
data per second, and the maximum delay specifies the maximum time it takes for data transmission
over a link.

Definition 4.2 (Static Properties of a Link). Let 𝐺 = (𝑉 , 𝐸) be a network structure. Each link
𝑒 ∈ 𝐸 has a bandwidth 𝑏𝑤 (𝑒) and a nominal delay 𝑑𝑙 (𝑒). We denote by StaticProp(𝑒) the tuple
(𝑏𝑤 (𝑒), 𝑑𝑙 (𝑒)), indicating the static properties of 𝑒 .

As discussed in Section 2, a network handles requests by identifying a directed path (or a flow)
in the network to transmit them. Upon the arrival of each request 𝑟 , a network flow (path) 𝑓
is established to transmit the data stream of 𝑟 from the requested source 𝑟 .𝑠 to the requested
destination 𝑟 .𝑑 . Each flow 𝑓 is a directed path of links that connects 𝑟 .𝑠 to 𝑟 .𝑑 . As shown in Figure 4,
one flow is created per request. The bandwidth of each flow is equal to that of its corresponding
request. Since requests have dynamic bandwidths (Definition 4.1), flows have dynamic bandwidths
too. We define the throughput of link 𝑒 at time 𝑡 , denoted by throughput (𝑒, 𝑡), as the total of the
bandwidths of the flows going through 𝑒 at time 𝑡 .

Definition 4.3 (Dynamic Utilization of a Link). Let𝐺 = (𝑉 , 𝐸) be a network, and let [0..𝑇 ] be a time
interval during which the network is being monitored. At each time instance 𝑡 ∈ [0..𝑇 ], each net-
work link 𝑒 ∈ 𝐸 has a utilization util(𝑒, 𝑡) computed as follows: util(𝑒, 𝑡) = throughput (𝑒, 𝑡)/bw(𝑒).

The software-defined control entities in Figure 4 include Weight Function and Data-forwarding
Algorithm. Data-forwarding algorithms are event-driven and handle requests upon arrival. As
discussed in Section 2, data forwarding typically generates flows based on shortest weighted paths
between the source and the destination of a request. Thanks to the SDN architecture, link weights
are programmable and can be computed by a weight function that accounts for both the dynamic
and the static properties of networks. For example, the GP-derived link-weight function in Figure 1
(c) uses the dynamic link utilization util(𝑒, 𝑡) and the static parameter threshold to compute link
weights.

4.2 Generative Self-adaptation
In this section, we describe GenAdapt, our self-adaptation control loop, and GenPlan, the genetic
algorithm used in the planning step of GenAdapt. As discussed earlier, self-adaptation control has
four main steps; these are specified as methods in the self-adaptation control entity in Figure 4.
GenAdapt, i.e., our self-adaptation loop, runs in parallel with the data-forwarding algorithm. In
contrast to the data-forwarding algorithm which is event-driven, GenAdapt is executed periodically
with a period 𝛿 , indicated as an attribute of GenAdapt in Figure 4. The self-adaptation loop
periodically monitors the network for congestion as the environment changes, e.g., due to the
arrival of new requests. There is a trade-off between the execution time of GenAdapt and the period
𝛿 . In particular, 𝛿 should be small enough so that GenAdapt is executed frequently to detect and
handle congestion promptly. At the same time, 𝛿 should be large enough so that frequent executions
of GenAdapt do not interfere with other SDN algorithms and applications [94].
GenAdapt, shown in Algorithm 1, executes at every time step 𝑖 ·𝛿 (𝑖 = 0, 1, . . .). The monitor

step (line 8) fetches the set 𝐹𝑖 of flows at time 𝑖 · 𝛿 and the utilization util(𝑒, 𝑖 · 𝛿) of every link 𝑒
at 𝑖 · 𝛿 . The analyze step (lines 9-10) determines whether the network is congested, i.e., whether
adaptation is needed. A network is congested if there is a link 𝑒 ∈ 𝐸 which is utilized above a
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Algorithm 1 Self-adaptation loop to resolve congestion by learning a new weight function for
SDN data-forwarding —GenAdapt.

1 Input G : Network structure

2 Input ∪𝑒∈𝐸StaticProp(𝑒): Static properties of links

3 Input BestSol: Best Solutions from the previous round

4 Output F: Optimized flows

5 Output W: Optimized weight function

6
7 for every time step 𝑖 ∈ {1, . . . , 𝑛} do

8 F𝑖, ∪𝑒∈𝐸util(𝑒, 𝑖 · 𝛿) ← Monitor() //Dynamic data from SDN Sim

9 maxUtil = Max{util(𝑒, 𝑖 · 𝛿 ) }𝑒∈𝐸
10 if maxUtil > threshold then

11 F, W ← GenPlan(G, ∪𝑒∈𝐸StaticProp(𝑒), F𝑖, BestSol)

12 Apply F and W to the SDN data-forwarding algorithm

13 end
14 end

certain threshold [4, 62]. To detect congestion, the maximum utilization of all the links is compared
with threshold, which is a fixed parameter of the SDN.

If the network is congested, GenAdapt calls GenPlan (line 11). GenPlan, shown in Algorithm 2,
is our GP algorithm which we discuss momentarily. The output of GenPlan is a new link-weight
function as well as a modified set of flows where a minimal number of flows have been re-routed.
The new flows and the optimized link-weight function are then applied to the SDN under analysis
(line 12). Note that the only change that needs to be done to the network is re-routing a typically
small number of flows to eliminate congestion.

GenPlan (Algorithm 2) generates link-weight functions that optimize a fitness function character-
izing the desired network-flow properties. The link-weight functions are specified in terms of static
link properties (bw(𝑒) and dl(𝑒)), dynamic link utilization (util(𝑒, 𝑡)) and utilization threshold. Note
that GenPlan always reuses in its initial population half of the best solutions (candidate weight
functions) generated by its previous invocation and stored in a variable named BestSol. Reusing as
bootstrap some of the best solutions from the previous round ensures continuity and incrementality
in learning the weight functions across multiple rounds of self-adaptation.
Before we describe the GenPlan algorithm in detail, we define three sets, OldFlows, BadFlows,

and NewFlows, that are utilized by GenPlan. Specifically, OldFlows is the set of all flows when a
congestion is detected; BadFlows is a subset of OldFlows that should be re-routed to resolve network
congestion; and,NewFlows is the set of the new flows computed after re-routing those fromBadFlows
as well as the original flows that did not cause congestion (i.e., those in OldFlows \ BadFlows).
OldFlows is an input to GenPlan, and BadFlows and NewFlows are computed by GenPlan in order
to resolve congestion, as we describe below.
GenPlan starts by selecting a number of flows, BadFlows, from a congested set of flows, Old-

Flows, using the FindFlowsCausingCongestion algorithm shown in Algorithm 3. Following the
standard steps of GP, GenPlan creates an initial population 𝑃0 (line 13) containing a set of possible
weight functions (individuals). For every individual 𝜔 ∈ 𝑃0, we call ComputeSurrogate, shown in
Algorithm 4, to re-route the flows in BadFlows when 𝜔 is used to compute weights of the network
links (line 19 of GenPlan). Specifically, for each 𝜔 , ComputeSurrogate generates the set NewFlows
which includes (1) the flows corresponding to those in BadFlows, but re-routed based on 𝜔 ; and
(2) the original flows that did not cause congestion (i.e., OldFlows \ BadFlows). The set NewFlows
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Algorithm 2 Generating a new link-weight function and a congestion-free set of flows using
Genetic Programming —GenPlan.

1 Input G: Network structure

2 Input ∪𝑒∈𝐸StaticProp(𝑒): Static properties of links

3 Input OldFlows: Current network flows

4 Input BestSol: Best Solutions from the previous round

5 Output W: New weight function

6 Output NewFlows: New network flows

7
8 t = 0;

9 BadFlows = FindFlowsCausingCongestion(OldFlows, G);

10 Flows = OldFlows \ BadFlows

11 while not(stop_condition) do

12 if (t == 0)

13 P0 = InitialPopOfWeightFormulas() ∪ BestSol

14 OffSprings = P0
15 else

16 OffSprings = Breed(P𝑡)

17 end
18 for 𝜔 ∈ OffSprings do

19 NewFlows = ComputeSurrogate(Flows, BadFlows, G, 𝜔)

20 𝜔.Fit = Evaluate (G, NewFlows, OldFlows)

21 end
22 P𝑡+1 = OffSprings

23 t = t + 1

24 end
25 BestW = BestSolution(P0, . . ., P𝑡)

26 bestFlows = ComputeSurrogate(Flows, BadFlows, G, BestW)

27 return BestW, bestFlows

is needed to compute the fitness value for 𝜔 (line 20). The fitness function aims to determine
how close an individual is to resolving congestion. Our fitness function combines three criteria
as we elaborate momentarily. GenPlan evolves the population by breeding and generating a new
offspring population (line 16). The breeding and evaluation steps are repeated until a stop condition
is satisfied. Then, GenPlan returns the link-weight function with the lowest fitness (BestW) and its
corresponding flows (line 27).
The ComputeSurrogate algorithm (Algorithm 4), which is called by GenPlan, estimates the

flows for each candidate weight function 𝜔 , assuming that the flow bandwidths obtained at the
monitoring step are constant over the duration of 𝛿 . ComputeSurrogate first updates the utilization
and weight values for each link, assuming that BadFlows are absent (lines 8-11). The new weights
are then used to re-route each flow 𝑓 in BadFlows by identifying a flow 𝑓 ′ as the new shortest
path (line 13). After creating each new flow 𝑓 ′, the utilization and weight values for each link on 𝑓 ′

are updated (lines 14-17). Note that, because of the assumption that flow bandwidths remain fixed
during 𝛿 , the utilization-per-link 𝑢𝑡𝑖𝑙 (𝑒) in ComputeSurrogate is not indexed by time.
Following standard practice for expressing meta-heuristic search problems [49], we define the

representation, the fitness function, and the genetic operators underlying GenPlan.
Representation of the Individuals. An individual represents some weight function induced

by the following grammar rule:
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Fig. 5. A parse tree for an example link-weight formula.

