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Abstract
In-Network Aggregation (INA) offloads the gradient aggrega-
tion in distributed training (DT) onto programmable switches, 
where the switch memory could be allocated to jobs in either 
synchronous or statistical multiplexing mode. Statistical INA 
has advantages in switch memory utilization, control-plane 
simplicity, and management safety, but it faces the problem 
of cross-layer resource efficiency in job placement. This pa-
per presents a job placement system NetPack for clusters 
with statistical INA, which aims to maximize the utilization 
of both computation and network resources. NetPack period-
ically batches and places jobs into the cluster. When placing 
a job, NetPack runs a steady state estimation algorithm to 
acquire the available resources in the cluster, heuristically 
values each server according to its available resources (GPU 
and bandwidth), and runs a dynamic programming algo-
rithm to efficiently search for servers with the highest value 
for the job. Our prototype of NetPack and the experiments 
demonstrate that NetPack outperforms prior job placement 
methods by 45% in terms of average job completion time on 
production traces.
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1 Introduction
Recently, a family of In-Network Aggregation (INA) solu-
tions is proposed to accelerate distributed modeling training
(DT) [13, 22, 27, 37, 41]. These solutions achieve the per-
formance gain by offloading the gradient AllReduce opera-
tion onto programmable switches. INA solutions introduce
a new resource — switch memory 1 — for data stream ag-
gregation, whose allocation to a job critically impacts job
efficiency. Thus, when a job manager places multiple jobs
in a shared cluster, it needs a cross-layer planning of both
computation resource (GPU) and network resource (link
bandwidth and switch memory). A good placement plan is
supposed to balance jobs among the cluster servers and use
multi-dimensional resources evenly.

We classify existing INA solutions into two categories ac-
cording to whether the switch memory is isolated or shared
among multiple concurrent jobs; the INA solutions with iso-
lated memory among jobs are called synchronous INA [13, 27,
37, 41], and the ones with dynamically shared memory are
called statistical INA [10, 22]. This paper focuses on statistical
INA solutions and analyzes its advantages in switch memory
utilization, control-plane simplicity, and management safety
(Section 2.2).

Unfortunately, existing job placement solutions [22, 37]
are not designed for clusters with statistical INA, and they
could result in imbalanced and insufficient resource-sharing
plans, which further degrades the individual and overall job
efficiency. On the one hand, there are more critical resources
— computation and network resources in INA, and few exist-
ing solutions consider all of them in the problem formulation,
which leads to suboptimal results. On the other hand, compu-
tation and network resources are managed in different ways
by nature, and existing solutions cannot trivially add another
kind of resource into their provision model nor enforce them.

1Switch memory in this paper means the on-chip register memory, which
is durable to store cross-packet states.
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In detail, a DT job manager usually makes centralized allo-
cation and enforcement of computation resources (GPU)
to jobs; but statistical INA applies decentralized allocation
of network resources to jobs (jobs contend for network re-
sources and converge to a steady state with max-min fair
share), which does not fit into the computation resource
management model.

This paper presents a system named NetPack for job place-
ment with statistical INA. NetPack targets maximizing the
overall job efficiency by scheduling cross-layer and multi-
dimensional resources to jobs. NetPack batches and places
user jobs periodically into the cluster. When placing a job,
NetPack heuristically values each server according to the
remaining resources (GPU and bandwidth) on the server and
the impact on existing jobs and selects the set of servers with
the highest value for the job (Section 3.2). NetPack overcomes
the following two challenges.
First, the network resource allocation is decentralized;

thus, the controller does not have a real-time view of the
resource usage. Meanwhile, since switch memory allocation
in statistically INA is transient (tens of microsecond, Sec-
tion 2.2), the controller-based measurement becomes expen-
sive and inaccurate. Without critical resource availability,
the job manager can hardly accurately value each server.
NetPack “estimates” the resource availability using a water-
filling algorithm. Different from existing water-filling algo-
rithms [5] that estimate resource sharing of multiple types
independently, NetPack customizes the algorithm to jointly
estimate two-resource sharing of INA — link bandwidth and
switch memory, considering their mutual dependencies (Sec-
tion 4).
Second, the cross-layer and multi-dimensional resources

make the search space for optimal placement exponential.
Naïve methods such as Mixed Integer Programming (MIP)
cannot give satisfactory solutions in an acceptable time. We
observe that the value of a placement plan can be recursively
computed by placing a subset of workers in the subgraph
of the cluster. Thus, we propose a bottom-up dynamic pro-
gramming algorithm, which searches for the highest-value
plan in polynomial time (Section 5).
We prototype NetPack on a 5-server testbed and simu-

late it on large-scale clusters. We evaluate NetPack with
production and artificial job traces. The experiment results
demonstrate that NetPack can improve over-job efficiency
in various conditions, e.g., up to 45% when replaying pro-
duction traces on a 5-server testbed. This paper makes the
following contributions.

• We classify the switch memory usage modes in INA
and analyze their differences. We also identify the ne-
cessity and challenges of designing a job placement
system for DT jobs with statistical INA.
• We design NetPack to place jobs in a cluster with sta-
tistical INA, which improves the overall job efficiency.

NetPack devises a new water-filling algorithm to de-
rive the resource availability in the cluster and a dy-
namic programming algorithm to search for a high-
value placement plan for a job efficiently.
• We prototype the system and conduct extensive exper-
iments to show that NetPack improves the overall job
efficiency and resource utilization.

2 Classification and Comparison of INA
Modes

Existing INA solutions use the switch memory in synchro-
nous or statistical multiplexing modes, and statistical INA
has advantages in resource utilization, control-plane simplic-
ity, and management safety.

2.1 INA Preliminaries
A DT job has multiple workers, each with one or several
GPUs. All workers have a synchronized model. Each worker
holds a non-overlapping data set partition. The model train-
ing is an iterative process with multiple iterations; in each
iteration, a worker uses the model and its local data partition
to compute a gradient. All workers’ gradients are aggregated,
and the result is returned to each worker. Then, each worker
updates its model locally and proceeds to the next iteration.
The gradient aggregation process is also called AllReduce.
There several existing methods to perform AllReduce, such
as Ring AllReduce [40], Parameter Servers (PS)[24], half-
doubling[40], etc.
INA accelerates AllReduce by offloading the gradient ag-

gregation onto a programmable switch. On each worker, the
gradient is chunked into a sequence of packets, each with a
Packet Sequence Number (PSN). All workers start their PSN
from 0. The switch memory is organized as an aggregator
array, each aggregator accessed by its index in the array.
When a packet arrives at the switch, the switch addresses
the packet to an aggregator by its PSN, where the aggregator
merges packets from different workers. When the aggregator
completes the aggregation, it forwards the aggregation result
to downstream devices (e.g., the parameter server (PS) or all
workers). The switch releases the aggregator for future pack-
ets; there are two ways of aggregator recycling depending on
the addressing methods as we describe below (Section 2.2).
INA accelerates the AllReduce operation in two aspects.

First, it aggregates the raw data streams into one result
stream, reducing traffic volume and the consequent trans-
mission time. Second, the switch chip can perform the ag-
gregation operation faster than the CPU. In addition, INA
could also free up the network bandwidth usage, which is
friendly to multi-job bandwidth sharing in the cluster [11].

2.2 Two Ways of INA Memory Management
Although INA could promote job performance, it consumes
a new resource — switch memory, which can significantly
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(a) Synchronous INA [27, 37, 44] (b) Statistical INA [22]

Figure 1. Illustration of two INA modes. In synchronous INA, Job 1 uses memory region (𝑂𝑓 𝑓 𝑠𝑒𝑡1, 𝑆𝑖𝑧𝑒1), and Job 2 uses
(𝑂𝑓 𝑓 𝑠𝑒𝑡2, 𝑆𝑖𝑧𝑒2); in statistical INA, both jobs share the whole memory.

impact performance. Insufficient switch memory provision
could cancel the performance gain or even degrade the job
performance [44]. By summarizing existing INA solutions,
the switch memory is provided to jobs in two modes — syn-
chronous multiplexing and statistical multiplexing. We elab-
orate on the two modes and the advantages of statistical INA
below, and discuss synchronous INA in Section 2.3.
INA with Synchronous Multiplexing. As shown in Fig-
ure 1a, a central controller isolates the switch memory into
non-overlapping regions and assigns each region to a job.
Assume a region starts from address 𝑂𝑓 𝑓 𝑠𝑒𝑡 with size 𝑆𝑖𝑧𝑒 ,
then a packet with 𝑃𝑆𝑁 is addressed to

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 .𝑖𝑛𝑑𝑒𝑥 ← 𝑃𝑆𝑁%𝑆𝑖𝑧𝑒 +𝑂𝑓 𝑓 𝑠𝑒𝑡 .

