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ABSTRACT
Knee osteoarthritis (KOA) is a widespread condition that can cause
chronic pain and stiffness in the knee joint. Early detection and
diagnosis are crucial for successful clinical intervention and man-
agement to prevent severe complications, such as loss of mobility.
In this paper, we propose an automated approach that employs
the Swin Transformer to predict the severity of KOA. Our model
uses publicly available radiographic datasets with Kellgren and
Lawrence scores to enable early detection and severity assessment.
To improve the accuracy of ourmodel, we employ amulti-prediction
head architecture that utilizes multi-layer perceptron classifiers.
Additionally, we introduce a novel training approach that reduces
the data drift betweenmultiple datasets to ensure the generalization
ability of the model. The results of our experiments demonstrate
the effectiveness and feasibility of our approach in predicting KOA
severity accurately.
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1 INTRODUCTION
Knee osteoarthritis (KOA) is a degenerative disease of the knee
joint and the most common form of arthritis. It affects almost half
of the population aged 65 years or older worldwide, causing pain,
mobility limitation, and impaired quality of life. KOA is caused by a
breakdown of knee articular cartilage and bone micro-architecture
changes [7]. Joint space narrowing, osteophyte formation, and scle-
rosis are KOA’s most visually relevant pathological features that
can be visualized with radiographs. Although various imaging tech-
niques such as magnetic resonance, computed tomography, and
ultrasound have been introduced to diagnose osteoarthritis, radiog-
raphy remains the most widely used method for initial diagnosis
due to its accessibility, low cost, and widespread use.

Kellgren and Lawrence (KL) classified KOA severity into five
stages based on the radiographic features, from KL-G0 for healthy
cases to KL-G4 for severe cases [7] (See Fig 1). However, KOA
changes gradually, so the evaluation into different stages is often
subjective and depends on the operator. This causes subjectivity and
makes the automatic KOA diagnosis a difficult task. In addition, the
high similarity between the X-ray images increases the challenge
of achieving an accurate diagnosis.

Several deep learning-based methods have been proposed for
medical imaging applications [17], and many to diagnose KOA in
recent years. In [1], Antony et al. employed Convolutional Neural
Networks (CNNs) to quantify the severity of KOA from radiographic
images. Their method is based on two main steps: first, automat-
ically locate the knee joints using a Fully Convolutional Neural
etwork (FCN), then, classify the knee joint images using a second
CNN. In addition, to improve the quantification of KOA, they com-
bined the classification loss with the regression loss to consider
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Figure 1: Samples of knee radiographs. KL-G0: healthy knee
without osteoarthritis, KL-G1: doubtful osteoarthritis, KL-
G2: minimal osteoarthritis, KL-G3: moderate osteoarthritis,
and KL-G4: severe osteoarthritis.

the continuous aspect of the disease progression. Tuilpin et al. [16]
presented a Siamese CNN network for KL grade prediction. They
used three models with different random seeds and combined their
outputs with a softmax layer to obtain the final KL grade. Chen et
al. [5] proposed an ordinal loss for fine-tuning various CNN mod-
els to classify KOA severity. They leveraged the ordinal nature of
the knee KL grading system and penalized incorrect classifications
more by increasing the distance between the real and predicted
KL grades. Nasser et al. [11] proposed a Discriminative Regular-
ized Auto-Encoder (DRAE) for early KOA prediction using X-ray
images. The proposed model uses a discriminative penalty term
and the traditional AE reconstruction cost function to enhance the
separability of the features learned from different classes. The aim
was to boost the recognition system’s performance by minimizing
the inter-class variance and maximizing the intra-class distance.
Recently, transformers have shown promising results in various
medical imaging tasks [13]. Wang et al. [20] proposed a novel data
augmentation method for early detection of KOA using a Vision
Transformer model. The method involves shuffling the position em-
bedding of non-ROI patches and exchanging the ROI patches with
other images. The authors also used a hybrid loss function that com-
bines label smoothing and cross-entropy to improve the model’s
generalization capability and avoid over-fitting. Several important
studies [3],[6], [12], [14], [1], used two multi-center databases, the
Osteoarthritis Initiative (OAI, https://nda.nih.gov/oai/) and the Mul-
ticenter Osteoarthritis Study (MOST, https://most.ucsf.edu/) by not
accounting for the data drift problem. The latter occurs when a ma-
chine learning model trained on one dataset lowers its performance
when tested on another set of data. Subsequently, data drift causes
poor generalization and performance degradation.

