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ABSTRACT
Based on the premises of transparent posture and dynamic mission
environment, the mathematical modeling of the single Unmanned
Aerial Vehicle (UAV) online path planning problem is carried out.
Then, Receding Horizon Control method (RHC) and 2D-equal-step
path generation methods are briefly introduced, which are com-
bined with the Improved Wolf Pack Algorithm (IWPA) to solve the
single UAV online path planning problem modeled in the previous.
The simulation results show that the new algorithm can be used
to solve the single UAV online path planning problem aiming at
moving targets in dynamic mission environment, and the perfor-
mance of the improved wolf pack algorithm is more powerful than
the original wolf pack algorithm in this process of application.

CCS CONCEPTS
• Theory of computation; • Theory and algorithms for appli-
cation domains; • Theory of randomized search heuristics;
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1 INTRODUCTION
UAV path planning is an important component of UAV mission
planning and is usually defined as the planning process that occurs
after the UAV mission assignment process to determine a com-
prehensive assessment of the optimal path for the UAV from its
current position to its assigned mission position. At present, it is
usually academically reduced to a mathematical planning problem
∗Corresponding author. Tel.: +86 10 82544727.

This work is licensed under a Creative Commons Attribution-NonCommercial
International 4.0 License.

FAIML 2023, April 14–16, 2023, Beijing, China
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0754-4/23/04.
https://doi.org/10.1145/3616901.3616908

of finding the optimal solution to a specific objective cost function
(e.g., distance cost, time cost, threat cost, etc.) under various con-
straints (e.g., terrain constraints, no-fly zone constraints, weather
constraints, obstacle constraints, flight control constraints, UAV
performance constraints, etc.), which essentially belongs to the
NP-hard problem.

In recent years, the study of UAV path planning has received
more and more attention from researchers and gradually accumu-
lated a large number of research results. For the existingmainstream
UAV path planning algorithms, academics usually classify them
into two categories: traditional optimization algorithms and intelli-
gent optimization algorithms (also known as heuristic algorithms).
Among them, traditional optimization algorithms can be further
divided into mathematical planning-based algorithms (e.g., inte-
ger planning [1], nonlinear planning [2], and dynamic planning
[3]), graph search-based algorithms (e.g., Voronoi graph method
[4], A* algorithm [5], D* algorithm [6], and Dijkstra algorithm
[7]), sampling-based algorithms (e.g., Probability Road Map method
(PRM) [8] and Rapidly-exploring Random Tree algorithm (RRT) [9])
and artificial potential field-based algorithms [10]; meanwhile, intel-
ligent optimization algorithms mainly include swarm intelligence
algorithms [11]-[13], deep learning algorithms [14], reinforcement
learning algorithms [15], etc.

At present, although there are more studies on single UAV path
planning, they are studied based on the scenario of fixed mission
targets, and there is a lack of studies on path planning aiming
at moving mission targets. In this paper, we propose to conduct
an experimental study on single UAV online path planning in the
context of air warfare based on transparent posture assumptions
and dynamic mission scenario modeling.

2 PROBLEM SETTING AND MODELING
2.1 Problem setting
In the envisioned environment of transparent posture air warfare,
the central battlefield is set as a 20KM × 20KM square bounded
airspace, our aircraft swarm are 4 homogeneous UAVs, and the
enemy aircraft swarm are 1 manned-aircraft and 3 homogeneous
UAVs (named as UAV1, UAV2 and UAV3). In the previous stage, after
the UAV swarm cooperative mission assignment process, it has been
determined that one of our UAVs (named as UAV0) will carry out
the strike mission against the enemy manned-aircraft, for which it
is necessary to plan the corresponding path, denoted as {S, P1, P2,
..., Pm, T}, so that it can complete the mission with the minimum
threat cost and distance cost while satisfying the constraints at
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the same time. Where S is the starting point of the path planning,
which refers to the position of UAV0 at the initial planning moment,
T is the end point of the path planning, which refers to the position
of manned-aircraft at the initial planning moment, {P1, P2, ..., Pm} is
the set of planned path points. To simplify the research discussion,
the following assumptions are further made:

• Assume that all the aircraft are flying at the same altitude,
i.e., the battlefield environment is two-dimensional(2D).

• Assume that all the aircraft are flying at constant speed, not
considering the speed’s change or adjustment, we set the
flight speed of the unmanned aircraft to 200m/s and the flight
speed of manned-aircraft to 400m/s in this paper.