An aggregator is not released immediately when the ACK is
sent back because some ACKs may be lost, and retransmitted
packets need to fetch the result again; synchronous INA
usually lets a future packet “one window away” to release
a stale aggregator [27, 37]. The switch memory region is
reserved for the entire life of a job. Solutions like SwitchML
and NetReduce [27, 37] adopt this memory allocation scheme.
INAlloc [44] proposes to periodically schedule the switch
memory allocation to jobswhose scheduling time granularity
is typically a few seconds to a few minutes (≥ 10 seconds).
We refer to this mode as synchronous INA.
INA with Statistical Multiplexing. As is shown in Fig-
ure 1b, the switch memory is maintained as a shared pool of
aggregators. For a job with ID 𝐽𝑜𝑏𝐼𝐷 , its packet with 𝑃𝑆𝑁
is addressed to

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 .𝑖𝑛𝑑𝑒𝑥 ← 𝐻𝑎𝑠ℎ(𝐽𝑜𝑏𝐼𝐷, 𝑃𝑆𝑁 ).

An aggregator serves jobs’ packets in First-Come-First-Serve
(FCFS): it is reserved by the first packet observed (with its
Job ID) and is released by the ACK packet on the return
trip. Statistical INA does not need the aggregator to keep
the result for one window because retransmitted packets
can fetch results from the PS; an aggregator is allocated and
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Figure 2. Statistical INA’s advantage when switch memory
is not sufficient, cited from [44]. ATP applies statistical INA,
and SwitchML applies synchronous INA.

released transiently, with a granularity of an RTT (tens of
microseconds). In the case of addressing failure (due to hash
collision), the failed packet falls back to the PS to complement
the aggregation. Each aggregator is reserved and released
transiently by packets within one round trip. ATP [22] adopts
this memory allocation scheme. We refer to this mode as
statistical INA.
Statistical INA makes decentralized resource allocation to

jobs. In a cluster with multiple jobs, each job applies a conges-
tion control mechanism on endpoints (i.e., workers) which
adjusts the sending ratewith an additive-increase-multiplicative-
decrease (AIMD) scheme [2]. The multiple jobs interact in
the cluster and contend for network resources, and eventu-
ally converge to a steady statewhere each job gets a max-min
fair share of the resource.
Statistical INA’s Advantages. The comparison of synchro-
nous INA and the statistical INA is like that between circuit
switching and packet switching for computer networks in the
1970s. Circuit switching applies synchronous time-division
multiplexing to reserve link bandwidth, and packet switch-
ing applies statistical time-division multiplexing to share
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link bandwidth; similarly, the two classes of INA solutions
utilize the switch memory differently.
Section 1 briefly states the advantages of statistical INA,

and we illustrate them with examples. First, statistical INA
improves the switch memory utilization compared with syn-
chronous INA. Figure 2 shows the job performance com-
parison of the two modes, and the statistical INA shows an
equal or higher job throughput (images/second) than the
synchronous one. In model training, the job workers iter-
ate to compute and transmit the gradient; in synchronous
INA, when the job is in computation, its switch memory
is idle without performing aggregation; in statistical INA,
an aggregator is transiently reserved and released for one
round-trip time (RTT), and thus jobs could multiplex the
memory in fine granularity. In addition, when there is no
switch memory, statistical INA could fall back traffic to the
PS for computation, but synchronous INA would halt.

Second, statistical INA does not incur the integration com-
plexity and potential bottleneck to the DT job manager. Sta-
tistical INA does not need a controller to make runtime allo-
cation (and reallocation) of switch memory to jobs; because
statistical INA jobs apply congestion control on each end-
point (i.e., workers), and jobs converge to the steady state in
a decentralized way. In contrast, synchronous INA requires
the central controller to compute the resource share and
enforces the allocation; for example, INAlloc [44] has ∼ 2𝐾
lines of Python code for the remote controller and achieves
a minimum 10-second resource scheduling interval.
Third, statistical INA does not need inter-domain oper-

ation between the network and the application in cluster
management. In many production data centers, different
business teams manage the network and the DT applica-
tion; the network team installs the INA switch program to
serve the application team, and the application team does
not have access to switch memory for safety reasons. For
synchronous INA, even if we can encapsulate switch mem-
ory allocation functionality as interfaces for the applications,
it is still unwise for applications to decide switch memory
usage by themselves, as they are not familiar with the INA
performance model (Section 4.1).

2.3 Related Work
Synchronous INA. INA solutions in synchronousmultiplex-
ing mode are in a different scope with NetPack. DAIET [36]
first proposes a proof-of-concept in programmable switches
without end-to-end system design; SwitchML [37] designs
a streaming aggregation protocol to prevent storing entire
DNNmodels in switches;MLfabric [41] discusses the commu-
nication pattern optimization of DT jobswith INA. NetRPC [45]
provides user-friendly interfaces to overcome the program-
ming difficulty of INA development. There are also archi-
tectural design [20] and FPGA [12, 26, 27], RISC-V [9], mid-
dlebox [29], and high-performance server [7, 25] based im-
plementations. In the control plane, INAlloc [44] builds a

switch memory manager to allocate memory regions to jobs.
ASK is asynchronous INA for key-value streams instead of
vectors [17]. HIRE [6] targets a broader class of in-network
computing applications and applies isolated switch resource
allocation among jobs.

Synchronous INA requires the DT application and the net-
work to be in the same administrative domain. It can achieve
predictable performance for jobs (e.g., with deadlines) be-
cause jobs do not interfere with each other in memory usage;
INAlloc [44] makes such a case.
Statistical INA. Existing INA solutions in statistical multi-
plexing mode focus on the data plane protocol design, and
NetPack complements them by designing the job placement
algorithm. ATP [22] proposes a dynamic, best-effort INA
solution to support multi-rack multi-tenant multi-switch
scenarios, which could inter-operate with NetPack seam-
lessly. GRID [10] proposes to co-design INA with routing in
a topology to maximize the throughput.
Job Placement. Compared with existing solutions, NetPack
considers more complete factors, especially the new primi-
tive INA, to achievemulti-job efficiency in job placement. Op-
timus [32] sorts candidate servers by available GPU resources
and evenly distributes workers and parameter servers among
the top-k server subset. Tetris [14] uses an alignment score to
sort the candidate servers, which is a weighted dot product
between the vector of servers’ available resources and the
tasks’ requirements. AFS [18] proposes network packing, a
placement mechanism enforcing the GPU usage of each job
to be a factor or a multiple of the number of GPUs per server.
Network packing puts strict constraints on the scheduling
strategy and cluster GPU distribution and requires complete
replacement in each scheduling epoch, resulting in large-
scale and costly job migration. Harmony [3] utilizes a deep
reinforcement learning framework to minimize interference
and maximize performance, which, unfortunately, raises the
cost of sampling data and retraining for dynamic workloads.
Job Scheduling. Job scheduling is about (re)allocating re-
sources to DT jobs in the runtime. The scheduling algorithms
could improve synchronous INA but not statistical ones be-
cause the latter does not have a central controller to enforce
the network resource allocation. NetPack is not in the same
scope as the job scheduling solutions. Dorm [39] dynami-
cally partitions the cluster for each job to optimize resource
efficiency and fairness. DPS [43], SLAQ [42], and Optimus
[32] build performance models to estimate the training speed
of each job and dynamically adjust resource allocation to ex-
isting jobs. OASiS [4] forms the training job scheduling as an
integer linear program to maximize the system throughput.
Themis [28] proposes a new resource allocation algorithm
to balance efficiency and fairness.
Job Acceleration. Prior arts like REEF [8, 16, 33] are geared
toward squeezing the most out of GPU performance. Net-
Pack and GPU-oriented optimization complement each other.
Higher GPU performance leads to a higher communication
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time ratio, where NetPack can play a more significant role
in overall performance.
Water-filling Algorithm. Network resources are allocated
in a decentralized way, and NetPack needs to estimate the
resource usage and availability in the network. The family
of water-filling algorithms [5, 21, 35, 38] is a well-known ap-
proach for estimating flow max-min allocation in a network.
NetPack extends this algorithm to two coupled resources by
abstracting the switch memory to equivalent throughput,
called Peak Aggregation Throughput (PAT, Section 4.1).

