
Exploring Over-smoothing in Graph Attention Networks from
the Markov Chain Perspective

Weichen Zhao

Chenguang Wang

Congying Han
∗

Tiande Guo

zhaoweichen14@mails.ucas.ac.cn

wangchenguang19@mails.ucas.ac.cn

hancy@ucas.ac.cn

tdguo@ucas.ac.cn

School of Mathematical Sciences University of Chinese Academy of Sciences (UCAS)

Shijingshan Qu, Beijing Shi, China

ABSTRACT
The over-smoothing problem causing the depth limitation is an ob-

stacle of developing deep graph neural network (GNN). Compared

with Graph Convolutional Networks (GCN), over-smoothing in

Graph Attention Network (GAT) has not drawed enough attention.

In this work, we analyze the over-smoothing problem in GAT from

the Markov chain perspective. First we establish a connection be-

tween GAT and a time-inhomogeneous random walk on the graph.

Then we show that the GAT is not always over-smoothing using

conclusions in the time-inhomogeneous Markov chain. Finally, we

derive a sufficient condition for GAT to avoid over-smoothing in

the Markovian sense based on our findings about the existence of

the limiting distribution of the time-inhomogeneous Markov chain.

We design experiments to verify our theoretical findings. Results

show that our proposed sufficient condition can effectively improve

over-smoothing problem in GAT and enhance the performance of

the model.
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1 INTRODUCTION
Graph neural networks [3, 7, 12, 20] have achieved great success

in processing graph data which is rich in information about the

relationships between objects. GAT [20] is one of the most repre-

sentative GNN models. It introduces the attention mechanism into

GNN and inspires a class of attention-based GNN models [1, 13, 23].

The deepening of the network has brought about changes in

neural networks and caused a boom in deep learning. Unlike typical

deep neural networks, in the training of graph neural networks,

researchers have found that the performance of GNN decreases

instead as the depth increases. There are several possible reasons

for the depth limitations of GNN. Li et al. [16] first attribute this

anomaly to over-smoothing, a phenomenon in which the repre-

sentations of different nodes tend to be consistent as the network

deepens, leading to indistinguishable node representations. Many

researchers have studied this problem and proposed some improve-

ment methods [4–6, 16–18, 24]. However, the research of the over-

smoothing problem has mostly focused on graph convolutional

network. There is a lack of unique analysis of over-smoothing in

GAT and corresponding improvement methods.

Noting the Markov property of the forward propagation process

of GNNs and considering the node set as a state space, in this work,

we connect GAT with a time-inhomogeneous random walk on

the graph. Considering the nodes’ representations as distributions

on the state space, we interpret the over-smoothing in GAT as

the convergence of the representation distribution to the limiting

distribution. Using conclusions of the time-inhomogeneous Markov

chain, we show that GAT does not necessarily suffer from over-

smoothing in the Markovian sense. Further, we prove a necessary

condition for the existence of the limiting distribution. Based on

this conclusion, we derive a sufficient condition for GAT to avoid

over-smoothing.

We verify our conclusions on the benchmark datasets. Based on

the sufficient condition, we propose a regularization termwhich can

be flexibly added to the training of the neural network. Results show

that our proposed sufficient condition can significantly improve

the performance of GAT. In addition, the representation learned by
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different nodes is more inconsistent after adding the regularization

term, which indicates that the over-smoothing in GAT is improved.

Contributions. In summary, our contributions are as follows:

• Weestablish a connection betweenGAT and a time-inhomogeneous

random walk on the graph. Then we show that GAT is not

always over-smoothing in the Markovian sense (Section 3).

• We study the existence of limiting distributions of the time-

inhomogeneous Markov chain. And based on this, we give a

sufficient condition for GAT to avoid over-smoothing (Sec-

tion 4 and Theorem 4.1, 4.2).

• We propose a regularization term based on this sufficient

condition, which can be simply and flexibly added to the

training of GAT, and experimentally verify that our proposed

condition can improve the model performance by solving

the over-smoothing problem of GAT (Section 5).

