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ABSTRACT
Citywide spatio-temporal (ST) forecasting is a fundamental task
for many urban applications, including traffic accident prediction,
taxi demand planning, and crowd flow forecasting. The goal of this
task is to generate accurate predictions concurrently for all regions
within a city. Prior works take great effort on modeling the ST
correlations. However, they often overlook intrinsic correlations
and inherent data distribution across the city, both of which are
influenced by urban zoning and functionality, resulting in inferior
performance on citywide ST forecasting. In this paper, we intro-
duce CityCAN, a novel causal attention network, to collectively
generate predictions for every region of a city. We first present a
causal framework to identify useful correlations among regions,
filtering out useless ones, via an intervention strategy. In the frame-
work, a Global Local-Attention Encoder, which leverages attention
mechanisms, is designed to jointly learn both local and global ST
correlations among correlated regions. Then, we design a citywide
loss to constrain the prediction distribution by incorporating the
citywide distribution. Extensive experiments on three real-world
applications demonstrate the effectiveness of CityCAN.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; •Applied
computing → Forecasting.
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1 INTRODUCTION
To build Intelligent Transportation Systems (ITS), numerous sen-
sors are widely placed in cities to capture traffic conditions [21],
producing massive spatio-temporal (ST) data, as depicted in Fig. 1
(a). Foreseeing citywide ST data, such as traffic accidents, crowd
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Figure 1: (a) A illustration of the spatio-temporal data and
three types of dependency. (b-c) A visualization of citywide
traffic accidents and crowd inflow in Chicago on July 1, 2021
at 14:00. Traffic conditions are influenced by urban zoning.

flows, and crowd densities, is crucial for ITS development. It can fa-
cilitate various urban applications, such as assisting transportation
managers in mitigating accidents [3, 11, 53], guiding car-sharing
companies in vehicle allocation [12, 18, 61], and aiding drivers in
selecting optimal routes [8, 17, 19].

One key characteristic of citywide ST data is spatio-temporal
(ST) correlations, illustrated in Fig. 1 (a). Specifically, a target re-
gion’s conditions are influenced by three dependencies: spatial
(represented by the orange line), temporal (blue line), and spatio-
temporal (ST) (green line). In the era of big data, researchers have
proposed many data-driven methods, especially deep learning ap-
proaches, to capture these ST correlations. Most works [47, 60]
address spatial and temporal dependency separately, neglecting the
direct ST dependency. They typically capture spatial dependencies
via convolutional neural networks (CNNs) [5, 75] or graph neu-
ral networks (GNNs) [14, 58], and exploit temporal dependencies
with recurrent mechanisms (RNNs) [42, 65] or attention mecha-
nisms [68, 69, 73]. To fully exploit the ST correlations, more recent
approaches model the spatial and temporal dependency simultane-
ously via local ST graphs [43], pyramid CNNs [29] or ST enhanced
mechanisms [48]. Despite recent advances in ST modeling, two
major challenges persist in forecasting citywide ST data:

Challenge I: How to identify the useful correlations among regions
across time? Studies have shown that urban zoning and functionality
influence the citywide ST correlations [7, 30]. To incorporate urban
functionality into citywide forecasting, previous studies [28, 30]
integrate geographical features (e.g., Points of Interest) as auxil-
iary inputs to ST networks. However, these methods reply on ST
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Figure 2: Insight of the network.

networks to learn spatial correlations, often leading to an over-
generalized consideration of ST correlations across all regions. In
reality, one region’s future conditions is largely influenced by re-
gions with useful correlations, rather than every region in the city.
For example, the work area traffic is intrinsically correlated to resi-
dential areas due to daily commutes but shows limited correlation
with agricultural zones. Thus, instead of broadly capturing all ST
correlations, we emphasize identifying and utilizing useful correla-
tions among regions to enhance citywide ST forecasting.

Challenge II: How to constrain the predictions to align with actual
citywide distributions? The characteristics of urban zoning and
functionality give citywide ST data a distinctive distribution [40, 64],
as illustrated in Fig 1 (b-c). For instance, most traffic events (e.g.,
accidents) take place in urban areas and they rarely occur in rural
areas [3, 47]; taxi flows are concentrated in downtown districts and
sparse in other boroughs [16, 77]. Previous works [5, 67] prioritize
regions with large event numbers, often employing region-wise
losses, such as MSE, RMSE, to optimize neural networks. Some of
them [41, 47] even specifically amplify the impact of high-event
regions through re-weighted loss strategies. However, these works
force networks to calculate errors that are skewed towards the
regions with large event numbers, overlooking these with fewer
events. Thus, they may cause the network to generate predictions
that considerably deviate from actual citywide distributions.

In this paper, we propose aCausalAttentionNetwork (CityCAN)
for citywide ST forecasting. Given useful correlations are influenced
by urban zoning, we argue these correlations are invariant spatial
correlations among regions over time. Thus, to address challenge I,
CityCAN employs a causal framework (depicted in Fig. 2) to learn
the useful correlations, while ignoring its complementary correla-
tions (i.e., useless correlations). In CityCAN, regions with invari-
ant/useless correlations are assigned to useful/useless superregions
for invariant/useless learning branches with two complementary
superregion matrices. Then, the useful correlations can be identi-
fied by pushing the predictions from the invariant learning branch
and intervention branch to be invariant, regardless of changes in
useless representations learned from the useless learning branch.
Enhancing the ST modeling within these branches, we propose a
novel Global Local-Attention Encoder (GLAE) as the ST Encoder
to jointly encode spatial and temporal dependencies via local and
global ST attentions. To tackle challenge II, we design a citywide loss
that penalizes the network from a global perspective, i.e., on the city
level. Specifically, it constrains the predictions on spatial dimension

aligns closely with the true spatial distribution by considering all
regions in the city collectively. In other words, it measures the distri-
bution similarity between predictions and future conditions across
all regions. Overall, we summarize our contributions as follows:
• We propose CityCAN, a causal attention network for citywide
ST forecasting, which leverages causal theory to uncover useful
spatial correlations over time.