3 Overall Design
We first introduce the goal and challenges of the job place-
ment problem, and then describe the overall architecture and
workflow of NetPack.We elaborate details of the steady-state
estimation algorithm and the dynamic programming-based
job placement algorithm in NetPack in Section 4 and 5, re-
spectively.

3.1 Goal and Challenges
Goal. When multiple jobs share a cluster with INA, the
switch memory allocation to each job makes a notable im-
pact on the job performance. In statistical INA, each job
would be placed at a local region in the cluster and con-
sume multi-dimensional resources such as GPU, bandwidth,
and switch memory, and jobs converge to a max-min fair
share of network resources; thus, the job placement plays
a critical role in deciding each job’s resource share in the
steady state. A good placement plan should try to utilize all-
dimensional resources evenly without letting one resource
become the bottleneck and another be wasted. This paper
aims to build a job placement system that improves overall
resource utilization and the consequent job efficiency. We
name the proposed system NetPack.

We also make the following assumptions about the appli-
cation scenario. First, the jobs to place are independent, and
can execute concurrently in the cluster. Second, all jobs are
benign and would not maliciously occupy network resources.
That is, they follow the same network protocol and converge
to max-min fairness in resource allocation in a decentralized
way. Third, GPUs are allocated to jobs and not preemptable
until the job finishes, because GPU context switching is too
costly [32].
Intuition.NetPack’s intuition in job placement is to heuristi-
cally score the candidate locations, i.e., servers, in the cluster
according to their remaining resources, including computa-
tion and network resources, and find the locations with the
maximum score (Section 3.2).

We demonstrate the dilemma when weighing the complex
factors in performance optimization using the example in
Figure 3. The figure shows a Clos network with GPU servers,
Top-of-Rack (ToR) switches, and aggregation switches. As
jobs start and terminate with time, the available resources

ToR 1 ToR 2

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

GPU1 GPU2

GPU3 GPU4

Aggregation 
Switch

Aggregation 
Switch

S1 S2 S3 S4 S5 S6

...

35=C

25=A 50=A

20=C 30=C 30=C 20=C 35=C

Figure 3. Example of Job Placement.

become “fragmental”: the dark (blue) GPUs are in usage by
running jobs and the empty ones are available, 𝐶 represents
the remaining available link capacity, and 𝐴 represents the
remaining available GPU processing capacity on the switch 2.
Suppose a client submits a new job request that demands
4 GPUs. Various factors can affect the job efficiency. If we
consider using neighboring GPUs for the job to reduce traffic
volume, we can choose 𝑆1 and 𝑆3; if we consider reducing the
transmission time, we can choose 𝑆1 and 𝑆6, which have the
most available bandwidth; if we consider leveraging INA to
accelerate AllReduce, we can choose 𝑆4 and 𝑆6 as ToR 2 has
the most processing capacity. The job placement algorithm
should weigh the multiple factors and make a reasonable
tradeoff between them. The design of NetPack faces two
challenges.
Challenge 1: NetPack cannot directly observe the real-
time network resource availability. Statistical INA makes
decentralized resource allocation to jobs without a central
controller and explicit enforcement. Thus, NetPack does not
have a way to get the resource availability information in
real time in the cluster.

NetPack extends the water-filling algorithm that was orig-
inally for bandwidth estimation to two-resource (link band-
width and switch memory) estimation for INA. The algo-
rithm iteratively allocates a bottleneck resource with max-
min fairness among jobs until all resources are allocated (i.e.,
the steady state). And thus, NetPack estimates the resource
usage of existing jobs and acquires the remaining resources
for the new job (Section 4).
Challenge 2: the search space for a job’s placement plan
is exponential, and NetPack needs to devise an efficient
algorithm. All servers of the cluster are the candidate loca-
tions to place a job. In production clusters, after GPUs are
allocated to a job, they are not rescheduled or preempted by
other jobs due to the GPU context switching overhead [32].
Thus, the search space for a job is exponential to the size
of the cluster. Finding the optimal placement plan can be
formulated as a Mixed Integer Programming (MIP) problem,
which is NP-complete.
2The switch processing capacity is defined and quantified as “Peak Aggre-
gation Throughput” (PAT) in Section 4.1
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Figure 4. NetPack architecture

NetPack heuristically scores each server a value and de-
vises a dynamic programming algorithm to find the candidate
location with the maximum value. We observe that the score
of a placement plan which involves multiple servers is the
sum of the score of individual servers. Thus, a plan’s value
can be computed recursively by a subproblem on a smaller
scale. This property allows us to solve the problem from
the bottom-up using dynamic programming with a good
estimation (Section 5).

3.2 Architecture and Workflow
Figure 4 shows the system architecture of NetPack. The clus-
ter data plane runs the statistical INA service described in
Section 2.2. NetPack runs as a cluster-wide DT job manager.
Complying with the decentralized network resource alloca-
tion, the NetPack job manager does not interact with the
network switches for resource allocation. It only interacts
with each server by an agent to start/stop DT jobs.

Users submit DT jobs to the manager with the model, the
dataset, and the GPU requirements (Step 1○). The NetPack
job manager batches incoming jobs and periodically places
them in the cluster. NetPack does not migrate running jobs
because cross-GPU model migration is extremely costly in
practice [3, 30].
For each job, NetPack job manager inquires the network

information base about the static network configurations,
including the topology, link capacity, switch memory, and
the existing job placement (Step 2○), and runs the steady
state estimation algorithm to infer the resource usage by
existing jobs and the resource availability for the new job
(Step 3○, in Section 4).

The job manager further scores a value for each server
by its remaining available resources (the server’s GPU and
access link’s bandwidth) and runs a job placement algorithm
to find servers with the highest value for the job (Step 4○, in
Section 5).

NetPack iterates on the batch of jobs with Step 3○ and 4○
to get each job’s placement plan. Finally, the job manager
sends the job placement plan to server agents to enforce the
job execution (Step 5○).

When a DT job is accelerated by INA, it has the following
runtime properties. We leverage these facts when designing
NetPack’s abstraction and algorithms. First, after aggrega-
tion, the ACK packets on the return path piggyback the
aggregation result to workers and release the aggregator,
which is a multicast process on the same path as the ag-
gregation process. Due to the symmetry, we can view the
topology as an undirected graph and a flow’s bandwidth
consumption as on undirected links. Second, all workers of
a single job stream gradient packets at the same throughput.
Each aggregator sends the aggregation result only when all
workers’ packets arrive, effectively forcing the faster work-
ers to wait for the slower ones. Thus, all workers proceed
with the gradient sending at the same time at the same rate.

4 Steady State Estimation
We first analyze one job’s aggregation model with given
resources, and then analyze multi-job resource share in the
steady state.

4.1 Modeling Single-Job Aggregation
Problem Definition. To estimate the steady state of mul-
tiple jobs in a cluster, we first model one job’s aggregation
pattern given a certain amount of resources. A DT job has
multiple workers and one or several PSes, and we model one
PS and its INA behavior with workers (AllReduce with mul-
tiple PSes is composed of multiple one-PS AllReduces). We
assume all workers stream gradients at a rate𝐶 , a switch has
a memory of size𝑀 for INA, and the round-trip time (RTT)
between a worker and the PS is 𝑇 3. The goal of modeling
single-job aggregation is to find the portion of aggregated
and unaggregated traffic, and the number of flows on each
link on the path from workers to the PS.