In this work, we first investigate the use of the Swin transformer
in predicting KOA severity from radiographic images. In particular,
the Swin transformer is the core network that extracts high-level
features and detects KOA-induced changes. Second, we introduce a
multi-predictive classification header to address the high similarity
problem between different KOA grades. In addition, to reduce the
data drift problems between the data in the two databases, OAI
and MOST, we tested several learning strategies to find the one
providing the model with better generalization capabilities and
balanced classification results.

The remainder of the paper is organized as follows: the proposed
method is described in Section 2. Next, the obtained experimental
results are presented in Section 3. Finally, the conclusions and
outlooks are given in Section 4.

Figure 2: Swin transformer architecture with a multiple pre-
diction head architecture

2 PROPOSED METHOD
The method proposed in this paper consists of two parts: 1) a Swin
transformer as a features extractor and 2) a multi-prediction head
network as a classifier. The schematic illustration of our proposed
network is presented in Figure 2.

2.1 Swin Transformer
The Swin Transformer [9] is a state-of-the-art model that has been
specifically designed to address the challenges of applying trans-
former models in the visual domain. While transformers have been
widely successful in natural language processing, they have been
less effective in computer vision due to the unique characteristics
of visual data. The Swin Transformer proposes a novel architecture
that leverages hierarchical feature maps and shift-based windows
to improve the efficiency and performance of the model. With its
innovative approach, the Swin Transformer has emerged as one of
the most efficient and effective transformer models for visual appli-
cations. The model is divided into four stages, where the features
are hierarchically extracted in each stage.

The input image with dimensions 𝐻 ×𝑊 × 3 is divided into
𝐻
4 × 𝑊

4 non-overlapping patches as tokens of size 4 × 4 × 3 = 48.
These tokens are then passed through the first stage, consisting of a
linear embedding layer and two Swin Transformer blocks. The lin-
ear embedding layer projects the tokens into a higher-dimensional
space denoted by 𝐶 ; after that, in the first Swin Transformer block,
the multi-headed window self-attention mechanism (W-MSA) is
employed. This mechanism computes self-attention only between
patches within the same window, where each window contains
𝑀 ×𝑀 patches. The second Swin Transformer block utilizes shifted
window multi-headed self-attention (SW-MSA), in which the parti-
tioning windows are shifted by (⌊𝑀2 ⌋, ⌊

𝑀
2 ⌋) patches with respect to

the standard partitioning windows used in the previous block. This
approach aims to create more relationships between neighboring
patches previously located in different windows and reduce the
computational complexity of the global MSA module used in vision
transformer.

In the second stage, a patch merging layer is applied to group
each 2 × 2 neighboring patches into a single patch of length 4𝐶 ,

https://nda.nih.gov/oai/
https://most.ucsf.edu/
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thus reducing the number of patches to 𝐻
8 × 𝑊

8 . These patches are
then linearly projected to a dimension of size 2𝐶 and passed to two
Swin Transformer blocks as in the first stage.

This process is repeated in the third stage, using 18 Swin Trans-
former blocks to produce 𝐻

16 × 𝑊
16 patches of length 4𝐶 . Finally, in

the fourth stage, two Swin Transformer blocks are used to produce
𝐻
32 × 𝑊

32 of length 8𝐶 . These consecutive stages jointly produced
a hierarchical representation like those of typical convolutional
networks.