• We introduce a Global Local-Attention Encoder (GLAE) for better
spatio-temporal correlation modeling.

• We design a citywide loss, which constrains the prediction distri-
bution, leading to improved citywide ST forecasting.

• Experiments show CityCAN outperforms state-of-the-art meth-
ods on four datasets in three practical applications.

2 PRELIMINARIES
Definition 1 (Region): The area of interest, i.e., city, is divided
into 𝑁 regions based on their longitude and latitude [47]. These
regions can be either regular or irregular in shape.
Definition 2 (Traffic Condition & Traffic Features): Traffic
conditions are traffic-related conditions, such as the risk level for
traffic accident data, inflow/outflow for crowd flow data and the
count for crowd density data. The features of these traffic conditions
are traffic features 𝑋 . Given a time interval 𝑡 , 𝑋𝑡 ∈ R𝑁×𝑑 , where 𝑑
is the dimension of the traffic features.
Problem Statement Given observed traffic features with 𝑇 time
intervals 𝐼1:𝑇 = (𝐼1, 𝐼2, . . . , 𝐼𝑇 ) ∈ R𝑁×𝑇×𝑑𝑖 , spatial adjacency ma-
trix of regions A ∈ R𝑁×𝑁 , the goal is to generate interested
traffic features for all regions for next 𝑇𝑝𝑟𝑒𝑑 time intervals, i.e.,
�̂�𝑇+1:𝑇+𝑇𝑝𝑟𝑒𝑑 = (𝑂𝑇+1,𝑂𝑇+2 . . . ,𝑂𝑇+𝑇𝑝𝑟𝑒𝑑 ) ∈ R𝑁×𝑇𝑝𝑟𝑒𝑑×𝑑𝑜 . Note
that the observed traffic features may have more information than
the interested traffic features, i.e., 𝑑𝑖 ≥ 𝑑𝑜 .

3 CITYCAN
In this section, we present our CityCAN, as shown in Fig. 3, which
employs two strategies to tackle citywide ST forecasting: a causal
framework to identify useful ST correlations (Section 3.1) and a
citywide loss to constrain the prediction distribution (Section 3.2).

3.1 Causal Learning for Citywide Forecasting
Due to the urban zoning and functionality, despite ST correlations
in citywide data can be dynamic in a short period (e.g., days), in-
variant spatial correlations among city regions (e.g., correlations
between residential and school areas) do exist over time. We treat
these invariant correlations as useful correlations. To identify these
correlations, inspired by classification tasks [39, 44] that adopt
causal theory to disentangle the relevant and irrelevant features,
we take a causal look at the citywide ST forecasting and propose a
causal learning strategy for this regression task.

3.1.1 Causal Learning Strategy. To identify the useful (i.e., in-
variant) correlations, CityCAN, as shown in Fig. 3 (a), employs a
causal framework, which contains an Input Embedding, an Invari-
ant Learning Branch (ILB), a Useless Learning Branch (ULB), and
an Intervention Module (IM).

Input Embedding transforms raw inputs into the latent level for
superregions assignment. We first embed the traffic features 𝑋1:𝑇
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Figure 3: (a) Overview of CityCAN, where invariant and useless correlations among regions are disentangled via the causal
learning strategy. (b) Global Local-Attention Encoder (GLAE) learns useful and useless ST features based on invariant and
useless correlations. It has the same architecture but different parameters in the invariant and useless learning branches.

into high-level representations through a 2D convolution with ker-
nel size (1, 1). To inject the space-time location for each region, we
extend the positional embedding [71] to ST positional embeddings.
Specifically, for a region 𝑛 at time 𝑡 (denoted as 𝐵(𝑛, 𝑡)), we define
its absolute space-time position as (𝑛 + 𝑡𝑁 ), where the index of 𝑛
and 𝑡 starts from 0. By adding the representations and ST positional
embeddings, we obtain final features H ∈ R𝑁×𝑇×𝑑ℎ for ILB and
ULB to assign useful and useless superregions, where 𝑑ℎ is the
feature dimension.
Invariant & Useless Learning Branch (ILB & ULB) work on
learning the invariant and useless correlations among regions, re-
spectively. They share the same architecture, which includes a
Superregion Generator, a Global Local-Attention Encoder, a Super-
region Partition, and a Decoder.