Notation. Let G = (V, E) be a connected non-bipartite graph,

whereV := {1, 2, . . . , 𝑁 } is the node set, E is the edge set, 𝑁 = |V|
is the number of nodes. If there are connected edges between nodes

𝑢, 𝑣 ∈ V , then denote by (𝑢, 𝑣) ∈ E. deg(𝑢) denotes the degree

of node 𝑢 ∈ V and N(𝑣) denotes the neighbors of node 𝑣 . The

corresponding adjacency matrix is 𝐴 and the degree matrix is 𝐷 .

Let (Ω,ℱ, P) be a probability space, (M,ℳ) be a finite state space.
®𝑥 = {𝑥𝑛, 𝑛 ∈ T } is a stochastic process taking values in M. T is a

time parameter set. 𝑃 (𝑖, 𝑗) denotes the element 𝑖, 𝑗 of matrix 𝑃 .

2 RELATEDWORK
In this section, we introduce graph attention network and the re-

lated work of over-smoothing.

2.1 Graph Attention Network
GAT [20] establishes attention functions between nodes 𝑢 and 𝑣

with connected edges (𝑢, 𝑣) ∈ E

𝛼
(𝑙 )
𝑢,𝑣 =

exp(𝜙 (𝑙 ) (ℎ (𝑙−1)𝑢 , ℎ
(𝑙−1)
𝑣 ))∑

𝑘∈N(𝑢 ) exp(𝜙 (𝑙 ) (ℎ (𝑙−1)𝑢 , ℎ
(𝑙−1)
𝑘

))
(1)

where ℎ
(𝑙 )
𝑢 ∈ R𝐹 is the embedding for node 𝑢 at the layer 𝑙 and

𝜙 (𝑙 ) (ℎ (𝑙−1)𝑢 , ℎ
(𝑙−1)
𝑣 ) := LeakyReLU(aT [𝑊 (𝑙 )ℎ (𝑙−1)𝑢 ∥𝑊 (𝑙 )ℎ (𝑙−1)𝑣 ]),

where a ∈ R2𝐹 and𝑊 (𝑙 )
is the weight matrix. Then the GAT layer

is defined as

ℎ
(𝑙 )
𝑢 := 𝜎𝑊 (𝑙 )

(∑
𝑣∈N(𝑢 ) 𝛼

(𝑙 )
𝑢,𝑣ℎ

(𝑙−1)
𝑣

)
.

Written in matrix form

𝐻 (𝑙 ) = 𝜎𝑊 (𝑙 ) (𝑃 (𝑙 )
att

𝐻 (𝑙−1) ),

where 𝜎 is the activation function, 𝑃
(𝑙 )
att

∈ R𝑁×𝑁
is the atten-

tion matrix satisfying 𝑃
(𝑙 )
att

(𝑢, 𝑣) = 𝛼
(𝑙 )
𝑢,𝑣 if 𝑣 ∈ N (𝑢), otherwise

𝑃
(𝑙 )
att

(𝑢, 𝑣) = 0 and

∑𝑁
𝑣=1 𝑃

(𝑙 )
att

(𝑢, 𝑣) = 1.

2.2 Over-smoothing
There is a phenomenon that the GNN has better experimental

results in the shallow layer case, and instead do not work well in the

deep layer case. The researchers find that this is due to the fact that

during the GNN training process, the hidden layer representation

of each node tend to converge to the same value as the number of

layers increases. This phenomenon is called over-smoothing. This

problem affects the deepening of GNN layers and limits the further

development of GNN.

Intuitively, Zhao & Akoglu [24] proposes a normalization layer,

Pairnorm, to avoid node representations from becoming too similar.

Thus, the over-smoothing phenomenon is alleviated.