2.2 Multi-Prediction Head Network
Themain task of our designedmodel is to be able to predict the KOA
severity grade. This presents a case of a multi-class classification
task. Traditionally this is solved by using a single MLP classification
head with 5 outputs activated by a softmax function.

The complex nature of X-ray images imposes a high similarity
between the images of adjacent KL Grades as shown in Figure 1.
To address this issue, we decompose the task into multiple binary
classification tasks. We use 5 MLP networks, each specializing
in predicting one KL-Grade. This enhances the model’s ability to
extract and filter a rich representation for each class.

Let 𝑓 : 𝑋 → 𝑍 be our feature extractor, where 𝑋 and 𝑍 are the
input and latent spaces, respectively. 𝑥 represents the input image
and 𝑦 their corresponding one hot encoding label. The predictive
label 𝑦𝑖 at the head classifier𝑀𝐿𝑃𝑖 is defined as:

𝑦𝑖 = 𝑀𝐿𝑃𝑖 (𝑓 (𝑥)) (1)

The final predictive label 𝑦 is computed then as follows:

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥 (
4⋃

𝑖=0
𝑦𝑖 ) (2)

where 𝑖 ∈ {0 . . . 4} represents the KL grades.

To sum up, our final model consists of a basic Swin-B encoder
with 𝐶 = 128 and 2, 2, 18, 2 Swin Transformer blocks, followed
by Normalisation and average pooling layers to produce a final
representation vector of size 1024. This vector is then passed to 5
MLPs, one for each KL grade. Each MLP contains 3 linear layers of
size 384, 48, 48, 1, respectively. The final layer of each MLP network
has a single neuron to predict the occurrence probability of each
grade.

2.3 Data Drift Correction
In this paper, we employ 2 of the most widely used datasets for KOA
classification (i.e. MOST and OAI datasets). These datasets were
collected over a substantial amount of time, from several medical
centers, and were annotated by a multitude of medical practitioners.
The inherent disparity of equipment, study subjects, radiography,
and diagnostics methods between different medical centers caused
a shift between the datasets as further discussed in Section 3.4.

We represent our model using the formula ℎ = 𝑔 ◦ 𝑓 , where
𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑍 → 𝑌 , represent the feature extractor and the
multi-classification head, respectively. 𝑋 is the input image, 𝑍 is
the latent feature space, and 𝑌 represents the label space.

To address the issue of data drift between the MOST and OAI
datasets, we need to align the latent representational spaces be-
tween 𝑍𝑀𝑂𝑆𝑇 and 𝑍𝑂𝐴𝐼 . This means that the feature extractor 𝑓
needs to be able to perceive the data distributions from DMOST
and DOAI as belonging to the same distribution D. It models
relevant mutual features while discarding any dataset-specific in-
formation that could be considered noisy. This could be represented
using the following equation:

D = (DMOST ∪ DOAI ) ∖ (N𝑀𝑂𝑆𝑇 ∪ N𝑂𝐴𝐼 ) (3)

where N𝑀𝑂𝑆𝑇 and N𝑂𝐴𝐼 represent the noisy distribution of infor-
mation specific to the MOST and OAI datasets, respectively.

To achieve this result, we train the model ℎ on the MOST dataset
and then freeze the MLP layers 𝑔. We continue to train the feature
extractor 𝑓 on the OAI dataset. This way, we force the feature
extractor 𝑓 to align the representational space for both datasets.
This proposed approach leverages the pre-trained source model
effectively and adapts it to the target dataset by minimizing the
shift between the data distributions in the latent representational
space 𝑍 . The objective is to achieve this without compromising the
prior knowledge of the pre-trained classifier.

2.4 Implementation
In order to train the model, we used the AdamWoptimizer [10] with
a learning rate of 3𝑒 − 5, a weight decay of 0.05, an epsilon of 1𝑒 − 8,
and betas of (0.9, 0.999) to adjust the weights. We trained the model
with a batch size of 32 images for 300 epochs. We implemented the
code in PyTorch and used an NVIDIA RTX A4000 GPU with 16 GB
of VRAM to speed up the training process.

