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ABSTRACT
Modern applications of instance search face many challenges. Real-
life applications are often complex, containing a large variety of
object classes. Furthermore, the same object can be subject to large
appearance variations due to viewpoint changes, partial occlusion,
and different geometric transformations. Much of the research up
to now has focused on narrow instance search applications for rigid
and near-planar objects with a small number of queries, such as
searching for landmarks or brand logos. In this paper, we adapt
YouTube-VIS, a large dataset for video instance segmentation, for
the instance search task. The dataset contains 8,430 unique queries
and 40 different object classes, where many objects inhibit view-
point variations and occlusion. We present a two-stage architecture
to account for the difference between the two tasks of instance
search and video instance segmentation. The first stage performs
instance segmentation to separate the instances from the back-
ground, while the second stage encodes the isolated instances using
a fine-tuned CLIP image encoder. Despite our relatively simple
architecture, we achieve promising results without performing any
post-processing steps such as query expansion or re-ranking.

CCS CONCEPTS
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1 INTRODUCTION
In recent years, significant efforts in the field of instance search
have been dedicated to investigating various methods of process-
ing convolutional neural network features for use as embeddings,
mainly focusing on landmark datasets [2, 5, 7, 15, 17–19]. However,
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instance search methods on landmark datasets may not gener-
alize well to other real-life applications. The landmarks in com-
monly used datasets for instance search are often large, rigid and
near-planar, while object instances in many real-life applications
can be small and inhibit different appearance variations. Most of
these benchmark datasets are also very small, the Oxford105k and
Paris106k datasets only containing 11 and 12 unique landmark in-
stances, respectively [10, 11], or 26 and 25 query groups for the
revisited versions of these datasets [13]. While there exists large-
scale datasets such as the Google Landmarks Dataset [21], the Met
dataset [24], Product1M [25], and Stanford Online Products [9],
these datasets mainly contain rigid objects that take up a large por-
tion of the images. However, constructing large-scale multi-class
datasets for instance search can be challenging, as one has to col-
lect several images of the same object from different angles and in
different contexts.

More success has been achieved at constructing large-scale
datasets in other tasks within computer vision, such as in video
object tracking (VOT) and video instance segmentation (VIS). In
the VIS task, the objective is to simultaneously detect, segment
and track object instances in videos [23]. Object tracking and in-
stance search can be viewed as similar problems, but with some
differences. Object tracking concerns itself with localizing an object
across frames within a narrow time period in one specific setting.
In contrast, instance search aims to localize an object within a col-
lection of frames, where the frames may belong to different settings
and be months apart. The background context of the frames can
differ greatly in instance search. There can therefore be generaliza-
tion problems to training and evaluating instance search models
on datasets for visual object tracking.

In the absence of large datasets for instance search, building
embeddings based on features from pixel-level segmentations can
aid in generalization for an instance search model that is trained
on object tracking datasets, given that the segmentation is suffi-
ciently accurate. As many objects in current benchmark datasets
for instance search are captured in fixed background contexts (i.e.
landmarks and artwork), applying only moderately accurate seg-
mentation can also serve as an improvement to current practices.
Furthermore, the appearance and viewpoint variations of instances
in object tracking datasets, as well as the different object classes (of
which many are non-rigid), provide challenges that are closer to
real-life applications.

In this paper, we aim to investigate the discriminability of em-
beddings based on segmentations for instance search. We adapt
YouTube-VIS [23], a large dataset for video instance segmentation,
for the instance search task. The dataset contains 8,430 unique
instances and 40 different object classes, where many objects in-
hibit viewpoint variations and occlusion. We present a two-stage
architecture to account for the difference between the two tasks of
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Figure 1: The proposed two-stage transformer architecture

instance search and video instance segmentation. The first stage
performs instance segmentation to separate the instances from the
background, while the second stage uses a CLIP image encoder
to generate embeddings from the isolated instances. We evaluate
our architecture on the YouTube-VIS and OVIS datasets, and add
distractors from the COCO dataset to assess the discriminability of
the embeddings for a large dataset. Despite our relatively simple
architecture, we achieve promising results without performing any
post-processing steps such as query expansion or re-ranking.