Another intuitive analysis of the over-smoothing is that as the

network is stacked, the model forgets the initial input features and

only updates the representations based on the structure of the graph

data. It is natural to think that the problem of the model forgetting

the initial features can be alleviated by reminding the network

what its previous features are. Many methods have been proposed

based on such intuitive analysis. The simplest one, Kipf & Welling

[12] propose to add residual connections to graph convolutional

networks. The node representations of the hidden layer 𝑙 are directly

added to the node representations of the previous layer to remind

the network not to forget the previous features. However, Chiang

et al. [6] argues that residual connectivity ignores the structure of

the graph and should be considered to reflect more the influence of

the weights of different neighboring nodes. So this work gives more

weight to the representations from the previous layer in themessage

passing of each GCN layer by improving the graph convolution

operator. Chen et al. [5]; Li et al. [14]; Xu et al. [22] also use this

idea.

Oono & Suzuki [17] connects the GCN with a dynamical system

and interprets the over-smoothing problem as the convergence of

the dynamical system to an invariant subspace. Rong et al. [18]

proposed DropEdge method based on the perspective of dynamical

system. The idea of DropEdge is to randomly drop some edges in

the original graph at each layer. This operation slows down the

convergence of the dynamical system to the invariant subspace.

Thus DropEdge method can alleviate the over-smoothing.

Most of the works on over-smoothing focus on GCN and ig-

nore the discussion of GAT. Wang et al. [21] first analyze the over-

smoothing problem in GAT and improve GAT via margin-based

constraints. However, we disagree with their conclusion that GAT

will be over-smoothing. We discuss this in detail in Section 3.

3 ANALYSIS OF OVER-SMOOTHING IN GAT
In this section, we analyze the over-smoothing problem in GAT

from the Markov chain perspective. We show that forward propa-

gation of GAT is a time-inhomogeneous random walk ®𝑣att on the

graph, and that over-smoothing is caused by the convergence of

the representation distribution to the limiting distribution. Next,

we show that GAT is not always oversmooth by analyzing that the

limiting distribution of ®𝑣att does not always exist.

3.1 Relationship between GAT and
time-inhomogeneous random walk

We first connect GAT with a time-inhomogeneous random walk

on the graph. The following defines the general random walk on

the graph.

Definition 3.1. Given a graph G and a starting node 𝑢 ∈ V ,

we select a neighbor 𝑣 ∈ N (𝑢) of it with positive probability
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𝑃 (1) (𝑢, 𝑣) > 0, and move to its neighbor. 𝑃 (1) (𝑢, 𝑣) satisfies∑︁
𝑣∈N(𝑢 )

𝑃 (1) (𝑢, 𝑣) = 1.

Then we repeat this process. 𝑃 (𝑡 ) (𝑢, 𝑣), 𝑡 = 1, 2, . . . is not always

the same. The random sequence of nodes selected this way is a

random walk on the graph.

Recalling the definition of GAT, we focus on its message pass-

ing 𝐻 (𝑙 ) = 𝑃
(𝑙 )
att

𝐻 (𝑙−1) 1
. Since 𝑃

(𝑙 )
att

(𝑢, 𝑣) ≥ 0 and

∑𝑁
𝑣=1 𝑃

(𝑙 )
att

(𝑢, 𝑣) =
1, 𝑃

(𝑙 )
att

is a one-step stochastic matrix of a random walk on the

graph. Moreover, since 𝑃
(𝑙 )
att

, 𝑙 = 1, 2, . . . is not the same, the for-

ward propagation process of node representations in GAT is a

time-inhomogeneous random walk on a graph, denoted as ®𝑣att.
It has the state space V and the family of stochastic matrices{
𝑃
(1)
att

, 𝑃
(2)
att

, . . . , 𝑃
(𝑙 )
att

, . . .

}
. The inconsistency of the nodes message

passing at each layer in GAT causes the time-inhomogeneousness

of the corresponding chain ®𝑣att, which is an important difference

between GAT and GNNs with consistent message passing such as

GCN.

Following is the general definition of the limiting distribution.

We use it to explain the over-smoothing problem.

Definition 3.2. Let ®𝑥 = {𝑥𝑛, 𝑛 ∈ T } be a time-inhomogeneous

Markov chain on a finite state spaceM, the initial distribution be

𝜇0 and the distribution of the chain ®𝑥 at moment 𝑛 be 𝜇𝑛 . 𝜋 is the

limiting distribution of the chain ®𝑥 , if 𝜇𝑛 → 𝜋, 𝑛 → ∞.