Superregion Generator groups regions with correlations between
each other into one superregion. To identity useful correlations and
filtering out useless ones, we introduce two learnable superregion
matrices, i.e., useful superregion matrix G𝑐 and useless superregion
matrix G𝑢 . They are derived from the correlations observed among
regions in the training data. To group correlated/uncorrelated re-
gions to the useful/useless superregions, we apply the matrices to
the original regions and their corresponding adjacent relationships:

H̃𝑐 = HG𝑐 �̃�𝑐 = GT
𝑐𝐴G𝑐 ; H̃𝑢 = HG𝑢 �̃�𝑢 = GT

𝑢𝐴G𝑢 (1)

where H̃𝑐 , H̃𝑢 ∈ R𝑁𝑠×𝑇×𝑑ℎ , G𝑐 ,G𝑢 ∈ R𝑁×𝑁𝑠 , �̃�𝑐 , �̃�𝑢 ∈ R𝑁𝑠×𝑁𝑠

is the learned adjacent metrics of superregions, 𝑁𝑠 = 𝑐𝑒𝑖𝑙 (𝑁 /𝑟 ) is
total number of superregions in space dimension, 𝑟 denotes the
region reduction parameter, and T is the transposition operation. We
ensure the useful and useless correlations are complementary to
each other, and thus let superregion metrics satisfy G𝑐 + G𝑢 = 1,
where 1 is the all-one matrix.

Thus, we can obtain 𝐿 = 𝑁𝑠 ×𝑇 useful/useless superregions with
their corresponding useful/useless features H̃𝑐 /H̃𝑢 and adjacent
relationships �̃�𝑐 /�̃�𝑢 in ILB/ULB. In ILB, the GLAE (our ST Encoder)

takes H̃𝑐 and �̃�𝑐 as inputs, while in the ULB, it uses H̃𝑢 and �̃�𝑢 as
inputs. GLAE works on capturing ST correlations, either within the
useful superregions in ILB or the useless ones in ULB. It produces
ST representations h𝑐 for useful superregions and h𝑢 for the use-
less ones (More details in Section 3.1.2). These representations can
be easily mapped back to their original regions via a Superregion
Partition using the superregion matrices G𝑐 ,G𝑢 :

®H𝑐 = h𝑐GT
𝑐

®H𝑢 = h𝑢GT
𝑢 (2)

where ®H𝑐 , ®H𝑢 ∈ R𝑁×𝑑ℎ . Then, given useful ST representation ®H𝑐

and useless ST representation ®H𝑢 of original regions, we use the
fully-connected layers as the Decoder in ILB and ULB to generate
the predictions and useless predictions �̂� , �̂�𝑢𝑠𝑙 ∈ R𝑁×𝑇𝑝𝑟𝑒𝑑×𝑑𝑜 ,
where 𝑑𝑜 is a task-specific dimension of traffic features. Note that
since GLAE is an attention-based encoder, it reduces 𝑟2 complexity
given the region reduction parameter 𝑟 .

Intervention Module (IM) aims to eliminate the influence of
useless representations by providing implicit interventions on the
latent level. Inspired by [44], we first generate interventions us-
ing a Random Shuffle operation, which randomly collects useless
representations from different useless superregions. These random
interventions are then concatenated with the useful representation
h𝑐 to generate the intervened predictions �̂�𝑖𝑛𝑡 via the Superregion
Partition with G𝑐 and the Decoder. Then, we encourage the invari-
ance between the intervened predictions �̂�𝑖𝑛𝑡 and the predictions
�̂� obtained from the ILB to mitigate the impact of useless features
through an intervention loss Lint:

Lint
(
𝑂, �̂�𝑖𝑛𝑡

)
= 1

𝑁

∑𝑁
𝑛=0

(
𝑂𝑛 − Φ𝑠𝑝𝑑 (h𝑐 | | 𝑓𝑟𝑠 (h𝑢 ))

)2
(3)

where 𝑓𝑟𝑠 denotes the random shuffle operation, Φ𝑠𝑝𝑑 represents
operations in Superregion Partition and Decoder, and | | refers to the
concatenation function. To this end, CityCAN can fully exploit the
useful correlations by ignoring the influence of useless correlations.
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Losses for Causal Learning Except for the intervention loss Lint,
we also introduce supervised loss and useless loss to disentangle the
useful features and useless features for boundless traffic condition
values. Supervised loss Lsup estimates predictions generated from
useful representations in ILB:

Lsup
(
𝑂, �̂�

)
= 1

𝑁

∑𝑁
𝑛=0

(
𝑂𝑛 − Φ𝑠𝑝𝑑 (h𝑐 )

)2
(4)

Unlike the classification work [44] that uses uniform classification
loss to eliminate the influence of irrelevant patterns, we design a
useless loss Lusl for regression tasks. It pushes the useless repre-
sentation to be unnecessary by minimizing its value to zero:

Lusl
(
𝑂, �̂�𝑢𝑠𝑙

)
= 1

𝑁

∑𝑁
𝑛=0

(
Φ𝑠𝑝𝑑 (h𝑢 )

)2
(5)

Then, the total loss for the causal learning strategy is:

Lcaus = 𝜆1Lsup + 𝜆2Lusl + 𝜆3L𝑖𝑛𝑡 (6)

where 𝜆1, 𝜆2, 𝜆3 are hyperparameters. To this end, CityCAN lever-
ages the intervention strategy in causal theory, guiding the causal
framework to identify useful correlations among regions.

3.1.2 Global Local-Attention Encoder (GLAE). As mentioned
in Section 3.1.1, we propose the GLAE, as shown in Fig. 3 (b), to
capture the ST correlations in ILB and ULB. Since vehicles can
travel at varying speeds, either quickly or slowly, in a city, it is
essential to model both local and global ST correlations. Inspired by
recent studies that employ temporal attentions [56, 71] to address
short- and long-term temporal dependencies, GLAE extends the
temporal attention [56, 71] to the spatio-temporal attention for
citywide ST forecasting. A GLAE has𝑀 Calibration Attention (CA)
Blocks, which include an auxiliary feature embedding, a local CA
module (LCAM), a global CA module (GCAM), and a cropping layer.
Since the architecture of GLAE is the same in ILB and ULB, we omit
specific branch names in subsequent sections.

