2307.14733v1 [cs.SE] 27 Jul 2023

arxXiv

STuBCODER: Automated Generation and Repair of Stub Code
for Mock Objects”

HENGCHENG ZHU, The Hong Kong University of Science and Technology, China
LILI WEI, McGill University, Canada

VALERIO TERRAGNI, The University of Auckland, New Zealand

YEPANG LIU, Southern University of Science and Technology, China

SHING-CHI CHEUNGT, The Hong Kong University of Science and Technology, China
JIARONG WU, The Hong Kong University of Science and Technology, China

QIN SHENG, BING ZHANG, and LIHONG SONG, WeBank Co. Ltd., China

Mocking is an essential unit testing technique for isolating the class under test (CUT) from its dependencies.
Developers often leverage mocking frameworks to develop stub code that specifies the behaviors of mock
objects. However, developing and maintaining stub code is labor-intensive and error-prone. In this paper,
we present STUBCODER to automatically generate and repair stub code for regression testing. STUBCODER
implements a novel evolutionary algorithm that synthesizes test-passing stub code guided by the runtime
behavior of test cases. We evaluated our proposed approach on 59 test cases from 13 open-source projects.
Our evaluation results show that STUBCODER can effectively generate stub code for incomplete test cases
without stub code and repair obsolete test cases with broken stub code.

CCS Concepts: » Software and its engineering — Search-based software engineering; Software testing
and debugging; Automatic programming; Software evolution.

Additional Key Words and Phrases: Software Testing, Mocking, Test Generation and Repair, Genetic Program-
ming, Evolutionary Computation, Program Analysis

1 Introduction

Unit testing is an important testing paradigm that focuses on the correctness of a single software
component (e.g., class in Java) [2]. In practice, a class is commonly implemented to leverage other
classes’ functionality. These classes constitute test dependencies, which are invoked when testing the
class under test (CUT). To test the CUT in isolation, developers often substitute dependencies with
test doubles [38], which play the role of dependencies for testing purpose only. There are five main
types of test doubles: dummy, stub, mock, spy, and fake [38]. Following the popular terminology of
the MockrTo framework [12], we use the term mock objects [47] to collectively refer to dummy,
stub, and mock test doubles. The mock objects in MockiTo can act like any of these three types of
test doubles in a unit test [12]. In a nutshell, mock objects are designed to simulate the reactions of

“This paper was accepted by the ACM Transactions on Software Engineering and Methodology (TOSEM) in July 2023.
*Shing-Chi Cheung is the corresponding author.

Authors’ addresses: Hengcheng Zhu, hzhuaq@connect.ust.hk, The Hong Kong University of Science and Technology, Hong
Kong, China; Lili Wei, lili. wei@mcgill.ca, McGill University, Montreal, Canada; Valerio Terragni, v.terragni@auckland.ac.nz,
The University of Auckland, Auckland, New Zealand; Yepang Liu, liuypl@sustech.edu.cn, Department of Computer Science
and Engineering, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology,
Shenzhen, China; Shing-Chi Cheung, scc@cse.ust.hk, The Hong Kong University of Science and Technology, Hong Kong,
China; Jiarong Wu, jwubf@cse.ust.hk, The Hong Kong University of Science and Technology, Hong Kong, China; Qin
Sheng, entersheng@webank.com; Bing Zhang, billzzhang@webank.com; Lihong Song, jeaninesong@webank.com, WeBank
Co. Ltd., Shenzhen, China.

oove

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

HTTPS://ORCID.ORG/0000-0002-3082-5957
HTTPS://ORCID.ORG/0000-0002-2428-4111
HTTPS://ORCID.ORG/0000-0001-5885-9297
HTTPS://ORCID.ORG/0000-0001-8147-8126
HTTPS://ORCID.ORG/0000-0002-3508-7172
HTTPS://ORCID.ORG/0000-0001-6126-303X
HTTPS://ORCID.ORG/0009-0004-8527-9297
HTTPS://ORCID.ORG/0009-0007-5862-136X
HTTPS://ORCID.ORG/0009-0004-9452-4741
https://orcid.org/0000-0002-3082-5957
https://orcid.org/0000-0002-2428-4111
https://orcid.org/0000-0001-5885-9297
https://orcid.org/0000-0001-8147-8126
https://orcid.org/0000-0002-3508-7172
https://orcid.org/0000-0001-6126-303X
https://orcid.org/0009-0004-8527-9297
https://orcid.org/0009-0004-8527-9297
https://orcid.org/0009-0007-5862-136X
https://orcid.org/0009-0004-9452-4741
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

2 H. Zhu et al.

1 @Test

2 public void loginRetryTest() {

3 // Arrange: Prepares the dependencies and input data

4 // for the class under test.

5 var dao = mock(UserDao.class); // mock object

6 var user = mock(User.class); // mock object

7 var shal = DigestUtils.shalHex("bar"); STUB CODE

8 when (user.getPasswordHash()).thenReturn(shal); // Stub Call 1
9 when (dao. findUser (eq("foo")) // Stub Call 2
10 .thenThrow(new TimeoutException()) // First reaction
11 .thenReturn(user); // Second reaction
12

13 // Act: Exercises the feature

14 var underTest = new LoginService(dao);

15 var loginResult = underTest.login("foo", "bar");

16

17 // Assert: Verifies the result.

18 verify(dao, times(2)).findUser(any());// mocking call

19 assertTrue(loginResult.isSuccessful());

20 %}

21

22 // CUT

23 public LoginResult login(String userName, String password) {

24 User user = null;

25 while (user == null) {

26 try {

27 user = dao.findUser (userName);

28 } catch (TimeoutException e) { ... }

29 }

30 var hash = DigestUtil.shalHex(password);

31 if (hash.equals(user.getPasswordHash()))

32 // success

33 else

34 // failure

35 %

Listing 1. An lllustration of Unit Test with Mock Objects

test dependencies (i.e., via stub calls) or validate their interactions with the CUT (i.e., via mocking
calls) [52].

Listing 1 illustrates a JUNIT test case with mock objects implemented using the MockiTo frame-
work [12]. The unit test aims to validate the login function of LoginService, which leverages its
test dependency UserDao to establish a database connection. The test case simulates the dependent
database service UserDao and a database entity User with two mock objects. Lines 7-11 give the
stub code that specifies the behaviors of the mock objects when their methods are (indirectly)
invoked at Line 15. The first invocation of the method findUser throws an exception to simulate
an unstable connection (Line 10). The second invocation of the method findUser returns a User
object to simulate a successful database query (Line 11). The returned User object is another mock
object to simulate a database entity. It returns the SHA-1 digest of a predefined password when
its method getPasswordHash is invoked (Line 7). At Line 18, a mocking assertion verify checks
whether the CUT invoked the method findUser twice.

With such mock objects, developers no longer need to set up a database for testing or unplug the
network cable to trigger an exception. Similar to the example, developers often replace dependencies
with mock objects and specify their behaviors with stub code when the dependencies are hard to set
up, flaky, faulty, or even not yet implemented [47, 59]. The use of mock objects allows developers
to focus on the CUT without worrying about the correctness or availability of its dependencies.

Developing and maintaining stub code is challenging. When developing stub code for a mock
object, developers need to carefully consider its possible interactions with the CUT, and simulate
the reactions accordingly when its methods are called. Stub code is tightly coupled with a specific

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 3

implementation of the CUT (and its dependencies) and is easy to get broken when the implemen-
tation of CUT evolves. Take the test case in Listing 1 as an example. When the implementation
of UserDao, User, or LoginService changes, the stub code will become broken since it no longer
specifies the behaviors for the APIs needed by the test case. For example, when the signature of
findUser is changed from findUser(userName) to findUser (userName, passwordHash), the
stub code are broken and does not compile. In this case, the stub code needs to be updated to
adapt to the new implementation. In real-world projects, such updates need to be done frequently
to keep the behaviors of mock objects consistent with the production code [47]. This activity is
labor-intensive and error-prone [20].

Previous works on automatic stub code generation for mock objects rely on a capture-and-
replay approach [18, 21, 32, 45, 46]. Given an executable test case, such techniques generate stub
code in three steps: (1) execute the test cases capturing the interactions between the CUT and its
dependencies, (2) replace the dependencies with mock objects, and (3) create stub code according
to the captured interactions. As such, capture-and-replay techniques are able to generate stub code
for only those test cases without mock objects. This is because they need to invoke the actual
dependencies. However, the study of Spadini et al. [47] shows that for 83% of test cases that use
mock objects, the mock objects are introduced when the actual dependencies are hard to set up,
flaky, or unavailable. Therefore, capture-and-replay techniques are inapplicable to the majority of
situations where mock objects are used.

Our goal is to synthesize stub code for mock objects without capturing the actual behaviors of
the dependencies. This is challenging because it requires identifying the desired mock object’s
behavior for a specific test case. Indeed, mock objects are often test-specific because the same
dependency class often has different behaviors in different test cases [59].

In regression testing, we want to synthesize stub code to test future versions of the CUT. In
such a context, we do not aim to generate a stub code that makes the test pass or fail depending
on whether the current version is faulty or not. We aim to generate the stub code that makes the
test pass on the current CUT version, which aims to detect regression bugs introduced in future
versions. Our observation is that the expected behavior of such test-passing stub code is often
encoded in the CUT execution code and test oracles. For example, consider the test case of Listing 1
without the stub code highlighted in yellow (Lines 7 to 11). The expected behavior of the test case
is given by Lines 14 and 15, which specify how the CUT should be invoked, and Lines 18 and 19,
which specify the expected output of the method under test. The desired stub code (Lines 7 to 11)
is the one that makes the test pass.

In this paper, we present STUBCODER, the first technique to automatically generate stub code
without executing the actual dependencies. Given an incomplete test case without stub code,
STUBCODER leverages the CUT execution code and test oracles as specifications to guide the
synthesis of stub code to make the tests pass for the current implementation. As mentioned above,
the synthesized stub code satisfies the expected behavior of the test case in the regression testing
scenario and could detect bugs in future versions.

Due to the huge search space of possible stub code, it is infeasible to randomly or systematically
explore all the possible candidate stub code to find a test-passing one. As such, we design STUBCODER
based on an evolutionary algorithm that drives the search by examining the runtime behavior of
each candidate stub code. In particular, STUBCODER employs a novel fitness function that captures
how close a candidate stub code is to test-passing stub code. The fitness function captures several
runtime aspects like the distance between the expected and actual value of each oracle assertion,
which effectively directs the search towards the candidates that are more likely to pass the test.

Notably, STUBCODER can also be used for repairing stub code that is broken due to code evolution.
In such cases, STUBCODER prioritizes the selection of code elements in the broken stub code when

4 H. Zhu et al.

constructing a new candidate stub code. Indeed, test-passing stub code might be syntactically
similar to the obsolete one.

STUBCODER has two application scenarios: (1) When adding a new test case, developers can
write the code that exercises the CUT using mock objects and specify the expected behavior for
the test case by writing oracle assertions (i.e., JUNIT assertions and mocking calls). STUBCODER
will automatically generate the stub code. (2) When the stub code in some test cases becomes
obsolete due to software evolution, developers can run STUBCODER to repair the broken stub code.
By supporting these two scenarios, STUBCODER helps relieve developers from the tedious manual
effort of stub code development and maintenance.

We evaluated STUBCODER on 59 test cases collected from 13 open-source projects in both
application scenarios. Although modern program synthesis tools (e.g., GitHub Copilot) can suggest
possible statements to complete test cases, they do not aim to synthesize test-passing stub code.
Since there is no related tool that generates stub code under these scenarios, we compared with a
variant of STUBCODER based on an unguided strategy. In the both scenario, STUBCODER successfully
generates stub code for 76% of the test cases in half of the repetitions. Compared with the unguided
variant, STUBCODER has a higher success rate and synthesizes the stub code faster. Moreover, 57%
of the synthesized stub code have identical fault detection capability as those written by developers
(measured by mutation coverage in Table 4 and Table 5).

To summarize, this paper makes three major contributions:

e We design and implement STUBCODER, the first automatic stub code synthesis technique
that can effectively synthesize stub code for the test dependencies of a target unit test case.
We equipped STuBCoDER with a novel fitness function that examines the runtime behaviors
of the test case to guide the search of the test-passing stub code.

e We construct the first benchmark for evaluating stub code generation and repair techniques.
It is composed of 59 test cases from 13 open-source projects. STUBCODER can effectively syn-
thesize stub code for incomplete test cases in both application scenarios and it outperforms
the baselines as well as its unguided variant.

e We publicly release STUBCODER and the benchmark to facilitate future research in this area.
The dataset is available at https://doi.org/10.5281/zenodo.7816758.

The remainder of this paper is organized as follows: Section 2 formulates the stub code synthesis
problem with a motivating example and highlights the technical challenges. Section 3 presents the
design and implementation of STUBCODER. Section 4 describes our evaluation of STUBCODER on 59
test cases collected from 13 open-source projects. Section 5 discusses the related work. Section 6
concludes the paper and points out possible future work.

2 Motivating Example & Problem Formulation

In this section, we leverage the example in Listing 1 to illustrate how we formulate and address the
problem of stub code generation and repair for unit tests.

2.1 Formulation of Unit Test Cases

Unit test cases are commonly executed in three phases, following the AAA pattern [56] (i.e., Arrange,
Act, Assert). First, the Arrange phase sets up the test environment, which includes the setup of
dependencies with mock objects. Next, the Act phase exercises the CUT by invoking its methods.
Finally, the Assert phase checks whether the CUT produces the expected test outputs.