We also implemented various data augmentation techniques
such as 15-degree rotation, translation, scaling, random horizontal
flipping, and contrast adjustment with a factor of 0.3. These tech-
niques have previously been used in similar studies to improve the
performance of deep learning models on image classification tasks
in order to address the problem of limited data and overfitting.

3 EXPERIMENTAL RESULTS
To evaluate the efficacy of the proposed approach, we conducted
five experiments, described in this section.

3.1 Datasets
In this study, we employed two widely used and publicly available
datasets:

MOST dataset: It contains 18,269 knee images that were seg-
mented in the same manner as in [16]. We divided this dataset into
three subsets, namely training, validation, and testing with a ratio
of 6:1:3. Table 1 provides a summary of the dataset’s partitioning.
We use this dataset to train and evaluate our model’s performance
on knee image classification.

OAI dataset: It consists of 8260 already prepared knee images
[5]. It is randomly divided into three subsets, namely training, val-
idation, and testing with a ratio of 7:1:2. Table 2 summarizes the
partitioning of the OAI dataset. We use this dataset to validate and
test our model’s performance.
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KL-G0 KL-G1 KL-G2 KL-G3 KL-G4 Total
Training 4380 1759 1827 1986 1008 10960
Validation 730 294 304 331 168 1827
Testing 2190 880 914 994 504 5482

Table 1: Label distribution of the MOST dataset

KL-G0 KL-G1 KL-G2 KL-G3 KL-G4 Total
Training 2286 1046 1516 757 173 5778
Validation 328 153 212 106 27 826
Testing 639 296 447 223 51 1656

Table 2: Label distribution of the OAI dataset

3.2 Experimental Protocol
During the development of our model, we tested multiple config-
urations and compared them. In the first experiment, we use a
single classifier to predict all grades simultaneously. In the second
experiment, we use the same settings but employed the Multi-
prediction head architecture, which involves breaking down the
multi-classification problem into sub-binary classifications. For ex-
periments three and four, we explored the data drift between two
datasets by training only one dataset per experiment. Finally, in the
fifth experiment, we tackled the issue of data drift by transferring
the knowledge from the trained classifier on the source dataset
(MOST) and solely training the feature extractor of our model on
the target dataset (OAI).

3.3 Quantitative Evaluation

Figure 3: Confusion matrices on the OAI test set of Experi-
ment 1 and 2.

Exp. MOST OAI
Acc (%) ↑ F1 ↑ Acc (%) ↑ F1 ↑

1 71.93 0.622 67.15 0.615
2 73.13 0.684 66.85 0.657
3 39.95 0.114 38.59 0.111
4 75.43 0.714 62.86 0.615
5 73.25 0.667 70.17 0.671

Table 3: Comparison of the five experiments in terms of
accuracy and F1 score on the OAI and MOST test sets.

The performances obtained for each considered configurations
are presented in Table 3. In the first two experiments, we observed
an improvement in the F1 score for our model when using the Multi-
prediction head architecture in the second experiment. Specifically,
the model yielded a 0.062 and 0.042 F1 score increase compared to

the first experiment in the MOST and OAI test sets, respectively.
We also notice an increase in accuracy on the MOST dataset.