The auxiliary feature (Aux) embedding provides ST positional
information and external factor information. It includes the ST posi-
tional (Pos) embedding and the external factor (Ext) embedding. To
enhance the positional context, we introduce ST Pos embedding to
encode the space-time location. It extends the canonical positional
embedding [71] into ST format. For a superregion 𝐵𝑙 = 𝐵(𝑛, 𝑡), the
ST positional index of its location is 𝑙 = (𝑛 + 𝑡𝑁𝑠 ), where 𝑛 ∈ 𝑁𝑠

and 𝑡 ∈ 𝑇 is the index of the space location and time location,
respectively. We can obtain the ST Pos embedding 𝒆𝑝𝑜𝑠 ∈ R𝐿×𝑑𝑝
by applying the learnable positional embedding [46] to the ST po-
sitional index. To inject external factors into the latent features,
we use learnable embedding layers to encode external factors and
generate the Ext embedding 𝒆𝑒𝑥𝑡 ∈ R𝐿×𝑑𝑒 . Then, we obtain the
Aux embedding by concatenating the ST Pos embedding 𝒆𝑝𝑜𝑠 and
Ext embedding 𝒆𝑒𝑥𝑡 , i.e., E = 𝒆𝑝𝑜𝑠 | |𝒆𝑒𝑥𝑡 ∈ R𝐿×𝑑ℎ . After that, we
obtain inputs for subsequent ST correlation modeling by adding
the Aux embedding E to ST representations h.

CA Module for Local & Global ST Learning The conventional
attentions [22, 46, 71] cannot apply to ST data directly, as they
primarily focus on temporal dimension, ignoring ST relationships.
Citywide ST data has two crucial ST relationships: (1) future traffic
conditions cannot affect past conditions; (2) spatially connected

superregions have a higher influence on each other. To incorpo-
rate these relationships into attention operations, we proposed a
Calibration Attention Module (CAM), whose core is a calibration at-
tention (CA) operation. The CA operation works on calibrating the
attention based on citywide ST relationships via two components:
• ST influential mask M𝑠𝑡 ∈ R𝐿×𝐿 prevents future information
leakage by setting the attention that represents influence from
future time intervals with zero [46]. However, unlike the masks
in prior works [25, 46], Mst is not a triangular matrix as the
superregions are arranged by space-time location.

• Spatial bias PE𝑠 ∈ R𝐿×𝐿 enhances spatial relationships by setting
temporal influence to zero and repeating spatial influence with
superregions’ spatial relationships �̃�.
Then, we revise the conventional attention operation to the

calibration attention (CA) operation:

Attention (Q,K,V) = softmax
(
QK𝑇

√
𝑑𝑘

·M𝑠𝑡 + PE𝑠
)
V (7)

where Q ∈ R𝐿×𝑑ℎ , K ∈ R𝐿×𝑑ℎ , and V ∈ R𝐿×𝑑ℎ . Note that reshap-
ing and broadcasting are needed to retain the ST positional index
of superregions. In the CAM, 𝐻 CA operations are performed to
attend different ST patterns. Then, the output of the CAM is the
aggregated ST representations ®h ∈ R𝐿×𝑑ℎ , obtained by applying a
layer normalization, a residual connection, and a fully connected
feed-forward network on the concatenation of the𝐻 CA operations.

CAM can capture both local and global ST features owing to its
attention-based design. To better learn local and global ST features,
we use the CAM in two different ways: the local CAM (LCAM) and
the global CAM (GCAM):
Local CAM (LCAM) captures local ST representations within a
sliding window of size 𝑇𝑤 . The total number of ST superregions in
each window is 𝐿𝑙 = 𝑁𝑠𝑇𝑤 . We apply CAM on these supperregions
with their componentsM𝑠𝑡𝑙 , PE𝑠𝑙 ∈ R𝐿𝑙×𝐿𝑙 (see calculations above).
Given 𝑇 (𝑚) temporal intervals at 𝑚-th block, there are 𝑍 (𝑚) =

𝑇 − (𝑚 − 1) (𝑇𝑤 − 1) sliding windows, resulting in 𝑍 (𝑚) · 𝑁𝑠 ·𝑇𝑤
superregions. The index of𝑚 starts from 1. Since each superregion
aggregates ST features from all other superregions, we let the LCAM
only outputs the features of the last time interval for each sliding
window, i.e., ®h(𝑚)

𝑙
∈ R𝐿 (𝑚)×𝑑ℎ , where 𝐿 (𝑚) = 𝑁𝑠𝑍

(𝑚) = 𝑁𝑠𝑇
(𝑚)

is the total number of superregions in𝑚-th block, and 𝑇 (𝑚) is:

𝑇 (𝑚) =

{
𝑇 − (𝑚 − 1) (𝑇𝑤 − 1) if (𝑚 − 1) (𝑇𝑤 − 1) < 𝑇

𝑇𝑤 otherwise
(8)

Global CAM (GCAM) learns the global ST features from all super-
regions across time and space. Similar to LCAM, we apply CAM on
all ST superregions, i.e., 𝐿 (𝑚) superregions, with their correspond-
ing calibration componentsM𝑠𝑡𝑔 , PE𝑠𝑔 ∈ R𝐿 (𝑚)×𝐿 (𝑚)