We represent a test case as a tuple 7 = (V, S, E, A). Such representation is in line with the AAA
pattern:

https://doi.org/10.5281/zenodo.7816758

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 5

// Stub ode written by developers
when(endPoint.getPath("health")).thenReturn("/actuator/health");

// Stub code synthesized by StubCoder (Repair Mode)
String var@ = "/actuator/health";
doReturn(var®@).when(pathMappedEndpoints).getPath(any());

U R W N

Listing 2. Stub Code for Subject #36

e Arrange Phase: V is the set of variables that are used in E and A, and S is the stub code
that specifies the behaviors of mock objects in V.

o Act Phase: E represents the bytecode instructions that exercise the CUT.

e Assert Phase: A is the test oracle, including mocking calls.

Take the test case in Listing 1 as an example. V contains two mock objects dao and user (Lines 5—
6). S contains the stub code (the highlighted region) that sets up the behavior of the mock objects in
M. For example, Lines 7-8 set the behavior of dao and specify that its method getPasswordHash
should return the SHA-1 digest of string "bar". E contains Lines 14-15 that exercise the login
function of the CUT LoginService. A contains Lines 18-19, which check whether the login function
performs as expected using a mocking call (Line 18) and a JUNIT assertion (Line 19).

2.2 Problem Statement

Following our formulation of unit test cases, we define our stub code synthesis problem in two
application scenarios.

Scenario #1: Generation Mode. Given an incomplete test case 7 = (V, @, E, A) without stub
code, generate S such that r = (V, S, E, A) passes (i.e., all the oracle assertions in A pass without
uncaught exceptions).

In this scenario, our technique helps developers to develop test cases that are independent of their
test dependencies. For example, in Listing 1, we can synthesize the stub code in the highlighted
region given the remaining lines such that the oracle assertions at Line 18 and Line 19 hold.
When developers are creating a new test case, they can simply instantiate the CUT with mock
dependencies and finish the remaining parts without needing to consider the possible interactions
between the CUT and the dependencies. After that, they can launch STUBCODER to synthesize
the stub code to complete the test case. We target at regression testing in this scenario, where we
assume that the current system is correct and try to capture regressions in future versions.

Scenario #2: Repair Mode. Given an obsolete test case 7 = (V, Sy, E, A) containing broken
stub code Sy, synthesize S to replace Sp such that 7 = (V, S, E, A) passes.

In this scenario, our technique helps developers to repair test cases whose stub code is broken
due to program or library changes. For example, when the stub code in the highlighted part is
broken because of code updates in User, UserDao, or LoginService, developers can specify the
code lines that contain the broken stub code and STUBCODER can replace the broken stub code
with a synthesized one that can be compiled and can make the test pass. Compared with scenario
#1, which synthesizes stub code from scratch, we leverage the information in the broken stub code
Spk to guide the synthesis in scenario #2. In this scenario, we target at the repair the stub code that
are broken dur to refactoring or library upgrades. It need developers to decide whether the stub
code needs to be repaired.

In both modes, STUBCODER can be implemented as an IDE plugin. In generation mode, developers
can place the cursor at where the stub code needs to be generated. In repair mode, developers

6 H. Zhu et al.

can select the obsolete stub code that needs to be repaired. Developers can place the cursor at
where the stub code need to be generated or selecte the obsolete stub code that need to be repaired.
After that, they can launch STUBCODER via a menu item provided by the plugin. The stub code
is synthesized to facilitate regression testing based on the current program version. The test case
with synthesized stub code captures the implemented behavior of the CUT, and helps to detect
regression bugs in future versions of the CUT. It is important to clarify that STUBCODER does not
guarantee the semantic equivalence between the synthesized stub code and developer-written
stub code. In the context of mocking, the stub code helping the test case achieving the same
adequacy may not need to be syntactically or semantically similar. As an example, Listing 2 shows
the stub code written by developer and synthesized by STUBCODER. First, the developer-written
stub code and the synthesized stub code are syntactically different. The developer-written stub
code is using the API when(...).thenReturn(...) while the synthesized stub code is using
the API doReturn(...).when(...). Also, the semantics of the two stub codes are not exactly
the same. The developer-written stub will return "/actuator/health" only when the method
getPath is invoked with an argument "health" while the synthesized stub code will return
"/actuator/health" when the invocation is done with any argument. Although they are neither
syntactically nor semantically the same, the test cases with both stub codes execute exactly the
same set of instructions, traverse exactly the same execution paths, and kill exactly the same set of
mutants as shown in our evaluation (Table 5). This is because in that test case, the method getPath
will only be invoked with argument "health". In other words, the two stub codes are semantically
equivalent in the context of that specific test case.

Indeed, STUBCODER has available only the CUT executions E and assertions A to guide the gener-
ation and repair of stub code. Such available information is unlikely to be a complete specification of
the behavior of the test. However, assertions should predicate of the salient expected behaviours of
the test that makes the test pass or fail. In our evaluation (Section 4.5), we conjecture that obtaining
stub code that fulfills such behaviors (i.e., it makes the assertions pass) would be enough to achieve
the same (or similar) test adequacy with the ground-truth stub code.

2.3 Technical Challenges

It is challenging to synthesize a stub code, say S, to pass an input test 7 due to the huge search
space of possible candidates that can be generated for . This is because a stub code candidate is
free to stub any method of any mock object in M for an arbitrary number of times, and to return
any value or throw any exception for each stub call. Even by bounding the number of lines of code
of the generated stub code (50 in our experiments), the search space is too huge to exhaustively
explore. However, only specific stub code S can make 7 pass. S should stub the correct set of
methods with proper values so that E executes without exceptions and all the constraints in A are
satisfied. Take the test case shown in Listing 1 as an example. Lines 14-15 create a LoginService
object with mock object dao and invoke login method with username “foo” and password “bar”.
The test case passes only when satisfying two oracle assertions: (1) the findUser method is called
twice (the mocking call at Line 18), and (2) the loginResult returned by login is successful (the
assert statement at Line 19). Lines 23-35 show the implementation of the login method. In this
method, dao. findUser will be called twice only if it throws a TimeoutException when it is first
called (executing Line 28), and returns a User object when it is called for the second time (breaking
the loop at Line 25). The LoginResult will be successful only if the getPasswordHash of the User
object returns the SHA-1 checksum of password “bar” (passing the condition at Line 31). Lines 7-11
show the specific stub code that makes the pass.

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 7

——

Input

StusCoDER :
step 1 nth generation !
JUnit test :
. FITNESS repeat :
case —] ;
mockito E:> COMPUTATION n=n+1 | Output
failing test case f|tness ‘
without stub code or} scores 751 Pna step 2 ; test
with a broken one ! case
! SELECTION, (T)

CROSSOVER, —»

N\ ; MUTATION passing test case
4 [:> with synthetized
; - ; stub code
' nth—1 population nth populatlon '
i of stub code of stub code !

Class Under Test |
! S1, Sz, . S
(cum) 51, S2 m)

Fig. 1. Overview of STuBCODER

It is infeasible to identify the test-passing stub code S by randomly or systematically exploring
all the possible stub code candidates. To address this problem, we propose to use an evolutionary
algorithm to guide the synthesis of the stub code and search for S.

Key Idea. The evolutionary algorithm searches for the test-passing stub code S by generating
new candidate stub code via crossover and mutations of existing ones in a guided manner. It guides
the search by a fitness function that evaluates the distance between an arbitrary S and a passing
stub code. As discussed in Section 2.2, S is the set of stub code that can pass 7. In other words,
the stub code should (1) make the code in E executable, and (2) satisfy all oracle assertions in
A. Based on this observation, we propose a multi-objective fitness function: with an arbitrary S,
we integrate it with 7 and capture (1) the percentage of bytecode instructions in E that can be
successfully executed, and (2) the percentage of oracle assertions in A that can be satisfied, and
(3) the distance between the value outputted by S and its expected value for an unsatisfied oracle
assertion. Intuitively, S is closer to pass 7 if it can make more bytecode instructions in E executable,
satisfy more oracle assertions in A, and for the unsatisfied oracle assertions, the outputted value is
closer to the expected value.

3 STtuBCODER

Figure 1 shows the logical architecture of STUBCoDER. The input is a test case without stub code
(r =(V,@,E, A)) or with a broken one (r = (V, Sy, E, A)) and the corresponding CUT. The output
is the test case with a synthesized stub code that makes the test pass. Specifically, STUBCODER
implements a population-based evolutionary algorithm that guides the search for stub code using
a multi-objective fitness function, as discussed in Section 2.3. At each generation, STUBCODER
evolves a population of stub code candidates until it finds one that can pass the test or the budget
runs out. Figure 1 shows the process of producing P; the population at the i generation. First,
STuBCODER computes the fitness score for each candidate individual (stub code) S € P;_;. Then,
it performs selection, crossover, and mutation to obtain the new population P;. In particular, the
selection phase selects two parent individuals from P,_;. Individuals with higher fitness scores
are more likely to be selected. The crossover phase combines the parents’ genetic material (code
elements in our case) to produce two offspring individuals. The mutation phase applies random
mutations to the offspring individuals and adds them to P;. These three phases repeat until P; is full.
In the following, we present the fitness function and explain how we adapt the selection, crossover,
and mutation phases for the problem of stub code generation and repair.

8 H. Zhu et al.

3.1 Fitness Function

In this paper, we formulate the synthesis of stub code as a multi-objective optimization problem
(MOOP) [44, 49] with three objectives. These objectives take into account the runtime behaviors of
the Act and Assert phases of a test case. Each of them focuses on a particular aspect of the runtime
behavior of the test case 7 with the candidate stub code S.

Stub Utilization (SU). A given stub code S can have multiple stub calls to specify the behaviors
of the mock objects. However, not necessarily all of the specified behaviors will be used during the
Act phase. For example, the CUT might not invoke a stubbed method or the argument does not
match. Such unused stub calls do not affect the behavior of the test, and mutating its return value
has lower chances to make the test pass. Therefore, we define stub effectiveness (SU) of a stub code
S based on the number of stub calls that are used by the CUT during the Act phase, denoted by
used(S).

SU(S) = tanh (%used(S))

The hyperbolic tangent (tanh) normalizes the value to [0, 1). Since the curve of tanh is more steep
in the interval [0, 1) than in [1, o), we divide the integer counter by a constant C > 1 to make use
of the range [0, 1). In our experiment, we chose C = 10.

Exercise Coverage (EC). Apart from oracle assertion violations, a test case fails when E invokes
the CUT and the CUT throws an uncaught exception. Such uncaught exceptions are caused by
the incorrect behaviors specified by the stub code. In general, a stub code that does not lead to
uncaught exceptions when the test invokes the CUT is preferred, compared to one that does. As
such, we define the exercise coverage (EC) of a stub code S as the ratio of the executed bytecode
instructions in E.

| {e € E, e is executed} |

EC(S) = 1

EC penalizes the individuals with an early failure of E due to incorrect behaviors specified in the
stub code.

Assertion Status (AS). AS is derived from the runtime behavior in the Assert phase where the
test executes the assertions in A. It is computed from the score of each of the assertion oracles in A
by taking their average.

AS(S) = ﬁ -;score(a)

The score of each assertion oracle is a number in the range of [0, 1], indicating how likely the
assertion oracle is satisfied. It is defined as the following.

1.0 a is satisfied
score(a) = 4 1.0 — d(a.expected, a.actual) ais assertEquals and a is failing
0.0 otherwise

Specifically, for JUNIT assertEquals assertions, we measure the distance between the expected
and actual values to estimate how far it is from being satisfied, which is similar to the branching

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 9

1 @Test

2 public void should_use_application_uri() {

3 var endpoint = mock(PathMappedEndpoints.class);

4 when(endpoint.getPath("health")).thenReturn("/actuator/health");
5 var factory = new CFApplicationFactory (..., endpoint, ...);

6 var app = factory.createApplication();

7 assertEquals("base_url/actuator/health", app.getHealthUrl());
83

9

10 // CUT

11 public Application createApplication() {

12 return Application.builder().setHealthUrl(

13 "base_url" + endpoint.getPath("health")).build();

14 3}

15

16 //Candidate stub code

17 Sg:

18 when(endpoint.getPath("health")).thenReturn("random");

19 Sp:

20 when (endpoint.getPath("health")).thenReturn("/actuator/hea");

Listing 3. A Test Case Adapted from Spring Boot Admin [27]

condition distance [55].

tanh (le;ly |) X,y are numeric types

d(x,y) = tanh (%) X, y are strings
d(str(x),str(y)) x,y are complex objects

where Lev(x,y) is the Levenshtein distance [43]. Such a distance function considers the actions of
insertions, deletions, and substitutions, which is in line with our mutation operators. For complex
objects, function str(x) serializes an object x into a string in a deep-copy manner [8]. Specifically,
it recursively converts the fields of complex objects into string representations. This is because
complex objects are often equated based on the values of its fields. Therefore, we chose such an
strategy to approximate the distance between two complex objects. We implemented it using
ReflectionToStringBuilder provided by the ApacHE ComMoNs library [25]. We fall back the
denominator to 1.0 if it is zero to avoid division-by-zero error and further normalized the result
into the range of [0, 1) with the hyperbolic tangent.

AS can provide additional guidance to generate values that can satisfy oracle assertions specified
with assertEquals. For example, Listing 3 shows a code snippet adapted from a test in open-
source project Spring Boot Admin [27]. It tests the creation of an Application object from a
factory class CFApplicationFactory (Lines 5-6). The factory class sets up API end-points based
on the information in an input PathMappedEndPoints that encapsulates a map from end-point
names to their URLs. In Lines 12-13, the factory sets the application’s HealthUrl by concatenating
the base URL with the health URL encapsulated in endpoint by invoking its getPath method.
The oracle assertion of the test case verifies whether HealthUrl of the created application equals
the string "base_url/actuator/health" (Line 7). To make this test pass, the getPath method
should be stubbed to return "/actuator/health" when it is invoked with argument "health".
SU, and EC cannot guide the generation of these specific values. For example, candidate stub
code S, stubbing getPath to return "random" (Lines 17-18) and S, stubbing getPath to return
"/actuator/hea" (Lines 19-20) will achieve the same fitness score with only SU and EC. Both
candidates can make the test execute to Line 6 but violate the oracle assertion at Line 7. However,
returning "/actuator/hea" is much closer to passing the test as the returned string is much more
similar to the expected value "/actuator/health". This difference can be captured by AS.

