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ABSTRACT
Neural network approaches in recommender systems have shown
remarkable success by representing a large set of items as a learn-
able vector embedding table. However, infrequent items may suf-
fer from inadequate training opportunities, making it difficult to
learn meaningful representations. We examine that in attribute and
context-aware settings, the poorly learned embeddings of infre-
quent items impair the recommendation accuracy. To address such
an issue, we propose a proxy-based item representation that allows
each item to be expressed as a weighted sum of learnable proxy
embeddings. Here, the proxy weight is determined by the attributes
and context of each item and may incorporate bias terms in case of
frequent items to further reflect collaborative signals. The proxy-
based method calculates the item representations compositionally,
ensuring each representation resides inside a well-trained simplex
and, thus, acquires guaranteed quality. Additionally, that the proxy
embeddings are shared across all items allows the infrequent items
to borrow training signals of frequent items in a unified model
structure and end-to-end manner. Our proposed method is a plug-
and-play model that can replace the item encoding layer of any
neural network-based recommendation model, while consistently
improving the recommendation performance with much smaller
parameter usage. Experiments conducted on real-world recommen-
dation benchmark datasets demonstrate that our proposed model
outperforms state-of-the-art models in terms of recommendation
accuracy by up to 17% while using only 10% of the parameters.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Recommender systems have evolved from collaborative filtering
(CF) [36] to machine learning [14, 28, 34] and deep learning-based
models [2, 43]. In model-based CF [20], users and items are repre-
sented as latent vectors via learnable embeddingmatrix, which is im-
plemented as a full look-up table, where each row corresponds to a
unique user or item vector. Such vector representation approach can
transform the recommendation problem into a set of vector arith-
metic, assuming that the latent vectors are well-trained through
the training data distribution [41]. To train the representations ef-
fectively and achieve higher recommendation performance, recent
studies have introduced deep learning-based models [16, 42, 48]
and sequential recommendation models [18, 30, 32, 40] as well as
attribute [15, 54] and context-aware [14, 33] models.

The concept of item embedding matrix also appears in the Nat-
ural Language Processing (NLP) field to train the distributional
semantics of words [25]. However, in contrast to the data distribu-
tions in NLP, recommendation datasets exhibit distinct and unique
characteristics, which incur two significant limitations that need
to be addressed. Firstly, the item frequency in recommendation
datasets follows a long-tail distribution [51]. The item embedding
matrix, which is unaware of such data distribution, cannot accu-
rately reflect the proper training signals for the infrequent items
[26, 27], leading to degraded recommendation performance [1].
Secondly, the number of items may increase indefinitely. For a
real-world recommendation scenario, a large set of new items is
consistently added to the system [11, 31] and the item embedding
matrix, where most of the model parameters are stored [1], must
scale up accordingly to accommodate them. For these problems
being the case, it is necessary to devise a new methodology that
can effectively replace the item embedding matrix and resolve such
limitations.

We further investigate the problem of infrequent item embed-
dings thoroughly. First of all, during the training process of a rec-
ommendation model, items appear in three different scenarios: a
user profile that is represented as a list of interacted items, a target
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item for the system to predict, and a set of negative items that
the user has not interacted obtained via negative sampling. It is
evident that the parameter update for a specific item embedding,
except for that of negative sampled items, is directly proportional
to the item’s occurrence frequency. Consequently, infrequent items
do not receive as many training opportunities as frequent items
do and, thus, their embeddings hardly converge to their optimal
states throughout the training. We have conducted an empirical
analysis of such phenomena under attribute and context-aware
settings [18, 33]. Specifically, we have replaced a portion of infre-
quent items with a shared unknown token and measured the model
performance. In Table 1, when the infrequent items are replaced by
the unknown token, which can be seen as a removal process, the
recommendation accuracy in terms of NDCG@10 increases. Such
result clearly demonstrates that the poorly learned infrequent item
embeddings harm the overall performance as mentioned earlier.
However, such improvement comes at the cost of losing global
coverage of recommended items, which accounts for item diversity,
and highlights that the insufficient training signals for infrequent
items need to be addressed.

Previous studies that aim to resolve the aforementioned issues
can be divided into two branches. Firstly, to mitigate the negative
impact of infrequent item embeddings on the model performance
while reducing the parameter usage, [7] employed a shared embed-
ding through clustering and [27] reduced the embedding dimension
of infrequent items. However, these methods are not suitable for
datasets where content information (i.e., item attributes and con-
texts) is crucial (e.g., Fashion domain, showing large performance
gap when content information is not utilized). Secondly, [5, 44, 55]
proposed methods that allow the embeddings of infrequent items
to mimic those of frequent items using their content information.
However, they have separate model structures (e.g., mimicking net-
work) and learning strategies (e.g., warm-up stage), which makes
it difficult to train in an end-to-end fashion, resulting in unstable
hyper-parameter tuning.

In this paper, we propose a novel proxy-based item representation
model that represents each item as a weighted sum of learnable
proxy embeddings by leveraging content information, while in-
corporating the learning process of both frequent and infrequent
items into a single framework in an end-to-end manner. Generally,
a proxy refers to a model or a vector learned in place of the original
training objective to improve the training efficiency or performance
in deep learning [3, 26]. We reduce the item embedding matrix into
two linearly combinable components: the proxy weighting network
and the proxy embedding. Our model represents an item as the
weighted sum of learnable proxy embeddings, where the weights
are primarily determined by content information. As opposed to
the infrequent items, frequent items possess abundant collaborative
signals. To further incorporate such signals whenever available,
we add learnable bias terms to the proxy weights. By such means,
the model can learn hybrid collaborative signals in a single repre-
sentation space that encompasses not only item ID-to-ID but also
ID-to-content and content-to-content relations.