The node representation ℎ = {ℎ𝑢 , 𝑢 ∈ V} is viewed as a discrete
probability distribution over the node setV . If ®𝑣att has a limiting

distribution 𝜋 , then as the GAT propagates forward, the representa-

tion distribution converges to the limiting distribution. This causes

the potential over-smoothing problem in GAT. However, the limit-

ing distribution of the time-inhomogeneous Markov chain does not

always exist. We next discuss specifically the possibility of GAT to

avoid over-smoothing in Markovian sense.

3.2 GAT is not always over-smoothing
In this subsection, we first show that the conclusion that the GAT

will be over-smoothing cannot be proven.

The following theorem gives property of the family of stochas-

tic matrices

{
𝑃
(1)
att

, 𝑃
(2)
att

, . . . , 𝑃
(𝑙 )
att

, . . .

}
, shows the existence of sta-

tionary distribution of each graph attention matrix, and gives the

explicit expression of stationary distribution.

Theorem 3.3. There exists a unique probability distribution 𝜋 (𝑙 )

on V satisfies 𝜋 (𝑙 ) = 𝜋 (𝑙 )𝑃 (𝑙 )
att , 𝑙 = 1, 2, . . . , where 𝜋 (𝑙 ) (𝑢) =

deg
(𝑙 ) (𝑢 )∑

𝑘∈V deg
(𝑙 ) (𝑘 )

, deg(𝑙 ) (𝑢) = ∑
𝑧∈N(𝑢 ) exp(𝜙 (𝑙 ) (ℎ (𝑙−1)𝑢 , ℎ

(𝑙−1)
𝑧 )).

Previously, Wang et al. [21] discussed the over-smoothing prob-

lem in GAT and concluded that the GAT would over-smooth. Same

as our work, they viewed the 𝑃
(𝑙 )
att

at each layer as stochastic matrix

of a random walk on the graph. However, they ignore the fact that

the complete forward propagation process of GAT is essentially a

time-inhomogeneous random walk on the graph. The core theorem

1
Similar to Li et al. [16]; Wang et al. [21], we omit the activation function.

stating that the GAT will over-smooth in their work is flawed. In its

proof, the stationary distribution 𝜋 (𝑙 )
of the graph attention matrix

𝑃
(𝑙 )
att

for each layer is consistent, i.e.

𝜋 (1) = 𝜋 (2) = · · · = 𝜋 (𝑙 ) = · · · .
However, since each layer 𝜙 (𝑙 )

is different, by Theorem 3.3,

𝜋 (1) ≠ 𝜋 (2) ≠ · · · ≠ 𝜋 (𝑙 ) ≠ · · · .
The conclusion that the GAT will be over-smoothing cannot be

proven. Then we show that the GAT is not always over-smoothing.

Since over-smoothing in GAT is related to the limiting distribu-

tion of time-inhomogeneous random walk on the graph, we next

focus on the limiting distribution of ®𝑉att.
Compared to the time-homogeneous Markov chain, it is much

more difficult to investigate the limiting distribution of the time-

inhomogeneous chain. In order to study the convergence of the

probability distribution on the state space, we introduce the Do-

brushin contraction coefficient and theDobrushin inequality (Lemma

3.4). See [8] for proof.

Lemma 3.4. Let 𝜇 and 𝜈 be probability distributions on a finite
state space M and 𝑃 be a stochastic matrix, then

∥𝜇𝑃 − 𝜈𝑃 ∥1 ≤ 𝐶 (𝑃) ∥𝜇 − 𝜈 ∥1,
where 𝐶 (𝑃) := 1

2
sup𝑖, 𝑗

∑
𝑘∈M |𝑃 (𝑖, 𝑘) − 𝑃 ( 𝑗, 𝑘) | is called the

Dobrushin contraction coefficient of the stochastic matrix 𝑃 .