2 RELATEDWORK
2.1 Segmentation
To our knowledge, only one previous study has attempted to lever-
age segmentation masks for the instance search task. Zhan et al.
[26] extract object features from segmentations obtained by fully
convolutional instance-aware semantic segmentation. The authors
claim that their method ignores background context in the feature
extraction, thus providing aworkaround for using large object track-
ing datasets for evaluation. However, they extract features from the
deeper convolutional layers (e.g. conv3 and conv4 of ResNet-101),
where large regions of the image have been pooled together, in-
cluding background context. It is therefore unclear how well their
proposed method would perform on real-life instance search ap-
plications with objects in varying background contexts. Instead of
extracting the features directly from the network layers, we first
perform an element-wise multiplication between the original image
and the binary segmentation mask to remove background context.

2.2 CLIP
Although the zero-shot Contrastive Language-Image Pre-Training
(CLIP) model has achieved very good results on a variety of bench-
marks without task-specific training data, its ability to perform
fine-grained classification tasks, such as distinguishing between
different variations of aircraft or flower species, is limited [14].
CLIP-art [3] aims to address the challenge of fine-grained classifica-
tion and artwork retrieval by fine-tuning CLIP on the Met dataset,
which contains descriptive text for each artwork. In [1], the CLIP
text encoder is fine-tuned on a combination of image and text fea-
tures for conditioned fashion image retrieval. A combiner network
is then used to fuse the image and text features from CLIP. Due to

the lack of descriptive text labels for the instances, except for the
object categories which may be inadequate for the large intra-class
variations in our task, we choose to fine-tune only the CLIP image
encoder using a pair-wise multi-similarity loss.

3 METHODOLOGY
3.1 Two-stage Transformer Architecture
Figure 1 shows our two-stage transformer-based architecture for
instance search. In the first stage, we pass all reference video frames
through the instance segmentation model to obtain the binary
masks. We use EVA [4] for instance segmentation. Then, we obtain
the isolated instances by performing element-wise multiplications
between the original video frames and the corresponding binary
masks, and cropping the result. In the second stage, we pass the
isolated instances through an embedder consisting of a ViT-B/16
384x384 CLIPmodel [14], followed by a fully-connected layer which
outputs 64-dimensional embeddings. Finally, we compute k-nearest
neighbors (kNN) on the reference embeddings.

3.2 Dataset
3.2.1 YouTube-VIS. Our pipeline is trained and evaluated on the
2022 YouTube-VIS (YVIS) dataset, comprising 2,985 high-resolution
YouTube videos for training, 492 for validation, and 503 for testing.
There are 8,430 unique video instances, 241k manual annotations,
and 40 different object categories. As the YVIS validation and test
annotations are kept secret for the Video Object Segmentation
Challenge, we create our own train/validation/test split from the
YVIS training set. We randomly split the YVIS training set into
2,388 training videos, 298 validation videos, and 299 test videos.

Stage 1:The YVIS training set, with our own train/validation/test
split, is used for fine-tuning and evaluating the instance segmen-
tation model in Stage 1. The mask annotations and class labels
constitute the ground truth annotations.

Stage 2: We construct a separate dataset for fine-tuning and
evaluating the embedder in Stage 2. This dataset is obtained from
the YVIS training set by performing element-wise multiplications
between the video frames and corresponding binary mask annota-
tions, and cropping the result so that we end up with the isolated
instances only. The same train/validation/test split is used as in
Stage 1.
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Table 1: Instance search results on perfect and actual segmentation.We evaluate our approach on the YVIS dataset (first column);
YVIS with the OVIS training set as distractors (second column); YVIS with both the OVIS and COCO datasets as distractors
(third column); OVIS training set alone (fourth column); and on actual YVIS segmentations output from Stage 1 (fifth column).

Perfect segmentation Actual segmentation

YVIS YVIS+OVIS YVIS+OVIS+COCO OVIS YVIS
mAP 0.866 0.829 0.809 0.596 0.764
mAP@r 0.831 0.797 0.778 0.516 0.747

3.2.2 OVIS. The OVIS dataset [12] is a VIS dataset focused on
occlusion, consisting of 5,223 unique instances from 901 videos with
severe object occlusions. The 25 object categories in the dataset are
a subset of the YVIS categories. We use the OVIS training set as
distractors when performing instance search on the YVIS dataset.
To assess the accuracy of the YVIS-trained embedder on occluded
objects, we also calculate the instance search performance on the
OVIS training set.

3.2.3 COCO. We use the COCO training set [6], comprising over
800k instances, as additional distractors to further evaluate the
discriminability of the embeddings for a large dataset.