The core concept of our proposed model is illustrated in Figure
1. We apply a softmax function on the proxy weights to enforce
the weights sum up to 1. This approach ensures each item repre-
sentation resides inside a simplex where vertices are well-trained

Table 1: Performance and diversity comparison of infrequent
item removal ratio on Fashion

Model Removal #params (M) NDCG@10 Diversity

0% 45.8 37.9% 15.0%
25% 35.1 39.1% 14.9%

SASRec++ 50% 24.5 39.2% 14.8%
75% 13.9 40.2% 13.1%
90% 7.5 41.6% 11.6%

0% 25.1 42.6% 16.2%
25% 19.7 42.5% 15.3%

with PIR 50% 14.4 42.5% 16.2%
75% 9.1 42.4% 16.2%
90% 5.9 42.4% 16.0%

proxy embeddings. Moreover, since the gradient is formed in a unit
of proxy embeddings that are shared across all items, the training
becomes stable and fast while allowing infrequent items to borrow
the training signal of frequent items. Additionally, that newly added
item can be computed compositionally via proxy embeddings based
on their content information prevents the indefinite increase of pa-
rameters, resulting in parameter efficiency. As a result, our method
alleviates the inadequate parameter updates of those items that
exist in long-tail distribution, leading to performance improvement
with much smaller parameter usage.

We conduct experiments on real-world recommendation bench-
mark datasets, namely Amazon Review datasets [24] and Movie-
Lens dataset. Each dataset has its distinct data distribution and
item attributes, along with context and sequential information. Our
proposed method is a plug-and-play model that can replace the
item encoding layer of any neural network-based recommendation
model, and the experimental results show that leveraging our model
consistently improves the performance across all datasets.

2 RELATEDWORK
Our model is inspired by three research branches: attribute and
context-aware sequential recommendation (ACSR) models [8, 29,
30, 54], parameter-efficient recommendation models [17, 23, 27],
and proxy learning models [10, 19] involving clustering techniques
in self-supervised learning [3, 21].

The most important feature in the recommendation is the user-
item interaction history. However, in certain datasets where in-
teraction data is sparse or item attributes are crucial, leveraging
content and contextual information becomes vital [14, 37, 44, 54].
For example, the current state-of-the-art ACSR model CARCA [33]
achieves a performance increase of up to 50% in terms of recom-
mendation accuracy when compared to other baseline models that
do not reflect all of the following: the attribute, the context, or the
sequential information. Furthermore, in the cold-start scenarios
where the interaction data are extremely rare, [5, 44, 55] proposed
two-structured methods that aim to mimic the embeddings of fre-
quent items by employing content information to boost model
performance.

To address the enormous training parameter issue [1], studies for
parameter-efficient recommendation models have been conducted
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Figure 1: Proxy-based item representation model. Items are represented as a weighted sum of learnable proxy embeddings.

recently [1, 17, 23, 27, 49, 53]. Most studies focus on devising new
methodologies to encode each item into a promising vector rep-
resentation with fewer parameters [7, 17, 27, 53] or reduce the
model size without hurting the performance [38, 49]. In the mixed-
dimension model [27], the item embedding matrix is split into two
parts: frequent and infrequent items, where the embeddings of
the latter are factorized into low-rank matrices. Such method has
the potential to alleviate the negative impact of infrequent item
embeddings on the model performance while reducing the overall
parameter usage. In the hash-based method [17], the embedding
matrix is compressed through multiple hash functions, represent-
ing the item embeddings as the combination of hash values. The
clustering-based method of [7] also aims to resolve inherent issues
of the embedding matrix by using the shared embeddings. However,
such methods does not reflect essential recommendation properties,
such as the attributes of items and the recommendation contexts,
limiting performance improvement in certain datasets that heavily
resort to item content information (e.g., Fashion domain).

The concept of utilizing proxies has been applied and verified
in many studies from various fields with similar motivations: in-
frequently occurring objects borrowing the training signals from
frequently occurring objects. Among numerous recommendation
models, ProxySR [10] employs user proxy embeddings to augment
information for item sequences with a relatively short length in
a session-based setting. However, ProxySR explicitly selects one
proxy user at a time, which is very different from our proposed
model that represents items by combining multiple proxy item em-
beddings. Concretely, proxies in ProxySR represent prototypical
users, while proxies in our model represents cluster centroids of
items that serve as necessary components for item representations.
Despite such differences, ProxySR successfully demonstrates that
the proxy embeddings serve as an external memory [12] of collabo-
rative signals [13, 22] and provide a performance improvement.

In computer vision, proxies are also utilized as cluster centroids
to improve training efficiency and performance in contrastive learn-
ing, namely self-supervised learning [3, 4, 9, 21, 52] and metric
learning for image retrieval [19, 26, 45, 50]. Contrastive learning
involves positive and negative sampling, where the complexity
of image pairs or triplets becomes enormous [19]. This leads to
inconsistent parameter updates since some positive samples may
starve by chance. To address such problem, training is performed
between proxies rather than image samples. In this setting, a proxy

represents a centroid of an unsupervised cluster or a representa-
tive vector of a supervised labeled group. The individual images
are then trained via their corresponding proxy. Since the number
of proxies is much smaller than the number of images, the net-
work converges faster, and the training becomes more stable while
improving the overall performance [19]. Regarding the recommen-
dation, the infrequent items often undergo insufficient parameter
updates, corresponding to the aforementioned inconsistent parame-
ter update of positive samples in the contrastive learning. Therefore,
employing proxies that behave similarly to cluster centroids can
alleviate such training opportunity starvation of infrequent items.