Algorithm 3 Selecting a subset of flows whose removal will resolve congestion —
FindFlowsCausingCongestion.

1 Input G: Network structure

2 Input Flows: Current flows

3 Output BadFlows: A subset of Flows causing congestion

4
5 BadFlows = ∅
6 while G is congested do

7 Let 𝑒 be the most congested link

8 Let 𝑓 ∈ Flows such that 𝑒 ∈ 𝑓 // selected randomly

9 BadFlows = BadFlows∪{ 𝑓 }
10 Flows = Flows\{ 𝑓 }
11 end
12 return BadFlows

exp ::= exp+ exp | exp− exp | exp ∗ exp | exp / exp | const | StaticProp | DynamicVar | param

In the above, the symbol | separates alternatives, const is an ephemeral random constant
generator [98], StaticProp are static link properties (Definition 4.2), DynamicVar is the link
utilization (Definition 4.3), and param is some network parameter. The formula in Figure 1(c) can
be generated by this grammar rule and is thus an example individual in GenPlan. Note that the
SDN data-forwarding algorithm assumes that link values are integers.
Each individual is constructed and manipulated as a parse tree. For example, Figure 5 shows

the parse tree corresponding to an example link-weight formula, 𝑡ℎ2

(𝑡ℎ−𝑢 )2 , where u is a shorthand
for 𝑢𝑡𝑖𝑙 (𝑒, 𝑡) and th is a shorthand for threshold. The initial population of GenPlan is generated
by randomly building parse trees using the grow method [82] (i.e., the root and inner nodes are
labelled by the mathematical operations, and the leaves are labelled by variables, constants or
parameters specified in the grammar). As discussed earlier when GenPlan is called for the first time,
the initial population is generated randomly. For subsequent calls to GenPlan, half of the initial
population is generated and the other half is reused from the best elements in the last population
generated by the previous invocation of GenPlan.

Fitness Function.We propose a fitness function for resolving network congestion in SDNs. Our
fitness function is hybrid and combines the following three metrics: (1) Maximum link utilization
across all the network links (Fit1). For each individual weight function 𝜔 , GenPlan computes the set
NewFlows of flows based on link weights generated by 𝜔 . The Fit1 metric computes the utilization
value of the most utilized network link, considering the flows in NewFlows. If Fit1 is higher than
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Algorithm 4 Re-routing congested flows (BadFlows) by computing shortest paths based on a
candidate weight function (𝜔) —ComputeSurrogate.

1 Input G: Network structure

2 Input Flows: Current congestion-free set of flows

3 Input BadFlows: Flows that have to be re-routed

4 Input 𝜔: Candidate weight function

5 Output NewFlows: BadFlows re-routed using 𝜔

6
7 NewFlows = ∅
8 for 𝑒 ∈ 𝐸 do

9 util(𝑒) ← sum of the bandwidths of 𝑓 ∈ Flows s.t. 𝑒 ∈ 𝑓

10 Compute weight for 𝑒 using 𝜔

11 end
12 for 𝑓 ∈ BadFlows do

13 𝑓 ′ ← shortest weighted path from source to destination of 𝑓

14 for 𝑒 ∈ 𝑓 ′ do

15 util(𝑒) = util(𝑒) + bandwidth of 𝑓 ′

16 update the weight of 𝑒 using 𝜔

17 end
18 NewFlows = NewFlows∪{ 𝑓 ′ }
19 end
20 return NewFlows ∪ Flows

the threshold, then the network is congested. Hence, we are interested in individuals whose Fit1
is less than the threshold. (2) The cost of re-routing network flows measured as the number of
link updates, i.e., insertions and deletions, required to reconfigure the network flows (Fit2). In
GenPlan, OldFlows is the current set of congested flows, and as mentioned above, NewFlows is the
set of flows computed for each individual 𝜔 . We compute Fit2 as the edit distance between each
pair of flows 𝑓 ∈ OldFlows and 𝑓 ′ ∈ NewFlows such that 𝑓 and 𝑓 ′ are both related to the same
request. Specifically, the distance between two flows 𝑓 and 𝑓 ′ is measured as the longest common
subsequence (LCS) distance of two paths [28] by counting the number of link insertions and link
deletions required to transform 𝑓 into 𝑓 ′. We note that this metric has previously been used as
a proxy for the reconfiguration cost of network flows [94]. (3) The total data transmission delay
generated by the new flows (Fit3). The Fit3 metric is computed as the sum of all the delay values,
i.e., dl(e), of the links that are utilized by the new flows (i.e., the NewFlow set). The larger this
value, the higher the overall transmission delay induced by NewFlows. The last metric allows us to
penalize candidates that generate longer flows compared to those that generate shorter ones.

The Fit1, Fit2 and Fit3metrics have different units of measure and ranges. Thus, before combining
them, we normalize them using the well-known rational function 𝑥 = 𝑥/(𝑥 + 1)[11]. This function
provides good guidance to the search for minimization problems compared to other alternatives.
Among the three metrics, lowering Fit1 below the congestion threshold takes priority; if a

candidate solution is unable to resolve congestion, then we are not interested in the other two
metrics. Once Fit1 is below the threshold, we do not want to lower Fit1 any further, since we want
the network optimally utilized but not congested. Instead, we are interested in lowering the cost
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Fig. 6. Tool Architecture.

and delay metrics. We denote the normalized forms of our three metrics by Fit1, Fit2 and Fit3,
respectively, and define the following overall fitness function to combine the three:

𝐹𝑖𝑡 =

{
Fit1 + 2 (1) If Fit1 ≥ threshold
Fit2 + Fit3 (2) If Fit1 < threshold

Given a candidate weight function𝜔 , evaluating Fit (𝜔) always yields a value in [0..3]: Fit (𝜔) ≥ 2
indicates that 𝜔 is not able to resolve congestion; and Fit (𝜔) < 2 indicates that 𝜔 can resolve
congestion, and its fitness determines how well 𝜔 is doing in reducing cost and delay. Note that
in our fitness function defined above, cost and delay are equally important; we do not prioritize
either one. If desired, one can modify the above function by adding coefficients to Fit2 and Fit3 to
prioritize cost over delay or vice versa.

Genetic Operators.We use one-point crossover [81]. It randomly selects two parent individuals.
It then randomly selects one sub-tree in each parent, and swaps the selected sub-trees resulting
in two children. For the mutation operator, we use one-point mutation [80] that mutates a child
individual by randomly selecting one sub-tree and replacing it with a randomly generated tree,
which is generated using the initialization procedure. For the parent selection operator, we use
tournament selection [64].

Symbolic Complexity of GenPlan. The most computationally expensive task when computing
our fitness function is finding the shortest weighted path from the source switch to the destination
switch for each candidate individual. The complexity of finding the shortest weighted path is
O((𝐸+𝑉 )log𝑉 ), where 𝐸 is the number of links and𝑉 is the number of switches in the network [29].

5 TOOL SUPPORT
In this section, we describe the tool that we have developed to build self-adaptivity into SDN data
forwarding. Figure 6 shows the architecture of our tool support. The tool is composed of four
main modules: A traffic generation component (D-ITG) [19], a network emulator (Mininet) [60], an
SDN controller (ONOS) [13] and an implementation of our self-adaptation framework (GenAdapt).
Below, we discuss each of these modules.
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We use Distributed Internet Traffic Generator (D-ITG) [19] – a network traffic generator platform
– to generate flows based on a specification provided by users (e.g., network administrators). These
flows are meant for simulating real-world traffic in real networks. D-ITG can generate various
flows with different protocols, bandwidth sizes, and temporal features communicated between the
nodes in a network. D-ITG keeps track of various metrics related to the generated data flows. These
metrics include, among others, packet loss, delay and jitter.