10 H. Zhu et al.

S := Elem"
Elem := VarDef | StubCall
VarDef := v < Expr
Expr = Literal | Array(v*) | API(v*) | Mock
StubCall := (v, m, ArgMatcher") — Reaction
ArgMatcher := Any | Eq(v)
Reaction := Return(v) | Throw(v)

Fig. 2. Grammar of Synthesized Stub Code S.

Fitness Computation. In this paper, we designed a dominance based fitness computation
approach. This is because, in our scenario, the three objectives are of different importance. Based
on the execution order of the arrange, act, and assert phases, there is a natural order of the three
objectives: SU, EC, and AS. Our rationale is that individuals who perform better (the functions have
higher values) in later phases are more likely to converge to the test passing-stub code because in a
test case, a later phase depends on the outcome of the former phases. For example, the assert phase
will be executed only when the arrange and act phases executed successfully. Therefore, we define
the dominance relationship > between as follows. For two stub codes S; and S, S; > S; if any of
the following holds:

° AS(Sl) > AS(Sz)
° AS(Sl) = AS(Sz) A EC(Sl) > EC(Sz)
o AS(S,) = AS(Sy) A EC(S;) = EC(Sy) A SU(Sy) > SU(S,)

During selection, for two individuals (i.e., stub code) S; and S, we favor S; if S; > S,.

3.2 Representation of Stub Code

This section defines the possible stub code S that STUBCODER is able to synthesize (the possible
individuals of a population). It also describes how STUBCODER represents an individual. Specifically,
a candidate stub code can be constructed by any of the possible strings on the context-free grammar
shown in Figure 2. Specifically, we represent S as a finite sequence of code elements, each of them
can be either a variable definition or a stub call. A variable definition constructs a value and stores it
in a variable. Then, a stub call can associate such variables with method calls on the mock objects.
These code elements in the stub code work together to specify the behavior of the mock objects. By
default, we set the length limit of S to 50, which is adequate for most of the stub code in practice
(as shown in Table 3, the length of developer written stub code are less than 50).

Variable Definition. A variable definition v <~ Expr defines a new variable v and initializes it
with Expr. The Expr can be a literal value in Java [28], an array of previously defined variables !,
or an API call. Specifically, an API call can be either a method call, a constructor call, or a field
access, which also takes previously defined variables as arguments. In addition, Expr can be the
creation of a mock object. This enables us to synthesize the mock objects that may be absent from
the input (e.g., user in Listing 1).

IThe synthesized stub code is inserted before the first reference of the mock objects in the test case. All the variables defined
before the stub code can be used in the synthesized stub code.

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 11

v1 < new TimeoutException()

(dao, findUser, [Eq(zp)]) — Throw(o;)

(dao, findUser, [Eq(zo)]) — Return(user)
oy « "bar"

us <« DigestUtils.shalHex(uv2)

Fig. 3. Representation of the Stub Code in Listing 1

(user, getPasswordHash, @) — Return(wvs)

Stub Call. A stub call specifies the reaction for a certain method call received by a mock object
when the argument matcher matches all the arguments. The reaction can be either Return(v),
which returns the value referenced by the variable v, or Throw(v), which throws the exception
referenced by the variable v. There can be multiple stub calls matching the same method call on
the same mock object. Their reactions will be executed in the order that they appear.

Figure 3 illustrates our representation of the stub code in Listing 1. There are four variable
definitions and three stub calls. As specified by Stub; and Stub,, dao.findUser will throw a
TimeoutException for the first call and return user for the second call. The return value of
user.getPasswordHash will be the SHA-1 digest of the string "bar" stored in vs. The arrows
indicate the def-use dependencies among these code elements.

The grammar in Figure 2 is based on the APIs provided by the Mockrto [12] framework, which
is the most popular mocking framework for Java. It can be adapted to support the syntax of other
object-oriented programming languages and mocking frameworks. Mocking frameworks tend to
provide APIs with similar functionalities to aid the development. For example, a StubCall can be
mapped to a expect(...) call in EAsyMock [11] or a Mock<T>.Setup(...) call in Mog4 [13].
Return(v) can be mapped to a andReturn(. . .) call in EAsyMock or a MethodCall.Return(...)
call in Mog4. In our experiment, we implemented STUBCODER in JavA using MOCKITO.

3.3 Evolutionary Algorithm

Algorithm 1 details the key steps in the evolution of stub code. It takes a test case with a void or
broken stub code 7 = (V, @, E, A) or (V, Spk, E, A) as input, and outputs a stub code S such that
the r = (V, S, E, A) is passing. The evolution process is controlled by the population size N and
generation budget MAX_GEN.

Symbol Pool. One challenge in synthesizing the stub code is to properly construct the return
values. However, it is less efficient to start searching from default values (e.g., 0, null, an empty
string) or random values. To address this challenge, we construct a symbol pool to provide heuristics
for the search process. Specifically, the function CoNsTRUCT-SYMBOL-PooOL in Algorithm 1 extracts
the literals and API calls from the 7 and the CUT. It also includes the symbols in the broken stub
code Sy, if available. Such a constructed symbol pool contains useful values for synthesizing a test-
passing stub code. After construction, the symbol pool B is passed to CROSSOVER-AND-MUTATION.
Mutation operators can take the literals and API calls in B to generate variable definitions.

12 H. Zhu et al.

Algorithm 1: Evolution of Stub Code in STUBCODER
Input: Input test case 7 = (V, @, E, A) or (V, Spx, E, A)
Input: Population size N, generation budget MAX_GEN
Output: Stub code S

1 B « CONSTRUCT-SYMBOL-POOL(7) ;
2 P « CrEATE-INITIAL-POPULATION (N, B) ;
3 P « FrTNEss-CompUTATION(P);

4 gen « 1;

5 repeat

6 P’ « ELITISM-SELECTION(P) ;

7 while |P’| < N do

8 (p1, p2) < SELECT-PARENTS(P);
9 (01, 02) < CROSSOVER-AND-MUTATE(p1, p2, B);
10 P — P'U{o1,05};

11 end

12 P« P,

13 P « F1TNESs-COMPUTATION(P);

14 gen < gen+1;

15 until 35 € P, = (V, S, E, A) passes Vgen > MAX_GEN;,
16 return S;

Initial Population. STUBCODER starts the synthesis process from an initial population. Specifi-
cally, the function CREATE-INITIAL-POPULATION returns a population of N stub code where each of
them contains randomly generated code elements for the mock objects in M.

Elitism Selection. Before starting populating the new population, STUBCODER retains the
best individuals. At Line 6 of Algorithm 1, the function ELrTisM-SELECTION selects the top 1% of
individuals with the highest fitness and brings them directly to the next generation. With elitism
selection, STUBCODER avoids losing the best individuals in the next generation.

Parent Selection. At Line 8 of Algorithm 1, STUBCODER selects two parent individuals to
produce the offspring. In the function SELECT-PARENTS, we leverage tournament selection [39] to
select the parents. Tournament selection is widely used in genetic programming [24, 29] because
it has less stochastic noise compared with other selection methods [7]. Specifically, it randomly
chooses K individuals and runs a tournament among them, after which the winner is chosen. In this
paper, we choose K = 2 to mitigate premature convergence and the local optimum problem [33, 34].
Thus, we run two tournaments to get two parents (py, p).

Crossover and Mutation. The function CROSSOVER-AND-MUTATION exchanges the genetic
materials of two parents (p;, p2) and produces two offspring individuals {01, 02), which are then
mutated to introduce new genetic materials.

First, we exchange the stub calls that stub a mock object in M because they directly contribute
to the outcome of the test case. Specifically, we gather all such stub calls from p; and p,, and copy
each of them to 0; and o, with probability 50%. In the stub code, a stub call relies on other code
elements to function (e.g., the variable definition for its return value). Therefore, when copying a
stub call, we perform a backward slicing [22] to obtain all its dependencies and copy all dependent

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 13

code elements to the offspring. For example, in Figure 3, when copying Stub,, we bring together
Defs; and Def; since they are required to define v3, which is the return value of Stub,.

Next, the two offspring individuals 0, and o, are mutated by one of the following mutation
operators (randomly chosen with uniform probability).

o Inserting a Code Element. We randomly generate a stub call and a variable definition,
and insert it into the stub code. Variable definitions are generated by randomly choosing a
literal or an API call from the symbol pool B.

o Altering the Parameters. Some code elements in the stub code take variables as their
parameters. For example, in Figure 3, stub call Stub; takes v; to be the exception and variable
definition Def; uses v, to perform an API call. We randomly choose a parameter for such
code elements and replace it with another variable of the same type in the stub code.

o Altering the Literals. Some variable definitions in the stub code are numeric, string, or
Boolean literals. For example, Def, in Figure 3 defines v, with a string literal. We apply a
randomly chosen numeric or string operation (e.g., add/subtract a random value, alter a
character) to the literal. For a Boolean literal, we simply flip it.

e Swapping Two Code Elements. We randomly choose two code elements and interchange
them.

e Dropping a Code Element. We randomly remove a stub call or an unused variable definition
from the stub code.

Mocking Decisions. The synthesized stub code can contain two types of mock objects. The
mocking decision is made depending on how they are declared.

e Type I Mock Objects. For the mock objects declared by developers in the test cases, we
follow the original mocking decision by the developers.

o Type Il Mock Objects. During mutation, using a real object or a mock object is an alternative
way of generating an object, and StubCoder will choose randomly between these alternative
ways. For instance, when populating a variable of a complex type T, the mutation operator
will randomly choose between using a generator of T (e.g., the constructors of T, the fields
of type T, and the methods that return T), and a mocked version of T (i.e., mock(T.class)).
Since the goal of STUBCODER is to synthesize a stub code to pass the test, the fitness function
will then prioritize the stub code that is more likely to make the test pass.

Stopping Criterion. As shown at Line 15 of Algorithm 1, we stop the algorithm if the best stub
code makes the test pass or the maximum number of generations is reached.

4 Evaluation

This section presents the evaluation of STUBCODER. Specifically, we aim to answer the following
four research questions.

e RQ1 (Stub Code Generation): Is STUBCODER effective in generating stub code?

e RQ2 (Stub Code Repair): Is STUBCODER effective in repairing obsolete test cases due to
broken stub code? Does it outperform state-of-the-art program repair techniques?

e RQ3 (Effectiveness of the Fitness Function): Can the fitness function effectively guide
stub code synthesis?

e RQ4 (Fidelity of the Synthesized Stub Code): To what extend does the stub code synthesized
by STuBCODER preserve the effect of the ground-truth stub code?

RQ1 and RQ2 evaluate STUBCODER in the two application scenarios (synthesis and repair of stub
code, see Section 2.2). RQ3 evaluates the effectiveness of STUBCODER’s fitness function by comparing
it with an unguided (random) strategy. RQ4 compares the fidelity of the stub code synthesized by

14 H. Zhu et al.

STuBCODER with that written by developers. Specifically, we evaluate to what extent the test case
with synthesized stub code can preserve the runtime effect of the test case with the ground-truth
stub code by comparing their executed instructions, execution paths, and ability to kill mutants.

4.1 Evaluation Subjects

Benchmark Description. To answer the four research questions, we constructed a benchmark
of 59 real-world test cases selected from 13 open-source projects (see Table 2). Each entry in the
benchmark contains:

The test case with the removed stub code, which is the input of STUBCODER in RQ1.

The broken version of the stub code, which is the additional input of STUBCODER in RQ2.
The ground-truth stub code written by developers that makes the test pass, which is used
for comparison in RQ4.

The production code and the dependent libraries, which are required to compile and run
the test.

Project Selection. To build the benchmark, we searched on GitHub [30] for open-source Java
projects and sorted the results by the number of stars, which is an indicator of popularity. We
manually went through the top 150 projects to identify those meeting the four criteria below:

(1) It has at least 1,000 lines of Java code. This is to filter out small projects.

(2) It uses the MockiTo framework [12] to simulate/verify the behaviors of test dependencies.
This is because we implemented STUBCODER based on MockrTo, which is the most popular
mocking framework for Java [41].

(3) It is not an ANDROID project since ANDROID is currently not supported by our implementa-
tion.

(4) It uses MAVEN or GRADLE as build automation tools so that we can automate the dependency
collection procedure.

We identified 40 candidate projects that satisfy our selection criteria.

Benchmark Preparation. For each candidate project, we automatically explored their commit
history since 2018. We performed an AST-level diff using GUMTREE [19] between the two versions
of each commit to locate changes to the MockiTo stub code. The diff returned 2,295 code changes.
Since preparing the benchmark requires intensive manual effort, we performed a pre-selection
on the code changes. For each of the projects, we sampled at most 100 code changes, obtaining a
total of 871 candidates. Then, we manually read the code diff and commit messages to understand
the semantics of the change. We ignored the code changes that simply rename code elements (i.e.,
GuMTREE classifies the ASTs before and after the changes as isomorphic). This is because we do
not regard such trivial code changes as the target application scenario of STUBCODER. Repairing
stub code in such cases can be easily achieved using the refactoring feature of modern IDEs.