• Assume that the threat range of all threat sources (i.e., three
enemy unmanned aircraft UAV1, UAV2 and UAV3) becomes
a circle centered on their position coordinates at the current
moment and with a radius of their mounted missile range.

• Assume that the performance of the missiles mounted on
UAV0 is superior to that of enemy aircraft, which allows us
to ensure priority strikes. It is further stipulated that the
missile range of UAV0 is 5 km, the missile range of enemy
manned-aircraft is 4 km, and the missile range of enemy
UAV is 3 km.

• Assume that the enemy aircraft’s maneuvering strategy is
irregular patrol, irregular change of course, and adjustment
of course when encountering the border.

• All the aircraft are considered as mass points in the map.

2.2 Environment modeling
Using a 20KM × 20KM bounded airspace (the center as the origin
(0,0)) to construct a two-dimensional coordinate system. At the
initial moment (t= 0), set UAV0’s initial track angle be 45 degrees
(counterclockwise in the positive direction of the x-axis of the
coordinate system) and all enemy aircraft’s initial track angle be
225 degrees, set UAV0’s, manned-aircraft’s, UAV1’s, UAV2’s and
UAV3’s position coordinates be (-9000.0, -9000.0), (9000.0, 9000.0),
(-7000.0, 7000.0), (0.0, 0.0) and (7000.0, -7000.0) respectively. Any
second after initial moment (t > 0), define UAV0’s track angle and
position coordinate as 𝜑 t and (x0, y0)t, define manned-aircraft’s,
UAV1’s, UAV2’s and UAV3’s position coordinates as (x1,y1)t, (x2,y2)t,
(x3,y3)t and (x4,y4)t. The enemy aircraft random changes its track
angle every 10s and the change satisfies the maximum yaw angle
constraint.

Figure 1 shows the air warfare posture at the initial moment.
The symbols and lines are explained by legends on the right side of
the figure.

2.3 Constraints
Single UAV online path planning constraints usually include two
categories of self-related constraints and mission environment-
related constraints, compared with UAV swarm cooperative online
path planning, the multi-aircraft cooperation-related constraints
are no need to consider.

2.3.1 Self-related Constraints. Self-related constraints mainly in-
clude yaw angle constraint, climb/dive angle constraint, flight speed
constraint, flight altitude constraint, minimum path segment con-
straint, maximum distance constraint (also be expressed as fuel

Figure 1: The air warfare posture at the initial moment.

constraint), etc. These constraints are merely related to the UAV’s
own flight control and platform parameters, and can also be re-
garded as the hardware constraints. Specifically, the maximum yaw
angle constraint and the minimum path segment constraint are the
most relevant constraint for the problem set in this paper.

• Maximum yaw angle constraint
For i= 1, 2, ..., m, define the track angle of UAV0 on Pi-1Pi path

segment (P0 is viewed as the starting point S of the path planning)
as 𝜑 i and the track angle of UAV0 on PiPi+1 path segment (Pm+1 is
viewed as the end point T of the path planning) as 𝜑 i+1. Then the
yaw angle of UAV0 at point Pi could defined as Δ𝜑 i, so there are
inequality constraint as below:

Δ𝜑𝑖 = |𝜑𝑖+1 − 𝜑𝑖 | ≤ Δ𝜑max ∀𝑖 = 1, 2, ...,𝑚 (1)

In this research, Δ𝜑max will be set as 30 degrees.
• Minimum path segment constraint

For i= 1, 2, ..., m+1, define the length of Pi-1Pi segment of the
path (as mentioned above, P0 represents the planning starting point
S and Pm+1 represents the planning ending point T) as Si, then there
is the constraint as below:

𝑆𝑖 ≥ 𝑆min ∀𝑖 = 1, 2, ...,𝑚 + 1 (2)

In this research, Smin will be set as 500 meters.

2.3.2 Mission Environment-related Constraints. The mission
environment-related constraints mainly include mission boundary
constraints, terrain constraints, no-fly zone constraints, obstacle
constraints, electronic interference constraints, threat source
constraints, etc. Since the problem context assumed in this paper
is free high altitude confrontation, only the mission boundary
constraint and the threat source constraint are considered.