Bowerman et al. [2]; Huang et al. [10] discussed the limiting case

that an arbitrary initial distribution transfer according to a time-

inhomogeneous chain. The sufficient condition for the existence

of the limiting distribution is summarized in the following lemma.

See [8] for proof.

Lemma 3.5. Let ®𝑥 = {𝑥𝑛, 𝑛 ∈ T } be a time-inhomogeneous
Markov chain on a finite state space M with stochastic matrix 𝑃 (𝑛) .
If the following (1), (2) and (3𝐴) or (3𝐵) are satisfied

(1) There exists a stationary distribution 𝜋 (𝑛) when 𝑃 (𝑛) is treated
as a stochastic matrix of a time-homogeneous chain;

(2)

∑
𝑛 ∥𝜋 (𝑛) − 𝜋 (𝑛+1) ∥1 < ∞;

(3A) (Isaacson-Madsen condition) For any probability distribution
𝜇, 𝜈 onM and positive integer 𝑘

∥(𝜇 − 𝜈)𝑃 (𝑘 ) · · · 𝑃 (𝑛) ∥1 → 0, 𝑛 → ∞.

(3B) (Dobrushin condition) For any positive integers 𝑘

𝐶 (𝑃 (𝑘 ) · · · 𝑃 (𝑛) ) → 0, 𝑛 → ∞.

Then there exists a probability measure 𝜋 onM such that

(1) ∥𝜋 (𝑛) − 𝜋 ∥1 → 0, 𝑛 → ∞;

(2) Let the initial distribution be 𝜇0 and the distribution of the
chain ®𝑥 at step 𝑛 be 𝜇𝑛 := 𝜇𝑛−1𝑃 (𝑛) , then for any initial
distribution 𝜇0, we have

∥𝜇𝑛 − 𝜋 ∥1 → 0, 𝑛 → ∞,

Returning to GAT, for time-inhomogeneous randomwalk ®𝑣att, its
family of stochastic matrices {𝑃 (𝑙 )

att
} satisfies the condition (1) (The-

orem 3.3). However, the series of positive terms

∑
𝑙 ∥𝜋 (𝑙 ) − 𝜋 (𝑙+1) ∥

is possible to be divergent and the condition (2) of Lemma 3.5 can

not be guaranteed. Moreover, according to the definition of {𝑃 (𝑙 )
att

}
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Table 1: Results of GAT

datasets model

#layers

3 4 5 6 7 8

Cora

GAT 0.7773(±0.0054) 0.7602(±0.0166) 0.4821(±0.3021) 0.2774(±0.2542) 0.1672(±0.0780) 0.0958(±0.0059)
GAT-RT 0.7884(±0.0157) 0.7872(±0.0127) 0.7648(±0.0077) 0.6454(±0.2508) 0.3244(±0.2465) 0.1678(±0.0756)

Citeseer

GAT 0.6643(±0.0063) 0.6541(±0.0076) 0.3472(±0.2582) 0.2474(±0.1947) 0.1768(±0.0064) 0.1902(±0.0598)
GAT-RT 0.6678(±0.0157) 0.6692(±0.0072) 0.6208(±0.0380) 0.2706(±0.1884) 0.1915(±0.0200) 0.1864(±0.0229)

Pubmed

GAT 0.7616(±0.0115) 0.7534(±0.0114) 0.7653(±0.0072) 0.7468(±0.0084) 0.7468(±0.0045) 0.7076(±0.0112)
GAT-RT 0.7673(±0.0064) 0.7659(±0.0123) 0.7684(±0.0063) 0.7664(±0.0092) 0.7596(±0.0107) 0.7618(±0.0114)

ogbn-arxiv

GAT 0.7117(±0.0023) 0.7144(±0.0015) 0.7061(±0.0082) 0.6396(±0.1031) 0.4307(±0.1720) -

GAT-RT 0.7115(±0.0025) 0.7104(±0.0022) 0.7063(±0.0040) 0.6709(±0.0344) 0.5653(±0.1122) -

(Equation 1), neither the Isaacson-Madsen condition nor the Do-

brushin condition can be guaranteed. So the time-inhomogeneous

chain ®𝑣att does not always have a limiting distribution. This indi-

cates that GAT is not always over-smoothing.