, to obtain the
final output of GCAM ®h(𝑚)

𝑔 ∈ R𝐿 (𝑚)×𝑑ℎ .
Cropping Layer removes redundant features from the farthest
superregions as traffic conditions are primarily influenced by the
most adjacent time intervals. The redundant information resides
in ®h(𝑚)

𝑔 because each superregion has aggregated ST information
from all other superregions in GCAM. Thus, at the last block 𝑀 ,
we only use the superregions at the last temporal interval 𝑇 (𝑀 ) ,
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i.e., h = ®h𝑔 (:,−1) ∈ R𝑁𝑠×𝑑ℎ . Then, total number of superregions
𝐿 (𝑚) is updated to:

𝐿 (𝑚) =


𝑁𝑠 (𝑇 −𝑚(𝑇𝑤 − 1)) if𝑚 < 𝑇 /(𝑇𝑤 − 1)
𝑁𝑠 if𝑚 = 𝑀

𝑁𝑠𝑇𝑤 otherwise
(9)

3.2 Citywide Loss
Regions within a city, influenced by urban zoning and functionality,
can be categorized into: (1) significant regions, characterized by
frequent events and may require extra human interventions (e.g.,
traffic control in case of predicted accidents or pre-allocation of
taxis for areas with high predicted demand). (2) trivial regions,
which often have small or zero event numbers and do not require
specific human interventions. Significant and trivial regions are
non-evenly distributed in a city. To ensure effective interventions
without wasted resources, the network should accurately predict
targeted features for all regions in the city simultaneously. However,
the causal loss (Eq. 6) emphasizes region-wise error, which can
misalign predictions with the city’s actual spatial distribution. To
address this issue, we introduce an auxiliary loss, named citywide
loss, to regularize the distribution between predictions and labels.
Also, recognizing the heightened importance of significant regions,
particularly in applications requiring costly human intervention, we
first introduce a calibration prior to up-weight significant regions.

Calibration Prior leverages the citywide domain knowledge that a
similar spatial distribution over time. This knowledge exists because
traffic is influenced by the city’s geography and semantics. Thus,
we can identity the significant regions via a region prior 𝑃𝑟 by
summarizing the interested conditions features of each region over
observed samples, i.e., training samples, and obtain the calibration
prior 𝑃𝑐 based on the region prior 𝑃𝑟 :

𝑃
(𝑛)
𝑟 =

I∑︁
𝑖=1

𝑋
(𝑛)
𝑖

/
max
𝑛𝜖𝑁

(
I∑︁
𝑖=1

𝑋
(𝑛)
𝑖

)

𝑃
(𝑛)
𝑐 =

{
1 + exp( 𝑃 (𝑛)

𝑟 − 𝜏) if 𝑃 (𝑛)
𝑟 > 𝜏

1 otherwise

(10)

where 𝑃𝑟 ∈ R𝑁×𝑑𝑜 , I is the total number of training samples,
𝑛 ∈ 𝑁 is the index of spatial region, 𝑋 refers to targeted traffic
condition features, e.g., the features of traffic accident risk, taxi
flow, crowd density, and 𝜏 is the calibration parameter that controls
the selection of the most important significance regions.

Citywide Loss with Calibration Prior enables the network to
generate the prediction distribution that can reflect the true city-
wide distribution, while penalizing the errors in significant regions
more. We calculate the citywide loss based on the re-weighted
cosine similarity:

𝑂𝑐 = 𝑃𝑐 ·𝑂 �̂�𝑐 = 𝑃𝑐 · �̂�

Lcwl
(
𝑂𝑐 , �̂�𝑐

)
= 1 −

𝑇𝑝𝑟𝑒𝑑∑︁
𝑡=1

©«
𝑂𝑡
𝑐 · �̂�𝑡

𝑐

max
(𝑂𝑡

𝑐


2 ·

�̂�𝑡
𝑐


2 , 𝜖

) ª®®¬
(11)

where 𝜖 is a hyperparameter to avoid division by zero. The re-
weighted cosine similarity is applied to all regions collectively for

each time interval, thus can constrain the traffic condition spatial
distribution. It also provides proper focus on each and every region,
during training, as it re-weights the importance of the regions
across the city. Note that the calibration prior is applied to both the
predictions and labels, thus keeping the distribution.

3.3 Losses for CityCAN
The final loss for CityCAN contains two parts, i.e., causal loss in
Eq. 6 and citywide loss (CWL) in Eq. 11:

L = 𝜆1Lsup + 𝜆2Lusl + 𝜆3L𝑖𝑛𝑡 + 𝜆4L𝑐𝑤𝑙 (12)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4 are hyperparameters. To this end, CityCAN can
consider both the region-wise and citywide errors, and therefore
ensures high predictive performance across all regions in the city.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. We evaluate CityCAN on four real-world datasets,
i.e., NYC13 [47], BikeNYC [67], Chicago21 and Chicago22. NYC13
and BikeNYC are grid-based datasets with regular regions, while
Chicago21 and Chicago22 dataset1 contains irregular regions, better
representing natural city divisions. Dataset details are in Table 1.

Table 1: The statistic of datasets.