Mininet [60] is a network emulator which is used for creating a realistic virtual network consisting
of virtual hosts, switches and links according to a user-provided network topology. The switch type
that we are interested in among the alternative choices available in Mininet is the “Open virtual
Switch (vSwitch)”. This switch type is Mininet’s default and runs in OpenFlow mode. This makes it
possible to control switches of this type using an OpenFlow controller such as ONOS (discussed in
the next paragraph). Flow tables are installed on switches for packet forwarding and can be updated
based on the instructions sent by the OpenFlow controller which the switches are connected to.
Open Network Operating System (ONOS) [13] is a popular, carrier-grade SDN controllers that

can be used with either real or simulated networks. We use ONOS as the OpenFlow controller for
the virtual networks created by Mininet. Using the OpenFlow protocol [69], ONOS communicates
with the Open vSwitches in a Mininet network. This enables ONOS (i) to obtain a global view of
the network by collecting network information and (ii) to manipulate the flow rules as needed
in order to improve network performance. ONOS provides a set of services including flow rule
service, topology service, link service and device service. All these services can be accessed and
programmed via ONOS’s API.
Our adaptation framework, GenAdapt, is realized as an add-on for ONOS. As discussed in

Section 3, GenAdapt consists of four steps: monitor, analyze, plan and execute.
In the first step, our GenAdapt implementation uses ONOS’s device service to collect network

metrics from the switches. In the second step, which is triggered with a periodicity of one second,
GenAdapt uses ONOS’s link service alongside the metrics collected in the previous step to compute
the utilization of each network link and obtain the maximum link utilization. As discussed in
Section 4, the network is considered congested if the maximum utilization is greater than a certain
threshold. Once a congestion is detected, GenAdapt enters the third step and calls GenPlan (Algo-
rithm 2) to generate a new link-weight function (best solution) as well as a set of new link weights
calculated by the best solution. In the fourth and final step, using the link weights calculated in the
third step, ONOS’s flow rule service computes new shortest weighted paths and updates the flow
rules for the switches according to these paths. This step resolves congestion by rerouting some of
the flows (specifically, BadFlows in algorithm shown in Algorithm 3) based on the new flow rules.

The best solution derived by an invocation of GenPlan (step three) is retained and applied for as
long as it has not been replaced by a newer solution (by GenPlan) in response to a future congestion
occurrence. The candidate functions created in the last iteration of GP in GenPlan are sorted by
their fitness values. The top half of these candidate functions are kept as patterns learned, to be
reused by the next invocation of GenPlan. Upon its next invocation, GenPlan creates its initial
population as follows: 50% of the initial population are the patterns learned from the previous
invocation and the other 50% are randomly generated candidate functions. As we argue in Section 3,
reusing the patterns learned helps ensure continuity across multiple rounds of self-adaptation.
We implemented GenAdapt based on the open-source version of DICES [94], a self-adaptive

packet forwarding application, which itself builds onONOS’s default reactive forwarding application
(called org.onosproject.fwd). For the GenPlan component, we use the genetic programming module
provided by ECJ (version 27) [93]. GenAdapt is available online [2].
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6 EMPIRICAL EVALUATION
In this section, we investigate the following research questions (RQs) using open-source synthetic
and industrial networks. To answer RQ1, we use the industrial network and eighteen synthetic
networks. To answer RQ2, we use six synthetic networks from RQ1. To answer RQ3, we use eight
more synthetic networks alongside two of the synthetic networks from RQ1. In total, our evaluation
involves one industrial network and 26 synthetic ones.

RQ1 (Effectiveness): How effective is GenAdapt in modifying the logic of the SDN data-forwarding
algorithm to avoid future congestions? The main novelty of GenAdapt is in attempting to adapt the
logic of SDN data forwarding (i.e., the link-weight functions) instead of adapting its output (i.e.,
the individual flow paths). Through RQ1, we compare GenAdapt with two baseline techniques:
(i) an approach, named DICES [94], which, similar to GenAdapt, uses MAPE-K self-adaptation, but
optimizes individual flow paths; and (ii) OSPF configured using a standard heuristic for setting
optimized link weights [1, 27]. By comparing GenAdapt with these baselines, we investigate
whether GenAdapt, when called to resolve an existing congestion, is able to reduce the number of
occurrences of congestion in the future, without incurring additional overhead.
RQ2 (Transferability): Can we improve GenAdapt’s performance for a larger network by boot-

strapping GenAdapt with best solutions computed on a smaller network that has the same topology
as the larger one? The GenAdapt algorithm (Algorithm 4) requires computing shortest weighted
paths between different nodes in a network. Hence, the algorithm’s execution time increases with
network size, i.e., the number of links and nodes. Yet, link-weight functions do not contain infor-
mation that is specific to the underlying network size. We therefore hypothesize that, for networks
with similar topology but different sizes, the link-weight functions are likely to be similar, thus
making it possible to enhance the performance of GenAdapt by transferring to larger networks
the best control logic learned on smaller networks. To validate this hypothesis, we consider a set
of networks with the same topology but different sizes. Before applying GenAdapt on the larger
networks in this set, we initialize (part of) its population using the best control logic that GenAdapt
has learned on the smaller networks in this set. We then compare the results with those obtained
when GenAdapt’s first population is initialized randomly.

RQ3 (Scalability): Can GenAdapt resolve congestion efficiently as the size of the network and the
number of requests increase? To assess scalability, we evaluate the execution time of GenAdapt as
the size of the network and the number of requests increase.

Experimental Setup.All experiments were performed on a machine with a 2.5 GHz Intel Core i9
CPU and 64 GB of memory. All our experimental material is available online [2].

6.1 RQ1 – Effectiveness
Before answering RQ1, we present the baselines, the study subjects, the configuration of GenAadapt
and the setup of our experiments.

Baselines. Our first baseline, DICES, is from the SEAMS literature. Similar to GenAadapt, DICES
is self-adaptive, but unlike GenAadapt, it uses a genetic algorithm to modify the individual flows
generated by the SDN data-forwarding algorithm. The second baseline is OSPF [1, 27] configured
by setting the link weights to be inversely proportional to the bandwidths of the links as suggested
by Cisco [1]. The OSPF heuristic link weights are meant to induce optimal flows that eliminate or
minimize the likelihood of congestion. OSPF is widely used in real-world systems [37] and as a
baseline in the literature [3, 7, 16, 17, 23, 83, 88].
Study Subjects. For RQ1, we use: (1) eighteen synthetic networks, and (2) an industrial SDN-

based IoT network published in earlier work [94]. For the synthetic networks, we consider two
network topologies: (i) complete graphs, and (ii) multiple non-overlapping paths between node
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pairs. The network in Figure 1 is an example of the latter topology, where 𝑠1 and 𝑠2 are connected by
three non-overlapping paths. Since our approach works by changing flow paths, we naturally focus
our evaluation on topologies with multiple paths from a source to a destination, thus excluding
topologies where adaptation through re-routing is not possible. The topologies that we experiment
with, i.e., (i) and (ii) above, are the two extreme ends of the spectrum in terms of path overlaps
between node pairs: In the first case, we have complete graphs, where there are as many overlapping
paths as can be between node pairs; and, in the second case, we have no overlapping paths at all.
We consider seven complete graphs – referred to as FULL hereafter – with five, six, seven, ten,
fifteen, twenty two and thirty two nodes, and consider four multiple-non-overlapping path graphs
– referred to as MNP hereafter – with five, eight, twelve and seventeen nodes. More precisely,
one MNP graph has five nodes connecting the designated source and destination with three non-
overlapping paths (Figure 1); others have eight, twelve and seventeen nodes doing the same with
four, five, and six (non-overlapping) paths. Following the suggested parameter values in the existing
literature for such experiments [94], we set the static properties of the links, namely bandwidth
and delay, to 100Mbps and 25ms, respectively.
To instigate changes in the SDN environment, we generate data requests over time and not at

once. We space the requests 10s apart to ensure that all the requests are properly generated and that
the network has some time to stabilize, i.e., we send requests at 0s, 10s, 20s, 30s, and so on. For each
FULL network, we fix a source and a destination node, and generate either three or four requests
every 10s. For each MNP network, we generate every 10s two requests between the end-nodes
connected by multiple paths. The reason why we generate fewer requests in the MNP networks
is because there are fewer paths compared to the FULL networks. For a given network (FULL or
MNP), the generated requests have the same bandwidth. The request bandwidth for each network
is selected such that some congestion is created starting from 10s. The request bandwidths are
provided online [2]. We denote our synthetic networks by FULL(𝑥 , 𝑦) and MNP(𝑥 , 𝑦), where 𝑥 is
the number of nodes and 𝑦 is the number of requests generated every 10s. The eighteen synthetic
networks that we use in RQ1 are fourteen FULL networks, once with three requests and once with
four requests generated every 10s, and four MNP networks with two requests generated every 10s.

Our industrial subject is an emergency management system (EMS) from the literature [94]. EMS
represents a real-world application of SDN in a complex IoT system. This subject contains seven
switches and 30 links with different values for the links’ static properties. The EMS subject includes
a traffic profile characterizing anticipated traffic at the time of a natural disaster (e.g., flood), leading
to congestion in the network of the monitoring system. In particular, the network is used for
transmitting 28 requests capturing different data stream types such as audio, video and sensor
and map data. The static properties of the network links and the data-request sizes are available
online [2].1

Experiments and metrics. RQ1 has two goals: (G1) determine whether, by properly modifying
the link-weight function, GenAdapt is able to reduce the number of times congestion happens,
and (G2) determine whether GenAdapt can respond quickly enough so that prolonged periods of
congestion can be avoided.
The synthetic subjects are best used for achieving G1, since the requests in these subjects are

generated with time gaps as opposed to all at once, which is the case in EMS (industry subject). This
characteristic of the synthetic subjects creates the potential for congestion to occur multiple times,
in turn allowing us to achieve G1. For G1, we compare GenAdapt with DICES; comparison with
the OSPF baseline does not apply, since OSPF’s heuristic cannot avoid congestion for our synthetic

1Due to platform differences, we could not reproduce the congestion reported in [94]. So, we increased the request bandwidths
by 30% to reproduce congestion.
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Table 1. Parameters of GenAdapt.