• Mission boundary constraint
For i= 1, 2, ..., m, define the position coordinate of the planning

path points Pi as (xi,yi), so we get mission boundary constraint:

−10000 ≤ 𝑥𝑖 , 𝑦𝑖 ≤ 10000 ∀𝑖 = 1, 2, ...,𝑚 (3)

• Threat source constraint
For i= 1, 2, ..., m+1, assume Pij is one point on Pi-1Pi segment

of the path which be the closest point to the threat source center
Threatj (again, P0 is the planning starting point S and Pm+1 is the
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planning ending point T), then the minimum distance dij between
Pij and Tj can be calculated by the following equation:

𝑑𝑖 𝑗 =



���−−−−−→𝑃𝑖−1𝑇𝑗
��� 𝑖 𝑓

−−−−→
𝑃𝑖−1𝑇𝑗 ·

−−−−→
𝑃𝑖−1𝑃𝑖���−−−−→𝑃𝑖−1𝑃𝑖
���2 ≤ 0���−−−→𝑃𝑖𝑇𝑗 ��� 𝑖 𝑓

−−−−→
𝑃𝑖−1𝑇𝑗 ·

−−−−→
𝑃𝑖−1𝑃𝑖���−−−−→𝑃𝑖−1𝑃𝑖
���2 ≥ 1���−−−−→𝑃𝑖𝑥𝑇𝑗

��� 𝑖 𝑓 0 <

−−−−→
𝑃𝑖−1𝑇𝑗 ·

−−−−→
𝑃𝑖−1𝑃𝑖���−−−−→𝑃𝑖−1𝑃𝑖
���2 < 1

(4)

Where Pix is the vertical foot point from Tj to the path segment
Pi-1Pi.

Thus, the threat source constraint is obtained as follows:

𝑑𝑖 𝑗 > 𝑟 𝑗 ∀𝑖 = 1, 2, ...,𝑚 + 1;∀𝑗 (5)

Further, rj is the threat radius of threat source j, which corre-
sponds to the enemy UAVs’ missile range and is uniformly 3km in
this paper.

2.4 Objective Cost Function
The design of the objective cost function for the UAV online path
planning problem usually depends on the specific mission require-
ments and the selection preferences of the command decisionmaker,
even though, in academic, the most commonly cost functions are
distance cost, time cost, threat cost and path feasibility cost.

Regardless of the choice of one or more objective costs, and
regardless of how exactly the objective cost function is designed,
the objective cost function basically boils down to the following
general expression:

min 𝐹 =

𝑛∑︁
𝑖

𝜔𝑖 𝐽𝑖 (6)

Where, F denotes the composite cost, i.e., the objective function
of the optimization problem; Ji denotes a specific cost, 𝜔 i is its
weight coefficient, and there is:

𝑛∑︁
𝑖

𝜔𝑖 = 1 (7)

If the optimization is not weighted by subcost but is split sepa-
rately, it needs to be solved optimally as a multi-objective optimiza-
tion problem.

In this paper, the objective cost function is designed as following:

min 𝐹 = 0.2 ×
𝑚∑︁
𝑖=1

𝐹𝜑𝑖
+ 0.3 ×

𝑚+1∑︁
𝑖=1

𝐹𝑆𝑖 + 0.5 ×
∑︁
𝑗

𝑚+1∑︁
𝑖=1

𝐹𝑇ℎ𝑟𝑒𝑎𝑡𝑖 𝑗 (8)

Of which, F𝜑 i denotes the yaw angle cost of path segment Pi-1Pi
and satisfies:

𝐹𝜑𝑖
=

{
Δ𝜑𝑖 ifΔ𝜑𝑖 ≤ Δ𝜑max
∞ ifΔ𝜑𝑖 > Δ𝜑max

(9)

FSi represents the length cost of path segment Pi-1Pi and satisfies:

𝐹𝑆𝑖 =

{
𝑆𝑖 if𝑆𝑖 ≥ 𝑆min
∞ if𝑆𝑖 < 𝑆min

(10)

FThreatij means the threat cost of path segment Pi-1Pi subject to
the threat source Tj and satisfies:

𝐹𝑇ℎ𝑟𝑒𝑎𝑡𝑖 𝑗 =

{
𝑟 𝑗/𝑑𝑖 𝑗 if𝑑𝑖 𝑗 > 𝑟 𝑗
∞ if𝑑𝑖 𝑗 ≤ 𝑟 𝑗

(11)

Figure 2: Schematic diagram of receding horizon con-
trol. (https://link.springer.com/article/10.1007/s12544-014-
0140-6)

3 RECEDING HORIZON CONTROL METHOD
Since the mission targets in the modeled single UAV online path
planning problem are all dynamic moving platforms, the previous
offline path planning algorithms are no longer applicable to it. At
the same time, the amount of computation required for each path
planning is very large, and how to maintain the real-time path
planning according to the changing air combat posture during the
execution of task becomes the key problem and core difficulty of
online path planning in dynamic mission environment.