3 MODEL
3.1 Problem Definition
Let𝑈 and 𝐼 be the set of all users and all items, respectively. The user
item sequence 𝑆𝑢 of a user 𝑢 ∈ 𝑈 is defined as 𝑆𝑢 = (𝑖1, 𝑖2, ..., 𝑖 |𝑆𝑢 | )
where 1 ≤ 𝑡 ≤ |𝑆𝑢 | and 𝑖𝑡 ∈ 𝐼 . We denote a subsequence that
uses only the first 𝑡 ′ items as 𝑆𝑢,(𝑡≤𝑡 ′ ) . We define negative items
as 𝐼−𝑢 = 𝐼 \ 𝐼+𝑢 where 𝐼+𝑢 is a set of items constituting 𝑆𝑢 . The goal
of sequential recommendation (SR) is to predict subsequent items
with a given user item sequence [18]. For every 𝑢 ∈ 𝑈 and each
1 ≤ 𝑡 ′ ≤ |𝑆𝑢 | − 1, the objective is to maximize 𝑃 (𝑖𝑡 ′+1 |𝑆𝑢,(𝑡≤𝑡 ′ ) ),
when compared to negative items 𝑁𝑢 = {𝑖−

𝑗
} |𝑁𝑢 |
𝑗=1 that are randomly

sampled from 𝐼−𝑢 . We assume that each item has auxiliary infor-
mation in addition to its interaction history, which is referred to
as item attributes. The item attributes exist in various forms, such
as images, titles, descriptions, keyword tags, etc. Here, we assume
that preprocessing for attributes is done, and we can use it as a 𝑑A-
dimensional vector 𝑓𝑖𝑡 for the item 𝑖𝑡 . Meanwhile, a context is the
contextual information, generally meaning time, place, situation,
etc., that can affect the preference independently of users and items.
Similar to attributes, we assume that the context is preprocessed as
a 𝑑C-dimensional vector 𝑐𝑡 . We extend SR into attribute and context-
aware sequential recommendation (ACSR) as follows: maximize
𝑃 (𝑖𝑡 ′+1 |𝑆AC𝑢,(𝑡≤𝑡 ′ ) , 𝑐𝑡 ′+1) where 𝑆

AC
𝑢 = {(𝑖𝑡 , 𝑓𝑖𝑡 , 𝑐𝑡 ) |1 ≤ 𝑡 ≤ |𝑆AC𝑢 |}.

3.2 Background
The general architecture of an ACSR model can be divided into
three parts: the item encoding layer, the sequence encoding blocks,
and the item scoring layer. We explain each part based on the
design of CARCA [33], where it has (1) a strong item encoding
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layer that utilizes item attributes and contexts, (2) self-attention-
based sequence encoding blocks, and (3) a state-of-the-art item
scoring layer using a cross-attention.

3.2.1 Item Encoding Layer. The main function of this layer is to
extract the item vector 𝑣𝑖𝑡 ∈ R𝑑 given the input (𝑖𝑡 , 𝑓𝑖𝑡 , 𝑐𝑡 ), where 𝑑
denotes the latent dimension. First, the individual item embedding
for the item 𝑖𝑡 is assigned as IE𝑖𝑡 , from the full-item look-up table
IE ∈ R |𝐼 |×𝑑IE , where 𝑑IE denotes the dimension of the item embed-
ding. These three vectors (IE𝑖𝑡 , 𝑓𝑖𝑡 , 𝑐𝑡 ) are then passed to a shallow
neural network to obtain the final item vector:

𝑧𝑖𝑡 = 𝜎
AC (catcol (𝑓𝑖𝑡 , 𝑐𝑡 )𝑊 AC + 𝑏AC), (1)

𝑣𝑖𝑡 = 𝜎
item (catcol (IE𝑖𝑡 , 𝑧𝑖𝑡 )𝑊 item + 𝑏item), (2)

where𝑊 AC ∈ R(𝑑𝐴+𝑑C )×𝑑AC , 𝑏AC ∈ R𝑑AC ,𝑊 item ∈ R(𝑑IE+𝑑AC )×𝑑 ,
𝑏item ∈ R𝑑 are weights and biases for corresponding network, 𝜎AC,
𝜎 item are activation functions, and catcol denotes the column-wise
vector concatenation.

3.2.2 Sequence Encoding Blocks. With the advent of self-attention
blocks, the sequence encoding blocks have been commonly imple-
mented with Transformer [42] architecture that is superior in terms
of both performance and computational efficiency to that of the
past, namely RNN or CNN-based methods [18, 32]. An attention
(Attn) is defined as follows: for three given sequences of vectors
𝑄 ∈ R𝐿𝑄×𝑑𝑄 , 𝐾 ∈ R𝐿𝐾 ×𝑑𝐾 , 𝑉 ∈ R𝐿𝑉 ×𝑑𝑉 ,

Attn(𝑄,𝐾,𝑉 ) = softmax
(
(𝑄𝐾⊤)/

√︃
𝑑𝑄𝐾

)
𝑉 , (3)

where 𝑑𝑄 = 𝑑𝐾 = 𝑑𝑄𝐾 and 𝐿𝐾 = 𝐿𝑉 = 𝐿𝐾𝑉 . Given the number of
heads 𝐻 that is the divisor of 𝑑𝑄 , 𝑑𝐾 , 𝑑𝑉 , we can create separate
linear projection layers so that each head can handle different
representations, often referred multi-head attention (MHA):