Moreover, as seen by the confusion matrices in Figure 3, the
architecture proposed in experiment 2 was able to avoid the cat-
astrophic failure of detecting the KL-G1 observed in experiment
1. The grad KL-G1 is notoriously challenging to detect even for
trained doctors due to the high similarity with the KL-G0 and KL-
G2. In fact, the model correctly predicted 54 images in KL-G1 in
experiment 2, while 0 images were classified in experiment 1. These
results highlight the impact of dividing the multi-classification prob-
lem into sub-binary classification problems as described in sections
2.2. The substantial drop of performance in experiment 3 on both
datasets is mainly attributed to the lack of a sufficient quantity of
data. Transformer-based models are known to require a lot of data
for training [4]. This has led to the underfitting of our model as it
was not able to extract meaningful representations from this dataset.
On the other hand, we notice that the performance of the model on
the MOST dataset is quite similar, this is due to the richness of the
representations in this dataset. In experiment 4, the MOST dataset
contains more samples that cover a broader range of KOA severity
levels than the OAI dataset as shown in Table 1. Consequently,
MOST provides a more diverse and representative training set for
our model, leading to better performance in the MOST test set.
However, we still see a greater decrease in performance on the OAI
dataset compared to experiment 2 in terms of accuracy and F1 score.
Experiment 5 showed a considerable enhancement in performances
on the OAI dataset compared to all other experiments, achieving
a 70.17% accuracy and 0.671 F1-score, as shown in Table 3, while
maintaining a high accuracy on the MOST dataset. This particu-
larly highlights the significance and effectiveness of our method to
reduce the data drift and align the latent representations of both
datasets as described in section 3.4.

3.4 Latent Representation Ability
The reduction of the data drift is an important task for our model
as shown in the previous quantitative results. Figure 4 depicts the
distribution of latent features extracted for the samples of each
dataset across the models produced through our previous exper-
iments. We used the t-SNE algorithm [18] in order to reduce the
dimensionality of the features. The data drift in the representation
of the two datasets is clearly apparent for both experiments 1 and
2. Even though experiment 2 achieved better results, we still no-
ticed the high disparity of performance between datasets. Due to
the underfitting of the model in experiment 3, it was also unable
to address the data drift. In experiment 4 the model was trained
only on the MOST dataset. Because of the availability of data, we
noticed a better general alignment for data distribution between
datasets. But Figure 5 shows that the shift on the scale of individual
classes is still noticeable. In experiment 5, we noticed a very strong
alignment for both datasets on the general and class-specific levels
in Figures 4 and 5, respectively. Our approach successfully aligned
all the data points from both datasets, effectively mitigating the
data drift problem. As a result, the learned representations were
more relevant to the task, and the model’s performance improved
significantly.
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Figure 4: t-SNE visualizations of features learned by the model in each dataset.

Figure 5: t-SNE visualizations of features learned by the model in experiments 4 and 5 for each dataset.

Figure 6: t-SNE visualizations of grades separability in the OAI testset

Figure 6 illustrates the distribution of latent representations of
each class for each of our previous experiments on the OAI test-set.
It highlights the ability of the model to discriminate and separate
the different classes of KL-Grade. In experiment 3 where the un-
derfitting occurred, we can observe the inability of the model to
separate the distributions of the different classes. In experiments
1,2 and 4, the models were able to clearly separate the distributions
of KL-G3 and KL-G4. Separating the KL-G0, KL-G1, and KL-G2
grades was more challenging in the first experiment due to the
significant similarity between them and the use of a single MLP
classifier. Along with the ability to align the distributions of both
datasets, we noticed in Experiment 5 a better separability between

KL-G0, KL-G1, and KL-G2 which posed a challenge in other ex-
periments. We observed a clear ability to discriminate between
KL-G1 and KL-G2 especially, while KL-G0 and KL-G1 still pose
some challenges because they represent the none existence and the
very early stages of OA respectively.

Overall, these results demonstrate the effectiveness of ourmethod
in handling data drifts and enhancing the model’s ability to differ-
entiate between grades of KOA.

3.5 Qualitative Evaluation
We use GradCAM as a tool for interpretability purposes. By visual-
izing the last layer’s activations of the feature extractor, we chose a
sample from each grade, where the true labels of samples from (a)
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Figure 7: GradCAM of the corrected classified images.