To this end, this paper intends to make an attempt to solve the
problem based on the receding horizon control method.

Receding horizon control, also known as Model Predictive Con-
trol (MPC), proposed by Richalet J and Rault A et al [16], is a modern
control theory developed and improved in the late 1970s, mainly
aim at the uncertainty caused by model mismatch, distortion, per-
turbation or other reasons, it is a method to split a large-scale
complex global optimization problem into a series of small-scale
simple local optimization problems in a time-rolling manner, re-
flecting the idea of "simplifying the complexity". At present, it has
been applied academically to the problem of UAV path planning,
reference the job in [17].

Specifically, for the application of RHC in UAV online path plan-
ning, as shown in Figure 2 By selecting a fixed prediction domain
first, the optimal path is predicted in this domain, meanwhile, set
a determined control time domain Δt, in this control time domain
the UAV will not need to re-plan the path but fly according to the
predicted optimal path in the prediction domain. Once the control
time domain is exceeded at the next moment, the predicted domain
and the control time domain for the next phase are redefined, and
so on, until the UAV reaches the position of the mission target.

The disassembly process steps are as follows:

• Assume current time is tk, based on the current UAV0’s posi-
tion S(tk) and manned-aircraft’s position T(tk), the optimal
Path(tk) of the UAV0 from S(tk) to T(tk) is solved optimally
in a finite time domain [t,t+x], x is an unknown variable, and
we don’t care it’s value.

• Select the previous part of the trajectory represented by the
time domain [tk: tk+1] in the Path(tk) as the reference flight
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path of the UAV0, during the period we need not to re-plan
the path.

• At the moment tk+1, the new optimal Path(tk+1) of the UAV0
from the current position S(tk+1) to the manned-aircraft’s
current position T(tk+1) is solved optimally in a finite time
domain [tk+1, tk+1+y], also, y is an unknown variable.

• Starting from the time tk+2, repeat the above steps until
triggering the termination condition of iteration. Here, is
the situation when manned-aircraft arrived within UAV0’s
missile range.

Although the introduction of RHC into online path planning can
solve the problem that the original planning path cannot be applied
to the new mission environment due to the dynamic change of
the mission environment, and ensure the real-time performance of
online path planning. However, since RHC is a continuous local op-
timization process with time-rolling manner, which is similar to the
greedy algorithm, the final output trajectory cannot be guaranteed
to be globally optimal.

4 IMPROVEDWOLF PACK ALGORITHM
Wolf Pack Algorithm (WPA) is a swarm intelligence algorithm
emerging in recent years, firstly proposed by Yang et al in 2007 [18],
and later improved by Wu Husheng et al [19]. It is a bionic intelli-
gence optimization algorithm inspired by the hunting process of
wolves and abstracts three intelligent behaviors of wandering, sum-
moning and besieging, as well as the "winner is the king" head wolf
generation rule and "survival of the strongest" wolf pack renewal
mechanism.

4.1 Principle of wolf pack algorithm
Thewolf pack algorithm draws on the collaborative hunting process
of searching prey, summoning companions and besieging prey of
wolves and the role differences within the pack based on different
division of responsibilities. The artificial wolves are designed with
three kinds of responsibilities: head wolf, scout wolf and fierce wolf,
which can be transformed into each other under certain conditions,
among which: head wolf is the leader of the pack and is responsible
for commanding and deciding; scout wolf is the elite of the pack
and is responsible for searching prey scent; fierce wolf is the main
force of the pack and is responsible for specific hunting activities.
Through further abstraction of the intelligent collaborative behavior
within the wolf pack and simulation of the survival law of the wolf
pack, the final inspiration is applied to the whole process of solving
the optimization problem and searching for the optimized solution.

Specifically, the algorithmic process of the WPA consists of the
following components:

4.1.1 Random Initialization of Artificial Wolf Packs. Suppose the
dimension of the solution space of the optimization problem Y=
f(X) to be solved is D. Further, let the artificial wolf pack size be n
and the initial iteration round k= 0, generates n artificial wolves in
the solution space using random initialization, which are X1 to Xn.
Then for any artificial wolf Xi, it can be expressed as Xi= (xi1, xi2,
..., xid, ..., xiD). For the objective function Y= f(X), let maximization
be the optimization direction, and the artificial wolves search the
magnitude of the objective function value as the prey odor concen-
tration, while assuming that the distance between different artificial

wolves is defined as the Manhattan distance between their state
vectors.