MHA(𝑄,𝐾,𝑉 ) = catcol
( [
Attn(𝑄𝑊𝑄

ℎ
, 𝐾𝑊𝐾

ℎ
,𝑉𝑊𝑉

ℎ
)
]𝐻
ℎ=1

)
, (4)

where 𝑊𝑄

ℎ
∈ R𝑑𝑄×𝑑𝑄/𝐻 , 𝑊𝐾

ℎ
∈ R𝑑𝐾 ×𝑑𝐾 /𝐻 , 𝑊𝑉

ℎ
∈ R𝑑𝑉 ×𝑑𝑉 /𝐻 .

The self-attention assumes that 𝑄 , 𝐾 , and 𝑉 are the same, and it
is used to encode the complex information of the input sequence.
In our problem setting, we apply self-attention to item vectors
𝑉𝑢 = [𝑣⊤

𝑖1
, 𝑣⊤
𝑖2
, ..., 𝑣⊤

𝑖𝑡 ′
]⊤ ∈ R |𝑆

AC
𝑢,(𝑡≤𝑡 ′ ) |×𝑑 :

𝑉𝑢 = MHA(𝑉𝑢 ,𝑉𝑢 ,𝑉𝑢 ). (5)

Following the architecture of Transformer, the results above are
passed to a two-layered point-wise feed-forward network (PWFF),
where it is defined as follows: for a matrix 𝑋 ∈ R𝐿𝑋 ×𝑑𝑋 denoting a
set of vectors,

PWFF(𝑋 ) = catrow
( [
𝜎 (𝑋𝑟𝑊 (1) + 𝑏 (1) )𝑊 (2) + 𝑏 (2)

]𝐿𝑋
𝑟=1

)
, (6)

where𝜎 is an activation function,𝑊 (1) ,𝑊 (2) ∈ R𝑑𝑋 ×𝑑𝑋 ,𝑏 (1) , 𝑏 (2) ∈
R𝑑𝑋 are weights and biases, and catrow is a row-wise vector concate-
nation. PWFF is an additional layer that helps the model understand
more complex relationships and provides further non-linearity. As-
suming an additive residual connection, the self-attention block
can be stacked into multiple blocks as follows:

𝑉
(𝑏 )
𝑢 = MHA(𝑉 (𝑏 )

𝑢 ,𝑉
(𝑏 )
𝑢 ,𝑉

(𝑏 )
𝑢 ), (7)

𝑉
(𝑏+1)
𝑢 = PWFF(𝑉 (𝑏 )

𝑢 ) +𝑉 (𝑏 )
𝑢 , (8)

where 𝑉 (1)
𝑢 = 𝑉𝑢 , and (𝑏) denoting the 𝑏-th block, up to the total

number of 𝐵 attention blocks. The final vectors 𝑉 (𝐵)
𝑢 from the

sequence encoding blocks are dubbed latent sequence vectors. Unlike
many other attention-based models, since the temporal information
is often explicitly given in the form of a context [33, 37], we do not
employ positional embeddings.

3.2.3 Item Scoring Layer. After extracting the latent sequence vec-
tors, the item scoring layer calculates preference scores to rank
candidate items, producing recommendation output. There are two
major methodologies for the layer.

Inner Product (IP). Similar to MF, this method uses the inner
product (IP) value between a user vector and an item vector to
obtain a preference score. Since the IP method is commonly imple-
mented via negative item sampling, it is widely used due to its great
advantage in computational efficiency, especially in terms of mem-
ory and parameters [18, 25]. The sampled candidate items are en-
coded into candidate item vectors 𝐶𝑢 = [𝑣⊤

𝑖𝑡 ′+1
, 𝑣⊤
𝑖−1
, 𝑣⊤
𝑖−2
, ..., 𝑣⊤

𝑖−|𝑁𝑢 |
]⊤ ∈

R( |𝑁𝑢 |+1)×𝑑 via the same item encoding layer used in the user-item
sequence encoding, with shared parameters. The training method
of IP can be categorized into two losses [6]:

(1) Binary cross-entropy loss (BCE): This method trains positive
and negative items independently by treating the IP value
as the logit of binary classification.

(2) Normalized temperature-scaled cross-entropy loss (NT-Xent)
[6, 39]: After the 𝐿2-normalization to make IP as cosine sim-
ilarity, a temperature-scaled softmax is applied to perform
(𝑁 + 1)-way classification. This method trains the positive
score to be relatively higher than the negative score.

Cross-Attention (CA). Unlike the IP, the sequence latent vector is
not treated as the user vector at step 𝑡 in CA [33]. The method uses
candidate item vectors 𝐶𝑢 as query and sequence latent vectors
𝑉

(𝐵)
𝑢 as both key and value for another multi-head attention layer.
After applying a multiplicative residual connection, the results are
passed to a scoring layer 𝜙score that produces the preference scores:

𝐶𝑢 = 𝐶𝑢 ⊙ MHA(𝐶𝑢 ,𝑉 (𝐵)
𝑢 ,𝑉

(𝐵)
𝑢 ), (9)

𝑌 = 𝜙score (𝐶𝑢 ) = 𝜎score (𝐶𝑢𝑊 score + 𝑏score), (10)
where 𝑊 score ∈ R𝑑 is a scoring weight vector, 𝑏score ∈ R is a
scoring bias, and 𝜎score is the activation function. The score is
treated as the logit of binary classification, similar to BCE from the
IP method. When CA decides whether or not to recommend each
candidate item, it explicitly considers the entire item sequence via
the cross-attention mechanism, leading to superior performance in
most cases.