We define a switch attribute Peak Aggregation Throughput
(PAT) to describe the maximum aggregation throughput that
a switch can support, denoted by the symbol 𝐴. In a typical
transport protocol, the sender delivers a window of packets
to the network in one RTT, where the window size equals the
bandwidth-delay product (BDP). When the switch processes
the traffic, it needs to allocate an aggregator to each packet
in the stream. In one RTT, if the switch memory 𝑀 (unit
is one packet) is larger than the window size, the switch
can aggregate all packets in the window; otherwise, the
switch can only process up to 𝑀 packets in the window.
Thus, a switch can aggregate traffic at a maximum rate of
𝑀/𝑇 , which is its PAT.

3RTT𝑇 is estimated as the propagation delay plus the switch ECN threshold
over the link bandwidth.
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Table 1. Aggregation model of a switch in an aggregation
hierarchy

The switch has 𝐾 subtrees, each with 𝑛𝑖 flows (1 ≤ 𝑖 ≤ 𝐾 ).
𝐴 ≥ 𝐶 𝐴 < 𝐶

Number of Flows 1
∑
𝑖 𝑛𝑖

Aggregated Traffic 𝐶 𝐴

Unaggregated Traffic 0 (𝐶 −𝐴) ×∑𝑖 𝑛𝑖

Aggregation Model in a Single Rack. We first model the
trivial case where a job is in a single rack, i.e., all workers
and the PS are connected to one switch. If the switch PAT is
larger than or equal to the worker’s streaming rate (𝐴 ≥ 𝐶),
all traffic is aggregated and the link from the switch to the PS
has only one flow. Otherwise (𝐴 < 𝐶), the aggregated traffic
is 𝐴 and the unaggregated one is 𝐶 − 𝐴, and the number
of flows on the switch-to-PS link is equal to the number of
workers, contributed by the unaggregated traffic.
Aggregation Model in a Hierarchical Topology. When a
job spans multiple racks, the aggregation is hierarchical. We
assume INA is provided on the ToR switches because the INA
hierarchy is hard to deploy on the multiple paths between
ToR switches with ECMP [22]. The worker ToR switches and
the PS ToR switch form a two-level aggregation hierarchy,
where the PS’s ToR switch is the root and the workers’ ToR
switches are leaves.
The aggregation model of each switch in the hierarchy

can be computed bottom-up. At each switch, if the worker
sending rate is smaller than the switch PAT (𝐶 < 𝐴𝑖 ), all
traffic can be aggregated, and the switch outputs a single
flow upward along the hierarchy. If the worker sending rate
exceeds the switch PAT (𝐶 ≥ 𝐴𝑖 ), the gradient traffic will
be partially aggregated, and the number of upward flows
from the switch will become the sum of the flows from all its
subtrees, denoted as

∑
𝑖 𝑛𝑖 . The aggregated traffic is the PAT

𝐴, and the unaggregated one is (𝐶 −𝐴) ×∑𝑖 𝑛𝑖 . The traffic
pattern of the hierarchical aggregation model is summarized
in Table 1.
Example. Figure 5a shows a job in the cluster spanning
across multiple racks. This example DCN can be viewed
as “one big switch” [1, 23] for estimation (For simplicity,
we assume the DCN has full-bisection bandwidth; NetPack
algorithms and experiments do not make this assumption).
The job spans four racks, two workers per rack. We assume
the PAT of four ToR switches 𝐴1, 𝐴𝑝 , 𝐴3, 𝐴4 satisfy 𝐴1 <

𝐴𝑝 < 𝐴3 < 𝐴4. 𝐹𝑆 denotes the number of flows on the link
ToRPS-PS, and 𝐹𝐶 denotes the total number of flows on the
link DCN-ToRPS (the sum of all ToRworker-DCN). We tune
the worker sending rate 𝐶 from 0 to a value larger than
𝐴4, and 𝐹𝑆 and 𝐹𝐶 would vary accordingly as in Figure 5b.
When 𝐶 exceeds a switch PAT, the number of flows on the
switch link towards the PS leaps from 1 to the number of the
switch’s subtrees’ flows. For example, when the sending rate
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Figure 5. Hierarchical aggregation model of a single job

is small, all traffic is aggregated: 𝐹𝐶 = 3 and 𝐹𝑆 = 1. When
the sending rate exceeds the PAT of a leaf ToR, the switch
contributes two flows (two workers in a rack) to 𝐹𝐶 . With
the largest sending rate (larger than 𝐴4), no switch can fully
aggregate all traffic, and 𝐹𝐶 = 6 and 𝐹𝑆 = 8.

4.2 Modeling Multi-job Aggregation in a Cluster
Problem Definition.Modeling multiple jobs’ INA in a clus-
ter is different from modeling one job. Each job does not
stream traffic at an arbitrary rate. Instead, the limited net-
work resources (link bandwidth, switch memory) are shared
by multiple jobs with max-min fairness. The goal of the
multi-job modeling is to find out the eventual converged
resource share on each link/switch for each job, which lays
the foundation for NetPack job placement in Section 5.
Algorithm. There is a class of algorithms called water-filling
algorithms [5], which aim to estimate multiple TCP flows’
eventual bandwidth sharing in a topology with max-min
fairness. The intuition of the water-filling algorithm is to
gradually fill in the same traffic volume to each flow like
water (complying with max-min fairness), and the physical
links would be filled in with traffic volume from its travers-
ing flows as well. The link with more flows would be filled
more quickly; if a link is filled, all its traversing flows are
frozen without being filled in traffic anymore. The algorithm
iteratively fills in traffic and freezes filled links and corre-
sponding flows until all flows are frozen, and then gives an
eventual steady state with bandwidth sharing among flows.
The steady-state estimation for NetPack faces a different

scenario than existing water-filling algorithms: there are
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Algorithm 1:WaterFilling Algorithm
Input: 𝐽𝑜𝑏𝑠 , 𝐿𝑖𝑛𝑘𝑠 , 𝑇𝑜𝑅𝑠
Output: {𝑙 .𝑏𝑤 |𝑙 ∈ 𝐿𝑖𝑛𝑘𝑠}

1 WaterFiling()
2 while |Frozen| < |Jobs| do
3 for j ∈ Jobs\Frozen do UpdateFlows(j.PS) ;
4 for l ∈ Links do Count l’s flows in Jobs\Frozen;
5 for r ∈ ToRs do Count r’s jobs in Jobs\Frozen;
6 bw1← min

𝑙∈𝐿𝑖𝑛𝑘𝑠 and 𝑙 .𝑏𝑤≠0 (𝑙 .𝑏𝑤/𝑙 .𝑓 𝑙𝑜𝑤𝑠);
7 bw2← min

𝑟 ∈𝑇𝑜𝑅𝑠 and 𝑟 .𝑃𝐴𝑇≠0 (𝑟 .𝑃𝐴𝑇 /𝑟 . 𝑗𝑜𝑏𝑠);
8 new_frozen← Augment(min(bw1, bw2));
9 Frozen← Frozen ∪ new_frozen;

10 UpdateFlows( 𝑗𝑜𝑏.ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦.𝑛𝑜𝑑𝑒)
11 if node is worker then node.flows← 1, return;
12 for c ∈ node.children do UpdateFlows (c);
13 if node is PS then node.flows← 0, return;

/* otherwise, the node is a switch */

14 if node.𝑃𝐴𝑇 > 0 then node.flows← 1;
15 else node.flow← ∑

𝑐∈𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑐.𝑓 𝑙𝑜𝑤𝑠;

16 Augment(𝑏𝑤 )
17 frozen← {}; // record new frozen jobs

18 for j ∈ Jobs\Frozen do
19 for (child, parent) ∈ j.hierarchy do
20 for link l from child to parent do
21 𝑙 .𝑏𝑤 ← 𝑙 .𝑏𝑤 − 𝑏𝑤 × 𝑛𝑜𝑑𝑒.𝑓 𝑙𝑜𝑤𝑠;
22 if 𝑙 .𝑏𝑤 = 0 then
23 frozen← frozen ∪ {jobs on 𝑙 }

24 if child is switch and child.𝑃𝐴𝑇 > 0 then
25 𝑐ℎ𝑖𝑙𝑑.𝑃𝐴𝑇 ← 𝑐ℎ𝑖𝑙𝑑.𝑃𝐴𝑇 − 𝑏𝑤 ;

26 return frozen;

two kinds of network resources to share among DT jobs
— link bandwidth and switch memory. The two kinds of
resources are not independent, and thus, cannot be applied
with the water-filling algorithm separately. Instead, the two
resources are coupled and mutually influence each other:
for an INA job, allocating more switch memory to it could
aggregate more traffic and reduce bandwidth consumption.
Fortunately, the abstraction of PAT allows us to convert the
switch memory into equivalent aggregation throughput in
the statistical INA, which gives us an approach to handle
the two coupled resources and allows us to customize the
water-filling algorithm.