Figure 8: GradCAM of the misclassifed images. (a) Predicted
KL-G1 (b) Predicted KL-G0 (c) Predicted KL-G1 (d) Predicted
KL-G2 (e) Predicted KL-G3.

to (e) are from KL-G0 to KL-G4, respectively, as shown in Figures 7
and 8.

In Figure 7, we observed that the model effectively identified
areas like osteophytes, joint space narrowing, and sclerosis, which
are essential factors for assessing the severity of KOA [8]. This
points out that our model bases its classifications on the right
regions of interest commonly used in clinical diagnosis and not on
non-relevant features.

Figure 8 represents misclassified samples. As can be observed,
the model still focuses on the relevant regions around the knee joint.
For instance, the model predicts sample (a) as KL-G1, even though
the true KL grade was zero. It focused on the area where a medial
joint space narrowing was present, which is a possible feature
of KL-G1. Similar misclassifications occurred for samples (b), (c),
and (d), where the model either overestimated or underestimated
the KL grade, indicating the challenge of distinguishing between
grades due to their high similarity and also the fact that the KL
grade suffers from subjectivity/ambiguity among experts [15]. In
sample (e), we encountered an image that contained an unusual
object (i.e. A screw) in the tibia, which could potentially distract the
model from the areas of the image that are crucial for grading KOA.
However, our model demonstrated robustness by still being able to
focus on the region of interest. Furthermore, our model classified
the image as a KL-G3 instead of KL-G4, which are close compared
to other KL-Grades. This result highlights the ability of our model
to prioritize task-specific important features in the image and not
be affected by irrelevant and noisy distractors.

3.6 State-of-the-art Comparison
Table 4 presents a comparison of the results obtained with state-of-
the-art methods. We note that the methods used in these studies
were trained differently. Specifically, some methods used the OAI
training set exclusively, others used the MOST training set exclu-
sively, and others used both bases. This diversity in learning can
have an impact on the overall performance, and should therefore
be carefully considered when interpreting the results.

Antony et al. [2] and [1] achieved accuracies of 53.40% and
63.60%, respectively, and F1-scores of 0.43 and 0.59, respectively.
Chen et al. [5] used ordinal loss with different deep learning ar-
chitectures and achieved accuracies of 69.60%, 66.20%, and 65.50%
with Vgg19, ResNet50, and ResNet101, respectively, but they did
not report F1-score. Tiulpin et al. [16] used a Siamese network
and reported an accuracy of 66.71%. Wang et al. [19] achieved an
accuracy of 69.18%.

Our proposed method, experiment 5, outperformed all other
methods with an accuracy of 70.17% and an F1-score of 0.67. These
results indicate the potential of our proposed method for improving
the accuracy and reliability of knee osteoarthritis diagnosis, which
could be valuable in clinical practice.

Method Acc (%) ↑ F1 ↑
Antony et al. 2016 [2] 53.40 0.43
Antony et al. 2017 [1] 63.60 0.59
Ordinal Loss (Vgg19) [5] 69.60 -
Ordinal Loss (ResNet50) [5] 66.20 -
Ordinal Loss (ResNet101) [5] 65.50 -
Siamese net [16] 66.71 -
Wang et al. [19] 69.18 -
Ours experiment 5 70.17 0.67

Table 4: Results for OAI dataset.

4 CONCLUSION
In this paper, we proposed a new method to predict the severity of
Knee OA from radiographic images using the Swin Transformer.
Our results showed that this method achieved state-of-the-art per-
formance on the OAI test set, significantly outperforming existing
methods. We show that the Swin Transformer network is effective
in extracting relevant knee OA information, which can be used to
detect most of the symptoms of the disease. In addition, handling
the data drift and using the multi-prediction head architecture sig-
nificantly improves the accuracy of the model and helps reduce the
similarity between features of nearby grades. Prospects for future
work may involve other imaging modalities such as MRI, while
exploring clinical and demographic data, to further improve the
prediction of KOA severity.
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