3.3 Proxy-based Item Representation
Our proposed model, the Proxy-based Item Representation (PIR)
method, replaces the item embeddings IE𝑖𝑡 in the item encoding
layer. First, we introduce the learnable proxy embeddings, namely
𝑃 = [𝑝⊤1 , 𝑝

⊤
2 , ..., 𝑝

⊤
𝑛proxy ]

⊤ ∈ R𝑛proxy×𝑑proxy . Here, the number of
proxy embeddings𝑛proxy and its dimension𝑑proxy are hyper-parameters.
We calculate the appropriate weights for each proxy embedding
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by item attribute 𝑓𝑖𝑡 and context 𝑐𝑡 to produce a proxy-based item
representation PIR𝑖𝑡 ∈ R𝑑proxy that is a weighted sum of proxy em-
beddings. Specifically, we use a 2-layered neural network 𝜑 to
compute the unnormalized weight for each proxy embedding:

𝑤 ′
𝑖𝑡
= 𝜎𝜑,(1) (catcol (𝑓𝑖𝑡 , 𝑐𝑡 )𝑊 𝜑,(1) + 𝑏𝜑,(1) ), (11)

𝑤𝑖𝑡 = 𝜎
𝜑,(2) (𝑤 ′

𝑖𝑡
𝑊 𝜑,(2) + 𝑏𝜑,(2) )

= 𝜑 (𝑓𝑖𝑡 , 𝑐𝑡 ) ∈ R𝑛proxy ,
(12)

where𝑊 𝜑,(1) ∈ R(𝑑A+𝑑C )×𝑑𝜑 , 𝑏𝜑,(1) ∈ R𝑑𝜑 are the weight and bias
for the first layer, and𝑊 𝜑,(2) ∈ R𝑑𝜑×𝑛proxy , 𝑏𝜑,(2) ∈ R𝑛proxy are the
weight and bias for the second layer. 𝜎𝜑,(1) and 𝜎𝜑,(2) can be any
appropriate activation functions, but we use LeakyReLU for 𝜎𝜑,(1)

and the identity function for 𝜎𝜑,(2) , which were empirically cho-
sen through hyper-parameter tuning. After normalizing through
a softmax layer, PIR𝑖𝑡 is computed as the weighted sum of proxy
embeddings:

𝑤̂𝑖𝑡 = softmax(𝑤𝑖𝑡 ), (13)
PIR𝑖𝑡 = 𝑤̂𝑖𝑡 𝑃 . (14)

The final item vector 𝑣𝑖𝑡 is then calculated by appending the item
attribute and context information to the newly created representa-
tion. Slightly different from the process described in CARCA, we
introduce an additional 1-layer neural network for attribute vectors
to provide an additional non-linearity to the attribute information.

𝑓 ′𝑖𝑡 = 𝜙
A (𝑓𝑖𝑡 ) = 𝜎A (𝑓𝑖𝑡𝑊 A + 𝑏A), (15)

𝑧𝑖𝑡 = 𝜙
AC (𝑓 ′𝑖𝑡 , 𝑐𝑡 ) = 𝜎

AC (catcol (𝑓 ′𝑖𝑡 , 𝑐𝑡 )𝑊
AC + 𝑏AC), (16)

𝑣𝑖𝑡 = 𝜙
item (𝑖𝑡 , 𝑧𝑖𝑡 ) = 𝜎 item (catcol (PIR𝑖𝑡 , 𝑧𝑖𝑡 )𝑊 item + 𝑏item), (17)

where𝑊 A ∈ R𝑑A×𝑑 ′A , 𝑏A ∈ R𝑑 ′A ,𝑊 AC ∈ R(𝑑 ′A+𝑑C )×𝑑AC , 𝑏AC ∈
R𝑑AC ,𝑊 item ∈ R(𝑑proxy+𝑑AC )×𝑑 , 𝑏item ∈ R𝑑 are the weights and
biases for the corresponding networks and 𝜎A, 𝜎AC, 𝜎 item are the
activation functions. The overall architecture of our model is illus-
trated in Figure 2.

The above structure itself represents items solely based on their
content information and behaves similarly to content-based fil-
tering, which cannot reflect the collaborative signals between the
items on its own. To give direct collaborative signals to frequent
items, we introduce a frequent item bias, a concept similar to the
known user bias from [10]. The frequent item bias is a structure
where the selected top 𝐾 frequent items can memorize the biases
for the proxy weights:

𝑤̂𝑖𝑡 = softmax(𝑤𝑖𝑡 + 𝑏
freq
𝑖𝑡

), (18)

where 𝑏freq
𝑖𝑡

∈ R𝑛proxy is a learnable bias vector. Existing models
often attempt to reduce parameter usage by allocating different
dimensions [27, 53] or model structures [44, 55] for frequent and
infrequent items. In our proposed model, the only difference be-
tween the frequent and infrequent items is whether it can partly
memorize the proxy weights or not in an identical model structure.
Note that if 𝐾 = 0, the proxy-based model can be interpreted as a
deep learning version of content-based filtering, since it only uses
the content information. On the other hand, if 𝐾 = |𝐼 |, the model
behaves similarly to low-rank factorization of the full-item look-up
table IE, with a latent dimension of 𝑛proxy, since the computation is
similar to matrix factorization but with softmax non-linearity. Note

Figure 2: Overall model architecture.

that in this case, the model can still be applied to the case where
there is no content information available, which reduces exactly
into the low-rank factorization with softmax non-linearity.