After dropping the trivial cases and duplicate commits due to git branch merges, we retained 261
code changes. Each code change specifies two versions of a stub code: a broken one (before the
change), and a correct one (after the change). To turn each code change into a benchmark entry,
we performed the following procedure:

e We ran the GRADLE or MAVEN build script to resolve the dependencies and compile the
project.

e We rewrote each oracle assertion written with custom assertion frameworks into semanti-
cally equivalent JUNIT assertions. Table 1 lists the rewritten rules applied by us. Specifically,
the rules were drafted by one author and then independently validated by two other authors
independently. One more author joined and resolved disagreements when they occurred. In

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 15

@Test

public void test_bk() throws Exception {
CallableStatement cs = mock(CallableStatement.clas
LocalDateTime LOCAL_DATE_TIME = LocalDateTime.no
TypeHandler<LocalDateTime> TYPE_HANDLER = new LocalDateTimeTypeHandler();

S Timestamp TIMESTAMP = Timestamp.valueOf(LOCAL_DATE_TIME);
bk when(cs.getTimestamp(1)).thenReturn(TIMESTAMP) ;

assertEquals(LOCAL_DATE_TIME, TYPE_HANDLER.getResult(cs, 1));
verify(cs, never()).wasNull();

Obsolete Test Case (4dfea24)

@Test

public void test_gt() throws Exception {
CallableStatement cs = mock(CallableStatement.class);
LocalDateTime LOCAL_DATE_TIME = LocalDateTime.now();
TypeHandler<LocalDateTime> TYPE_HANDLER = new LocalDateTimeTypeHandler();

S,

gt when(cs.getObject (1, LocalDateTime.class)).thenReturn(LOCAL?DATE,TIME);‘

assertEquals (LOCAL_DATE_TIME, TYPE_HANDLER.getResult(cs, 1));
verify(cs, never()).wasNull();

}
Ground Truth Test Case (963a8a5)

Fig. 4. Version Relationship between Sp; and Sg; in Project MB3

Table 1. List of Rewritten Assertions in Benchmark

Original Assertion Rewritten JUNIT Version
assertThat(x, equalTo(y)) assertEquals(y, x)
assertThat(x).isEqualTo(y) assertEquals(y, x)
assertThat(x).isNotNull() assertNotNull(x)
assertThat(x).isInstanceOf(Y.class) assertTrue(x instanceof Y)
assertThat(x).isSameAs(y) assertSame(y, x)
assertThatThrownBy(() -> x) E e = assertThrows(E.class, () -> x)
.isInstanceOf (E.class).hasMessage(y) assertEquals(y, e.getMessage())
assertThatThrownBy(() -> x) E e = assertThrows(E.class, () -> x)

.isInstanceOf (E.class).hasMessageStartsWith(y) assertTrue(e.getMessage().startsWith(y))

addition, we ran the test cases after rewriting the assertions to check that the test is still
passing. This was done for 14 subjects in project AZK, SBA, JIB, GRC, ZKN, and SPB.

e We executed the test case to ensure that it passes with the correct stub code written by
developers, since we will use it as the ground truth.

e We removed the stub code so that the test fails. This is to ensure that the stub code is
required to pass the test.

We discarded a code change if we failed to perform any of the steps above on it. Finally, we
constructed a benchmark of 59 test cases containing 167 mock objects collected from 13 projects.
Each of the entries in the benchmark consists of two elements <Tbk, Tgt>. ok = {V, Spi, E, A) is the
obsolete test case containing broken stub code Spx and 7, = (V, Sy, E, A) is the fixed version of
the test case, which contains the ground-truth stub code S, written by developers. Figure 4 shows
an example of a benchmark entry in project MB3. The obsolete test case from version 4dfea24
contains broken stub code. Developers fixed the broken stub code in version 963a8a5 by modifying
the stub code. Table 2 summarizes the benchmark.

16 H. Zhu et al.

Table 2. Demographics of Benchmark

Artifact ID GitHub Project ID LOC (Java) Stars # Test Cases # Total Mock Objects
ADR apache/druid 856K 11.9K 2 7
ADU apache/dubbo 199K 37.6K 13 25
AHP apache/hadoop 1,834K 127K 5 9
AZK apache/zookeeper 116K 10.6K 1 2
APL apolloconfig/apollo 52K 27.0K 8 40
SBA codecentric/spring-boot-admin 18K 11.0K 2 2
JIB GoogleContainerTools/jib 55K 119K 2 7
GRC grpc/grpc-java 226K 9.9K 3 3
MB3 mybatis/mybatis-3 68K 17.4K 12 37
N4J neo4j/neo4j 731K 10.2K 4 25
ZUL Netflix/zuul 232K 12.0K 1 2
ZKN openzipkin/zipkin 42K 15.5K 5 7
SPB spring-projects/spring-boot 347K 62.1K 1 1
Total 59 167

4.2 RAQ1: Stub Code Generation

Experiment Setup. To answer RQ1, we ran STUBCODER on the 59 test cases without stub code
in our benchmark to generate stub code for them. We ran STuBCODER with population size N = 200,
and set the generation budget MAX_GEN = 400. We selected these parameters based on a few trial
runs following previous work [51]. Due to the stochastic nature of evolutionary algorithms, we
evaluated whether STUBCODER can successfully synthesize the stub code in 10 repetitions. Our
algorithm relies on a pseudo-random number generator when making random decisions. We chose
10 randomly-generated prime numbers as the random seeds for each repetitions, these random
seeds are used across all the evaluation subjects. We also designed two alternative optimization
strategies in addition to our dominance based approach for comparison.

e Weighted Sum. The first alternative optimization strategy is to combine these objectives
using weighted sum. In this setup, we combined the three objectives into a single fitness
function with different weights. With the same rationale as for the NSGA-II variant, we
assigned higher weights for the functions measuring the later stages of test execution,
following the powers of 2.

fitness(S) = 2° - SU(S) + 2! - EC(S) + 22 - AS(S)

e NSGA-IL In addition, we tried out the most popularly adopted MOEA, NSGA-II [17]. NSGA-
II employs a fast non-dominated sorting based on Pareto optimality [49] and crowding-
distance based comparison. Such an approach will produce solutions that offer the best
trade-off between competitive objectives [49].

Results. Column “STuBCODER (G)” of Table 3 shows the results for each test case. Column “SR”
shows the number of successful runs for each test case. For successful runs, we also report the
generations taken, time taken (in seconds), and the size of stub code, in columns “Gen”, “Time”,
and “|S|”, respectively.

For 45 of 59 test cases, STUBCODER successfully generated test-passing stub code in at least 5
of the 10 repetitions, which counts for 76% of the subjects. The median of time taken by all the
successful syntheses is 182 seconds.

Column | S | shows the length of the stub code (in terms of lines of code). STUBCODER is able to
synthesize non-trivial stub code. The type of variables in the stub code contains primitive types,
strings, and complex objects. For the 48 subjects with at least one successful run, 30 of them contain

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 17

Table 3. RQ1 — RQ3: Comparison of the Success Rate in Different Setups

GT is for ground truth, which are the test cases written by developers. “STUBCODER (G)”, “STUBCODER (R)”, “NSGA-II”, “Weighted Sum”, and
“Unguided” are STUBCODER in generation mode, repair mode, with NSGA-II, with weighted sum, and random selection, respectively. |M]| is
the number of mock objects in V' in the test case. |A| is the number of assertions (including verify assertions on mock objects) in the test
case. |S]| is the size of the stub code. SR is the number of successful runs. Gen, Time, and |S| are the number of generations taken, time taken
(in seconds), and the size of stub code, respectively.

GT STUBCODER (G) STUBCODER (R) NSGA-II Weighted Sum Unguided
Subject |\ JAl IS||SR Gen Time |S|[SR Gen Time [S||SR Gen Time |S||SR Gen Time |S||SR Gen Time [S|
#1 1 1 3(10 9 511 3110 13 749 3| 4 335 26155 3(10 8 534 3|10 25 983 3
N4J #2 5 4 2610 24 1118 11|10 10 454 20| 10 27 1670 4110 14 861 9110 37 1892 4
#3 9 5 11| 0 - - -1 2 342 16738 91 0 - - -] 1 387 23048 18| 0 - - -
#4 10 3 91 9 75 4949 17| 8 92 5882 20| O - - -1 10 149 11294 39| 1 307 20908 12
SPB # | 1 1 1|10 1 38 2|10 1 3 2[10 1 45 2[10 1 56 2|10 1 40 2
#6 1 2 1|10 2 69 2|10 2 67 2|10 2 95 2|10 2 94 2| 2 156 6254 2
GRC #7 1 2 14| 0 - N - -l o - - -0 - - - -
#3 1 2 12 0 - - - N - -0 - - -
#9 4 2 1| 10 2 86 1|10 1 43 2] 10 2 97 1|10 1 51 1|10 1 43 1
#10 2 2 1] 10 2 82 1] 10 2 85 2|10 1 54 1|10 2 96 1|10 1 40 1
#11 4 2 1] 10 2 89 1] 10 3 131 1] 10 3 145 1|10 3 196 1|10 2 91 2
#12 4 2 1] 10 2 81 3110 2 85 1|10 2 95 2|10 2 136 4|10 1 46 1
#13 1 2 1|10 2 76 1|10 2 77 1|10 1 43 2|10 1 57 1|10 1 40 1
MB3 #14 4 2 1|10 2 89 1] 10 1 42 1|10 5 237 1|10 1 68 1|10 2 90 2
#15 4 2 1] 10 3 127 1|10 2 86 2|10 2 98 1] 10 1 55 2|10 1 44 1
#16 4 2 1] 10 2 85 1] 10 3 128 1|10 4 203 1|10 4 218 1|10 1 44 1
#17 1 2 1|10 2 78 1]10 4 158 1] 10 2 91 2|10 2 114 1]10 1 42 2
#18 4 2 1] 10 2 85 1|10 5 219 2|10 2 929 1|10 3 159 1|10 1 45 1
#19 1 2 1] 10 2 79 1] 10 4 156 1] 10 4 218 1|10 1 47 2|10 1 41 1
#20 4 2 1|10 5 210 1|10 2 86 1] 10 3 145 1|10 2 111 1|10 1 46 1
#21 1 2 7| 10 1 35 2|10 1 37 2110 13 567 2|10 56 2|10 1 38 2
#22 2 1 8| 0 N - -1 0 N - -1 0 - - -1 0 - - -1 0 - - -
ZKN #23 1 2 7110 25 953 3110 20 745 310 - - -1 10 14 313 5[0 - - -
#24 2 1 71 0 - - -1 0 - - -1 0 - - -1 0 - - -1 0 - - -
#25 1 2 10110 10 381 6|10 18 689 4| 0 - - -1 10 20 428 3| 0 - - -
#26 5 3 3|10 2 78 2|10 3 121 2|10 3 133 2|10 2 131 41 9 61 2646 3
#27 5 4 3|10 2 79 5| 10 2 80 6|10 2 90 4|10 2 103 3(10 2 86 3
#28 6 2 10|10 111 5116 91 9 85 3895 9 7 158 8409 10| 9 84 6597 11| 1 324 16501 10
APL #29 4 2 10| 1 65 2777 12| 4 311 13022 18| 1 143 7282 17| O - - -1 0 - - -
#30 6 5 20| 5 80 3673 11| 5 233 10805 6 5 151 7906 71 7 279 14574 19| O - - -
#31 6 11 24| 0 - - -1 0 - - -1 0 - - -1 0 - - -1 0 - - -
#32 4 4 10| 10 1 41 2|10 1 39 2|10 1 45 10| 10 1 53 6] 10 1 52 8
#33 4 3 12|10 26 1196 3|10 22 949 5| 9 98 4980 4110 17 918 5| 0 - - -
ZUL #34‘ 2 1 2‘ 10 1 39 1‘ 10 1 37 1‘ 10 6 273 1‘ 10 1 51 1‘ 10 1 51 3
SBA #35 ‘ 1 3 1 ‘ 0 N - - ‘ 10 17 639 2 ‘ 1 72 3095 2 ‘ 0 - - - ‘ 0 - - -
#36 1 3 11 0 - - -1 10 5 186 210 - - -1 0 - - -1 0 - - -
JIB #37‘ 5 18 13‘ 0 - - —‘ 0 - - —‘ 0 - - —‘ 0 - - —‘ 0 - - -
#38 2 1 15| 0 - - -1 2 379 15510 32| 0 - - -1 0 - - -1 0 - - -
AZK #39| 2 20 11| 0 - - -0 - - -0 - - o - - -0 - - -
#40 1 1 910 1 43 4|10 1 43 2|10 1 50 2|10 1 62 8|10 1 4 2
#41 1 3 910 7 312 6|10 8 364 7|10 5 237 10| 10 7 380 7|10 3 141 10
AHP #42 3 3 20| 10 1 66 6| 10 1 66 6|10 2 143 6|10 1 87 13|10 1 66 5
#43 2 3 71 8 27 1252 14|10 17 780 34| 7 100 4827 14|10 30 1695 21|10 77 3577 13
#44 2 4 810 32 1487 13|10 75 3553 12| 4 203 9984 9|10 29 1648 13|10 56 2831 13
ADR #45 1 1 1] 2 232 12684 2| 0 - - -1 0 - - -] 1 169 10534 2| 0 - - -
#46 6 6 16| 10 5 482 9|10 5 391 8|10 4 257 4|10 4 506 10| 10 4 212 5
#47 2 1 3 7 109 4404 17| 2 174 7052 15| O - - - 8 112 5413 18| 0 - - -
#48 3 3 101 9 41 1805 91 8 71 3234 10| 9 120 5712 21| 9 91 4713 20| O - - -
#49 1 2 4110 54 2118 7110 25 966 9] 0 - - -1 10 72 3411 6| 0 - - -
#50 1 2 4110 80 3153 8110 15 552 10| 0 - - -1 10 62 3320 8| 0 - - -
#51 2 1 71 6 46 1878 12| 3 73 3053 19| 6 303 14601 8 9 36 1844 7| O - - -
#52 1 1 2|10 1 35 1|10 1 35 1] 10 1 38 1|10 1 59 1|10 1 37 1
ADU #53 1 2 9110 77 3191 14|10 50 2143 12| 1 384 15915 15|10 88 4661 29| 0 - - -
#54 8 2 14| 8 61 2733 28| 8 183 8284 33| 0 - - -1 5 135 7114 23| 0 - - -
#55 1 1 2|10 1 36 1|10 1 35 1|10 1 40 1|10 1 60 1|10 1 38 1
#56 1 1 5|10 43 1848 9110 32 1291 14| 1 378 16034 9|10 29 1512 10|10 196 7896 15
#57 1 2 71 1 223 11755 71 3 373 12003 6 0 - - -1 3 136 7933 6 0 - - -
#58 1 1 3] 9 25 878 7110 27 1047 7| 5 215 889 7|10 26 1400 6| 9 52 2416 12
#59 2 1 7110 2 73 8] 10 2 72 5| 5 79 2691 2] 10 3 171 8] 10 4 175 16

Success Rate > 50% | 76% | 76% | 58% | 76% | 54%

18 H. Zhu et al.

80%
70%
60%
Q
S 50%
2 40% N
15 30% / StubCoder (Generation Mode) |
A |l StubCoder (Repair Mode)
20% [~ Weighted Sum y
o/ |- NSGA-II i
1o 1 1 1 1 1 Unguideld
0%
0 50 100 150 200 250 300 350 400

Generations
The value of Y-axis is the average success rate over the 10 repetitions at the generation budget specified by the X-axis.