4.1.2 The "Winner Is The King" Rule For Head Wolf Generation.
In the initial solution space, the prey odor concentration at the
location of all randomly initialized artificial wolves is calculated,
and the artificial wolf with the highest odor concentration is pushed
to be the head wolf; in the process of subsequent iterations, the
wolf pack will repeat the pushing process, and if the artificial wolf
with the highest prey odor concentration in this round is higher
than the odor concentration at the location of the head wolf in the
previous round, the artificial wolf will be pushed to be the new
head wolf. The head wolf does not perform the following three
intelligent behaviors and goes directly to the next iteration of head
wolf pushing until it is replaced by other stronger new head wolf.

4.1.3 Wandering Behavior. The n_s artificial wolves in this iter-
ation round except the head wolf are taken as scout wolves for
searching prey in the solution space, n_s are randomly taken as
integers between [n/(𝛼+1), n/𝛼], and 𝛼 is the scaling factor of scout
wolves. The prey odor concentration Yi at the location of each
scout wolf i is calculated and compared with the prey odor concen-
tration Yleader at the location of the head wolf. If Yi> Yleader, the
wolf will take the position of the head wolf and update Yleader=
Yi, and the new head wolf will initiate the summoning behavior; if
Yi<= Yleader, the wolf will try to take one step in the surrounding h
directions with a fixed wandering stepa and record the prey odor
concentration at each new location and then return to the original
location, then the wolf will follow p (p= 1,2,...,h) direction and the
new location after wandering is:

𝑥
𝑝

𝑖𝑑
= 𝑥𝑖𝑑 + sin(2𝜋 × 𝑝

ℎ
) × 𝑠𝑡𝑒𝑝𝑎

𝑑
(12)

Let the prey odor concentration of the new location at this time
be Yip, if the maximum prey odor concentration after wandering
one step in h directions is greater than the prey odor concentration
of the original location, the scout wolf goes to the new location and
updates until the prey odor concentration Yi perceived by the scout
wolf i satisfies Yi > Yleader, or its wandering times W_T reach the
upper limit W_Tmax.

4.1.4 Summoning Behavior. Later in each iteration, the head wolf
initiates a summons to all fiercewolves. The number of fiercewolves
is n_m= n - n_s -1. The fierce wolves approach the head wolf’s
location with a fixed running stepb after receiving the head wolf’s
summons, and the d-dimensional location update is performed
according to the following equation for any fierce wolf j in k+1
iterations:

𝑥𝑘+1
𝑗𝑑

= 𝑥𝑘
𝑗𝑑

+ 𝑠𝑡𝑒𝑝𝑏
𝑑
× (𝑔𝑘

𝑑
− 𝑥𝑘

𝑗𝑑
)/
���𝑔𝑘𝑑 − 𝑥𝑘

𝑗𝑑

��� (13)

Where gkd denotes the dth dimensional component of the head
wolf’s kth round coordinate vector. Partly similar to the wandering
behavior of scout wolves, when the prey odor concentration in the
new location of fierce wolf j after running is greater than the prey
odor concentration in the location of head wolf, i.e., Yj> Yleader,
then fierce wolf j becomes the new head wolf; conversely, if Yj<=
Yleader, calculate whether the distance djl from the location of fierce
wolf j to the location of head wolf after this round of running is
smaller than the judging distance dnear, if it is smaller, then the fierce
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wolf will change from running behavior to besieging behavior. The
judging distance dnear will be calculated by the following formula:

𝑑𝑛𝑒𝑎𝑟 =
1

𝐷 × 𝜔
×

𝐷∑︁
𝑑=1

|𝑀𝑎𝑥𝑑 −𝑀𝑖𝑛𝑑 | (14)

The value of𝜔 , which is the distance determination factor, largely
determines the convergence speed of the wolf pack algorithm. In
general, the larger the value of 𝜔 , the faster the convergence speed
of the wolf pack algorithm, however, too large a value of 𝜔 can also
make the algorithm lack local search ability and thus cannot enter
the besieging behavior. Maxd and Mind denote the upper and lower
bounds of the dth dimension of the solution space, respectively.