Our choice of using the softmax function generates PIR𝑖𝑡 to be a
vector that resides inside a simplex, where vertices are proxy em-
beddings: 𝑤̂𝑖𝑡 𝑃 =

∑𝑛proxy
𝑟=1 𝑤̂𝑖𝑡 ,𝑟𝑃𝑟 where

∑𝑛proxy
𝑟=1 𝑤̂𝑖𝑡 ,𝑟 = 1, meeting

the condition for simplex. Here, we can expect that the abundant
interaction of frequent items will train the proxy embeddings to
their promising state. Therefore, any PIR𝑖𝑡 can be expected to be a
comprehensible vector to the network, where otherwise the infre-
quent item representations would have been learned poorly due to
inadequate training. In addition, another property of the weighted
sum mechanism is that the gradient of parameter update is formed
as a unit of proxy embeddings: assuming that the proxy embed-
dings are fixed, 𝜕PIR𝑖𝑡

𝜕𝜃
=
∑𝑛proxy
𝑟=1

𝜕𝑤̂𝑖𝑡 ,𝑟
𝜕𝜃

𝑃𝑟 , for a parameter 𝜃 to be
updated. This property allows infrequent items to borrow training
signals from frequent items via proxy embeddings. We also prove
the following propositions in the appendix: content locality, where
infrequent items with similar attributes are close to each other in
the proxy-based representation space, and bias priority, where the
frequent item bias can be prioritized over the content information.

3.4 Complexity of Parameters
Since IE uses |𝐼 | embeddings while 𝑃 only uses 𝑛proxy embed-
dings, the proxy-based item representation can reduce a signif-
icant number of parameters. For computational convenience, as-
sume that all latent dimensions are equal to, or proportional to 𝑑 :
𝑑IE = 𝑑 , 𝑑AC ∝ 𝑑 , 𝑑′A = 𝑑 , 𝑑𝜑 ∝ 𝑑 , and 𝑑proxy = 𝑑 . In a baseline
model that uses IE, the number of parameters is 𝑂 ( |𝐼 |𝑑 + 𝑀 (𝑑)),
where 𝑀 (𝑑) is the number of parameters of the network other
than the item embedding. For our model, the number of parame-
ters is 𝑂 ((𝐾 + 𝑑)𝑛proxy +𝑀′ (𝑑)), where 𝑀′ (𝑑) denotes the num-
ber of parameters of the network other than the PIR layer. Note
that in this case, the number of parameters does not increase pro-
portionally to the number of items |𝐼 |. Even in the extreme case
where 𝐾 = |𝐼 |, parameters can be reduced whenever 𝑛proxy is just
slightly smaller than 𝑑 : let 𝑛proxy = 𝛼𝑑 , then we get |𝐼 |𝑑 +𝑀 (𝑑) >
( |𝐼 | +𝑑)𝑛proxy+𝑀′ (𝑑) ⇔ (|𝐼 | +𝑑)−1 ( |𝐼 | + (𝑀 (𝑑) −𝑀′ (𝑑))/𝑑) > 𝛼 .
Assuming that 𝑀 (𝑑) ≈ 𝑀′ (𝑑), the model can shrink whenever 𝛼
meets the condition (note that 𝑑 ≪ |𝐼 | holds in general).
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Table 2: Dataset statistics after preprocessing.

Dataset #user #item #interaction Density Unique Attributes Duplicates Memorization

Fashion 45,184 166,270 358,003 0.0048% 163,985 1.0 98.09%
Men 34,244 110,636 254,870 0.0067% 109,282 1.0 98.36%

Beauty 52,204 57,289 394,908 0.0132% 11,094 5.2 41.92%
Game 31,013 23,715 287,107 0.0390% 1,701 13.9 7.26%

ML-20M 138,287 20,720 9,995,410 0.3488% 1,342 20.3 4.92%

3.5 Training Objective
In sequential recommendation, it is common to create |𝑆AC𝑢 | − 1
tasks of Next Item Prediction (NIP) by using the aforementioned
latent sequence vectors as user vectors, namely 𝑉 (𝐵)

𝑢,𝑡 for each time
step 1 ≤ 𝑡 ≤ |𝑆AC𝑢 | − 1. However, in the case of cross-attention, the
latent sequence vectors possess bidirectional information of the
item sequence. Therefore, training cross-attention with NIP task
incurs a discrepancy between the training phase and the inference
phase since NIP assumes a causality constraint in the training phase.
To this end, we adopt Last Item Prediction (LIP) task, which uses
only the very last item of each user as a positive item. In every
training epoch, each item sequence 𝑆AC𝑢 is randomly cut [46] into a
subsequence so that diverse input data can be trained for the same
user. We also apply NT-Xent [35, 39] on the cross-attention, so
that the model can employ multiple negatives. We call this method
Contrastive CA, where it can only be implemented in LIP task since
it is not feasible to sample multiple negative items having the same
context in NIP task due to the enormous memory cost. The final
training objective is as follows: Assuming that for every epoch, each
item sequence 𝑆AC𝑢 of user 𝑢 is randomly cut, and 𝑁𝑢 is randomly
sampled except for testing,

L = −|𝑈 |−1∑𝑢∈𝑈 log
(
𝑒𝑌1/∑ |𝐼 −𝑢 |+1

𝑗=1 𝑒𝑌𝑗
)
. (19)

4 EXPERIMENT
To demonstrate the effectiveness of our proposed model, we have
constructed experiments to answer the following research ques-
tions:

• RQ1 Does PIR layer show superior performance in a plug-
and-play manner?