Algorithm 1 shows the INA-specific water-filling algo-
rithm to compute the steady state for multi-jobs in a cluster.
In the algorithm initialization, all jobs are not given traffic
volume and are marked as active. The algorithm takes itera-
tions to fill in traffic into active jobs: it computes the mini-
mum share of remaining bandwidth/PAT on each link/switch
(line 6-7), augments the minimum share to all active jobs

Table 2. Notations and their Meanings

Notation Meaning
𝑛 ( 𝑗 ) number of workers for job 𝑗
𝑎 ( 𝑗 ) aggregated throughput of job 𝑗
𝑏 ( 𝑗 ) unaggregated throughput of job 𝑗
𝑣 ( 𝑗 ) total throughput of job 𝑗
𝑔 ( 𝑗 ) GPU requirement of job 𝑗
𝑑 ( 𝑗 ) model size of job 𝑗
𝐺 available GPU number of severs
𝐶𝑠 link capacity from sever 𝑠 to its ToR switch
𝐴[𝑟 ] PAT of ToR switch in rack 𝑟
𝐶𝐵𝑊 cross-rack bandwidth

𝑥
( 𝑗 )
𝑖

job 𝑗 ’s workers in server 𝑖
𝑦
( 𝑗 )
𝑖

job 𝑗 ’s PS in server 𝑖
𝑧
( 𝑗 )
𝑟 whether to enable INA on ToR 𝑟 for job 𝑗

(line 8 and 16-26), and freezes the jobs that are bottlenecked
by the link/switch with the minimum share (line 9 and 22-
23). At the beginning of each iteration, the number of flows
on the links of each aggregation hierarchy is updated (line
3 and 10-15) as the single-job aggregation model in Sec-
tion 4.1, because the number of flows would be used in later
minimum share computation and augment. The algorithm
eventually terminates because each iteration at least freezes
one link/switch and some jobs, and all jobs are frozen when
the algorithm terminates (line 2).
Complexity. In the one-big switch abstraction, there are
server links (to ToR) and rack links to DCN, so there are
|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 | + |𝑇𝑜𝑅𝑠 | links. As we find at least one bottleneck
in each iteration, the estimation algorithm completes within
|𝑇𝑜𝑅𝑠 | + (|𝑇𝑜𝑅𝑠 | + |𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |) rounds. We can bound the time
complexity of one iteration with the total number of flows.
Each flow originates from a GPU, and there are at most
|𝐺𝑃𝑈𝑠 | × |𝑆𝑒𝑟𝑣𝑒𝑟𝑠 | flows, where |𝐺𝑃𝑈𝑠 | denotes the number
of GPUs per server and is constant. Therefore the overall
time complexity of the estimation algorithm is𝑂

(
|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |2

)
(assuming |𝑇𝑜𝑅𝑠 | < |𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |). Our experiment results in
Section 6 indicate that the time overhead of estimation is
affordable even in large clusters.

5 Job Placement Algorithm
We first model the job placement as a formal Mixed Integer
Programming problem, and then give an efficient dynamic
programming algorithm to find an approximation.

5.1 Mixed Integer Programming Algorithm
Placing a batch of jobs in a shared cluster can be modeled
as a Mixed Integer Programming (MIP) problem. Table 2 sum-
marizes the notation in MIP, and Table 3 shows the formal
definition of the MIP problem. Since the total training time
includes initialization time, computation time, and communi-
cation time, and the former two factors do not vary with the
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Table 3. Offline Placement as a Formal Constraint Optimiza-
tion

minimize
∑

𝑗∈ 𝐽 𝑜𝑏𝑠
∑

𝑖∈𝑆𝑒𝑟𝑣𝑒𝑟𝑠 𝑦
( 𝑗 )
𝑖
𝑑 ( 𝑗 )/𝑣 ( 𝑗 ) , s.t.,∑

𝑗∈ 𝐽 𝑜𝑏𝑠 𝑤
( 𝑗 )
𝑖
≤ 𝐺,∀𝑖 ∈ 𝑆𝑒𝑟𝑣𝑒𝑟𝑠; (1)∑

𝑖∈𝑆𝑒𝑟𝑣𝑒𝑟𝑠 𝑤
( 𝑗 )
𝑖

= 𝑔 ( 𝑗 ) ,∀𝑗 ∈ 𝐽𝑜𝑏𝑠; (2)∑
𝑗∈ 𝐽 𝑜𝑏𝑠

[
𝑥
( 𝑗 )
𝑖
𝑣 ( 𝑗 ) + 𝑦 ( 𝑗 )

𝑖

(
𝑎 ( 𝑗 ) +∑𝑘∈𝑆 𝑥

( 𝑗 )
𝑘
𝑏 ( 𝑗 )

)]
≤ 𝐶𝑖 ,∀𝑖 ∈ 𝑆𝑒𝑟𝑣𝑒𝑟𝑠;

(3)∑
𝑗∈ 𝐽 𝑜𝑏𝑠 𝑎

( 𝑗 )𝑧 ( 𝑗 )𝑟 ≤ 𝐴[𝑟 ],∀𝑟 ∈ 𝑅𝑎𝑐𝑘𝑠; (4)
𝑤
( 𝑗 )
𝑖

(
1 − 𝑥 ( 𝑗 )

𝑖

)
= 0,∀𝑖 ∈ 𝑆𝑒𝑟𝑣𝑒𝑟𝑠,∀𝑗 ∈ 𝐽𝑜𝑏𝑠 ; (5)(∑

𝑖∈𝑆𝑒𝑟𝑣𝑒𝑟𝑠 𝑥
( 𝑗 )
𝑖
− 1

) (
1 −∑𝑖∈𝑆𝑒𝑟𝑣𝑒𝑟𝑠 𝑦

( 𝑗 )
𝑖

)
= 0,∀𝑗 ∈ 𝐽𝑜𝑏𝑠; (6)

𝑣 ( 𝑗)
(
1 −∑𝑖∈𝑆𝑒𝑟𝑣𝑒𝑟𝑠 𝑦

( 𝑗 )
𝑖

)
= 0,∀𝑗 ∈ 𝐽𝑜𝑏𝑠; (7)

𝑎 ( 𝑗 )
(
1 −∑𝑅

𝑟=0 𝑧
( 𝑗 )
𝑟

)
= 0,∀𝑗 ∈ 𝐽𝑜𝑏𝑠 ; (8)

𝑥
( 𝑗 )
𝑖
, 𝑦
( 𝑗 )
𝑖
, 𝑧
( 𝑗 )
𝑟 ∈ {0, 1}; (9)

𝑤
( 𝑗 )
𝑖
∈ 𝑍 ∗. (10)

placement location; therefore, the objective is to minimize
the total communication time. The constraints include: each
job’s GPU requirement is satisfied (Eq. 1); the total GPU usage
in each server is under the limit (Eq. 2); bandwidth/memory
usage in each link/switch is under the limit (Eq. 3 and 4);
worker placement and GPU usage should be consistent (Eq.
5); there must be at least one PS for multi-worker jobs (Eq.
6); only jobs with a PS can generate network traffic (Eq. 7);
only INA-enabled jobs can generate aggregated traffic (Eq.
8); and the integer variable constraints (Eq. 9 and 10).

An MIP problem cannot be solved in polynomial time. By
our test, it takes more than four hours to solve the MIP prob-
lem above with 100K jobs in a 1K-rack cluster (with Gurobi
optimizer [15]). The time complexity is not acceptable, and
thus, we turn to an efficient heuristic algorithm.