4.1.5 Besieging Behavior. The besieging behavior represents the
hunting activity of the wolf pack for the prey. At this time, the loca-
tion of the head wolf (with the strongest prey odor concentration) is
regarded as the prey location, and if the number of iterative rounds
is k, the location can be written as gk, and gkd denotes the dth
dimensional component of the head wolf’s kth round coordinate
vector. Then, after entering the besieging behavior, the location
update formula of all artificial wolves except the head wolf in (k+1)
th round is as follows:

𝑥𝑘+1
𝑖𝑑

= 𝑥𝑘
𝑖𝑑

+ 𝜆 × 𝑠𝑡𝑒𝑝𝑐
𝑑
×
���𝑔𝑘𝑑 − 𝑥𝑘

𝑖𝑑

��� (15)

Where 𝜆 is a random number uniformly distributed in the inter-
val of [-1,1]; stepc is the siege step; if the prey odor concentration
at the location of the artificial wolf in the current round after the
implementation of besieging behavior is greater than the prey odor
concentration at the location of the previous round, the location of
this artificial wolf is updated.

The wandering stepa, running stepb and besieging stepc involved
in the above three intelligent behaviors have the following relation-
ships:

𝑠𝑡𝑒𝑝𝑎
𝑑
=
𝑠𝑡𝑒𝑝𝑏

𝑑

2
= 2𝑠𝑡𝑒𝑝𝑐

𝑑
=

|𝑀𝑎𝑥𝑑 −𝑀𝑖𝑛𝑑 |
𝐶

(16)

where C denotes the step size factor, and its size determines the
search accuracy of the wolf pack algorithm.

4.1.6 The Wolf Pack Renewal Mechanism of "Survival of The
Strongest". At the end of each iteration, the wolf pack is updated
according to the principle of "survival of the strongest", when the R
artificial wolves with the lowest prey odor concentration (objective
function value) are selected for elimination, while R new artificial
wolves are randomly generated. The choice of the value of R is the
trade-off between the global search ability and local search ability
of the wolf pack algorithm, and is usually taken as random integers
within [n/(2𝛽), n/𝛽], and 𝛽 is the wolf update proportionality factor.

4.2 Improvements to the wolf pack algorithm
4.2.1 Synchronous Adaptive step Adjustment Mechanism Based on
Step Phase Factor. In the wandering, summoning and besieging
behaviors of the wolf pack algorithm, the associated wandering
stepa , running stepb and besieging stepc are all fixed vectors. The
setting of these steps affects the search ability and convergence
speed of the algorithm itself to a large extent. If the step size is
set too large, it will easily affect the convergence of the algorithm
in the later stage; if the step size is set too small, it will lead to

slower search in the early stage of the algorithm and inefficiency
of the algorithm. It can be seen that it is difficult to balance the
performance requirements of the early stage of the algorithm and
the late stage of the algorithm by using a fixed step size factor C
in the whole iterative process of the wolf pack algorithm, which
seems too rigid. However, if the adaptive improvement design is
made for each of the three step size parameters, it is easy to lose the
coordination among the parameters and violate the proportional
relationship shown in formula (16).

Therefore, we purposes to adjust the step size factor C adap-
tively, and complete the synchronous adaptive adjustment for the
three step lengths of wandering stepa, running stepb and besieg-
ing stepc by introducing the phase factor e(k/kmax). The improved
synchronous adaptive step adjustment formula is as follows:

𝑠𝑡𝑒𝑝𝑎
𝑑
=
𝑠𝑡𝑒𝑝𝑏

𝑑

2
= 2𝑠𝑡𝑒𝑝𝑐

𝑑
=

|𝑀𝑎𝑥𝑑 −𝑀𝑖𝑛𝑑 |

(𝑒
𝑘

𝑘𝑚𝑎𝑥 )𝐶
(17)

It can be seen that as the number of iterations increases, the
three step sizes will be reduced adaptively in the same proportion,
which ensures the "coarse before and fine after" iteration of the algo-
rithm and compensates for the imbalance between the global search
capability and the convergence speed of the original algorithm.