• RQ2 Does PIR layer enhance representation quality of infre-
quent items?

• RQ3 Does ProxyRCA have a parameter-efficient structure?
• RQ4 Do the proxy weights and proxy embeddings together
compositionally compute item representations?

4.1 Experimental Settings
4.1.1 Datasets. To evaluate and analyze the proposed model, we
use five widely used recommendation datasets from different do-
mains, namely Fashion, Men, Game, and Beauty from Amazon
Review datasets [24], and MovieLens-20M (ML-20M). Fashion and
Men use the image vectors extracted from the pre-trained ResNet50
model as their item attributes. Except for the price feature of Game,
the attributes for Beauty and Game are discrete and categorical in-
formation, namely tags. In ML-20M, only the genre of each movie is

used as item attributes, which represents the case where the content
information are extremely limited. For contexts, timestamp data is
decomposed into multi-dimensional date information, following
the preprocessing steps in [33]. The overall statistics of the datasets
are given in Table 2. In the preprocessing step, users with three or
fewer interactions are excluded from the dataset to make a proper
train-valid-test split.

4.1.2 Evaluation Protocol. Overall, we follow the conventional
evaluation protocol from the sequential recommendation studies
[15, 18, 33]. We use the leave-one-out evaluation where the last
item of each user is the test item, and the previous one to the last
item is the valid item. A total of 100 negative items are randomly
sampled among items that have not been interacted with the user.
The performance is measured with Hit-Ratio (HR) and Normalized
Discounted Cumulative Gain (NDCG), averaged over all users. We
run 5 times each with different random seeds and report the average
performance.

4.1.3 ComparisonModels. For the fair comparison, we implemented
the baselinemodels to have a similar structure and the same training
objective (LIP task) to our setting. Full explanation and experimen-
tal results on NIP task baselines, namely BERT4Rec [40], SASRec
[18], SSE-PT [46], and S3Rec [54] are in the appendix.

(1) Popular: A non-personalized recommendation where the
preference score is based on the item’s global popularity. It
serves as a sanity check for the performance lower bound.

(2) SASRec++ [33]: An extension of SASRec [18] that utilizes
item attributes and context.

(3) CARCA [33]: A state-of-the-art ACSR model that uses cross-
attention as an item scoring layer.

(4) BPR++ (ours): An extension of the non-sequential model
BPR [35] that utilizes item attributes and context.

(5) MixDim++ (ours): An extension of CARCA with parameter-
efficient mixed-dimension embedding [27] for encoding in-
frequent items. Note that this is an important baseline, which
represents models that handle infrequent items (either long-
tail or cold-start).

(6) ProxyRCA (ours): This is our main proposed model that em-
ploys proxy-based item representation as the item encoding
layer on top of CARCA, named after Proxy-based item rep-
resentation Recommendation model with Cross-Attention.

4.1.4 Implementation Details. To match the similar scale of param-
eters, we fixed the latent dimension 𝑑 to 256, and 𝑛proxy was set
to 128. We initialized 𝑏freq

𝑖𝑡
to be a zero vector in order to prevent

the unintended influence on the computation of proxy weights
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Table 3: Performance comparison on all datasets. The best and the second best results are marked as bold and italic numbers
respectively. The asterisk(*) denotes statistically significant (p < 0.05) gain against the non-PIR counterpart, using the 𝑡-test.

Task Model Fashion Men Beauty Game ML-20M
R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10 R@10 N@10

Popular 0.407 0.262 0.415 0.269 0.451 0.261 0.519 0.314 0.815 0.530

BPR BPR++ 0.523 0.332 0.429 0.266 0.505 0.352 0.768 0.564 0.956 0.702
↩→ with PIR 0.620* 0.406* 0.554* 0.358* 0.511 0.353 0.770 0.582* 0.957 0.761*

LIP

MixDim++ 0.623 0.407 0.570 0.365 0.587 0.398 0.766 0.556 0.961 0.781
SASRec++ 0.630 0.416 0.587 0.379 0.601 0.415 0.753 0.539 0.949 0.761
↩→ with PIR 0.635 0.426* 0.580 0.381 0.599 0.422 0.779* 0.572* 0.944 0.773*
CARCA 0.648 0.427 0.614 0.398 0.608 0.423 0.762 0.560 0.961 0.788
↩→ with PIR (ProxyRCA) 0.661* 0.446* 0.617 0.408 0.626* 0.449* 0.809* 0.611* 0.962 0.792*

in the early stages of the training. Detailed hyper-parameter tun-
ing procedures are described in the appendix. The PyTorch-based
implementation is shared as an open-source repository 1.

4.2 Overall Performance Comparison (RQ1)
Table 3 shows the overall performance comparison. We replaced
the item encoding layer of three representative baselines, namely
BPR++, SASRec++ and CARCA, and achieved performance im-
provement on almost all cases, as well as, all datasets in terms of
NDCG. The final model, ProxyRCA reaches the state-of-the-art per-
formance, improving up to 17% when compared to the previously
reported results. The improvement on BPRmodel demonstrates that
our PIR layer is not bound to sequential models. Interesting point
is that Fashion and Men were previously known to be sensitive to
sequential information, but with PIR, BPR++ reaches comparable
performance to sequential models. Note that in any case, since we
are using 𝑛proxy = 0.5𝑑 , only a minimum of 10% and a maximum
of 50% of training parameters are used when compared to non-PIR
counterparts. Moreover, our choice of the training objective, the
LIP task, is generally superior to NIP task if tuned properly, which
is shown in the appendix.