Mutation rate 0.1 Utilization threshold 80%
Crossover rate 0.7 Minimum of the constant in the GP grammar 0
Maximum depth of GP tree 15 Maximum of the constant in the GP grammar 100
Tournament size 7 Interval between invocations of GenAdapt (𝛿) 1s
Population size 10

subjects, and neither can it resolve congestion. To compare GenAdapt with DICES, we keep track of
how many times congestion occurs during our simulation, the execution time of each technique to
resolve each congestion occurrence, and the total time during which the network is in a congested
state. In addition, we measure packet loss, which is a standard metric for detecting congestion in
network systems. Packet loss is measured as the number of dropped packets divided by the total
number of packets in transit across the entire network during simulation. The simulation time for
each synthetic subject was set to end 10s after the generation of the last request. Recall that, in our
synthetic subjects, the requests are sent at intervals of 10s and as long as the number of paths in
the underlying network is sufficient to fulfill the incoming requests.
To achieve G2, we use EMS in order to compare GenAdapt with DICES and OSPF in terms

of handling the congestion caused by requests arriving at once. Since DICES and GenAdapt are
self-adaptive, they monitor EMS and attempt to resolve congestion when it occurs. In the case of
OSPF, however, the heuristic link weights are meant to reduce the likelihood of congestion and
packet loss. For this comparison, we report the total packet loss recorded by each of the three
technique over a fixed simulation interval of 5min, and also whether, or not, GenAdapt and DICES
were able to resolve the congestion in EMS within the simulation time.

Configuring GenAdapt. Table 1 shows the configuration parameters used for GenAdapt. For
the mutation and crossover rates, the maximum tree depth and the tournament size, we chose
recommendations from either the GP literature [65, 82] or ECJ’s documentation [93]. We set 𝛿 to
1s since this is the smallest monitoring period permitted by our simulator. We use the utilization
threshold given in the literature [4, 62, 94]. Since the range for link-utilization values is [0% .. 100%],
we set the minimum and maximum of the constants in GP individuals to 0 and 100, respectively.

To determine the population size and the number of generations for GP, we note that, ideally,
GenAdapt should not take longer than 𝛿 to execute. The execution time of GenAdapt is likely
shorter when it is called in the first rounds of request generation than in the later rounds, since
there are fewer flows in the early rounds of our synthetic subjects. Hence, using the fixed time limit
of 1s to stop GenAdapt is not optimal. Instead of using a time limit, we performed some preliminary
experiments on our synthetic subjects to configure population size and the number of generations
for the two topologies of FULL and MNP. For both topologies, we opt to use a small population size
(i.e., 10). As for the number of generations, for the FULL networks, we stop GenAdapt when the
fitness function falls below two (i.e., when congestion is resolved but the solution is not necessarily
optimized for delay and cost) or when 200 generations is reached. This will ensure that GenAdapt’s
execution time does not exceed 1s for our FULL networks. The MNP networks are, however, sparser
and we are able to increase the number of generations while keeping the execution time below 1s.
Specifically, for MNP networks with five nodes, we use 300 generations; and, for the ones with
eight, twelve and seventeen nodes we use 500 generations. For EMS, the topology is more similar
to a full graph, and as such, we use the same configuration for EMS as that for FULL networks.
Formulas Generated by GenPlan. We charaterize the structure and shape of the formulas

generated by GenPlan using the following metrics: (1) the number of operators, which represents
the number of “+”, “−”, “∗” and “/” symbols within a formula; (2) the number of variables, which
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Fig. 7. Comparing network utilization values over time obtained from 30 runs of DICES and GenAdapt for
resolving congestion in an example synthetic subject: MNP(8, 2).

refers to the number of const, StaticProp, DynamicVar, and param elements within a formula; and,
(3) the depth of the parse tree corresponding to a formula. As each formula is represented by a parse
tree, the number of operators corresponds to the number of non-leaf nodes, and the number of
variables corresponds to the number of leaf nodes in the tree. For example, the link-weight formula

𝑡ℎ2

(𝑡ℎ−𝑢 )2 , with its corresponding parse tree illustrated in Figure 5, contains 5 operators, 6 variables
and has a parse-tree depth of 4. We randomly selected 20 best individuals resulting from 20 runs of
GenPlan. In these individuals, the number of operators ranges from 0 to 28, with an average of
6.6 and a median of 4. The number of variables, which also represents the number of leaves in the
parse tree, ranges from 1 to 29, with an average of 7.6 and a median of 5. The depth of the parse
trees varies from 1 to 15, with an average depth of 4.3 and a median of 4. In GenPlan, individuals
that result in a divide by zero are dropped, since they are invalid.

Results. As an example, Figure 7 shows the network utilization over time when GenAdapt and
DICES are used to resolve congestion for the synthetic network MNP(8, 2). Two simultaneous
network requests are sent at 0s, 10s, 20s and 30s, leading to congestion at 10s, 20s, and 30s. The
network is congested when the utilization value is above 0.8 (i.e., the utilization threshold). Out
of 30 runs for DICES, 18 runs record three congestion occurrences and 12 runs record four. In
contrast, out of 30 runs for GenAdapt, six runs record only one congestion occurrence, 16 runs
record two, seven runs record three, and only one run records four congestion occurrences. Note
that three congestion occurrences at 10s, 20s, and 30s are visible in the figure. However, in the
simulated environment, similar to the physical world, there are some small time gaps between the
arrivals of the two requests generated each time, and in addition, there are small fluctuations in flow
bandwidths over time. Hence, the monitoring step of GenAdapt or DICES may detect congestion
twice (i.e., once per request arrival), instead of only once and after the arrival of both requests.
In total, for the example in Figure 7, the average number of congestion occurrences is 2.1 with
GenAdapt and 3.4 with DICES. In addition, with DICES, the average of the total time that the
network remains congested is 7.6s, while with GenAdapt, this is reduced to 5.57s.
With the analysis for RQ1 intuitively explained over one subject, namely MNP(8, 2), we now

present the complete results for this RQ. Table 2 compares GenAdapt against DICES for our eighteen
synthetic subjects (i.e., seven FULL(𝑛, 3), seven FULL (𝑛, 4) and four MNP(𝑛, 2) where 𝑛 is the
number of network nodes) by reporting the average number of congestion occurrences, the average
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Table 2. Statistical-test results comparing the average number of congestion occurrences, the duration of
congestion, the execution-time and the packet-loss values obtained by 30 runs of GenAdapt versus DICES for
our eighteen synthetic subjects.

FULL(5,3) FULL(5,4) FULL(6,3) – 40% of DICES runs failed
avg(G-D)∗ p-value Â12 avg(G-D) p-value Â12 avg(G-D) p-value Â12

# Congestion 3.1 – 3.2 0.98 0.5(N) 3.8 – 4.4 0.193 0.59(S) 3.5 – 4.5 0.003 0.74(L)
Congestion Duration (s) 6.2 – 7.7 0.0919 0.62(S) 9.53 – 12 0.145 0.61(S) 7.93 – 12 1.69E-06 0.86(L)

Packet Loss (%) 32.1 – 32.33 0.001 0.75(L) 24.86 – 24.99 0.535 0.45(N) 24.94 – 31.73 7.96E-11 0.94(L)
Exec Time (ms) 140.86 – 392.96 <2.2E-16 0.98(L) 271.95 – 440.87 <2.2E-16 0.87(L) 302.21 – 701.06 <2.2E-16 0.9(L)

FULL(6,4) – 33.3% of DICES runs failed FULL(7,3) – 66.6% of DICES runs failed FULL(7,4)
avg(G-D) p-value Â12 avg(G-D) p-value Â12 avg(G-D) p-value Â12

# Congestion 3.8 – 5.4 5.39E-06 0.87(L) 4.1 – 6 9.70E-08 1(L) 2.9 – 3.1 0.063 0.59(S)
Congestion Duration (s) 10.03 – 14.47 5.98E-05 0.8(L) 8.03 – 16.63 1.35E-11 1(L) 5 – 5.97 0.0157 0.68(M)

Packet Loss (%) 28.4 – 31.64 1.53E-05 0.83(L) 16.6 – 19.7 0.145 0.61(S) 10.13 – 19.31 8.08E-07 0.87(L)
Exec Time (ms) 956.47 – 802.48 <2.2E-16 0.85(L) 295.94 – 949.2 <2.2E-16 0.97(L) 226.40 – 576.05 <2.2E-16 0.99(L)