5.2 Efficient Dynamic Programming Algorithm
In the placement algorithm, NetPack first finds a subset of
jobs in the batch to place and then takes iterations to place
each job in the subset. In each job’s placement, NetPack
applies heuristics to place workers and the PS separately.
Finally, NetPack selectively enables INA for placed jobs. Al-
gorithm 2 summarizes the four-step procedure.
❶ Find a job subset to place. The batch of jobs may require
more GPUs than currently available ones. Thus, NetPack
first chooses a subset of jobs to place in the current period.
Various policies can decide the subset, e.g., FIFO, and NetPack
formulates a knapsack problem.

NetPack gives each job a value according to its importance.
The user can specify this value. To avoid starvation, when
a job fails to be selected for placement, NetPack increases
its value. NetPack regards the cluster as a knapsack with
the capacity of |𝐺𝑃𝑈𝑠 | and each job as an item with weight
𝑗𝑜𝑏.𝐺𝑃𝑈𝑠 and value 𝑗𝑜𝑏.𝑣𝑎𝑙𝑢𝑒 . Thus, the problem becomes
finding a subset of jobs with the maximum value and whose
total GPU requirements fit in the cluster. We use the common

Algorithm 2: Job Placement Algorithm
Input: 𝐽𝑜𝑏𝑠
Output: { 𝑗𝑜𝑏.𝑝𝑙𝑎𝑐𝑒 | 𝑗𝑜𝑏 ∈ 𝐽𝑜𝑏𝑠}

1 JobPlacement()
2 JobsToPlace← FindSubset(Jobs); // Step ❶

3 for job in JobsToPlace in value descending order do
4 if ∃𝑠𝑒𝑟𝑣𝑒𝑟 .𝐺𝑃𝑈𝑠 > 𝑗𝑜𝑏.𝐺𝑃𝑈𝑠 then
5 𝑗𝑜𝑏.𝑝𝑙𝑎𝑐𝑒 ← 𝑠𝑒𝑟𝑣𝑒𝑟 ;
6 continue;

7 WaterFilling(); // Find Steady State

8 𝑉 ←WorkerPlacement(job); // Step ❷

9 𝑗𝑜𝑏.𝑝𝑙𝑎𝑐𝑒 ← PSPlacement(job, V); // Step ❸

10 INAEnable(JobsToPlace); // Step ❹

11 Enforce(JobsToPlace);

12 WorkerPlacement( 𝑗𝑜𝑏)
13 𝑊 ← 𝑗𝑜𝑏.𝐺𝑃𝑈𝑠 ; 𝑉∗,∗,∗ ← 0;
14 for s in [1, · · · , |𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |] do
15 𝑠𝑒𝑟𝑣𝑒𝑟 ← 𝑆𝑒𝑟𝑣𝑒𝑟𝑠 [𝑠];𝑤 ← 𝑠𝑒𝑟𝑣𝑒𝑟 .𝐺𝑃𝑈𝑠;

16 𝑣 ← 𝑠𝑒𝑟𝑣𝑒𝑟 .𝑏𝑤 − 𝐶−𝑠𝑒𝑟𝑣𝑒𝑟 .𝑏𝑤
𝑠𝑒𝑟𝑣𝑒𝑟 .𝑓 𝑙𝑜𝑤𝑠+1 ;

17 for (i,j) in [0, · · · , 𝐹𝑆𝑚𝑎𝑥 ] × [0, · · · ,𝑊 +𝐺] do
18 𝑓 ← max(𝑖, 𝑠𝑒𝑟𝑣𝑒𝑟 .𝑓 𝑙𝑜𝑤𝑠);
19 if 𝑉(𝑠−1),𝑓𝑚𝑎𝑥 , 𝑗 < 𝑉(𝑠−1),𝑖,( 𝑗−𝑤 ) + 𝑣 then
20 𝑉𝑠,𝑓 , 𝑗 ← 𝑉(𝑠−1),𝑖,( 𝑗−𝑤 ) + 𝑣 ;
21 𝑉𝑠,𝑓 , 𝑗 .𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ←

𝑉(𝑠−1),𝑖,( 𝑗−𝑤 ) .𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ∪ {𝑠𝑒𝑟𝑣𝑒𝑟 };
22 else
23 𝑉𝑠,𝑓 , 𝑗 ← 𝑉(𝑠−1),𝑓 , 𝑗 ;
24 𝑉𝑠,𝑓 , 𝑗 .𝑠𝑒𝑟𝑣𝑒𝑟𝑠 ← 𝑉(𝑠−1),𝑓 , 𝑗 .𝑠𝑒𝑟𝑣𝑒𝑟𝑠;

25 return 𝑉|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |,∗,∗;// candidate plans

dynamic programming method [34] to solve the problem and
omit it here (line 2).
Note that switch memory and link capacity are not “re-

served” by jobs but shared with max-min fairness among
them. Placing a new job would change the steady fair share
of jobs, so NetPack reruns the water-filling algorithm to
estimate the resource share of all running jobs (line 7).
❷Place a job’sworkers.NetPack needs to find some servers
to satisfy the GPU requirement of the job. NetPack preferably
places the job on a single server instead of across servers
because a single-server placement avoids the overhead of
cross-server connections and communication (line 4-6).
If a job has to span across servers, we invoke the steady

state estimation algorithm to get the available resources
(bandwidth) on each server (line 7). NetPack similarly for-
mulates the server selection problem as a knapsack problem
(line 8 and 12-25): the job’s GPU requirement as the knap-
sack and servers as the items. Each server 𝑠 has a weight
𝑠 .𝐺𝑃𝑈𝑠 , and its value is heuristically derived from (1) the
server’s available bandwidth (𝑠 .𝑏𝑤 ), and (2) the existing job
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throughput loss if the new job were added to the server, i.e.,

𝑠 .𝑣𝑎𝑙𝑢𝑒 ← 𝑠 .𝑏𝑤 − 𝐶 − 𝑠 .𝑏𝑤
𝑠.𝑓 𝑙𝑜𝑤𝑠 + 1

.

We use 𝑉𝑠 𝑓 𝑔 to denote the maximum value to place a job
with 𝑔 GPUs and a maximum 𝑓 flows on servers in [1, 𝑠], and
𝑉𝑠 𝑓 𝑔 .𝑠𝑒𝑟𝑣𝑒𝑟𝑠 to denote the corresponding servers to achieve
the value. In this formulation, the knapsack’s “weight” is a
two-dimensional tuple (𝑓 , 𝑔). The reason to make the knap-
sack weight two-dimensional (i.e., recording the highest-
value plan for each specific 𝑓 ) is to punish “hot-spot” servers
in step ❸, making the number of flows distributed more
evenly among servers.

We can recursively derive𝑉𝑠 𝑓 𝑔 from𝑉(𝑠−1),∗,∗: if the server
𝑠 is not chosen,

𝑉
(1)
𝑠 𝑓 𝑔
← 𝑉(𝑠−1),𝑓 ,𝑔;

otherwise,

𝑉
(2)
𝑠 𝑓 𝑔
← max

max(𝑖,𝑠 .𝑓 𝑙𝑜𝑤𝑠 )=𝑓 ,∀𝑖

(
𝑉(𝑠−1),𝑖,(𝑔−𝑠.𝐺𝑃𝑈𝑠 ) + 𝑠 .𝑣𝑎𝑙𝑢𝑒

)
.

We determine the final 𝑉𝑠 𝑓 𝑔 by choosing the maximum one
of the above two parts:

𝑉𝑠 𝑓 𝑔 ← max
(
𝑉
(1)
𝑠 𝑓 𝑔
,𝑉
(2)
𝑠 𝑓 𝑔

)
.

The recursive algorithm to find maximum 𝑉𝑠 𝑓 𝑔 can be
solved by a dynamic programming bottom up as described
by the WorkerPlacement() function in Algorithm 2 (line
12-25).