To further analyze the above results, we counted the unique
number of attributes and the number of duplicate items for each
attribute, and implemented a 2-layered neural network that takes
item attributes as input to perform a memorization task of classi-
fying items based on their attributes. The result is summarized in
Table 2. In Fashion and Men, the item attributes distinguish the
item accurately. In Game and ML-20M however, more than ten
items share exactly the same attributes on average, and thus it
is impractical to distinguish items by their attributes alone. Even
with the datasets where attribute information is extremely weak,
our ProxyRCA model can still outperform the baselines. We claim
that the performance gain is due to the content-oriented shared
embedding effect, similar to SSE [47], explaining why the model
outperforms even with limited attribute information.

4.3 Performance on Infrequent Items (RQ2)
As mentioned in Table 1, the baseline model showed a performance
increase when infrequent item embeddings are replaced into the
1https://github.com/theeluwin/ProxyRCA

Figure 3: Performance comparison over frequency group.

shared unknown token in sacrifice of the recommendation diver-
sity. This phenomenon is not observed in models with PIR, which
indirectly proves that the representation quality of the infrequent
items is improved.

For further investigation, we divide items into 10 groups, sorted
by frequency, so that the sum of item occurrence in each group is
equal (i.e., the frequent group will have much fewer items compared
to the infrequent group). We measure the mean performance of
each group, average over each item on the test set, since an item
can be a test item multiple times. The result is shown in Figure 3.
For item groups 0 to 1, the baseline model with 90% of removal
surmounts others but gives up the recommendation for majority
of relatively infrequent item groups, which is an intuitive result.
On the other hand, looking at item groups 7 to 9, CARCA does not
show a big difference compared to the case of removing infrequent
items, but ProxyRCA shows performance improvement in these
groups as well, which also shows that the representation quality is
improved.

4.4 Parameter Efficiency (RQ3)
To demonstrate the parameter efficiency of ProxyRCA, we created
four new datasets, namely Fashion 𝑇𝑟 (𝑟 = 1, 2, 3, 4) by truncating
Fashion so that the number of items for each partition is equal to
𝑟/4 × |𝐼 |. These datasets simulate the real-world recommendation
scenario where new items are added to the system. As shown in
Figure 4, the baseline model continuously expands the look-up table
to match the increasing number of items as 𝑟 increases. However,
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Figure 4: Parameter and performance comparison on the
partitioned Fashion, simulating the growth of data.

Figure 5: Parameter and performance comparison on Game
over different 𝐾 value.

Figure 6: Visualization of proxy weights that reflect attribute
and context modification.

ProxyRCA succeeds in maintaining a superior performance with a
fixed number of parameters.

To analyze the effect of the number of frequent items, we com-
pare CARCA, MixDim++, and ProxyRCA in Game. For a fair com-
parison, CARCA treats items beyond top 𝐾 frequent items as un-
known items, assigning the shared unknown embedding. ForMixDim++,
𝐾 corresponds to the ratio of items using full latent dimension,
while smaller dimension is set to 𝑛proxy. The experiment result is
in Figure 5. We can see that even with similar settings, ProxyRCA
uses less parameters and slow parameter growth rate, with superior
recommendation performance.

4.5 Proxy Analysis (RQ4)
Since the proxy weights are mainly computed using item attribute
and context, the weight values should be different when the at-
tribute and context are changed without the frequent item bias. In
Fashion, we first randomly choose an anchor item and visualize
the computed proxy weights, as in Figure 6. To see the impact of
context in proxy weights, we change context to an another value

Figure 7: PCA visualization of item vectors on Fashion, us-
ing shoes category. The border colors denote the heaviest-
weighted proxy.

and visualize the weights. Similarly, to see the impact of attributes
in proxy weights, we sample another item with different attributes
but same context, and visualize the weights. As shown in the figure,
due to the nature of Fashion that uses item images as attributes, the
attributes are strongly reflected in the proxy weights. Therefore,
we can see that most weights are similar when only contexts differ
(points B and C in the figure). Even so, different context still assign
different proxy weights (point A as demonstrated in the figure).
This visualization indicates that each proxy has its role to represent
items compositionally.

To show that the proxy-based item representation can also pro-
vide a clustering effect on infrequent items, we visualize the item
vectors with 𝐾 = 0 using PCA, as in Figure 7. We use items of
the shoes category among others (e.g., dress, outer) in Fashion to
see if the model successfully captures the subcategory informa-
tion without any labels, which is a rather challenging task when
compared to supercategory clustering. The figure shows that the
items of similar subcategories (e.g., flip-flops on top-left, sandals
on top-right, boots on bottom-left, and pumps on bottom-right in
the figure) are naturally clustered, even without any explicit labels.

5 CONCLUSION
In this paper, we highlighted the issues with the full-item embed-
ding table from the perspective of infrequent item training through
experimental demonstration. To overcome the issues, we proposed
a proxy-based item representation model that can replace the exist-
ing item encoding layer in a plug-and-play fashion, by computing
the item representation as a weighted sum of learnable proxy em-
beddings. To prove the effectiveness of our model, experiments
were conducted using recommendation benchmark datasets and
achieved state-of-the-art performance.
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