4.2.2 Improvement of Scout Wolf’s Wandering Behavior. In WPA,
the setting of the search direction number h of wandering behavior
has a great influence on the local search ability of the algorithm.
The larger the value of wandering direction h is set, the higher
the search accuracy of the wolf pack algorithm will be, but due
to the increase of computation, it in turn limits the efficiency of
the algorithm and also tends to increase the possibility of falling
into local optimum. In general, the optimization algorithm should
focus more on the search ability in the early stage and more on
the convergence ability in the later stage of the iteration. To this
end, a phase factor ⌈ln(kmax/k+1)⌉ can be similarly introduced
for h so that it can be gradually reduced with the increase in the
number of algorithm iterations. The improved wandering behavior
is formulated as follows:

𝑥
𝑝

𝑖𝑑
= 𝑥𝑖𝑑 + sin(2𝜋 × 𝑝

ℎ′
) × 𝑠𝑡𝑒𝑝𝑎

𝑑
(18)

At last, actually, we could find out that the improved WPA is
consistent with the original algorithm in terms of algorithm steps,
and the difference only lies in the adaptive change of parameters.

5 2D-EQUAL-STEP PATH GENERATION
METHOD

The 2D-equal-step path generation method was proposed by Zhu
W et al in 2013 [20] and is used in combination with the chaotic
biological predator algorithm to optimally solve the 2D spatial UAV
path planning problem presented in that paper, and the final result
was satisfactory. Inspired by the method, this paper intends to com-
bine it with the receding horizon control method and the improved
WPA for an attempted solution of single UAV online path planning
for moving mission targets in dynamic mission environment.

The following describes the step-by-step ideas of the method:
• Determine the planning starting point S (UAV0’s current
position) and the end point T (moving mission’s current
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Figure 3: Coordinate transformation of 2D-equal-step path
generation. [20]

position) for two-dimensional spatial path planning, connect
ST and equate ST into (m+1) segments by m equidistant
interval points, and the length of each segment, i.e., the
planning step length d=|ST|/(m+1).

• At each equidistant interval point make m lines L1, L2, ...,
Lk, ..., Lm perpendicular to ST, respectively, using (x1,y1),
(x2,y2), ..., (xk,yk), ..., (xm,ym) denote any point on these m
lines, the 2D-equal-step path can be expressed as a sequential
connection of the following discrete points:

𝑃𝑎𝑡ℎ = {𝑆 → (𝑥1, 𝑦1) → (𝑥2, 𝑦2) → ... → (𝑥𝑘 , 𝑦𝑘 ) → ... → (𝑥m, 𝑦m) → 𝑇 }
(19)

• Coordinate transformation of the 2D space, the transformed
coordinate system takes S as the origin and ST as the hori-
zontal axis, as shown in Figure 3. The conversion equation
is as follows as:

[𝑥
′
𝑘

𝑦′
𝑘

] = [ cos𝜃 sin𝜃
− sin𝜃 cos𝜃 ] [

𝑥𝑘 − 𝑥𝑠
𝑦𝑘 − 𝑦𝑠

] (20)

where (xs,ys) is the coordinate of the planning starting point S in
original coordinate system, (xk,yk) is the coordinate of any point
on Lk in original coordinate system; (x’k,y’k) is the new coordinate
after coordinate transformation of (xk,yk); 𝜃 is the angle between
the x-axis of the original coordinate system and the x-axis(ST) of the
new coordinate system, which can be calculated by the following
equation:

𝜃 = arctan
(
𝑦𝑡 − 𝑦𝑠

𝑥𝑡 − 𝑥𝑠

)
(20)

where (xt,yt) is the original coordinate of the task endpoint T.
• Since the horizontal coordinates of the path points are all
known to be fixed in the new coordinate system, the path
points’ coordinates that need to be solved optimally after
coordinate conversion are their vertical coordinates merely,
i.e. {y’1, y’2, ..., y’m}, which greatly reduces the complexity
of the solution.

At the present stage, the selection of traditional path planning
algorithms is very dependent on the digital map modeled by the
path planning problem. For example: the application of probabilistic
sampling algorithms such as PRM algorithm and RRT algorithm

require modeling based on probabilistic maps; the application of
direct search algorithms such as Dijkstra algorithm, A* algorithm
and D* algorithm requires modeling based on static road network
maps (among them the rasterized digital maps is the most widely
used); the application of Voronoi diagram algorithm and artificial
potential field algorithm are based on their respective specific mod-
eling maps. While as for the intelligent optimization algorithms,
especially the swarm intelligence algorithms, the solution to the
path planning problem is mainly based on the optimization of the
objective cost function with constraints, which is different from
the traditional path planning algorithms to a large extent. In lay-
man’s terms, this means that the application of swarm intelligence
algorithms for UAV path planning has no additional requirements
on the modeling of digital maps, which makes it possible to have
the advantages of fast real-time and easy computation required for
online path planning problems.