Note that the algorithm above chooses “all or none” GPUs
of a server. Therefore, it may not find a set of servers with
exactly the same number of GPUs 𝑗𝑜𝑏.𝐺𝑃𝑈𝑠 . In this case,
NetPack searches placement plans with the total number of
GPUs in the range [ 𝑗𝑜𝑏𝑠.𝐺𝑃𝑈 , 𝑗𝑜𝑏𝑠.𝐺𝑃𝑈 + 𝐺], where 𝐺 is
the number of GPUs per server. If the final plan (after step
❸) allocates more GPUs than the job requirement, NetPack
releases the extra GPUs on the least-loaded server. NetPack
eventually derives several worker placement plans after con-
sidering all servers (𝑉|𝑆𝑒𝑟𝑣𝑒𝑟 |,∗,∗) and gives them to the PS
placement as candidates.
❸ Place a job’s PS. Each 𝑉|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |,𝑖, 𝑗 (∀𝑖, 𝑗) denotes a place-
ment plan for workers. NetPack finds the best PS placement
location within each plan and returns the one (worker place-
ment plan and the PS placement) with the highest value.
For each candidate PS location (a server 𝑠) in one plan,

NetPack first updates the flows: if the job’s workers are not
on the server 𝑠 ∉ 𝑉 (𝑤𝑜𝑟𝑘𝑒𝑟 )|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |,𝑖, 𝑗 .𝑠𝑒𝑟𝑣𝑒𝑟𝑠 , there is one more flow
(from the PS) on the server, denoted as 𝜖 ← 1; otherwise, 𝜖 ←
0. NetPack also computes the global maximum number of
flow in the plan after adding the PS 𝑓𝑚𝑎𝑥 ← max(𝑖, 𝑠 .𝑓 𝑙𝑜𝑤 +
𝜖).

We evaluate each PS placement location (a server) of one
plan based on several factors, including (1) the workers’
value 𝑉|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |,𝑖, 𝑗 , (2) the server’s available bandwidth 𝑠 .𝑏𝑤 ,
(3) the server’s job throughput decrement caused by the PS

𝐶−𝑠.𝑏𝑤
𝑠.𝑓 𝑙𝑜𝑤𝑠+𝜖+1 , and (4) a penalty to punish plans with “hotspot”
servers 𝐶

𝑓𝑚𝑎𝑥+1 , i.e.,

𝑉|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |,𝑖, 𝑗 + 𝑠 .𝑏𝑤 −
𝐶 − 𝑠 .𝑏𝑤

𝑠.𝑓 𝑙𝑜𝑤𝑠 + 𝜖 + 1
− 𝐶

𝑓𝑚𝑎𝑥

. (1)

By exhausting 𝑖 , 𝑗 , and 𝑠 , NetPack returns a plan with the
maximum overall value (by Equation 1).
❹ Selectively Enable INA. The steps above enable INA
for all jobs, but jobs would benefit differently from INA due
to their fan-in degree and job throughput. NetPack further
shifts the INA resource to jobs that benefit more from INA.
In addition, shifting INA among jobs can tune the tradeoff
between bandwidth usage and switch memory utilization
as well. To maximize switch memory usage, we favor jobs
with a larger fan-in degree where the bandwidth reduction
by INA is the most significant.

To capture the preference given to the jobs with a large fan-
in degree, NetPack defines a metric “aggregation efficiency”
(AE) for jobs. For a job 𝑗 , its aggregation efficiency is the
product of the job throughput and the number of flows to
aggregate at its programmable switches, i.e.,

𝑗 .𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ×
∑︁

𝑠∈ 𝑗 .𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠

𝑠 .𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑓 𝑙𝑜𝑤𝑠.

NetPack sorts jobs by their AE in descending order and
enables INA for these jobs with priority determined by this
order, until using up the switch memory. In this way, we
allocate INA resources to jobs with a larger fan-in degree.
In Oversubscribed Networks. The cross-rack bandwidth
may become a new bottleneck in this case. NetPack updates
the penalty to be max𝑟

(
𝐶 (𝑟𝑎𝑐𝑘 )

𝐹𝐶𝑟+𝑛𝑟 ,
𝐶

𝑓𝑚𝑎𝑥+1

)
(in Equation 1, and

line 9 in Algorithm 2), where 𝐶 (𝑟𝑎𝑐𝑘 ) is the link bandwidth
across racks, 𝐹𝐶𝑟 is the existing flow count of a rack 𝑟 , and
𝑛𝑟 is the flows the current job introduces. The new penalty
prevents the algorithm from placing jobs across multiple
racks.
Complexity. Step ❶’s complexity is 𝑂 (|𝐽𝑜𝑏𝑠 | × |𝐺𝑃𝑈𝑠 |);
Step ❷ and ❸ has |𝐽𝑜𝑏𝑠 | rounds and both have complex-
ity of 𝑂 (|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 | × |𝐹𝑆𝑚𝑎𝑥 | × | 𝑗𝑜𝑏.𝐺𝑃𝑈𝑠 |) in each round;
Step❹’s complexity is𝑂 (|𝐽𝑜𝑏𝑠 | × | 𝑗𝑜𝑏.𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 |). Thewater-
filling algorithm has a complexity of 𝑂

(
|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |2

)
, and we

need to run it for |𝐽𝑜𝑏𝑠 | times. Note that 𝐹𝑆𝑚𝑎𝑥 is bounded by
the number of GPUs per server (a constant); 𝑗𝑜𝑏.𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠 is
bounded by |𝑇𝑜𝑅𝑠 | aswell as |𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |; and |𝐽𝑜𝑏𝑠 |×| 𝑗𝑜𝑏.𝐺𝑃𝑈𝑠 |
is the total number of GPU requirements of all jobs and
is bounded by |𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |. Thus, the overall complexity is
𝑂
(
|𝑆𝑒𝑟𝑣𝑒𝑟𝑠 |2 × |𝐽𝑜𝑏𝑠 |

)
.

6 Evaluation
We evaluate NetPack and show that (1) NetPack can signifi-
cantly improve multi-job efficiency under various conditions
(Section 6.2,6.3); (2) NetPack is efficient to handle job place-
ment in large-scale infrastructures (Section 6.2); and (3) the
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Figure 6. Simulator validation, comparing normalized JCT
between simulator and testbed.

water-filling algorithm’s estimation on multi-job resource
fair sharing is consistent with the experimental results on
the real testbed (Section 6.4).

6.1 Experiment Settings
Implementation. We prototype NetPack with a controller
as in Figure 4 and agents on both hosts and switches to
enforce the placement (job setups/shutdowns). The imple-
mentation has 2K lines of Python code and will be open-
sourced [31] on publication of this paper.
Testbed.We evaluate NetPack on a testbed with five servers,
each containing two NVIDIA GeForce RTX 2080Ti GPUs,
56 CPU cores at 2.20 GHz, and 192 GB RAM, and running
Ubuntu 18.04. Each host has a Mellanox ConnectX-5 dual-
port 100 Gbps NIC. A 32 × 100 Gbps Barefoot Tofino pro-
grammable switch connects all the servers.
Simulator.To evaluate the scalability of NetPack, we also im-
plement a discrete-time flow-level simulator with a tunable
number of racks and oversubscription in a fat-tree topology,
16 machines per rack, 4 GPUs per machine. In the following
experiments, we set the default number of racks as 16, over-
subscription to 1 : 1, and available switch PAT to 1Tbps. We
use the training speed, iteration, and server configuration
information collected from our testbed experiments for the
simulation. We validate our simulator on various workloads
to match real hardware behavior (see below).
Baselines.We compare NetPack with three heuristic algo-
rithms: GPU-balance (GB, prefers to select servers with more
GPU resource), Flow-balance (FB, prefers to select servers
with a smaller number of flows), least-fragmentation (LF,
prefers to use up GPU resource of running servers), and two
placement strategies from the prior arts: Optimus [32], and
Tetris [14]. Note that NetPack is the first work with INA
considered in the placement; the baselines do not consider
INA in placement but have INA (ATP) enabled silently and
transparently in the experiment runtime.
Workloads.We evaluate six common deep learning models:
VGG11, VGG16, VGG19, AlexNet, ResNet50, and ResNet101.
These models cover communication-intensive (VGG16) and
computation-intensive workloads (ResNet50). Each model
trains on the ImageNet dataset. For job traces, we use real-
world training logs from Microsoft [19] (labeled Real in the

following figures). We construct each job’s training time and
GPU requirement from the logs’ record of the start time, end
time, and the number of GPUs. As the logs do not contain
information about the model type, we randomly pick one
from our model pool as prior works do [32]. By default, we
use the real-world trace in the experiments without extra
explanation, but we also run experiments on two extra syn-
thetic job traces where the jobs’ GPU requirements follow
a Poisson / normal distribution as a comparison (Figure 7
and 8).
Metrics. We quantify how “good” a placement is using two
metrics — average job completion time (JCT) and distribution
efficiency (DE). JCT is widely used to evaluate job manage-
ment systems. In the evaluation, we normalize each group of
JCT by setting JCT from NetPack to 1 to reflect the relative
performance of algorithms. We define distribution efficiency
as

𝐷𝐸 =
1
|𝐽𝑜𝑏𝑠 |

∑︁
𝑗∈ 𝐽 𝑜𝑏𝑠

𝐽𝐶𝑇_𝑤𝑖𝑡ℎ_1_𝐺𝑃𝑈
𝑅𝑒𝑎𝑙_𝐽𝐶𝑇 × 𝑁𝑜_𝑜 𝑓 _𝐺𝑃𝑈𝑠 .