FULL(10,3) FULL(10,4) – 10% of DICES runs failed FULL(15,3)
avg(G-D) p-value Â12 avg(G-D) p-value Â12 avg(G-D) p-value Â12

# Congestion 3.7 – 4 0.464 0.58(S) 4 – 5.9 9.21E-11 0.96(L) 1.87 – 5 2.757e-09 0.9 (L)
Congestion Duration (s) 7.5 – 8.47 0.029 0.65(S) 8.9 – 16.23 9.53E-11 0.98(L) 2.73 – 5.77 1.017E-06 0.86 (L)

Packet Loss (%) 8.75 – 13.02 0.006 0.71(M) 30.17 – 34.41 1.61E-10 0.98(L) 14.16 – 15.29 3.077E-08 0.92 (L)
Exec Time (ms) 564.88 – 814.8 4.65E-16 0.81(L) 596.31 – 1365.28 <2.2E-16 0.86(L) 732.92 – 1574.83 < 2.2E-16 0.89(L)

FULL(15,4) FULL(22,3) FULL(22,4)
avg(G-D) p-value Â12 avg(G-D) p-value Â12 avg(G-D) p-value Â12

# Congestion 2.53 – 3 0.0002 0.73 (M) 2.1 –5 1.681E-09 0.92(L) 2.3 – 3 3.94E-08 0.85(L)
Congestion Duration (s) 3.7 – 3.77 0.2308 0.59 (S) 3.73 – 5.5 0.0005 0.76 (L) 2.9 – 3.43 0.0037 0.71(M)

Packet Loss (%) 0.03 – 25.38 2.065E-11 1 (L) 14.33 – 17.88 6.108E-10 0.97(L) 0.03 – 24.56 1.893e-11 1(L)
Exec Time (ms) 550.8 – 1006.84 < 2.2E-16 0.88 (L) 1237.16 – 2927.74 < 2.2E-16 0.93(L) 588.86 – 2594.24 < 2.2E-16 1(L)

FULL(32,3) FULL(32,4) MNP(5,2)
avg(G-D) p-value Â12 avg(G-D) p-value Â12 avg(G-D) p-value Â12

# Congestion 3.7 – 5 0.0065 0.68(M) 3 – 3.03 0.8456 0.51(N) 1.8 – 2.2 0.002 0.68(M)
Congestion Duration (s) 5 – 5.57 0.0647 0.64(S) 3.73 – 3.33 0.1643 0.40(S) 3.87 – 5.23 0.0029 0.71(M)

Packet Loss (%) 14.16 – 20.93 1.382E-06 0.86(L) 20.14 – 24.85 0.0160 0.68(M) 32.39 – 32.65 0.004 0.72(M)
Exec Time (ms) 2654.62 – 3230.97 < 2.2E-16 0.80(L) 2756.13 – 2967.30 8.188E-12 0.79(L) 381.07 – 469.13 0.099 0.59(S)

MNP(8,2) MNP(12,2) MNP(17,2)
avg(G-D) p-value Â12 avg(G-D) p-value Â12 avg(G-D) p-value Â12

# Congestion 2.1 – 3.4 1.55E-08 0.9(L) 2.6 – 4.03 2.985E-09 0.89(L) 2.43 – 5.7 1.479E-11 0.99(L)
Congestion Duration (s) 5.57 – 7.6 0.0002 0.77(L) 3.53–4.33 0.0090 0.68(M) 3.6 – 6.67 5.509E-07 0.87(L)

Packet Loss (%) 32.6 – 33.6 3.43E-06 0.85(L) 18.24 – 20.73 0.0029 0.72(M) 13.98 – 16.52 0.1153 0.62(S)
Exec Time (ms) 787.06 – 392.62 <2.2E-16 0.08(L) 468.97 – 370.20 0.4623 0.53(N) 485.26 – 619.83 1.28E-12 0.79(L)

* The avg(G-D) column shows the average (avg) metrics for GenAdapt (G) versus those for DICES (D).

total duration that the network is congested, the average execution time, and the average packet-
loss values obtained by 30 runs of DICES and GenAdapt. For four subjects, some runs of DICES
failed to resolve the last congestion within the simulation time. Specifically, for FULL(6, 3), 12
runs; for FULL(6, 4), 10 runs; for FULL(7, 3), 20 runs; and for FULL(10, 4), 3 runs of DICES failed to
resolve congestion. For these subjects, the reported average number of congestion occurrences and
execution times capture only the successful runs of DICES. In contrast, all runs of GenAdapt for all
the subjects successfully resolved congestion within the simulation time.

We compare the results of Table 2 through statistical testing. We use the non-parametric pairwise
Wilcoxon rank sum test [22] and the Vargha-Delaney’s 𝐴12 effect size [97]. We first focus on the
following three metrics: number of congestion occurrences, congestion duration, and packet loss.
For nine subjects – MNP(12, 2), MNP(8, 2), MNP(5, 2), FULL(22, 4), FULL(22, 3), FULL(15, 3), FULL(10,
4), FULL(6, 4), and FULL(6, 3) – the 𝑝-values for all the comparisons of the above three metrics are
lower than 0.05 and the 𝐴12 statistics show large or medium effect sizes, indicating that GenAdapt
significantly improves over DICES with respect to the three metrics on the nine subjects. For the
seven other subjects – FULL(5, 3), FULL(7, 3), FULL(7, 4), FULL(10, 3), FULL(15, 4), FULL(32, 3) and
MNP(17, 2) – GenAdapt significantly improves over DICES with large or medium effect sizes with
respect to at least one of these three metrics. For all the three metrics of the all the subjects except
for the congestion duration metric of FULL(32, 4), the averages obtained by GenAdapt are better
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Fig. 8. Comparing packet-loss values obtained by 30 runs of DICES, GenAdapt and OSPF.

than those obtained by DICES. For FULL(32, 4), we note that while the average congestion duration
for GenAdapt is slightly lower than that for DICES, the statistical test shows no difference between
the congestion duration values obtained from DICES and GenAdapt (i.e., the 𝑝-value is higher than
0.05). We observe that, for FULL(32, 4), the packet loss and the execution time of GenAdapt are
significantly better than those of DICES.

Figure 8 shows the packet-loss values obtained by 30 runs of GenAdapt, DICES and OSPF applied
to the industry subject (EMS). All 30 runs of GenAdapt and DICES could resolve the congestion
in EMS within the simulation time. However, OSPF incurs high packet loss (avg. 36.5%), since its
heuristic link weights cannot prevent congestion in EMS. Both GenAdapt and DICES start with
high packet loss, but since they can resolve the congestion, packet loss drops quickly, yielding
low averages over the duration of simulation. The differences between the packet-loss values of
GenAdapt and DICES are neither statistically significant (𝑝-value = 0.44) nor practically significant
– a packet-loss difference of 0.4% is negligible in practice. The results of Figure 8 signify the need
for runtime adaptation in EMS. Further, the results in both Table 2 and Figure 8 show that while
GenAdapt can reduce congestion occurrences over time compared to DICES, doing so does not
come at the cost of being less effective in resolving a one-off congestion in EMS caused by several
requests arriving almost at once.

The answer toRQ1 is that GenAdapt successfully resolves congestion in all the subjects. Compared
to DICES, GenAdapt reduces the average number of congestion for thirteen subjects with a high
statistical significance, while DICES never outperforms GenAdapt in any of the congestion
resolution metrics. Further, for our industry subject, GenAdapt significantly outperforms the
standard SDN data-forwarding algorithm, OSPF, in reducing packet loss.

6.2 RQ2 – Transferability
Recall that in its first invocation (i.e., the first time self-adaption is needed), GenAdapt uses a
randomly generated initial population, and only in its subsequent invocations, it reuses in its initial
population half of the best solutions computed previously. To answer RQ2, we modify the GenAdapt
configuration used in RQ1 as follows: For each of the FULL and MNP graphs, we designate the
smallest subject as BaseSubject. Specifically, FULL(5, 3), FULL(5, 4) and MNP(5, 2) are BaseSubjects
for the FULL(_, 3), FULL(_, 4) and MNP(_, 2) categories, respectively. For each category, we use
half of the best solutions (ordered based on their fitness values) obtained from the BaseSubject of
that category to initialize the population of GenAdapt for the two largest graphs in that category.
More precisely, the best solutions obtained from FULL(5, 3) are reused to initialize the populations
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for FULL(22, 3) and FULL(32, 3), the best solutions obtained from FULL(5, 4) are reused to initialize
the populations for FULL(22, 4) and FULL(32, 4), and the best solutions obtained from MNP(5, 2)
are reused to initialize the populations for MNP(12, 2) and MNP(17, 2).
Table 3 shows the results for the two largest networks in each subject category (i.e., FULL(22,

3), FULL(32, 3), FULL(22, 4), FULL(32, 4), MNP(12, 2) and MNP(17, 2)) obtained from the modified
GenAdapt, as described above, against the results obtained from the original GenAdapt configuration
described in RQ1. We refer to the modified GenAdapt as GenAdapt_Reuse and abbreviate it to GR
in Table 3; the original GenAdapt algorithm is abbreviated to G in the table.