Fig. 5. Comparison of the Success Rate between Experiment Setups

complex objects in the synthesized stub code. For most of the test cases, the length of the stub code
synthesized by STUBCODER is slightly longer than the ones written by developers. This is because
STUuBCODER does not inline the variables that are used only once in the synthesized stub code,
which is often done by developers (e.g., In Listing 3, developers put the String literal right in the
thenReturn). Such a refactoring can be done trivially by using some refactoring tools. For some
test cases (e.g., #2, #30, and #32), STUBCODER synthesized much fewer lines of code, yet obtained a
test-passing stub code. We found that for these test cases, developers copied the same stub code
across several test cases, creating redundant stub calls. Such a bad practice can complicate future
maintenance of the stub code. In comparison, the stub code synthesized by STuBCODER will be
easier to maintain.

STuBCoODER is more likely to be successful for subjects with simple stub code. For instance, the
stub codes in project MB3 mostly comprise a single line and do not contain complicated string
values. STUBCODER is more likely to fail when a subject needs a complicated stub code to pass.
For example, in project JIB, there are multiple stub calls in the developer-written test containing
complicated string values. Although our fitness component AS can capture the edit distance between
the expected value and the actual value in the assertions, it cannot help when the string value
returned by the stub code does not flow directly to the assertions (e.g., used as branch conditions).
Also, for project ZKN, the developer-written stub code contains a custom implementation that
mutates the variables outside the stub, which is beyond the capability of STUBCODER.

Figure 5 shows a comparison of the average success rate versus generation budget between
different optimization strategies. The dominance-based approach adopted by STuBCODER performs
similarly as weighted sum while it requires less parameter tuning effort. NSGA-II performs much
poorer than dominance-based approach and weighted sum. The reason for this performance
drop is that, NSGA-II aims to produce solutions that offer the best trade-off between competitive
objectives [49], which will treat all the optimization objectives as of equal importance. However, in
our scenario, the three objectives measures the quality of candidate stub code in different stages of
test execution and they are of different importance. In this case, we can observe a large performance
gap between NSGA-II and dominance-based approach.

9 RQ1 in Summary: STuBCODER successfully synthesizes the stub code for 76% of the test
cases in our benchmark in at least half of the repetitions. Optimization strategies that consider
the importance of each objectives help STUBCODER achieve better performance.

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 19

4.3 RQ2: Stub Code Repair

Experiment Setup. The application scenario of RQ2 is stub code repair. To answer RQ2, we
followed the same setup as in RQ1, with the only difference that we fed STUBCODER with the broken
stub code so that it could make use of its tokens to construct the symbol pool.

STUuBCODER aims to generate and repair stub code in unit tests. It is the first technique of its
kind. Existing test script repair techniques either repair oracle assertions [15, 16], repair GUI test
scripts [9, 26, 48], or focus only on CUT calls [35, 40]. These techniques cannot repair obsolete
stub code. As a result, we do not use them as baselines in our evaluation. Instead, we selected
state-of-the-art program repair techniques as our baselines. Specifically, we selected the techniques
using the following criteria:

e It is most recently published at a peer-reviewed venue.
e It has an artifact that works for Java projects.
e It needs only faulty code and test cases as input.

Following these criteria, we selected two state-of-the-art program repair techniques: Arja [57] and
the CARDUMEN mode [37] of AsTOR, and we applied the two baselines on our subjects. Since the
stub code being repaired is in the form of test code, which is not supported by these baselines, we
make the following adaptations for our subjects.

e Since the two baselines can only repair application code, we migrate the test case that
contains the broken stub code (together with its dependencies) to the application code
directory.

o The baselines rely on fault localization techniques to find repair candidates. However, in our
scenario, the statements to be repaired are already known. Therefore, we implement a fault
localizer that returns the statements containing the obsolete stub code as faulty locations.
This can force the baselines techniques to repair only the stub code.

e For each migrated test case, we create a simple test case to trigger it. We specify these
simple test cases as the failing tests when applying the two baselines.

After applying the adaptation, we run the two baselines with their default configurations with a
time budget of six hours.

Results. As shown in Table 3 (Column “STUBCODER (R)”), STUBCODER successfully repaired
76% of the test cases in our benchmark in no fewer than 5 repetitions. There are 30 subjects where
StuBCoDER synthesized stub code with complex objects. As shown in Figure 5, STUBCODER took
fewer generations to find a test-passing stub code. With the help of the tokens in the broken
stub code, STUBCODER is able to produce test-passing stub code for the subjects where it fails in
generation mode. Take subject #36 as an example, a complicated string "/actuator/health" must
be stubbed to pass the test. During code evolution, the signature of the method being stubbed
changed, and the stub code was broken. Nevertheless, the string literal in the broken stub code is
still useful for STUBCODER and enables it to converge quickly to the stub code that makes the test
pass. As shown in Listing 2, STUBCODER synthesized a two-line stub code to pass the test by reusing
the literal string in the broken stub code, which was done in only four generations. In comparison,
without the help of the tokens, it is hard for STUBCODER to synthesize such a complicated string
literal from scratch and therefore, STUBCODER failed to synthesize a test-passing stub code in
generations mode.

For the two state-of-the-art baseline techniques, they failed to repair the stub code in any of
our evaluation subjects. There are two reasons for the poor performance achieved by the baseline
techniques. First, for 35 of the 59 subjects, the broken stub code leads to a compilation error.
The baseline techniques require compiling tests to run and therefore, are not applicable to these

20 H. Zhu et al.

subjects. Second, for the remaining 24 subjects, they failed to repair the stub code because they
lack awareness of the semantics of the APIs in the mocking frameworks (mocking APIs). Without
understanding the mocking APIs, it is difficult for such techniques to find a test-passing stub code
by randomly mutating the AST nodes.

¥ RQ2 in Summary: STuBCODER successfully repairs the stub code for 76% of the test cases
in our benchmark in no fewer than 5 repetitions. The tokens in the broken stub code can help
reduce search effort and synthesize shorter stub code in some cases. State-of-the-art program
repair techniques cannot repair the stub code in any of the evaluation subjects.

4.4 RQ3: Effectiveness of Fitness Function

Experiment Setup. RQ3 aims to evaluate the contribution of the fitness function to steering
the search for stub code. Towards this goal, we constructed a variant of STuBCODER with random
selection, which conducts the search process without the guidance of the fitness function. Enumer-
ating and (uniformly) sampling the whole search space would have been the ideal random baseline.
However, it is infeasible due to the huge size of the search space. As such, we opted for a variant of
STuBCODER that uses the same crossover and mutation operations to explore the search space, but
without any guidance by the fitness function. We ran this variant of STUBCoDER with the same
configurations as in RQ1.

Results. Column “Unguided” of Table 3 shows the performance of the unguided variant of
STtuBCoDER. Without the support of the fitness function, the unguided variant only successfully
synthesizes stub code for 54% of the test cases in our benchmark in no fewer than 5 repetitions,
which is less than the generation mode and the repair mode. In general, when the unguided variant
successfully synthesizes stub code, it takes significantly more generations (e.g., #4, #28, and #56)
than the guided version of STUBCODER. For five test cases, only the unguided variant of STUBCODER
fails to synthesize the stub code (e.g., #30 and #33). Interestingly, four of them have multiple oracle
assertions in their test oracle. For such test cases, STUBCODER with fitness guidance can successfully
synthesize the stub code because the fitness function examines the status of each assertion in the
test oracle, and thus can prioritize the candidate stub code that can satisfy some of the assertions.
Such results show that our fitness function can effectively guide the search for test-passing stub
code.

¥ RQ3 in Summary: STuBCODER outperforms its unguided variant in both the generation and
repair modes. Our fitness function provides useful guidance for synthesis of stub codes.

4.5 RQ4: Fidelity of Synthesized Stub Code

Experiment setup. RQ1 and RQ2 evaluate the effectiveness of STUBCODER in generating and
repairing stub code that makes the developer-specified assertions pass. Different from them, RQ4
evaluates the fidelity of the stub code synthesized by STuBCODER with respect to the ground-truth
stub code. Specifically, we evaluate to what extent the test cases with synthesized stub code can
preserve the runtime behavior of the test case with ground-truth stub code. For each of the test
cases in which STUBCODER successfully synthesizes stub code in at least one run, we prepared
e = (V, 41, E, A) with the stub code written by developers, and 75 = (V, S, E, A) with the stub
code synthesized by STUBCODER. Next, we opted for the similarities in three metrics to estimate
similarity in the runtime behaviors of 7; and 7. A higher similarity in the runtime behaviors
indicates a higher fidelity of the synthesized stub code.

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 21

¢ Executed Instructions. This metric measures the behavior of the test case with respect
to exercising the code under test. In this paper, we identify the set of Java bytecode
instructions in the production code that are executed by 7, and 7, denoted as I(z,) and
I(74), respectively. Test cases with similar runtime behaviors should execute similar sets of
instructions. Therefore, we also report the Jaccard similarity coefficient [42] between I(z;)
and I (Tgt). However, similar sets of executed instructions are not our only metric, since it is
not a sufficient condition for similar behaviors. It is possible that two test cases behaving
differently share similar sets of executed instructions.

o Execution Path. In addition to the set of executed instructions, we also traced the execution
paths, which are the ordered sequence of instructions that are executed by the test cases.
Comparing the execution paths of 7, and 7, would give us more information about fidelity
because, unlike executed instructions, the execution path captures the instruction execution
order. For each of the test cases where STUBCODER successfully synthesizes stub code,
we collected the execution paths generated by 7, and 7, denoted as P(r;) and P(z4),
respectively. Since Jaccard similarity coefficient cannot be applied to execution paths, we
report their similarity based on edit distances as follows.

DLev (P(ts), P(4:))

[P(7)] + |P(7q)]
where DLev is the Damerau-Levenshtein distance [14]. For test cases spawning multiple
threads, we match the threads that share similar traces, and DLev denotes the sum of
Damerau-Levenshtein distances between those thread pairs. A small edit distance indicates
that 7; and 7, traverse similar execution paths.

e Killed Mutants. Mutation analysis [31] measures the adequacy of a test case with respect
to detecting faults. It injects artificial faults in the program and checks if the test cases can
“kill” them (i.e., the test fails). In this paper, we mutated the CUT using PIT [10] by seeding
faults and ran 7; and 7, against the mutants. We identified the mutants that are killed
by 75 and 74, denoted as K(75) and K (7), respectively. Test cases with similar behaviors
should be able to kill similar sets of mutants. Therefore, we also report the Jaccard similarity
coefficient [42] between K(z,) and K(y;).

We choose these metrics because they estimate the intent or behaviors of test cases. For example,
the executed instructions and execution path are relaxed and tighten versions of path conditions.
They are validated to be a good abstraction of test intents in a recent study on test repair [35].
Mutation coverage is a proxy for reflecting the behaviors of the test cases in terms of detecting
potential bugs, and it was used to measure the behavioral similarity of test cases in a recent study
that automatically refactors test cases with mocking [54].

Similarity (P(z,), P(7g)) = 1 —

Results. For generation mode, Table 4 shows the comparisons on executed instructions, exe-
cution path, and killed mutants by 7, and 74, for each subject in our benchmark that STuBCopER
successfully synthesizes stub code in at least one run.? In our experiment, 7, covers the similar set
of the instructions as 7, with the median of the Jaccard similarity coefficient to be 100%. In 24 of
the 46 subjects, 7, covers exactly the same set of instructions as 4. In such cases, 7, is capable for
exercising the same instructions as 7,;. The execution paths traversed by 7; and 7, are also similar.
The median of similarity is 99.99%, which indicates that z; exercise the CUT in a way similar to
what 7, does. In 22 of the 46 subjects, the edit distance between the execution paths generated by
75 and 7, is 0, which means that they execute the instructions in the production code in exactly
the same order. In such subjects, 7, and 7, exercise the CUT with the same intent. This is because

ZPIT crashed due to its bug on subject #54 and therefore we cannot report the result for #54 in this RQ4.

22 H. Zhu et al.

Table 4. RQ4: Fidelity of the Synthesized Stub Code (Generation Mode)

74+ denotes the result generated by the ground truth. 75 denotes the result generated by the test with synthesized stub code.
74t N 75 denotes the intersection of the ground truth and the test with synthesized stub code.

Jaccard denotes Jaccard similarity coefficient.