Dataset NYC13 BikeNYC Chicago21 Chicago22
Time Span 01/01/2013 - 04/01/2014 - 01/01/2021- 01/01/2022 -
(mm/dd/yyyy) 12/31/2013 09/30/2014 12/31/2021 12/31/2022
Time Interval 1 hour 1 hour 30 minutes 30 minutes
Region Size (20, 20) (16, 8) 77 77
Accident Severity 4 - 6 -
Weather Type 5 17 11 13

4.1.2 Tasks. We conduct experiments on three tasks, including
the traffic accident risk forecasting, crowd flow forecasting, and
crowd density forecasting:

Traffic accident risk forecasting task: we follow the existing
works [6, 47], not only to predict the occurrence of traffic accidents,
but also to estimate the risk value. The risk value should reflect
both the frequency and severity of traffic accidents in the region,
and thus it is defined as the sum of each traffic accident’s severity
within a region. In the experiments, we forecast traffic accident risk
conditions for the next time interval (𝑇𝑝𝑟𝑒𝑑 = 1) given historical
observations of 6-time intervals (𝑇 = 6).
Crowdflow forecasting task and crowd density task: we follow
existing works [27, 63] to predict the crowd inflow/outflow and
crowd density value for all regions in the city, respectively. In the
experiments, we predict crowd flow conditions and crowd density
conditions for next 6 time intervals (𝑇𝑝𝑟𝑒𝑑 = 6) given historical
observations of 6-time intervals (𝑇 = 6).

4.1.3 EvaluationMetrics. We follow the previous studies [47, 50]
to evaluate our model with two metrics: Mean Absolute Error
(MAE) and Root Mean Squared Errors (RMSE). Additionally,
towards more comprehensive evaluations of traffic accident risk
forecasting, we use F1 score, F1@20, F1@30 to present the ability
1https://data.cityofchicago.org/
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of the model to indicate regions with risk, where F1@K denotes
the F1 score for top K regions with high accident values.

4.1.4 Implementation Details. Our model is trained on a single
GTX 2080 Ti using Adam optimizer with a learning rate of 0.001.
We set region reduction parameter 𝑟 to 4, number of blocks𝑀 to
4, feature dimension 𝑑ℎ to 128, number of multi-heads 𝐻 to 4. We
balance the region-wise and city-wise losses and set 𝜆1, 𝜆2, 𝜆3, 𝜆4 to
0.4, 0.05, 0.05, and 0.5, respectively. The calibration parameter 𝜏 is
dataset-specific. We adopt an early-stop strategy with a maximum
of 150 epochs for all experiments. For the data partitioning, we
used the last 8 weeks as the test set, the preceding 4 weeks as the
validation set, and the remaining data as the training set.

4.1.5 Baselines. To fully demonstrate the effectiveness of City-
CAN across different tasks, we adopt the following baselines that
are specifically designed for each task:
• Classical methods: HA [4] averages the historical traffic condi-
tions of the same time slot given the past observed segments.

• Traffic accident risk prediction: we select three popular meth-
ods, i.e., SDAE [6], SDCAE [5], and GSNet [47], and two general
ST models, i.e., STGCN [63] and GWNET [58], as baselines.

• Crowd flow & crowd density prediction: we select six strong
models for comparisons, including STGCN [63], DCRNN [27],
GWNET [58], AGCRN [2], MTGNN [57], and GMSDR [31].

4.2 Experimental Results & Analysis
4.2.1 Traffic Accident Risk Forecasting. Table 2 shows the
prediction results of baselines and our model for traffic accident
risk on two datasets. Our model consistently surpasses the baselines
on all datasets in terms of accuracy for risk value and F1 for accident
indication. Note that most recent works, i.e., SDCAE and GSNet,
cannot adapt to the Chicago21 dataset. This is because these models,
designed for regular regions, employ CNNs for spatial capturing.
However, the Chicago21 dataset reflects the natural community
divisions of a city, containing irregular regions. These regions have
a non-Euclidean structure, which cannot be modeled using CNNs.

Table 2: Model comparisons on the NYC13 and Chicago21
datasets for traffic accident forecasting, where - denotes the
model cannot be applied on the dataset.

Dataset Method MAE↓ RMSE↓ F1↑ F1@30↑ F1@20↑

NYC13

HA 0.05 0.28 11.10% 10.98% 11.02%
SDAE 0.07 0.48 5.44% 32.38% 37.45%
SDCAE 0.10 0.70 5.89% 52.88% 60.17%
GSNet 0.04 0.25 7.19% 24.45% 26.09%
STGCN 0.05 0.28 3.97% 4.04% 4.36%
GWNET 0.04 0.27 3.01% 3.11% 3.46%
Ours 0.03 0.23 21.44% 62.07% 68.95%

Chicago21

HA 0.17 0.84 12.36% 16.68% 18.51%
SDAE 0.17 0.82 11.40% 19.89% 23.28%
SDCAE - - - - -
GSNet - - - - -
STGCN 0.16 0.83 9.44 % 9.53% 9.67%
GWNET 0.18 0.86 3.71% 3.73% 3.79%
Ours 0.13 0.72 18.64% 24.45% 27.49%

From the results, we can observe that: (1) Our model outperforms
baselines by a large margin on accident indication. Specifically, it

brings 2.07 times higher citywide F1 on average, demonstrating
its superior ability to identify regions with/without accident inci-
dents. (2) Baselines designed for traffic accident risk forecasting
(i.e., SDAE, SDCAE, and GSNet) perform better than general ST
forecasting models (i.e., STGCN and GWNET). This is because that
accidents are rare events, and general ST models, focusing on ST
modeling, fail to consider the sparse data inherent in this task. (3)
Surprisingly, HA outperforms all baselines on city-wide F1 scores.
We conjecture that deep models focus on significant regions and
neglecting trivial ones, thereby failing to identify trivial regions
and leading to lower city-wide F1 scores. On the other hand, HA
only considers historical observations for each region, avoiding
this issue. Our model, adopting the citywide loss, considers the
prediction distribution and places proper focus on each region, re-
sulting in the best performance. (3) Our model achieves the lowest
MAE and RMSE error, suggesting that it can generate more accu-
rate risk values, since it generates predictions based on the useful
correlations that truly impact the future condition.