We report in Table 3 the same four metrics as introduced in RQ1. Like in RQ1, we first consider the
following three metrics: number of congestion occurrences, congestion duration, and packet loss.
In all the comparisons in Table 3, the averages of these three metrics obtained by GenAdapt_Reuse
are lower than those obtained by GenAdapt with the exception of the packet loss for FULL(22,4),
where the averages for GenAdapt_Reuse and GenAdapt are the same. For five out of six subjects -
FULL(22, 3), FULL(32, 3), FULL(32, 4), MNP(12, 2) and MNP(17, 2) - the 𝑝-values for at least one
of the above three metrics are lower than 0.05 and the 𝐴12 statistics show large or medium effect
sizes, indicating that GenAdapt_Reuse significantly improves GenAdapt with respect to at least
one of these three metrics on the five subjects. Notably, for the two MNP cases, GenAdapt_Reuse
significantly outperforms GenAdapt for all three metrics with a large or medium effective size.

Table 3. Statistical-test results comparing the average number of congestion occurrences, the duration of
congestion, the execution-time and the packet-loss values obtained by 30 runs of GenAdapt_Reuse (GR)
versus GenAdapt (G).

FULL(22,3) FULL(22,4) FULL(32,3)
avg(GR-G) p-value Â12 avg(GR-G) p-value Â12 avg(GR-G) p-value Â12

# Congestion 1.43 –2.1 0.0535 0.63(S) 2.16 – 2.3 0.3312 0.55(N) 2.4 – 3.7 0.0126 0.68(M)
Congestion Duration (s) 1.63 – 3.73 0.0001 0.78(L) 2.63 – 2.9 0.2251 0.58(S) 3.2 – 5 0.0480 0.65(S)

Packet Loss (%) 12.09 – 14.33 3.248E-07 0.88(L) 0.03 – 0.03 0.8531 0.51(N) 12.09 – 14.16 0.6467 0.47(N)
Exec Time (ms) 1468.23 – 1237.16 0.0008 0.31(M) 808.92 – 588.86 4.601E-13 0.14(L) 2017.63.04 – 2654.62 0.0454 0.59(S)

FULL(32,4) MNP(12,2) MNP(17,2)
avg(GR-G) p-value Â12 avg(GR-G) p-value Â12 avg(GR-G) p-value Â12

# Congestion 2.6 – 3 0.223 0.59(S) 1.1 – 2.6 1.819E-11 0.97(L) 1.43 – 2.43 4.941E-06 0.82(L)
Congestion Duration (s) 3.57 – 3.73 0.844 0.52(N) 1.5 – 3.53 7.106E-08 0.89(L) 1.87 – 3.6 3.096E-05 0.81(L)

Packet Loss (%) 3.69 – 20.14 4.271E-06 0.85(L) 16.15 – 18.24 0.0004 0.77(L) 12.56 – 13.98 0.0127 0.69(M)
Exec Time (ms) 1989.06 – 2756.13 0.0097 0.62(S) 229.61 – 468.97 0.0004 0.71(M) 498.05 – 485.26 0.0798 0.60(S)

* The avg(GR-G) column shows the average (avg) metrics for GR versus G.

In relation to execution time, we observe from Table 3 that the average execution time of
GenAdapt_Reuse is sometimes higher than that of GenAdapt. This increase in execution time
is likely attributable to the fact that some of the link-weight functions ranked as best solutions
and reused in the initial population may have complex and redundant structures. This causes
an overhead in the execution time of GenAdapt_Reuse. We note that the execution time metric
refers to the average execution time of a single invocation of a self-adaptation technique. The
number of times a self-adaptation technique is required to be called to solve a congestion is not
included in this metric, but is represented through the number of congestion occurrences and the
total congestion duration metrics. In all the cases where the average of a single execution time of
GenAdapt_Reuse takes longer than that of GenAdapt (i.e., FULL(22, 3), FULL(22, 4), MNP(17, 2)),
GenAdapt_Reuse still outperforms GenAdapt with respect to the number of congestion occurrences
and total congestion duration. This shows that GenAdapt_Reuse is overall more effective than
GenAdapt in resolving congestion occurrences observed over a time period.

In addition, we compare in Table 4 the results from GenAdapt_Reuse against DICES and perform
statistical tests for our four metrics. For five synthetic subjects - FULL(22, 3), FULL(22, 3), FULL(32,
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3), MNP(12, 2) and MNP(17, 2)- GenAdapt_Reuse significantly outperforms DICES with respect to
all the four metrics. For FULL(32, 4), GenAdapt_Reuse significantly improves over DICES for packet
loss and execution time, and for the two other metrics, i.e., number of congestion occurrences and
congestion duration, GenAdapt_Reuse yields higher averages than DICES.

Table 4. Statistical-test results comparing the average number of congestion occurrences, the duration of
congestion, the execution-time and the packet-loss values obtained by 30 runs of GenAdapt_Reuse (GR)
versus Dices (D).

FULL(22,3) FULL(22,4) FULL(32,3)
avg(GR-D) p-value Â12 avg(GR-D) p-value Â12 avg(GR-D) p-value Â12

# Congestion 1.43 – 5 2.57E-13 1(L) 2.16 – 3 8.986E-11 0.92(L) 2.4 – 5 2.054E-09 0.92(L)
Congestion Duration (s) 1.63 – 5.5 7.248E-11 0.97(L) 2.63 – 3.43 1.546E-05 0.81(L) 3.2 – 5.57 8.265E-06 0.83(L)

Packet Loss (%) 12.09 – 17.88 < 2.2E-16 1(L) 0.03 – 24.56 1.956E-11 1(L) 12.09 – 20.93 3.33E-11 1(L)
Exec Time (ms) 1468.23 – 2927.74 < 2.2E-16 0.95(L) 808.92 – 2594.24 < 2.2E-16 1(L) 2017.63.04 – 3230.97 < 2.2E-16 0.90(L)

FULL(32,4) MNP(12,2) MNP(17,2)
avg(GR-D) p-value Â12 avg(GR-D) p-value Â12 avg(GR-D) p-value Â12

# Congestion 2.6 – 3.03 0.0650 0.61(S) 1.1 – 4.03 9.448E-14 1(L) 1.43 – 5.7 5.247E-12 1(L)
Congestion Duration (s) 3.57 – 3.33 0.2156 0.41(S) 1.5 – 4.33 1.404E-12 1(L) 1.87 – 6.67 1.311E-10 0.98(L)

Packet Loss (%) 3.69 – 24.85 1.362E-08 0.93(L) 16.15 – 20.73 4.19E-10 0.97(L) 12.56 – 16.52 0.0083 0.70(M)
Exec Time (ms) 1989.06 – 2967.30 7.102E-13 0.82(L) 229.61 – 370.20 7.76E-12 0.89(L) 498.05 – 619.83 8.675E-11 0.82(L)

* The avg(GR-D) column shows the average (avg) metrics for GR versus D.

The answer to RQ2 is that bootstrapping GenAdapt with the best solutions it computes on
a smaller network improves the algorithm’s effectiveness for larger networks with the same
topology. In particular, in all our study subjects, bootstrapping reduced either the average number
of congestion occurrences or packet loss (or both). For the MNP topology, reductions in the
average number of congestion occurrences and packet loss are statically significant.

6.3 RQ3 – Scalability
To answer RQ3, we perform two sets of studies. In the first set, we increase the network size and in
the second set – the number of requests. Specifically, first, we create ten synthetic networks with
the FULL topology and having 5, 10, . . . , 50 nodes; and, for each network, we generate five requests
with the same bandwidth at once to reach a total bandwidth of 150Mbps. Second, we create a
five-node network with the FULL topology and execute ten different experiments by subsequently
generating 5, 10, . . . , 50 requests at once such that for each experiment, the requests have the same
bandwidth and the sum of the requests’ bandwidths is 150Mbps. For both experimental sets, we
record the execution time of the configuration of GenAdapt used for the FULL topology as described
in Section 6.2. Our experimental setup in RQ3 follows that used by DICES for scalability analysis.
We focus on the FULL topology for scalability analysis because networks with this topology have
considerably more links and pose a bigger challenge for self-adaptation planning, as evidenced by
the failure of DICES over several networks with the FULL topology (see Table 2).

Figure 9 shows the execution time of GenAdapt versus the number of network links (Figures 9(a)),
and versus the number of requests (Figure 9(b)). For each network size and for each number of
requests, GenAdapt is executed 30 times. For each diagram in Figures 9, we have fitted a linear
regression line (time = −0.019 + 0.0036 × links in Figure 9(a); and time = 0.087 + 0.0077 × requests
in Figure 9(b)). In both cases, we obtain a 𝑝-value of < 2.2𝑒 − 16, indicating that the models fit the
data well.
The answer to RQ3 is that the execution time of GenAdapt is linear in the number of requests
and in the size of the network.
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Fig. 9. Execution times of GenAdapt versus (a) number of links and (b) number of requests.

6.4 Threats to Validity
Internal, construct and external validity are the validity aspects most pertinent to our evaluation.