DLev denotes Damerau-Levenshtein distance.

Executed Instructions Execution Path Killed Mutants
Subject ID P -
| g Ts TgtN7Ts Jaccard | 74 7s DLev Similarity | Injected 75 7s 74 N7s Jaccard
#1 40 40 40 100.00% 40 40 0 100.00% 27 3 3 3 100.00%
#2 431 431 431 100.00% 564 561 3 99.73% 32 4 3 3 75.00%
N4 #3 - - - - - - - - - - - - -
#4 258 258 258 100.00% 258 258 0 100.00% 378 12 11 11 91.67%
SPB #5 ‘ 117 117 117 100400%‘ 171 171 0 100.00%‘ 2 1 1 1 100.00%
#6 255 255 255 100.00% 257 257 0 100.00% 89 2 2 2 100.00%
GRC #7 - - - - - - - - - - - -
48 - - - - - - - - - - -
#9 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#10 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#11 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#12 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#13 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
MB3 #14 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#15 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#16 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#17 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#18 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#19 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#20 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#21 55 41 41 74.55% 57 41 16 83.67% 29 4 1 1 25.00%
#22 - - - - - - - - - - - - -
ZKN #23 46 4 4 8.7% 46 4 42 16.00% 29 2 0 0 0.00%
#24 - - - - - - - - - - - - -
#25 46 4 4 8.7% 62 4 58 12.12% 29 3 0 0 0.00%
#26 40 40 40 100.00% 40 40 0 100.00% 5 0 3 0 0.00%
#27 28 28 28 100.00% 28 28 0 100.00% 5 2 2 2 100.00%
#28 327 317 317 96.94% 336 324 12 98.18% 40 8 7 7 87.50%
APL #29 118 99 99 83.90% 120 99 21 90.41% 22 8 8 6 60.00%
#30 265 265 265 100.00% 396 396 0 100.00% 40 6 6 6 100.00%
#31 - - - - - - - - - - - - -
#32 113 35 35 30.97% 113 35 78 47.30% 22 10 3 2 18.18%
#33 - - - - - - - - - - - - -
ZUL #34 ‘ 31 31 31 100.00% ‘ 31 31 0 100.00% ‘ 4 2 2 2 100.00%
#35 - - - - - - - - - - - - -
wa | - - - | - - | o
#37 - - - - - - - - - - - - -
AZK #39 | - - - - - - - - - - - - -
#40 | 2197 2027 2026 92.17% 5083 4841 243 97.55% 288 8 5 5 62.50%
#41 903 903 903 100.00% 9995 9998 5 99.97% 142 15 15 15 100.00%
AHP #42 | 1500 1436 1432 95.21% | 11144 11016 136 99.39% 147 17 18 17 94.44%
#43 | 1055 1055 1055 100.00% 9343 9346 5 99.97% 120 11 17 11 64.71%
#44 | 1056 1093 1054 96.26% 9217 5400 3964 72.88% 120 14 15 14 93.33%
ADR #45 59 59 59 100.00% 67 67 0 100.00% 17 3 3 3 100.00%
#46 169 164 150 81.97% 320 208 126 76.14% 29 4 4 2 33.33%
#47 188 174 173 91.53% 235 221 15 96.71% 5 1 1 1 100.00%
#48 61 62 60 95.24% 66 67 2 98.50% 30 5 5 5 100.00%
#49 74 60 60 81.08% 78 62 16 88.57% 22 2 2 2 100.00%
#50 70 56 56 80.00% 74 58 16 87.88% 22 1 2 1 50.00%
#51 41 12 12 29.27% 41 12 29 45.28% 5 1 2 1 50.00%
#52 64 64 64 100.00% 66 66 0 100.00% 2 1 1 1 100.00%
ADU #53 356 100 88 23.91% 448 106 355 35.92% 29 2 1 0 0.00%
#54 - - - - - - - - - - - - -
#55 64 64 64 100.00% 66 66 0 100.00% 2 1 1 1 100.00%
#56 387 100 88 22.06% 465 106 372 34.85% 29 2 2 0 0.00%
#57 296 178 165 53.40% 372 194 247 56.36% 22 1 2 0 0.00%
#58 155 143 143 92.26% 185 173 12 96.65% 29 8 8 8 100.00%
#59 92 6 6 6.52% 95 6 90 10.89% 5 2 0 0 0.00%
Median 100400%‘ 99.99%‘ 100.00%

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 23
Table 5. RQ4: Fidelity of the Synthesized Stub Code (Repair Mode)
74+ denotes the result generated by the ground truth. 75 denotes the result generated by the test with synthesized stub code.
74t N 75 denotes the intersection of the ground truth and the test with synthesized stub code.
Jaccard denotes Jaccard similarity coefficient.
DLev denotes Damerau-Levenshtein distance.
Executed Instructions Execution Path Killed Mutants
Subject ID P -
| g Ts TgtN7Ts Jaccard | 74 7s DLev Similarity | Injected 75 7s 74 N7s Jaccard
#1 40 40 40 100.00% 40 40 0 100.00% 27 3 3 3 100.00%
N4 #2 431 431 431 100.00% 564 559 5 99.55% 32 4 3 3 75.00%
] #3 305 277 277 90.82% 327 293 34 94.52% 67 15 14 13 81.25%
#4 258 385 258 67.01% 258 389 131 79.75% 378 11 12 11 91.67%
SPB #5 ‘ 117 117 117 100.00% ‘ 171 171 0 100.00% ‘ 2 1 1 1 100.00%
#6 255 255 255 100.00% 257 257 0 100.00% 89 2 2 2 100.00%
GRC #7 - - - - - - - - - - - - -
#8 - - - - - - - - . -
#9 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#10 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#11 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#12 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#13 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
MB3 #14 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#15 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#16 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#17 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#18 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#19 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#20 39 39 39 100.00% 39 39 0 100.00% 5 1 1 1 100.00%
#21 55 41 41 74.55% 57 41 16 83.67% 29 4 1 1 25.00%
#22 - - - - - - - - - - - - -
ZKN #23 46 4 4 8.70% 46 4 42 16.00% 29 2 0 0 0.00%
#24 - - - - - - - - - - - - -
#25 46 4 4 8.70% 62 4 58 12.12% 29 3 0 0 0.00%
#26 40 40 40 100.00% 40 40 0 100.00% 5 0 3 0 0.00%
#27 28 111 28 25.23% 28 111 83 40.29% 5 2 2 2 100.00%
#28 327 317 317 96.94% 336 324 12 98.18% 40 8 7 7 87.50%
APL #29 118 99 99 83.90% 120 99 21 90.41% 22 9 9 7 63.64%
#30 265 265 265 100.00% 396 396 0 100.00% 40 6 6 6 100.00%
#31 - - - - - - - - - - - - -
#32 113 35 35 30.97% 113 35 78 47.30% 22 6 3 1 12.50%
#33 - - - - - - - - - - - - -
ZUL #34 ‘ 31 31 31 100.00% ‘ 31 31 0 100.00% ‘ 4 2 2 2 100.00%
SBA #35 268 268 268 100.00% 279 279 0 100.00% 49 15 14 14 93.33%
#36 297 297 297 100.00% 374 374 0 100.00% 4 2 2 2 100.00%
B #37 - - - - - - - - - - - - -
J #38 | 1245 1228 1228 98.63% 1588 1465 123 95.97% 46 12 12 12 100.00%
AZK #39 | - - - - - - - - - - - - -
#40 | 2197 2027 2026 92.17% 5083 4841 243 97.55% 288 8 5 5 62.50%
#41 903 901 901 99.78% 9995 5460 4535 70.66% 142 15 15 15 100.00%
AHP #42 | 1500 1436 1432 95.21% | 11144 11016 136 99.39% 147 17 18 17 94.44%
#43 | 1055 1094 1055 96.44% 9343 9526 183 99.03% 120 11 12 11 91.67%
#44 | 1056 1093 1054 96.26% 9217 5400 3964 72.88% 120 14 15 14 93.33%
ADR #45 - - - - - - - - - - - - -
#46 169 164 150 81.97% 320 208 126 76.14% 29 4 4 2 33.33%
#47 188 174 173 91.53% 235 221 15 96.71% 5 1 1 1 100.00%
#48 61 61 61 100.00% 66 66 (1] 100.00% 30 5 5 5 100.00%
#49 74 60 60 81.08% 78 62 16 88.57% 22 2 2 2 100.00%
#50 70 63 56 72.73% 74 65 16 88.49% 22 1 2 1 50.00%
#51 41 47 12 15.79% 41 47 44 50.00% 5 1 2 1 50.00%
#52 64 64 64 100.00% 66 66 0 100.00% 2 1 1 1 100.00%
ADU #53 356 115 94 24.93% 448 121 350 38.49% 29 2 1 0 0.00%
#54 - - - - - - - - - - - - -
#55 64 64 64 100.00% 66 66 0 100.00% 2 1 1 1 100.00%
#56 387 117 101 25.06% 465 142 372 38.71% 29 2 1 0 0.00%
#57 296 94 81 26.21% 372 104 281 40.97% 22 1 1 0 0.00%
#58 155 143 143 92.26% 185 173 12 96.65% 29 8 8 8 100.00%
#59 92 82 82 89.13% 95 85 10 94.44% 5 2 2 2 100.00%
Median 99.78% ‘ 99.39% ‘ 100.00%

24 H. Zhu et al.

the same execution path indicates that the tests share the same path conditions, which was shown
to be a good abstraction of test intent [35]. The set of mutants killed by 75 and 7y, are also similar,
with the median of similarity to be 100%. In 26 of the 46 subjects, 75 kills exactly the same set of
mutants as 7, which means 7; has the similar ability to detect injected bugs as 7.

Table 5 gives the fidelity comparison for the repair more. The median of similarity in executed
instructions is 99.78%, and 7y covers the same set of instructions as 7y, does in 24 of 49 subjects. The
median of similarity in execution path is 99.39%, and 7, shares exactly the same execution path as
Ty in 23 of 49 subjects. The median of similarity in killed mutants is 100%, and 7, kills the same set
of mutants as 7, does in 28 of 49 subjects. In summary, STUBCODER synthesizes stub code similar
to the ground truth with respect to executed instructions, execution path, and killed mutation. The
high similarities indicate that the test cases with the synthesized stub code have adequacy similar
to that of the ground truth. Such test cases are useful for detecting regression bugs when the CUT
evolves.

Besides most of the high hifelities subjects, we also observed several cases that worth discussion:

o Synthesis is successful but fidelity is low. Such cases are caused by weak test oracles. The
test oracles in these subjects (e.g., #23 and #25 in both modes) allow multiple execution paths
to pass the test. Listing 4 shows an example to illustrate such cases. As shown in the code
snippet, both 7; and 7 can pass the test since both of them will result in a CustomException
to be thrown. However, the execution paths of 7,; and r are different, and the mutants
injected into the branch cannot be killed by 7. Such situations can be easily mitigated by
enhancing the test oracle with a few mocking calls, specifying that certain methods should
be called on the mock objects. After that, STUBCoODER will synthesize stub code that helps
cover the code lines invoking the methods specified by such mocking calls.

¢ Killed mutants are the same but execution paths are different. Such cases (e.g., #47,
#49, and #58 in both modes) happened because 7,; and 7 takes different ways to construct
certain objects. To illustrate such a difference, Listing 5 show a comparison of two ways
to construct a string "10". In the developer-written stub code, the string is constructed
directly with a literal. In the synthesized stub code, the string is converted from an interger
value. In this case, the instructions in String.valueOf will be included in the execution
path of 7 but not 7. Nevertheless, the synthesized stub code is sill useful for developers as
7 kills exactly the same set of mutants as 7.

e Execution paths are similar but killed mutants are different. Such cases (e.g., #2,
#35 in repair mode) are due to different return values specified in the stub code. Listing 6
illustrates such a case. The generated stub code and the developer-written stub code specify
different return values for the method getOffset. Without mutation, both test cases can
enter the then branch, and therefore they share the same set of executed instructions, and
both of them make the test pass. However, when the mutation operator changes the + to -,
the test case with developer-written stub code does not enter the then branch while the test
case with generated stub code enters the then branch. In this case, the test fails with the
developer-written code while it passes with the generated stub code.

e Same executed instructions but different execution paths. This is because there are
loops in the production code and 7 and 7,; executed the loops for different number of times.

Overall, as shown in Table 4 and Table 5, the encoded information is sufficient for obtaining a
useful stub code most of the time. This verifies our intuition that deriving the stub code from the
information encoded in the CUT execution code and test oracle leads to adequate test cases.

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 25

// Synthesized stub code
when (someMock . getValue()).thenThrow(new CustomException());

// Developer-written stub code
when (someMock.getValue()).thenReturn(5);

// Class under test

int value = someMock.getValue();

9 if(value < 10) {

10 // ... mutants are injected here
11 throw CustomException();

12 }

[N B NS N O N

14 // Assertions
15 assertThrows (CustomException.class, ()-> {

16 // CUT execution
17 3);
Listing 4. lllustration of Weak Oracle
1 // Generated code
2 int varl = 10;
3 String var2 = String.valueOf(varl);
4 when(someMock.foo()).thenReturn(var2);
5
6 // Developer-written code
7 when(someMock.foo()).thenReturn("10");

Listing 5. llustration of Alternatve Object Construction

1 // Generated stub code

2 doReturn(2).when(someMock).getOffset();
3

4 // Developer-written stub code

5 doReturn(4) .when(someMock).getOffset();
6

7 // In the class under test

8 int offset = someMock.getOffset() + 5;
9 if (3 <= offset && offset <= 10) {

10 /.