Distribution Efficiency can exclude other factors like the
model size to influence JCT, only reflecting the effect of
placement. If the system linearly scales without any network
overhead, the DE is supposed to be one (numerator equals
denominator).

Whenmeasuring JCT and DE, each experiment is repeated
ten times. The JCT and DE bars and error bars show the
average value and standard deviation.
Simulation Accuracy Validation. We launch the same
set of job traces both on the testbed and in the simulator
with the same cluster configuration and plot the normal-
ized JCT in Figure 6. The experiment results show that the
testbed average JCT is highly correlated with the simulator
estimated JCT in a linear way. Using a linear regression (the
solid/red line in Figure 6), we can get a correlation coefficient
of 98%, demonstrating that we have an accurate simulator
that reflects the real system behavior.

6.2 Overall Performance
Acceleration. Both Figure 7 and Figure 8 show the over-
all performance with default settings. NetPack effectively
improves both metrics in all experiments compared with
baselines, e.g., 13% − 45% JCT reduction and 13% − 46% DE
improvement with real-world traces on the testbed. NetPack
provides more significant acceleration in a larger cluster (up
to 78% JCT reduction and 2.4× DE in simulation) because of
the larger optimization space of multi-rack scenarios. Other
placement methods without explicitly considering switch
memory all experience severe performance degradation.
Scalability. We measure the average JCT of a 4𝐾-job real
workload with varying cluster sizes (100 to 10𝐾 servers, 16
racks in the cluster). Figure 9 shows the experiment results.
NetPack provides an average JCT reduction of 31% compared
to baselines.
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rithm execution time
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scription

Figure 10 shows the execution time of NetPack placement
algorithm on varying cluster sizes and jobs. For clusters with
100 to 10𝐾 servers, NetPack can compute the placement of
4𝐾 jobs within 1 minute. The total placement time grows
linearly with the job number for the same cluster, indicating
that the per-job placement time keeps constant for the same
configuration. The per-job placement time is short and grows
linearly with the cluster size: from 3.25 × 10−4 second (102

nodes) to 1.36× 10−2 second (104 nodes), which is consistent
with the theoretical time complexity analysis in Section 5.
The algorithm efficiency is sufficient for production clusters.
In practice, we only need to place dozens of new-arrived jobs
in every scheduling period [19]. Since a job could last for
hours, running NetPack for 1 minute to place it is acceptable.

6.3 Performance with Limited Resources
Limited Switch Memory. Other functions may occupy the
switch memory in practice. Thus, we vary the switch mem-
ory and show the experiment results in Figure 11. NetPack
provides 30% ∼ 92% JCT reduction than baselines. Mean-
while, we find that the performance advantage grows with
less switch memory. This is because (1) the network be-
comesmore congestedwith less aggregation; (2) switchmem-
ory plays a more significant role in the placement decision-
making; (3) NetPack’s heuristics also improves the utilization
of GPU and network bandwidth, e.g., 87% ∼ 92% JCT reduc-
tion even without INA (𝑃𝐴𝑇 = 0).

Limited Cross-rack Bandwidth. In the experiments sum-
marized in Figure 12, we tune the cross-rack link bandwidth
to observe algorithm performance in an oversubscribed net-
work. NetPack selectively enables INA for jobs using Algo-
rithm 2. Other baselines do not consider INA in placement
but enable INA for all jobs and allow them to share the INA
resource in the simulation. NetPack outperforms these algo-
rithms, and the performance improvement is more signifi-
cant with higher oversubscription ratios, e.g., average JCT
reduction (than other baselines) increases from 52%with 1 : 1
oversubscription to 89% with 20 : 1 oversubscription. This is
because (1) with cross-rack overhead in consideration, Net-
Pack avoids placing a job across racks by applying a higher
penalty to cross-rack plans, saving cross-rack bandwidth;
(2) NetPack’s selective INA-enabling strategy finds a good
tradeoff between switch memory and cross-rack bandwidth,
and thus maximize the bandwidth reduction.

6.4 Validation of Design Choices
Validation of Multi-Resource Joint Optimization. All
baseline results of GB, FB, and LF indicate that it is insuffi-
cient to consider only a single resource for placement, and
NetPack indicates that jointly optimizing multiple resources
achieves a better performance. To show that the “joint opti-
mization” in NetPack is essential to achieve a performance
improvement, we further compare NetPack with a naive
combination strategy Comb, where resources are separately
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considered. Comb sorts servers by available GPUs, ToR mem-
ory, and link bandwidth in descending order and places jobs
to the first matched servers. Figure 13 shows that NetPack
outperforms Comb by at most 63% JCT reduction on all three
workloads, indicating that NetPack balances various new
factors well and achieves a good tradeoff.
Validation of Aggregation Pattern. Aggregation pattern
modeling (Table 1) estimates job flows as a basis of the water-
filling algorithm. In the experiments, three servers are in
a rack, and the two workers and one PS are on separate
servers, respectively. We fix the job throughput at 10 Gbps
and adjust the available switch memory for INA. On the
𝑥-axis, 𝑃𝐴𝑇𝑟𝑎𝑡𝑖𝑜 = 1 means the switch memory can support
full aggregation 𝑅𝑇𝑇 × 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 . The 𝑦-axis displays the
portion of switch aggregated throughput over the total job
throughput. Theoretically, 𝑦 = 𝑥 . Figure 14a shows the re-
sults, and the real aggregation ratio is close to the predicted
aggregation model with only a small deviation.
Resource Fair Sharing Validation. Achieving max-min re-
source fairness is also the basis of the water-filling algorithm
(Augment() in Algorithm 1). We add one more job with 10
Gbps throughput in the experiment above (the 100% PAT
is still for one job). Figure 14b shows that the aggregation
ratio of each job grows with the available switch memory.
The theoretical model is 𝑦 = 0.5𝑥 . The two jobs have a simi-
lar aggregation ratio, indicating that they share the switch
memory fairly. The actual aggregation throughput can be
higher because ML jobs have an iterative “computation-
communication” pattern and can take turns to use the switch
memory during the training process [22].
Water-fillingAlgorithmAccuracy.We compare thewater-
filling algorithm estimation result with the monitoring data
from the testbed. Figure 15 shows the result. The FF esti-
mation results approximately fit the real testbed bandwidth
usage. The testbed traffic has a small delay in taking effect
because it takes a while to deliver messages from the control
plane to the data plane and to set up servers’ jobs.

7 Conclusion
Statistical INA brings significant performance gain in DT,
but the dynamic network resource allocation nature also
challenges the DT job placement in a cluster. We design

a system named NetPack for the job placement problem
in clusters with statistical INA. NetPack places jobs to the
cluster with cluster-wide uniform resource usage in consid-
eration. It overcomes the challenge of resource availability
estimation with a water-filling algorithm and that of efficient
placement plan searching with a dynamic programming al-
gorithm. We prototype NetPack and conduct experiments to
show the performance gain achieved by NetPack compared
with the state-of-the-art solutions. In future work, we would
explore the joint job placement and scheduling for further
performance optimization.
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