Table 3: Model comparisons for crowd flow prediction on
BikeNYC dataset and Chicago21 dataset, and crowd density
prediction on Chicago22 dataset.

Method BikeNYC Chicago21 Chicago22
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

HA 5.18 9.19 1.26 3.93 3.17 11.82
STGCN 3.69 7.69 1.10 3.08 2.48 7.71
DCRNN 4.49 7.66 1.40 2.87 2.57 7.26
GWNET 4.49 8.08 1.30 2.66 2.63 6.41
AGCRN 5.04 8.74 1.36 2.84 2.84 6.51
MTGNN 4.01 8.02 1.35 2.77 2.60 7.03
GMSDR 5.19 8.58 1.31 2.67 2.37 6.19
Ours 3.57 7.31 1.08 2.61 2.28 6.09

4.2.2 Crowd Flow Forecasting & CrowdDensity Forecasting.
Table 3 shows the results of baselines and our model for crowd flow
forecasting on BikeNYC and Chicago21 dataset, and crowd den-
sity forecasting on Chicago22 dataset. Compared to the accident
risk forecasting task, the data in these two tasks are not sparse.
The results show that our model consistently outperforms exist-
ing methods on all metrics. Specifically, it reduces MAE error by
17.78% and RMSE error by 14.47% on average over three datasets.
It demonstrates that our proposed model is a general model which
can achieve better performance on various citywide tasks.

Table 4: Ablation studies of CityCAN for crowd density pre-
diction on Chicago22 dataset.

Method w/o C w/o UIL w/o UL w/o IL w/o CWL
MAE 2.31 2.41 2.34 2.45 2.27
RMSE 8.71 6.25 6.14 6.35 6.25
Method w/o CP w/o CL w/o LCAM w/o GCAM CityCAN
MAE 2.26 2.58 2.30 2.88 2.28
RMSE 6.16 6.59 6.58 7.33 6.09

4.3 Ablation Study
Table 4 details the effectiveness of each component in CityCAN.
w/o C lacks the causal framework, which adopts a single invariant
learning module. w/o UIL it the model without both useless loss
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Figure 4: (a) A visualization of superregion metrices for crowd flow forecasting on Chicago21 dataset. (b) A visualization of
crowd inflow on Chicago21 dataset, where the idx (index) in each region refers to its spatial index.

(Eq. 5) and intervention loss (Eq. 3).w/oUL excludes the useless loss.
w/o IL omits the intervention loss. w/o CWL is the model without
the citywide loss (Eq. 11). w/o CP does not have the calibration
prior within the citywide loss. w/o CL removes the cropping layer.
w/o LCAM and w/o GCAM are models without the LCAM and
GCAM modules, respectively.

Table 4 reveals: (1) Causal learning strategy improves perfor-
mance, validating the effectiveness of identifying useful correla-
tions. (2) Excluding useless loss or intervention loss hurts the model
performance, indicating useless correlations do exist and misleads
the network. These two losses must work together to achieve causal
learning as useless loss ensures zero influence of useless features,
while intervention loss guarantees invariant results after adding
useless features. (3) Omitting citywide loss degrades performance,
demonstrating the importance of considering all city regions. (4)
Higher RMSE in w/o CP indicates that the calibration prior can
provide useful domain knowledge to enhance performance in re-
gions with high condition values. Although applying the calibration
prior tends to focus more on RMSE, resulting in a slight increase
in MAE, it is particularly useful in scenarios where high condition
values are of high interest, such as traffic accident risk. Its influence
can easily be removed by setting the calibration parameter to 1.
(5) The inferior performance of w/o CL highlights that removing
redundant information can make the model focus on the most im-
portant features. (6) w/o LCAM and w/o GCAM show inferior
performance, demonstrating that capturing the local and global ST
correlations is necessary for citywide ST forecasting.

4.4 Visualization
4.4.1 Superregion Matrices. Fig. 4 displays the two superregion
matrices, i.e., useful supperregion matrix and useless superregion
matrix, for crowd flow forecasting on Chicago21 dataset. From Fig. 4,
we can observe that: (1) The two metrices are complementary to
one another, which disentangle useful correlations from useless
ones successfully. (2) Useful correlations are discovered because
regions with useful correlations are grouped into one superregion.
For example, central business district (CBD) regions like Region 7
and Region 31, along with residential regions such as Region 27,
are assigned to the same superregion (e.g., Superregion 14). This
grouping indicates their correlation and aligns with known city
studies insights. (3) Certain rural regions, e.g., Region 8 and Region

Figure 5: A visualization of the citywide spatial distribution
of traffic accidents in the NYC13 dataset, along with the fore-
casting results of various methods.