Internal validity. In our approach, we treat the threshold that determines network congestion
as a static and fixed parameter. A fixed threshold may not be suitable for all situations as it assumes
that network congestion will always occur when a certain threshold is exceeded. This may lead to
false alarms or missed opportunities for adaptation as network conditions can vary and different
factors may contribute to congestion. A more flexible approach, such as proactively predicting
network congestion using machine learning, may be more effective in certain situations. Changing
the fixed threshold parameter of an SDN to a dynamic parameter would not affect our approach in
the planning step, which is our main contribution. Specifically, the grammar of the link-weight
functions would remain unchanged, and the only difference would be the use of a dynamic threshold
obtained from the analyzing step instead of a static one.

Construct validity. Our experiments are based on a testbed; the extent to which the measure-
ments obtained through the testbed are reflective of the real world is therefore an important factor
to consider. We note that our testbed uses ONOS, an actual carrier-grade SDN controller, which can
be used with real networks as well [12, 13, 17, 104]. The network emulator that our testbed builds
on, i.e., Mininet, is widely considered to be a high-fidelity network emulator.
External validity. The centralized architecture adopted in our work may face challenges if

deployed in very large networks. We note three ways to mitigate potential scalability issues:
(1) Transferring to a larger network the best control logic learned on a smaller network that has the
same topology as the larger one. As demonstrated by RQ2, GenAdapt’s performance improves for
a larger network by bootstrapping GenAdapt with best solutions computed on a smaller network
with the same topology. (2) Localizing congestion to a subset of the network and applying GenAdapt
to that subset. In this case, one would need to account for only the topology and traffic information
of the subset, thus improving scalability. (3) Deploying the adaptation component on a cluster, as
commonly done in service-oriented architectures [78]. By doing so, GenAdapt can leverage more
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computational resources, which may be necessary when dealing with very large networks. At the
same time, we note that, based on the results of RQ3, our approach is scalable to networks with up
to 2500 links, which corresponds to a full network with 50 nodes. The number, size and complexity
of the networks in our experiments are comparable to those in the literature, e.g., [3, 12, 63, 94, 104].

We scoped our experiments to two network topologies only. As discussed in Section 6.2, the two
topologies are the two extreme ends of the spectrum in terms of path overlaps between node pairs
– the main determinant of complexity for GenAdapt. We expect that, for other topologies lending
themselves to congestion resolution via re-routing, our approach will behave within the same range
as seen in our experiments. To ensure adequate coverage, our evaluation examined 26 networks
based on the two topologies considered. In addition, our evaluation included a real industrial IoT
network with its own topology. The number, size and complexity of the networks in our experiments
are comparable to those in the literature, e.g., [3, 12, 63, 94, 104]. To show the effectiveness of
our approach (i.e., RQ1), we present results from 18 synthetic subjects. In comparison, the paper
that introduces DICES [94] uses only one synthetic subject to show effectiveness, and the earlier
version of this work [61] uses ten synthetic subjects. As an additional external validity measure for
effectiveness, we examine (through RQ2) the reuse of adaptation solutions across networks and
demonstrate that such reuse improves effectiveness. A different consideration related to external
validity is the tuning of our approach. The only parameter of our approach that requires tuning
by the user is the number of generations of GenAdapt. As discussed in Section 6.2, tuning this
parameter is straightforward based on the easily measurable objective of keeping the execution time
of GenAdapt less than 𝛿 (i.e., the time interval between consecutive invocations of GenAdapt). In
practice, engineers can use our simulator to tune this parameter for their specific network topology
and traffic profile.

7 RELATEDWORK
We compare our approach with the related work on self-adaptation frameworks, learning-based
self-adaptation, and congestion control in SDNs.

7.1 Self-adaptive Systems
To better position our work within the software engineering literature on self-adaptive systems,
we present in Table 5 a structured comparison with the research strands most closely related to our
work. Our comparison takes the following criteria into consideration:

(1) Adaptation paradigm refers to the method used to engineer self-adaptive systems [100]. In
alignment with Weyns’ classifications of adaptation paradigms (or waves) [100], we categorize re-
lated research as architecture-based,model-based, requirement-based, control-based, or learning-based.
(2) Autonomic computing area is a classification introduced by IBM in the early 2000s [30],

inspired by the human body’s autonomic system. It refers to the self-managing characteristics
of distributed computing resources, adapting to unpredictable changes while hiding intrinsic
complexity to operators and users. The main autonomic computing areas are: self-configuring,
self-healing, self-optimizing and self-protecting. Briefly, self-configuring refers to the ability of the
system to dynamically adapt to changes in the environment; self-healing describes the capability
to discover, diagnose and act to prevent disruptions; self-optimizing entails the ability to optimize
the system’s resource utilization; and self-protecting involves anticipating, detecting, identifying
and protecting against hostile behaviours. While some approaches are specific to a particular area
of adaptation, some others propose architectures or models that can benefit several or all areas of
autonomic computing. These latter approaches are labeled “General” in Table 5.
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Table 5. Comparison of GenAdapt with relevant work strands in the literature on self-adaptive systems.

Approach(es) Adaptation
Paradigm

Area of
Autonomic
Computing

Application
Domain

Planning Strategy

Online/Offline Generative Transferable

[59] Architecture-
based

General Generic Offline × ×

[39][77] Architecture-
based

General Generic Unspecified × ×

[54] Requirement-
based

General Generic Unspecified × ×

[72, 73] Model-
based

General Generic Unspecified × ×

[15] Architecture-
based

Self-
optimizing

Network Offline × ×

[96] Model-
based

Self-
configuring

Network Offline × ×

[9] Model-
based

Self-
configuring

Network Offline × ×

[94] Learning-
based

Self-healing IoT Online × ×

[33][90] Learning-
based

Self-
configuring

Generic Online × ×

[21] Learning-
based

Self-
configuring

IoT Online × ×

[101][85] Learning-
based

Self-
configuring

IoT Online ×∗ ×

[56] Learning-
based

Self-
configuring

Robotics Online × ×

GenAdapt Learning-
based

Self-healing IoT Online ✓ ✓

* These approaches use Deep Learning (DL). DL can be used for generative tasks as well. However, in the existing self-adaptation
literature, DL has been used mainly for classification and regression use cases.

(3) Application domain refers to the area or field where a given approach is applied. As shown in
Table 5, some approaches are “Generic” and not tied to any particular domain. The more recent
approaches, e.g., [9, 15, 21, 56, 85, 94, 96, 101], are typically targeted at specific domains.

(4) Planning strategy relates to the planning step of the MAPE-K loop (Figure 2) and characterizes
the strategy used in this step according to three factors: (i) whether the strategy is online or offline,
(ii) whether the planning is generative, and (iii) whether the results of planning are transferable. We
distinguish between online and offline planning as follows: Online planning strategies continuously
learn and adapt while in operation, adjusting to new system behaviour “on the fly”, while offline
planning strategies lack the ability to dynamically learn and apply at runtime new knowledge
gained during system execution. Offline strategies either employ pre-designed static policies or
involve a distinct pre-processing training phase that is not updated based on new data from the
system in operation. A generative planning approach is designed to update complex structures or
formulas used by a system, enabling the system to produce effective planning solutions at runtime
and reducing the need for the invocation of the planning step. A transferable approach generalizes
solutions obtained over one system to other systems that share certain common characteristics. Our
contribution enhances the planning step of self-adaptation by making it generative and transferable.
Having set the stage with Table 5, we now discuss the specific work strands listed in the table.

We begin with an overview of self-adaptation frameworks, followed by an outline of more recent
developments where learning is used for self-adaptation.
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Self-adaptation frameworks. Engineering self-adaptive systems, including the principles
underlying the construction, maintenance and evolution of such systems, have been studied from
different angles and for different domains [9, 15, 24, 26, 40, 96]. Kramer and Magee [59] propose
a layered architecture model (component control, change management, and goal management)
as an abstraction mechanism for modelling and reasoning about dynamic adaptations. Garlan et
al. [39] develop the Rainbow framework – a reusable architecture-based framework for self-adaptive
systems. Rainbow uses a rule-based language to implement self-adaptation rules, with the Rainbow
architecture model monitoring and detecting the need for adaptation in a managed system.

Inverardi andMori [54] propose a feature-based self-adaptation framework to tackle the evolution
of requirements for high-variability systems. A feature is a dynamic unit representing the smallest
part of a service that the user can recognize. The proposed framework handles the consistent
evolution of component-based service-oriented systems by adapting their features. Oreizy et
al. [77] propose the C2 architectural style to minimize inter-dependencies between components by
communicating messages between them through connectors. The proposed architecture is used as
a basis for architecture-based runtime adaptation and evolution. Morin et al. [72, 73] propose a
self-adaptation approach based on aspect-oriented modelling. This approach uses aspects as course-
grained adaptation units to avoid combinatorial explosion in the adaptation space. The approach
employs feature models to capture variability in the system and its context. The combination of
aspects and feature models leads to a versatile platform for realizing self-adaption.
Bhuiyan et al. [15] propose an approach for autonomous adaptive sampling for network sys-

tems. The adaptive rate sampling is implemented as an embedded algorithm and evaluated using
simulators . Stein et al. [96] present a network topology adaptation model and rule language, and
demonstrate how the model and the adaptation rule language can be employed in a self-adaptation
monitoring loop. In this work, network links are updated or removed in order to adapt to envi-
ronmental changes. Anaya et al. [9] propose a framework for proactive adaptation, relying on
predictive models and historical information about the environment. The predictive models are
specifically used for improving the decisions generated by the reasoning engine of the framework.