Meantime, the 2D-equal-step path generationmethod introduced
in previous can further enhance the computational advantages of
the swarm intelligence algorithm applied to the UAV online path
planning problem, which is mainly achieved by dimensionality re-
duction of the mapping from the original 2D solution space to the
1D solution space. Thus, by combining the 2D-equal-step path gen-
eration method with the improved WPA, the complexity of digital
map modeling is reduced on the one hand, and the optimization dif-
ficulty of the original intelligent optimization algorithm is reduced
on the other hand, thus ensuring the real-time performance and
possibility of UAV online path planning under the receding horizon
control mechanism.

6 SIMULATION EXPERIMENT
In order to verify the research idea of "the improved wolf pack
algorithm combining with the receding horizon control method
and 2D-eaual-step path generation method can solve the single
UAV online path planning problem for moving mission targets in
dynamic mission environment", and to compare the performance
difference between the improved wolf pack algorithm and the basic
wolf pack algorithm when applied to the path planning problem
modeled in chapter two of this paper, series of experiments are
conducted in a Python programming environment on a Linux Server
with four 2.8 GHz CPU (P4 Xeon).

The initial parameters of both WPA and improved WPA are set
as Table 1 display:

Figure 4 shows the planning path of the basic WPA combined
with RHC and 2D-equal-step method from the initial posture (t= 0)
to the terminal posture (t= 47), Figure 5 shows the planning path of
the improved WPA combined with RHC and 2D-equal-step method
from the initial posture (t= 0) to the terminal posture (t= 38).

We could find that, on the whole, both basic WPA and improved
WPA have well planned the flight path to avoid all the threat sources
for UAV0. However, the planned path of the latter is smoother and
more robust than that of the former (though it is not obviously
between the comparison of first subgraph or second subgraph, yet
no more hide in the comparison of third subgraph). Actually, the
fifth segments of the planed path by WPA in the third subgraph of
Figure 4 visibly violate the maximum yaw angle constraint intro-
duced in chapter 2, hence this path should not be regarded as valid
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Table 1: The initial parameters of WPA and improved WPA

Parameters of WPA The Initial Value Parameters of Improved WPA The Initial Value

n: Artificial Wolf Pack Size 100 n: Artificial Wolf Pack Size 100
k: Initial Iteration Round 0 k: Initial Iteration Round 0
D: The Dimension of Solution Space1 9 D: The Dimension of Solution Space1 9
𝛼 : Scaling Factor of Scout Wolves 4 𝛼 : Scaling Factor of Scout Wolves 4
h: The Number of Wandering Direction 10 h: The Number of Wandering Direction 10
W_Tmax: Maximum Wandering Times 30 W_Tmax: Maximum Wandering Times 30
𝜔 : Distance Determination Factor 0.01 𝜔 : Distance Determination Factor 0.01
C: Step Size Factor 100 C: Step Size Factor 100
𝛽 : Wolf Update Proportionality Factor 6 𝛽 : Wolf Update Proportionality Factor 6
kmax: Maximum Iterations 200 kmax: Maximum Iterations 200

1 It is also the number of path points of planning path.

Figure 4: The air warfare posture from the initial moment to the teminal moment for the basic WPA.

result. And throughout the whole planning process, the UAV0’s
RHC path planed by improved WPA is always out of the enemies’
missile range, which ensures priority strikes and finally completed
the strike mission against the target of moving manned aircraft,
while, the UAV0’s RHC path planed by basic WPA is not.

We could further find the difference in performance between the
two algorithms from the Figure 6 below, which reveals that the im-
proved WPA is much faster than the basic WPA in the convergence
rate.

7 CONCLUSIONS
In this paper,an algorithm based on the improved wolf pack algo-
rithm combined with receding horizon control method and 2D-
equal-step path generation method was proposed for solving the
single UAV online path planning problem aiming at moving targets
in dynamic mission environment. The generated path can ensure
the maximum safety with the minimum fuel cost and steering cost
of UAVwithin the various constraints, as shown in the simulation re-
sults. Meanwhile, this algorithm ensures the real-time performance
and possibility of UAV online path planning through combination

of various methods. Further, the comparative simulation between
basic WPA and improved WPA also indicates that the latter is more
powerful and efficient than the former in solving previous problem.

Our future work will focus on the extensive application of our
proposed method in UAV swarm online path planning, which is a
challenging issues for next stage.
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