51, have fewer correlations with other regions and thus have higher
weights in the useless superregion matrix. (4) Our model allows
each region to be assigned to multiple superregions based on its
correlations with different regions. For instance, Region 7 is also
assigned to Superregion 9, as it also has correlations with Region 5
and Region 6. One region’s weight to different superregions varies
according to its importance within different correlations.

4.4.2 Citywide Distribution. Fig. 5 shows the distribution of
the citywide data on the NYC13 dataset, which is obtained by aver-
aging the traffic accident risk values over the temporal dimension
and normalizing the traffic accident risk values over the spatial
dimension. The visualization of training samples is derived from
the training set, while the ground truth represents the visualization
of the ground truth of forecasting in the test set. These two visu-
alizations share a similar distribution, validating our assumption
that the citywide distribution does not vary dramatically between
the training and test set. The forecast visualizations produced by
SDAE, SDCAE, and GSNet illustrate these models’ limitations in
generating good predictions that align with the actual citywide
distribution. It is because they adopt region-wise losses, which
neglect the citywide distribution. Especially, they fail to identify
trivial regions, which consistently present zero values over time,
and may lead to inefficient resource allocation. CityCAN considers
both region-wise and citywide errors in forecasting, and thus can
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Figure 6: Effects of hyperparameters on Chicago22 dataset
in terms of MAE and RMSE.

successfully recognize significant and trivial regions and achieve
good forecasting results for all regions in the city.

4.5 Effects of Hyperparameters
In Fig. 6, we study the effects of hyperparameters in CityCAN over
Chicago22 for crowd density forecasting. From the results, we ob-
serve: (1) CityCAN achieves the lowest RMSE error when the region
reduction parameter 𝑟 = 4. This is because a higher reduction rate
results in fewer superregions, which allows the network to obtain
summarized features from original correlated regions and elimi-
nates some redundant features. However, if the reduction rate is
too high, it may contain many useless correlations, which nega-
tively impact performance. (2) CityCAN achieves the highest per-
formance when it contains𝑀 = 3 CA blocks as reducing/increasing
the number of blocks may lead to underfitting/overfitting issues.
(3) Increasing the local window length negatively impacts perfor-
mance, as it is important to consider temporal information from
each time interval for short-term forecasting. (4) CityCAN performs
best when 𝜏 = 0.7, particularly in terms of RMSE, because it gives
suitable weights to the significant regions that have higher values.

5 RELATEDWORK
Citywide Spatio-Temporal Forecasting is a crucial task for ITS
and has attracted much attention over the years. Recent works have
explored spatio-temporal (ST) networks for various citywide tasks,
such as traffic accident prediction [37, 49, 65, 76], traffic flow predic-
tion [13, 20, 26, 33, 51], traffic speed prediction [9, 70], taxi demand
prediction [1, 62, 78], etc. They have achieved superior performance
over traditional statistical models, like k-nearest neighbor [35] and
ARIMA [45, 54] thanks to their ability to model complex nonlinear
ST correlations. More recent works [29, 43, 48] suggest that jointly
learning the spatial and temporal dependencies enhances predic-
tion performance. However, they still face challenges in considering
the global ST correlations between the irregular regions simulta-
neously. Meanwhile, attention-based models [56, 71] have shown

success in learning global dynamic dependencies on temporal fore-
casting. However, they focus on long-term multivariate time-series
and efficient attention mechanisms [23, 25, 32, 36, 52, 72], ignoring
spatial correlations and domain knowledge, and therefore cannot
be applied to citywide ST forecasting directly. Also, in citywide
forecasting, citywide distribution is relatively under-explored. Al-
though some works [15, 24, 47, 55, 75] have studied zero-inflated
data that are distributed sparsely in the city. They focus on region-
wise optimization, which results in producing skewed predictions
that cannot align with the citywide distribution. In this work, we
propose a novel attention-based ST encoder that incorporates city-
wide domain knowledge in a casual framework and a citywide loss
to constrain the prediction distribution for better ST modeling.

Causal Learning [38, 39] enables the deep learning models with
the ability to eliminate spurious correlations, leading to improved
performance in various tasks. For example, CONTA [66] removes
non-causal associations between image pixels and labels via the
backdoor adjustment in image segmentation tasks. Liu et al. [34]
learns the causal invariance of the motion representations by dis-
entangling the physical laws, style confounders, and non-casual
features for better motion prediction. CAL [44] boosts graph clas-
sification performance by applying causal interventions on rep-
resentation level. STNSCM [10] analyze the causal relationship
between input data and contextual conditions. Different from them,
we propose a causal attention network that removes the useless
correlations that exist in ST data for citywide regression. There are
some concurrent studies on causal learning for ST data [59, 74].

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed CityCAN, novel network for citywide
ST forecasting. Leveraging the causal theory, we design a causal
framework for citywide ST forecasting that applies implicit in-
terventions at the latent level, enabling CityCAN to learn useful
regional correlations. To jointly capture the ST correlations for both
regular and irregular regions, we also introduce a Global-Local At-
tention Encoder in CityCAN. It captures both the local and global
ST correlations with a calibrated attention mechanism for better ST
modeling. We then proposed a citywide loss, which considers the
citywide distribution between the predicted and real conditions,
to enable CityCAN to accurately predict the targeted features for
all regions in the city at once. Extensive experimental results and
analyses verified the effectiveness of CityCAN. CityCAN is not
limited to citywide ST forecasting. In the future, we will evaluate it
on other ST tasks, such as crime prediction. We will also exploit the
different architectures for invariant learning and useless learning
to reduce computational costs.
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