The above approaches aim to improve the engineering of self-adaptive systems by proposing new
architectures or by utilizing advancements in software modelling and requirements engineering.
In our work, in order to design a self-adaptive SDN framework, we use a centralized architecture,
drawing inspiration from the MAPE-K loop. In that respect, our work has been informed by the
above approaches, since they too are largely based on MAPE-K. Movahedi et al. [74] classify the
proposed architectures for network autonomy into centralized, distributed and hybrid architectures.
While distributed and hybrid architectures may offer better scalability, flexibility and fault tolerance
compared to centralized architectures [74], they also introduce additional overhead. In the case
of distributed architectures, this overhead is due to the communication required for achieving
consensus among distributed adaptation managers. For hybrid architectures, the overhead arises
from the need for optimal allocation of responsibilities and management tasks between the central
and distributed entities. Although we adopt a centralized architecture in our work, our contribution
is not strictly tied to this decision. Our main contribution is in improving the planning step of self-
adaptation, and this falls primarily under the umbrella of dynamic adaptive search-based software
engineering [48], which uses a blend of artificial intelligence and optimization for adaptation. In
this context, the closest work to ours is DICES [94], which serves as our baseline and also employs
a centralized SDN architecture. We leave to future work the exploration of deploying our approach
in decentralized and hybrid architectures. We anticipate that such architectures can be supported
if a comprehensive view of the network is available or if congestion can be reliably localized to
smaller subset(s) of a large network.
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Learning-based self-adaptation. There is a growing interest in using machine learning tech-
niques in self-adaptive systems [92]. FUSION [33] uses a learning-based approach where, instead
of relying on static analytical models, a machine-learning technique, named model trees learning
(MTL), is used for configuring the adaptive behaviors of a system. Like our approach, FUSION aims
to mitigate environment uncertainty by gradually learning suitable adaptation solutions as the sys-
tem operates in a new environment. FUSION improves adaptation decisions using analytical models
that predict the impact of such decisions on quantifiable features, e.g., system response. Rodrigues
et al. [90] use decision trees to predict the time it takes to effect a change in the environment based
on the current state of the system, and utilize this information to configure adaptation policies.
Camara et al. [21] use reinforcement learning and quantitative verification to reduce the decision
space in a self-adaptation framework for IoT systems. Jamshidi et al. [56] provide an adaptation
technique that, in an offline mode, learns a set of Pareto-optimal configurations, and then uses
these configurations in adaptation plans at runtime. To reduce the adaptation space during the
“Analyze” step of the MAPE-K loop, Quin et al. [85] propose a machine-learning framework based
on classification and regression. In a similar manner, Weyns et al. [101] employ deep learning
for adaptation-space reduction, supporting three common classes of adaptation goals: threshold,
optimization, and set-point goals.
Similar to the above approaches, we adopt a learning-based and online planning strategy for

self-adaptation. Some of the above approaches use techniques such as decision trees to predict
configuration parameters [33, 90], while others improve planning and decisionmaking by narrowing
the adaptation space at runtime using classification / regression [21, 56, 85]. Recently, Weyns et
al. [101] have used deep learning (DL) to reduce the adaptation space at runtime. DL can eliminate
the necessity for domain engineers and further makes it possible to consider a combination of
threshold, minimzation and set-point adaptation goals. To date and in the context of self-adpation,
learning models have been used in a discriminative way, where learned models are applied to
candidate adaptation options to identify a subset satisfying the desired adaptation goals. In contrast,
we employ a generative approach. Instead of using a prediction model to determine which link-
weight values satisfy our adaptation goal, we use GP to generate a formula that, on demand,
produces link-weight values satisfying our goal. In addition, we show that our planning strategy
is transferable. That is, the best formulas learned on smaller networks can be reused for larger
networks, when both the smaller and larger networks have the same topology.

We note that DL models can be used in a generative way to produce adaptation solutions, without
applying the models to candidate solutions in the adaptation space. For the case studies used by
Weyns et al. [101], the size of the adaptation space is a few thousand permutations, and hence,
using DL models generatively was likely deemed unnecessary. In our work, however, the search
space for link-weight values is much larger. We thus opt to use a generative approach, specifically
genetic programming (GP), due to its flexibility in learning formulas that adhere to our specific
grammar for link-weight functions. To our knowledge, we are the first to apply GP for adapting
SDNs and reducing the need for frequent adaptations in this domain.

7.2 Congestion control in SDNs
Network congestion resolution has been studied extensively [5, 14, 50, 67]. Some congestion
resolution approaches work by adjusting data transmission rates [14]. Several others focus on
traffic engineering to provide solutions for better traffic control, better traffic operation, and better
traffic management, e.g., by multi-path routing [47], creating a new routing technique [66], and
flow-based routing [8]. Our work is related to the research that utilizes the additional flexibility
offered by the programmable control in the SDN architecture [3, 20, 25, 41, 43, 51, 52, 94]. Within
this line of research, congestion control is commonly cast as an optimization problem [25], to
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be solved using local search [41] or linear programming [3]. Furthermore, there are techniques,
e.g., [43], which use pre-defined rules, and techniques, e.g., [105], which use machine learning
(particularly deep learning) to dynamically mitigate SDN congestion at runtime.

Building on the OPPBG (OpenFlow-based path-planning with bandwidth guarantee) algorithm,
Xiao et al. [102] propose an SDN traffic-routing approach which computes best routing paths for
new flows, taking into account both bandwidth requirements and the number of link hops. Zuo et
al. [105] use neural networks and build a sequence-to-sequence model to generate ideal routing
paths. This approach uses attention mechanisms [103] to ensure reasonable order of the network
nodes in a sequence and uses beam search to move out of local optima. Chiang et al. [25] formulate
multicast traffic routing in SDN as an optimization problem and propose an algorithm for computing
efficient routing paths, considering bandwidth consumption, scalability and rerouting overhead.
Gay et al. [41] propose a minimal-time forwarding approach based on local search to lower link
loads in SDN and thereby improve network response time to unexpected events such as significant
traffic changes and network failures. Ghobadi et al. [43] propose OpenTCP – a rule-based adaptation
framework for resolving network congestion in SDN-based data centers. In this approach, when a
congestion is detected, the SDN controller generates (through rules) a set of congestion-resolution
actions, and distributes these actions to end hosts for execution. Agarwal et al. [3] propose a graph-
based algorithm for traffic engineering in cases where there is only a partial deployment of SDN
capabilities and where SDNs co-exist with traditional networks. The authors show that network
performance can be significantly improved even with a few strategically deployed SDN switches.

In contrast to our approach, none of the SDN congestion control techniques that we are aware of
evolve the routing rules in response to feedback from SDN monitoring. Our approach is generative
and its main purpose is, instead of directly predicting suitable solutions for adaptation, to learn a
higher-order structure, i.e., a link-weight function, that generates optimal adaptations on demand.
The generated link-weight function evolves the flow rules in the flow table by updating the link
weights for incoming requests. While the routing algorithm itself is not changed, the flow rules
are modified for the incoming requests to avoid future congestion. In this way, our approach
automatically learns forwarding rules that reduce the likelihood of future congestion occurrences
and iteratively improves these rules when a congestion occurs.

8 CONCLUSION
We presented GenAdapt – an adaptive approach that uses genetic programming for resolving
network congestion in SDN-based IoT networks. While existing self-adaptation research focuses
on modifying a running system via producing individual and concrete elements, GenAdapt is
generative and modifies the logic of the running system so that the system itself can generate the
concrete elements without needing frequent adaptations. We used 18 synthetic and one industrial
networks to compare GenAdapt against two baseline techniques: DICES [94] and OSPF [1, 27].
GenAdapt successfully resolved all congestion occurrences in our experimental networks, while
DICES failed to do so in four of them. Further, compared to DICES, GenAdapt reduced the number
of congestion occurrences and outperformed OSPF in reducing packet loss. Finally, our results
show the transferability of the logic learned over networks that share the same topology but
have different numbers of nodes. Specifically, we observe that for a given topology, bootstrapping
GenAdapt with the best logic learned on a smaller network can significantly improve performance
on a larger network in terms of the number of adaptation invocations, the amount of packet loss
and the duration the network remains congested.
An open challenge in self-adaptation is that evolutionary and statistical learning methods do

not provide formal guarantees about the resolution of anomalies [42]. This challenge applies to
GenAdapt as well. While GenAdapt had a 100% success rate in our evaluation, our current approach
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does not guarantee that congestion will always be resolved when feasible. In the future, we would
like to investigate ways to provide guarantees about congestion resolution through adaptation.
Another area for future work is transitioning GenAdapt’s design from a centralized architecture to
a distributed or hybrid one in order to enable scaling to larger networks. Furthermore, we plan to
expand our work to traffic control by pushing self-adaptation to the edge and IoT devices.
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