4 SUFFICIENT CONDITION FOR GAT TO
AVOID OVER-SMOOTHING

In this section, we propose and prove a necessary condition for the

existence of limiting distribution for a time-inhomogeneousMarkov

chain. Then we apply this theoretical result to GAT and propose a

sufficient condition to ensure that GAT can avoid over-smoothing.

In the study of Markov chains, researchers usually focus on the

sufficient conditions for the existence of the limiting distribution.

And the case when the limiting distribution does not exist has rarely

been studied. We study the necessary conditions for the existence

of the limit distribution in order to obtain sufficient conditions for

its nonexistence.

The following theorem gives a necessary condition for the exis-

tence of the limit distribution of the time-inhomogeneous Markov

chain. Although other necessary conditions exist, Theorem 4.1 is

one of the most intuitive and simplest in form.

Theorem 4.1. Let ®𝑥 = {𝑥𝑛, 𝑛 ∈ T } be a time-inhomogeneous
Markov chain on a finite state spaceM, and write its 𝑛-step stochastic
matrix as 𝑃 (𝑛) , satisfying that, 𝑃 (𝑛) is irreducible and aperiodic, there
exists a unique stationary distribution 𝜋 (𝑛) as the time-homogeneous
transition matrix, and 𝐶 (𝑃 (𝑛) ) < 1. Let the initial distribution be 𝜇0
and the distribution of the chain ®𝑥 at step 𝑛 be 𝜇𝑛 := 𝜇𝑛−1𝑃 (𝑛) . Then

∥𝜋 (𝑛) − 𝜋 ∥ → 0, 𝑛 → ∞

is a necessary condition for existence of a probability distribution 𝜋

onM such that ∥𝜇𝑛 − 𝜋 ∥ → 0, 𝑛 → ∞.

We explain Theorem 4.1 intuitively. In the limit sense, transition

of 𝜇𝑛−1 satisfies lim

𝑛→∞
𝜇𝑛−1𝑃 (𝑛) = lim

𝑛→∞
𝜇𝑛 = lim

𝑛→∞
𝜇𝑛−1 = 𝜋. On

the other hand, for all 𝑛 > 0, 𝜋 (𝑛)
is the unique solution of the

equation 𝜇 = 𝜇𝑃 (𝑛) . Thus lim

𝑛→∞
𝜋 (𝑛) = lim

𝑛→∞
𝜇𝑛−1 = 𝜋.

By Theorem 4.1, we give the following sufficient condition for

GAT to avoid over-smoothing in Markovian sense.

Theorem 4.2. Let ℎ (𝑙 )𝑢 be representation of node 𝑢 ∈ V at the
hidden layer 𝑙 in GAT. The sufficient condition for GAT to avoid over-
smoothing is that there exists 𝛿 > 0 such that for any 𝑙 ≥ 2, satisfying

∥ℎ (𝑙−1)𝑢 − ℎ
(𝑙 )
𝑢 ∥1 > 𝛿. (2)

When Equation 2 is satisfied, the time-inhomogeneous random

walk ®𝑥att corresponding to GAT does not have a limiting distri-

bution, and thus GAT avoids potential over-smoothing problems

in a Markovian sense. Theorem 4.2 has an intuitive meaning. The

essence of over-smoothing is that the node representations con-

verge with the propagation of the network. By Cauchy’s conver-

gence test, the condition exactly avoid representation ℎ
(𝑙 )
𝑢 of the

node 𝑢 from converging as network deepens.

Since Theorem 4.1 generally holds for all time-inhomogeneous

Markov chains, GNN related to a time-inhomogeneous Markov

chain such as GEN [15] can obtain the sufficient conditions similar

to Theorem 4.2 to avoid over-smoothing in Markovian sense.