11 } else {

12 // fail

13 }

Listing 6. lllustration of Different Killed Mutants due to Return Values

¥ RQ4 in Summary: STUBCODER synthesizes stub code with high fidelity, which means that
they share a runtime behavior similar to that of the ground truth in terms of their effects on the
code under test. The information encoded in CUT execution code and test oracle is useful for
deriving stub code. STUBCODER works well when the test oracle contains adequate information.

4.6 Threats to Validity

Subject Collection. We evaluated STUBCODER on 59 test cases collected from 13 projects. Our
results might not be generalized to other projects and test cases. The subject collection requires
intensive manual effort, which limited the number of projects and test cases that we could use. To
mitigate this threat, we selected large, actively maintained, diverse, and popular GitHub projects.
These projects belong to different domains: big data, database, web apps, containers, etc. Our
benchmark dataset reflects the real-world usage of stub code in these areas.

26 H. Zhu et al.

Also, when preparing the evaluation subjects, we rewrote the assertions written in other libraries
into those using JUNIT framework. Such manual modification might be affected by human mistakes
and thus change behavior of the test cases. To mitigate this issue, we cross-checked the documenta-
tion of the corresponding assertion framework and JUNIT to make sure the rewritten assertions
preserves the original semantics. We also ran the test cases before and after modification to make
sure that they yield the same result.

Fidelity Measurement. When measuring the fidelity of the stub code, we leveraged a metric
based on instruction coverage. However, the similarity on the instruction coverage may not be
ideal to reflect the differences. For example, when there are only 10% of the instructions in the
class under test are in branches, the similarity of the instruction coverage will be at least 90%. To
mitigate this threat, we introduced additional metrics such a execution path and killed mutants to
further characterize the behavior of the test cases.

Experiments. Evolutionary algorithms are stochastic by nature, and the evaluation results may
be different across several runs. In our experiments, we used 10 repetitions to evaluate STUBCODER.
The effectiveness of STUBCODER is likely to increase with more attempts and a higher budget.
However, STUBCODER results are stable, as shown in Table 3. There are only a few test cases
where the 10 attempts gave inconsistent results. Nevertheless, conducting more experiments is an
important future work.

5 Related Work

Stub Code Generation. The first line of related work focuses on automatically generating stub
code for mock objects. Capture-and-replay is a popular approach adopted by these techniques.
In 2004, Saff et al. were among the first to develop a mock object construction technique [45, 46]
aiming to improve the efficiency of unit testing. The technique runs a working test case to capture
the interactions between the CUT and its dependencies. Next, those dependencies are replaced with
mock objects, and stub code are generated using the captured information. A similar idea is used by
Joshi et al. [32] and Elbaum et al. [18] for test craving. Fazzini et al. proposed MOKA [21] to collect
and generate mock objects for testing mobile applications by observing the interactions between
the application and its environment. More recently, Tiwari et al. designed Rick [53] to generate
mock objects that mimic the behavior of the test dependencies in a production environment. Rick
works by analyzing the runtime data captured in production systems and it successfully mimics
52.4% of the test executions as shown in evaluation.

These capture-and-replay techniques assume that dependencies are available when stub code is
created. Conversely, STUBCODER does not make this assumption as it generates stub calls without
executing the actual dependency, which makes it applicable to a wider range of scenarios (e.g., for
projects adopting TDD, the test dependencies may not be available when the test case is created).
Moreover, capture-and-replay techniques may generate unreliable test cases when the captured
behavior of the dependency is flaky or incorrect. Differently, STUBCODER does not suffer from this
issue.

Stub code is also generated by a few test generation techniques to increase test coverage. For
instance, Arcuri et al. developed techniques for generating stub code for environment dependent
classes [3, 4], which enable EvoSurTE [23] to achieve higher coverage for the classes having such
dependencies. Similar approaches are also adopted to construct stub code for databases [50], mobile
apps [21], and web services [6, 58]. However, they can generate stub code for certain dependency
types only (e.g., networking [4, 6, 58], database [50], file system [3, 36]) because they follow
predefined rules, which are not applicable to an arbitrary mock object.

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 27

These techniques are closely coupled with domain knowledge. New rules have to be manually
defined to generate stub code for the mock objects that are not considered by these techniques.
As such, these techniques cannot be easily adapted to other types of mock objects. Also, they
do not use mocking frameworks to specify the behavior of the dependencies, but light-weight
implementations similar to “fake” mock objects. In comparison, STUBCODER is domain agnostic and
thus can synthesize stub code for an arbitrary mock object. Also, it allows developers to specify
the behavior of mock objects with oracle assertions, which gives developers more control over the
behavior of the synthesized stub code.

Empirical Studies on Mocking. The second line of related work focuses on the practices
adopted by developers when using mock objects in their projects. Marri et al. [36] conducted an
analysis on the usage of mock objects in testing file-system-dependent software and showed that
mock objects can ease the process of unit testing. Mostafa et al. [41] analyzed the usage of mocking
frameworks in 5,000 Java projects and revealed that mock objects are widely used although they
are only used to substitute certain types of test dependencies. They also raise the need for an
automated technique for synthesizing stub code. Spadini et al. [47] studied the usage of mock
objects in three open-source projects and one commercial project. They highlighted the practice
adopted by developers when making mocking decisions found that developers choose to substitute
the classes that are hard to setup with mock objects. In addition, they reveal that stub code are
frequently coupled with production code and need to be frequently updated, which make creating
and maintaining stub code challenging. More recently, Zhu et al. [59] conducted an empirical study
on four open-source projects and distilled 10 code-level rules that can affect the mocking decisions,
based on which they proposed a machine learning based technique that recommends mocking
decisions for developers. Wang et al. [54] proposed an auto refactoring tool to migrate inheritance
based mock objects to mocking frameworks.

All of these studies provide evidence of the popularity and importance of mocking. They also
discuss the challenges faced by developers when using mock objects. In this paper, we propose
STUBCODER to automatically generate and repair stub code for mock objects, helping developers to
address some of the challenges.

Test Case Repair. The third line of related work aim to repair the broken test cases due to the
evolution of production code. For example, Daniel et al. [16] proposed REASSERT, a test case repair
technique implemented for JUNIT. REASSERT suggests repairs to failing tests to make them pass
again. The fixes suggested by it include replacing literals values and assertions. Daniel et al. [15] later
enhanced the capability of REASSERT by proposing SymBoLIC TEST REPAIR, which employs symbolic
execution and constraint solving to update the expected values of the assertions. Compared with
REASSERT, SYMBOLIC TEST REPAIR can repair the test cases with complex control flow or operations
on the expected values. Similarly, Mirzaaghaei et al. [40] developed TESTCAREASSISTANT (TCA) to
facilitate test evolution by repairing obsolete test cases and generating new test cases. TCA identify
five common actions adopted by developers to adapt the test cases to new version, and apply these
actions to the obsolete test case. While the above techniques can make the test pass again, they
did not consider whether the intent of the test case are preserved. To fill this gap, Li et al. [35]
proposed a technique for preserving the intent of the test case during test repair. They rank the
repair candidates by the likelihood of preserving the intent of the original test case. The intent of a
test case is characterized by analyzing the path conditions generated from a dynamic symbolic
execution.

Test case repair techniques are also developed for GUI or web applications. Choudhary et al. [9]
proposed WATER to suggest repairs for automation script for testing web applications. The repairs
are suggest by analyzing the the difference between a passing-failing pairs. WATER can suggest

28 H. Zhu et al.

repairs for the test failure due to the type change of the web page elements and displaced or changed
web page elements. Similarly, Stocco et al. [48] proposed VISTA to repair the test script of web
applications by analyzing the visual information captured from test execution. They also equipped
Vista with a local crawling mechanism to handle non-trivial breakage scenarios. On the same
theme, Gao et al. [26] developed SITAR, a semi-automated technique for repairing GUI test scripts.
The repair is generated by reverse engineering the test script and map it to an event-flow graph.
SITAR can amortizes the cost of human intervention across repairing multiple test scripts.

Although these techniques can effectively repair broken test cases, they focus on fixing the test
exercise sequence and the assertions. They are not capable for repairing the obsolete stub code in
broken test cases. In this paper, we proposed an application scenario for repairing the broken test
cases by re-synthesizing the stub code to replace the obsolete ones.

6 Conclusions and Future Work

Mocking is an essential part of unit testing, as it allows testing a CUT in isolation from its depen-
dencies [47, 59]. Mocking frameworks allow developers to write stub code to specify the behaviors
of test dependencies when a test case invokes the CUT. However, developing and maintaining stub
code is a labor-intensive and error-prone activity [47].

In this paper, we present STUBCODER to automatically generate and repair stub code for regression
tests. STUBCODER is based on the intuition that the feedback given by the runtime behavior of a test
case can drive the synthesis of stub code. In particular, STUBCODER implements an evolutionary
algorithm guided by a fitness function that measures how close a candidate stub code is to pass the
test.

Our evaluation on 59 test cases from 13 open-source projects shows that STUBCODER effectively
synthesizes stub code. Moreover, STUBCODER outperforms its unguided variant, demonstrating the
usefulness of the fitness function to steer the search towards generating test-passing stub code.
Also, our results show that STUBCODER synthesizes stub code with similar behaviors as those
written by developers.

To the best of our knowledge, STUBCODER is the first technique of its kind. There are several
possible future work in this area. We point out the two most promising ones.

First, a possible future work to improve STUBCODER’s effectiveness is to mine existing stub code
in GitHub to learn recurrent patterns of stub calls. Indeed, different software projects often share
the same libraries as test dependencies. Although stub code is test case specific, such recurrent
patterns might help explore the search space more efficiently. For instance, the mutation operators
of STuBCODER could give a higher probability to those mutations that match one of the mined
recurrent patterns.

Second, some automated test generation techniques rely on mock objects to increase test cover-
age [1, 5]. However, such techniques do not explore the possible behaviors of mock objects during
test generation. This is because they models each mock object and their stub calls as a single
mutation unit. In this case, they cannot mutate each of the stub calls separately. In comparison,
STuBCoDER models the behavior of the stub code at a finer-grained level: it models each of the
stub call as a mutation unit, and thus can explore more possible behaviors of mock objects.

The integration of such techniques and STUBCoDER will enable finer control on the behavior of
mock objects and thus achieve higher test coverage.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments and suggestions.
This work is supported by the National Science Foundation of China (Grant No. 61932021), the
Hong Kong Research Grant Council/General Research Fund (Grant No. 16205821), the Hong Kong

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 29

Research Grant Council/Research Impact Fund (Grant No. R5034-18), the Natural Sciences and
Engineering Research Council of Canada Discovery Grant (Grant No. RGPIN-2022-03744 and
Grant No. DGECR-2022-00378), and the WeBank-HKUST Joint Laboratory.

References

(1]

[21]

Nadia Alshahwan, Yue Jia, Kiran Lakhotia, Gordon Fraser, David Shuler, and Paolo Tonella. 2010. AUTOMOCK:
Automated Synthesis of a Mock Environment for Test Case Generation. In Practical Software Testing: Tool Automation
and Human Factors, 14.03. - 19.03.2010 (Dagstuhl Seminar Proceedings, Vol. 10111). Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, Germany. http://drops.dagstuhl.de/opus/volltexte/2010/2618/

Paul Ammann and Jeff Offutt. 2008. Introduction to Software Testing. Cambridge University Press. https://doi.org/10.
1017/CB0O9780511809163

Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated unit test generation for classes with
environment dependencies. In ACM/IEEE International Conference on Automated Software Engineering, ASE '14. ACM,
79-90. https://doi.org/10.1145/2642937.2642986

Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2015. Generating TCP/UDP network data for automated unit
test generation. In Proceedings of the 2015 10th joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015. ACM, 155-165. https://doi.org/10.1145/2786805.2786828

Andrea Arcuri, Gordon Fraser, and René Just. 2017. Private API Access and Functional Mocking in Automated Unit
Test Generation. In 2017 IEEE International Conference on Software Testing, Verification and Validation, ICST 2017. IEEE
Computer Society, 126-137. https://doi.org/10.1109/ICST.2017.19

Thilini Bhagya, Jens Dietrich, and Hans W. Guesgen. 2019. Generating Mock Skeletons for Lightweight Web-Service
Testing. In 26th Asia-Pacific Software Engineering Conference, APSEC 2019. IEEE, 181-188. https://doi.org/10.1109/
APSEC48747.2019.00033

Tobias Blickle and Lothar Thiele. 1996. A Comparison of Selection Schemes used in Evolutionary Algorithms. Evol.
Comput. 4, 4 (1996), 361-394. https://doi.org/10.1162/evc0.1996.4.4.361

Joshua Bloch. 2008. Effective java. Addison-Wesley Professional.

Shauvik Roy Choudhary, Dan Zhao, Husayn Versee, and Alessandro Orso. 2011. Water: Web application test repair. In
Proceedings of the First International Workshop on End-to-End Test Script Engineering. 24-29.

Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony Ventresque. 2016. PIT: a practical
mutation testing tool for Java (demo). In Proceedings of the 25th International Symposium on Software Testing and
Analysis, ISSTA 2016. ACM, 449-452. https://doi.org/10.1145/2931037.2948707

EasyMock contributors. 2022. EasyMock. https://easymock.org

Mockito contributors. 2022. Mockito framework site. https://mockito.org

Mogq contributors. 2022. Mog4. https://github.com/moqg/moq4

Fred J. Damerau. 1964. A Technique for Computer Detection and Correction of Spelling Errors. Commun. ACM 7, 3
(mar 1964), 171-176. https://doi.org/10.1145/363958.363994

Brett Daniel, Tihomir Gvero, and Darko Marinov. 2010. On test repair using symbolic execution. In Proceedings of the
19th international symposium on Software testing and analysis. 207-218.

Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. 2009. ReAssert: Suggesting repairs for broken unit
tests. In 2009 IEEE/ACM International Conference on Automated Software Engineering. IEEE, 433-444.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 2 (2002), 182-197. https://doi.org/10.1109/4235.996017

Sebastian G. Elbaum, Hui Nee Chin, Matthew B. Dwyer, and Jonathan Dokulil. 2006. Carving differential unit test
cases from system test cases. In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2006. ACM, 253-264. https://doi.org/10.1145/1181775.1181806

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-grained and
accurate source code differencing. In ACM/IEEE International Conference on Automated Software Engineering, ASE ’14.
ACM, 313-324. https://doi.org/10.1145/2642937.2642982

Mattia Fazzini, Chase Choi, Juan Manuel Copia, Gabriel Lee, Yoshiki Kakehi, Alessandra Gorla, and Alessandro
Orso. 2022. Use of Test Doubles in Android Testing: An In-Depth Investigation. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2266-2278. https:
//doi.org/10.1145/3510003.3510175

Mattia Fazzini, Alessandra Gorla, and Alessandro Orso. 2020. A Framework for Automated Test Mocking of Mobile
Apps. In 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020. IEEE, 1204-1208.
https://doi.org/10.1145/3324884.3418927

http://drops.dagstuhl.de/opus/volltexte/2010/2618/
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1145/2642937.2642986
https://doi.org/10.1145/2786805.2786828
https://doi.org/10.1109/ICST.2017.19
https://doi.org/10.1109/APSEC48747.2019.00033
https://doi.org/10.1109/APSEC48747.2019.00033
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.1145/2931037.2948707
https://easymock.org
https://mockito.org
https://github.com/moq/moq4
https://doi.org/10.1145/363958.363994
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1181775.1181806
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/3510003.3510175
https://doi.org/10.1145/3510003.3510175
https://doi.org/10.1145/3324884.3418927

30

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]
[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]
[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

H. Zhu et al.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program Dependence Graph and Its Use in
Optimization. ACM Trans. Program. Lang. Syst. 9, 3 (1987), 319-349. https://doi.org/10.1145/24039.24041

Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation for object-oriented software. In
SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th
European Software Engineering Conference (ESEC-13). ACM, 416-419. https://doi.org/10.1145/2025113.2025179
Gordon Fraser and Andreas Zeller. 2010. Mutation-driven generation of unit tests and oracles. In Proceedings of the
Nineteenth International Symposium on Software Testing and Analysis, ISSTA 2010. ACM, 147-158. https://doi.org/10.
1145/1831708.1831728

Apache Software Fundations. 2022. Apache Commons. https://commons.apache.org

Zebao Gao, Zhenyu Chen, Yunxiao Zou, and Atif M Memon. 2015. SITAR: GUI test script repair. Ieee transactions on
software engineering 42, 2 (2015), 170-186.

GitHub. 2022. CloudFoundryApplicationFactoryTest of Spring Boot Admin. https://github.com/codecentric/spring-
boot-admin/blob/d0085edfc757e1a83eb2ad4bf84764d2819eb6d/spring-boot-admin-client/src/test/java/de/
codecentric/boot/admin/client/registration/CloudFoundryApplicationFactoryTest.java#L52

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, and Daniel Smith. 2018. The Java® Language
Specification (java se 11 edition ed.). https://docs.oracle.com/javase/specs/jls/se11/html/index. html

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012. GenProg: A Generic Method for
Automatic Software Repair. IEEE Trans. Software Eng. 38, 1 (2012), 54-72. https://doi.org/10.1109/TSE.2011.104
GitHub Inc. 2022. GitHub. https://github.com

Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of Mutation Testing. IEEE Trans. Software
Eng. 37,5 (2011), 649-678. https://doi.org/10.1109/TSE.2010.62

Shrinivas Joshi and Alessandro Orso. 2007. SCARPE: A Technique and Tool for Selective Capture and Replay of
Program Executions. In 23rd IEEE International Conference on Software Maintenance (ICSM 2007). IEEE Computer
Society, 234-243. https://doi.org/10.1109/ICSM.2007.4362636

Yuri Cossich Lavinas, Claus Aranha, Tetsuya Sakurai, and Marcelo Ladeira. 2018. Experimental Analysis of the
Tournament Size on Genetic Algorithms. In IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018,
Miyazaki, Japan, October 7-10, 2018. IEEE, 3647-3653. https://doi.org/10.1109/SMC.2018.00617

Shane Legg, Marcus Hutter, and Akshat Kumar. 2004. Tournament versus fitness uniform selection. In Proceedings of
the IEEE Congress on Evolutionary Computation, CEC 2004. IEEE, 2144-2151. https://doi.org/10.1109/CEC.2004.1331162
Xiangyu Li, Marcelo d’Amorim, and Alessandro Orso. 2019. Intent-preserving test repair. In 2019 12th IEEE Conference
on Software Testing, Validation and Verification (ICST). IEEE, 217-227.

Madhuri R. Marri, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009. An Empirical Study
of Testing File-System-Dependent Software with Mock Objects. In Proceedings of the 4th International Workshop on
Automation of Software Test, AST 2009. IEEE Computer Society, 149-153. https://doi.org/10.1109/TWAST.2009.5069054
Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair Search Space with Automatically Mined Templates:
The Cardumen Mode of Astor. In Search-Based Software Engineering - 10th International Symposium, SSBSE 2018,
Montpellier, France, September 8-9, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11036), Thelma Elita
Colanzi and Phil McMinn (Eds.). Springer, 65-86. https://doi.org/10.1007/978-3-319-99241-9_3

James E McDonough. 2021. Test Doubles. In Automated Unit Testing with ABAP. Springer, 159-210.

Brad L. Miller and David E. Goldberg. 1995. Genetic Algorithms, Tournament Selection, and the Effects of Noise.
Complex Syst. 9, 3 (1995). http://www.complex-systems.com/abstracts/v09_i03_a02.html

Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzé. 2012. Supporting test suite evolution through test case
adaptation. In 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation. IEEE, 231-240.
Shaikh Mostafa and Xiaoyin Wang. 2014. An Empirical Study on the Usage of Mocking Frameworks in Software
Testing. In 2014 14th International Conference on Quality Software. IEEE, 127-132. https://doi.org/10.1109/QSIC.2014.19
Allan H. Murphy. 1996. The Finley Affair: A Signal Event in the History of Forecast Verification. Weather and
Forecasting 11, 1 (1996), 3 — 20. https://doi.org/10.1175/1520-0434(1996)011<0003: TFAASE>2.0.CO;2

Gonzalo Navarro. 2001. A guided tour to approximate string matching. ACM Comput. Surv. 33, 1 (2001), 31-88.
https://doi.org/10.1145/375360.375365

Annibale Panichella, Rocco Oliveto, Massimiliano Di Penta, and Andrea De Lucia. 2015. Improving Multi-Objective
Test Case Selection by Injecting Diversity in Genetic Algorithms. IEEE Trans. Software Eng. 41, 4 (2015), 358—-383.
https://doi.org/10.1109/TSE.2014.2364175

David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst. 2005. Automatic test factoring for java. In 20th [EEE/ACM
International Conference on Automated Software Engineering (ASE 2005). ACM, 114-123. https://doi.org/10.1145/
1101908.1101927

David Saff and Michael D. Ernst. 2004. Mock object creation for test factoring. In Proceedings of the 2004 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and Engineering, PASTE 04. ACM, 49-51. https:

https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1145/1831708.1831728
https://commons.apache.org
https://github.com/codecentric/spring-boot-admin/blob/d0085edfc757e1a83eb2ad4bf8f4764d2819eb6d/spring-boot-admin-client/src/test/java/de/codecentric/boot/admin/client/registration/CloudFoundryApplicationFactoryTest.java#L52
https://github.com/codecentric/spring-boot-admin/blob/d0085edfc757e1a83eb2ad4bf8f4764d2819eb6d/spring-boot-admin-client/src/test/java/de/codecentric/boot/admin/client/registration/CloudFoundryApplicationFactoryTest.java#L52
https://github.com/codecentric/spring-boot-admin/blob/d0085edfc757e1a83eb2ad4bf8f4764d2819eb6d/spring-boot-admin-client/src/test/java/de/codecentric/boot/admin/client/registration/CloudFoundryApplicationFactoryTest.java#L52
https://docs.oracle.com/javase/specs/jls/se11/html/index.html
https://doi.org/10.1109/TSE.2011.104
https://github.com
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/ICSM.2007.4362636
https://doi.org/10.1109/SMC.2018.00617
https://doi.org/10.1109/CEC.2004.1331162
https://doi.org/10.1109/IWAST.2009.5069054
https://doi.org/10.1007/978-3-319-99241-9_3
http://www.complex-systems.com/abstracts/v09_i03_a02.html
https://doi.org/10.1109/QSIC.2014.19
https://doi.org/10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2
https://doi.org/10.1145/375360.375365
https://doi.org/10.1109/TSE.2014.2364175
https://doi.org/10.1145/1101908.1101927
https://doi.org/10.1145/1101908.1101927
https://doi.org/10.1145/996821.996838
https://doi.org/10.1145/996821.996838

StuBCoDER: Automated Generation and Repair of Stub Code for Mock Objects 31

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]
[58]

[59]

//doi.org/10.1145/996821.996838

Davide Spadini, Mauricio Finavaro Aniche, Magiel Bruntink, and Alberto Bacchelli. 2019. Mock objects for testing
java systems - Why and how developers use them, and how they evolve. Empir. Softw. Eng. 24, 3 (2019), 1461-1498.
https://doi.org/10.1007/s10664-018-9663-0

Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual web test repair. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 503-514.

Hisashi Tamaki, Hajime Kita, and Shigenobu Kobayashi. 1996. Multi-Objective Optimization by Genetic Algorithms:
A Review. In Proceedings of 1996 IEEE International Conference on Evolutionary Computation. IEEE, 517-522. https:
//doi.org/10.1109/ICEC.1996.542653

Kunal Taneja, Yi Zhang, and Tao Xie. 2010. MODA: automated test generation for database applications via mock
objects. In ASE 2010, 25th IEEE/ACM International Conference on Automated Software Engineering. ACM, 289-292.
https://doi.org/10.1145/1858996.1859053

Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezze. 2020. Evolutionary improvement of assertion
oracles. In ESEC/FSE °20: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas
Zimmermann (Eds.). ACM, 1178-1189. https://doi.org/10.1145/3368089.3409758

Dave Thomas and Andy Hunt. 2002. Mock objects. IEEE Software 19, 3 (2002), 22-24.

Deepika Tiwari, Martin Monperrus, and Benoit Baudry. 2022. Mimicking Production Behavior with Generated Mocks.
CoRR abs/2208.01321 (2022). https://doi.org/10.48550/arXiv.2208.01321 arXiv:2208.01321

Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, and Sunny Wong. 2021. An automatic refactoring framework for
replacing test-production inheritance by mocking mechanism. In ESEC/FSE 21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, 540-552. https://doi.org/10.
1145/3468264.3468590

Joachim Wegener, André Baresel, and Harmen Sthamer. 2001. Evolutionary test environment for automatic structural
testing. Inf. Softw. Technol. 43, 14 (2001), 841-854. https://doi.org/10.1016/S0950-5849(01)00190-2

Chak Shun Yu, Christoph Treude, and Mauricio Finavaro Aniche. 2019. Comprehending Test Code: An Empirical
Study. In 2019 IEEE International Conference on Software Maintenance and Evolution, ICSME 2019. IEEE, 501-512.
https://doi.org/10.1109/ICSME.2019.00084

Yuan Yuan and Wolfgang Banzhaf. 2020. ARJA: Automated Repair of Java Programs via Multi-Objective Genetic
Programming. IEEE Trans. Software Eng. 46, 10 (2020), 1040-1067. https://doi.org/10.1109/TSE.2018.2874648
Linghao Zhang, Xiaoxing Ma, Jian Lu, Tao Xie, Nikolai Tillmann, and Peli de Halleux. 2012. Environmental Modeling
for Automated Cloud Application Testing. IEEE Softw. 29, 2 (2012), 30-35. https://doi.org/10.1109/MS.2011.158
Hengcheng Zhu, Lili Wei, Ming Wen, Yepang Liu, Shing-Chi Cheung, Qin Sheng, and Cui Zhou. 2020. MockSniffer:
Characterizing and Recommending Mocking Decisions for Unit Tests. In 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020. IEEE, 436-447. https://doi.org/10.1145/3324884.3416539

Received August 10, 2022; revised April 11, 2023; revised June 15, 2023; accepted July 23, 2023

https://doi.org/10.1145/996821.996838
https://doi.org/10.1145/996821.996838
https://doi.org/10.1145/996821.996838
https://doi.org/10.1007/s10664-018-9663-0
https://doi.org/10.1109/ICEC.1996.542653
https://doi.org/10.1109/ICEC.1996.542653
https://doi.org/10.1145/1858996.1859053
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.48550/arXiv.2208.01321
https://arxiv.org/abs/2208.01321
https://doi.org/10.1145/3468264.3468590
https://doi.org/10.1145/3468264.3468590
https://doi.org/10.1016/S0950-5849(01)00190-2
https://doi.org/10.1109/ICSME.2019.00084
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/MS.2011.158
https://doi.org/10.1145/3324884.3416539

	Abstract
	1 Introduction
	2 Motivating Example & Problem Formulation
	2.1 Formulation of Unit Test Cases
	2.2 Problem Statement
	2.3 Technical Challenges

	3 StubCoder
	3.1 Fitness Function
	3.2 Representation of Stub Code
	3.3 Evolutionary Algorithm

	4 Evaluation
	4.1 Evaluation Subjects
	4.2 RQ1: Stub Code Generation
	4.3 RQ2: Stub Code Repair
	4.4 RQ3: Effectiveness of Fitness Function
	4.5 RQ4: Fidelity of Synthesized Stub Code
	4.6 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