Considering that this sufficient condition is task-agnostic, we

can formulate this condition to a regularization term and add it to

the loss function determined by its original task. Formally, assume

the original loss function is 𝐿𝜃 (𝑥), the total loss function can be

rewritten as:

𝐿̂𝜃 (𝑥) = 𝐿𝜃 (𝑥) + RT𝜃 (𝑥) (3)

where 𝜃 is the parameter of neural networks and RT𝜃 (𝑥) is the
regularization term determined by the sufficient condition in Theo-

rem 4.2.

5 EXPERIMENTS
In this section, we experimentally verify the correctness of our the-

oretical results. We rewrite the sufficient condition for GAT to avoid

oversmoothing in the Theorem 4.2 as a regularization term. It can

be flexibly added to the training of the network. The experimental

results show that our proposed condition can effectively avoid the

over-smoothing problem and improve the performance of GAT.

5.1 Setup
In this section we briefly introduce the experimental settings. See

Appendix A for more specific settings. We verify our conclusions

while keeping the other hyperparameters the same
2
(network struc-

ture, learning rate, dropout, epoch, etc.).

2
Since we do not aim to refresh State of the Arts, these are not necessarily the optimal

hyperparameters.
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Figure 1: Measurement of over-smoothing of GAT on ogbn-arxiv.
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Figure 2: Measurement of over-smoothing of GAT on Cora.
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Figure 3: Measurement of over-smoothing of GAT on Citeseer.
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Figure 4: Measurement of over-smoothing of GAT on Pubmed.

Variant of sufficient condition. Notice that the sufficient

condition in the Theorem 4.2 is in the form of inequality, which

is not conducive to experiments. In the concrete implementation,

let ℎ
(𝑙 )
𝑢 be representation of node 𝑢 ∈ V at the hidden layer 𝑙 . We

normalize the distance of the node representations between two

adjacent layers and then let it approximate to a given hyperparam-

eter threshold 𝑇 ∈ (0, 1), i.e., for the GNN model with 𝑛 layers, we

obtain a regularization term:

RT𝜃 (𝑥) =
(
1

𝑛

𝑛∑︁
𝑙=1

(∥ Sigmoid(ℎ (𝑙−1)𝑢 ) − Sigmoid(ℎ (𝑙 )𝑢 ) ∥) −𝑇

)
2

.

(4)
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Since there must exist 𝛿 > 0 that satisfies 𝑇 > 𝛿 , Equation 2 can be

satisfied if this term is perfectly minimized. For a detailed choice of

the threshold 𝑇 , we put it in Appendix A.

Datasets. In terms of datasets, we follow the datasets used in the

original work of GAT [20] as well as the OGB benchmark. We use

four standard benchmark datasets - ogbn-arxiv [9], Cora, Citeseer,

and Pubmed [19], covering the basic transductive learning tasks.

Implementation details. For the specific implementation, we

refer to the open-source code of vanilla GAT, and models with

different layers share the same settings: We use the Adam SGD

optimizer [11] with learning rate 0.01, the hidden dimension is 64,

each GAT layer has 8 heads and the amount of training epoch is

500. All experiments are conducted on a single Nvidia Tesla v100.

5.2 Results of GAT
For record simplicity, we denote the GAT after adding the regulariza-

tion term to the training as GAT-RT. To keep statistical confidence,

we repeat all experiments 10 times and record the mean value and

standard deviation. Results shown in Table 1 demonstrate that al-

most on each dataset and number of layers, GAT-RT will obtain an

improvement in the performance. Specifically, on Cora and Citeseer,

GAT’s performance begins to decrease drastically when layer num-

bers surpass 6 and 5 but GAT-RT can relieve this trend in some way.

On Pubmed, vanilla GAT’s performance has a gradual decline. The

performance of vanilla GAT decrease 6% when the layer number

is 8. However, GAT-RT’s performance keeps competitive for all

layer numbers. For ogbn-arxiv, GAT-RT performs as competitive

as GAT when the layer number is small but outperforms GAT by

a big margin when the layer number is large. Specifically when

the layer number is 6 and 7, the performance improves roughly

by 3% and 13% respectivly. Although the performance of GAT-RT

decreases with the increase of the number of layers, this is because

the performance of the model is also affected by factors such as

over-fitting.

5.3 Verification of avoiding over-smoothing
In this subsection, we further experimentally show that the suffi-

cient conditions in Section 4 not only improve the performance of

the model but also do avoid the over-smoothing problem.

Since the neural network is a black-box model, we cannot ex-

plicitly compute the stationary distribution of the graph neural

network when it is over-smoothed. Therefore we measure the de-

gree of over-smoothing by calculating the standard deviation of

each node’s representation at each layer. A lower value implies

more severe over-smoothing.

Results shown in Fig. 1-4 demonstrate that the node represen-

tations obtained from GAT-RT are more diverse than those from

GAT, which means the alleviation of over-smoothing. It’s also in-

teresting that there is an accordance between the performance and

over-smoothing, for example on Cora dataset, the performance

would have a huge decrease when the number of layers is larger

than 5, Fig. 2 shows the over-smoothing phenomenon is severe at

the same time. Also on Pubmed dataset, the performance is rela-

tively stable and the corresponding Fig. 4 shows that the model

trained on this dataset suffers from over-smoothing lightly. These

results enlighten us that over-smoothing may be caused by various

objective reasons, e.g. the property of the dataset, and GAT-RT can

relieve this negative effect to some extent.

6 CONCLUSION
In this work, we analyze the over-smoothing problem in GAT

from a Markov chain perspective. First we relate GAT to a time-

inhomogeneous random walk on the graph. By analyzing the lim-

iting distribution of this random walk, we show that it is possible

for GAT to avoid potential over-smoothing. Then, we study the

limiting distribution of the general time-inhomogeneous Markov

chain, and propose a necessary condition for the existence of the

limiting distribution. Based on this result, we derive a sufficient

condition for GAT to avoid over-smoothing in the Markovian sense.

Our results can also be generalized to other GNN models related to

time-inhomogeneous Markov chains. Finally, in our experiments

we design a regularization term which can be flexibly added to

the training. Results on the benchmark datasets show that our

theoretical analysis is correct.

The discussion in this paper shows that we can use theoretical

results inMarkov chains to study problems in GNNs. This motivates

us to discuss the over-smoothing problem in more general GNNs

through a Markov chain perspective in future work. Further, we can

model general GNNs with Markov chains to study more problems

other than over-smoothing.
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A EXPERIMENTAL DETAILS
In this appendix, we add more details on the experiments. Table 2

shows the basic information of each dataset used in our experiments.

Table 3 demonstrates the configuration of GNN models, actually,

we keep the same setting in the corresponding paper, the only

difference is we add the extra proposed regularization term in the

optimization objective. In Table 4, we show the detailed selection

of threshold 𝑇 in Equation 4.
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Table 2: Summary of the statistics and data split of datasets.

Dataset (Avg.) Nodes (Avg.) Edges Features Class Train(#/%) Val.(#/%) Test(#/%)

Cora 2708(1 graph) 5429 1433 7 140 500 1000

Citeseer 3327(1 graph) 4732 3703 6 120 500 1000

Pubmed 19717(1 graph) 44338 500 3 60 500 1000

ogbn-arvix 169,343(1 graph) 1,166,243 128 40 0.54 0.18 0.28

Table 3: Training configuration

Model Dataset Hidden. LR. Dropout Epoch

GAT

Cora 64 1e-2 0.5 500

Citeseer 64 1e-2 0.5 500

Pubmed 64 1e-2 0.5 500

ogbn-arvix 256 1e-2 0.5 500

Table 4: Selection of threshold 𝑇 on different layer numbers

datasets model

#layers

3 4 5 6 7 8

Cora GAT-RT 1 0.5 0.6 0.8 1 0.8

Citeseer GAT-RT 0.3 0.3 1 0.4 0.2 0.1

Pubmed GAT-RT 0.3 0.2 0.2 0.8 0.5 0.4

ogbn-arvix GAT-RT 0.5 0.4 0.7 0.6 0.3 0.5
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