3.3 Implementation Details
3.3.1 Stage 1: We fine-tune all layers of EVA for 2 epochs using
the AdamW optimizer, a batch size of 1, and a learning rate of 2.5e-7
with 0.1 weight decay. The fine-tuned model achieves 0.725 box AP
and 0.646 mask AP on YVIS.

3.3.2 Stage 2: We use the ViT-B/16 384x384 CLIP implementation
from the PyTorch Image Models library [22], trained on LAION-2B
[16] and fine-tuned on ImageNet. We set the batch size to 32, and
the optimizer to Adam with a learning rate of 0.00001 and 0.0001 for
the backbone and fully-connected layer, respectively. The weight
decay is set to 0.0001.We construct batches by randomly sampling C
unique instances, and then randomly sampling M images belonging
to each of the C instances. We set C = 8, M = 4, and k in kNN to be
the maximum of the number of occurrences of each instance. We
train the embedder on the isolated instances of YVIS using a multi-
similarity loss and multi-similarity miner [20], until the validation
accuracy plateaus.

3.4 Evaluation
We use mean Average Precision (mAP) and mean Average Precision
at r (mAP@r) [8] as accuracy metrics. We evaluate two types of
embeddings: one is derived by using the ground truth masks as
inputs to Stage 2 (perfect segmentation), while the other is derived
by using masks generated by Stage 1 (actual segmentation). When
evaluating the whole pipeline using actual segmentations output
from Stage 1, we use an IoU threshold of 0.6 between a ground
truth bounding box in a frame and detected bounding box in the
same frame, and a confidence score threshold of 0.3.

4 RESULTS
4.1 Quantitative
Table 1 shows the instance search results on YVIS, YVIS with the
OVIS training set as distractors, YVIS with both the OVIS and
COCO datasets as distractors, and the OVIS training set alone.
Given perfect segmentation, we achieve good results on YVIS with
and without distractors added, despite our simple architecture. On
OVIS, we achieve a lower mAP and mAP@r of 0.596 and 0.516,
respectively, suggesting the need for more sophisticated techniques
to handle heavily occluded objects. Note that we do not perform
any fine-tuning on the OVIS dataset.

Using actual segmentations output from the instance segmenta-
tion model as the reference set, we achieve a mAP and mAP@r of
0.764 and 0.747, respectively. The lower instance search accuracy on
the actual segmentations can be attributed to some reference objects
not being detected in challenging frames, such as when objects are
significantly distorted or largely out of the frame. Inaccurate masks
may also cause confusion when the resulting shapes of the detected
reference objects differ from those of the query object. Some work
remains to fill the gap between the perfect and actual segmentation.
We expect that our proposed method will become more useful with
the advance of more accurate instance segmentation techniques.

4.2 Qualitative
Figure 2 shows some qualitative results of our instance search ap-
proach. These examples have been selected to showcase various
strengths and limitations of the embeddings. In the rows denoted
with an asterisk, we performed instance search on YVIS with OVIS
and COCO distractors, using the embeddings generated from per-
fect segmentation. For the remaining rows, we performed the search
on YVIS using embeddings generated from actual segmentations.
The leftmost image on each row depict the query. Given sufficiently
differentiable features, the embeddings are able to discriminate be-
tween very fine-grained categories, i.e. two different goldfish (a, b).
We also see that the embeddings work well for non-rigid objects
(c) and textured objects that are small (d), have moderate occlusion
(e), viewpoint variation (f), and partly out-of-frame queries that
are textured (g, h). Furthermore, similar instances in very different
positions are grouped together (i). These results suggest that the
embeddings are discriminative for small objects and moderately dif-
ficult appearance variations, given sufficiently differentiable texture
and shape.

Figure 3 shows some failure cases of our approach. We find that
the embeddings do not work as well for less textured queries that
are extremely small (a) or partly out of frame (b). In some cases
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Figure 2: 19 nearest neighbors, where the leftmost image on each row depict the query image. In the rows denoted with an
asterisk, we performed instance search on YVIS with OVIS and COCO distractors, using the embeddings generated from
perfect segmentation. For the remaining rows, we performed the search on YVIS using embeddings generated from actual
segmentations.

Figure 3: Failure cases of instance search on YVIS with OVIS and COCO distractors, all using the embeddings generated from
perfect segmentation. The model confuses a skateboard with airplanes (a); a shoe with various objects such as bird feathers and
basin (b); an owl with rabbits (c); and a horse with birds (d).

the embeddings cause confusion between different coarse-grained
categories (c, d).

5 CONCLUSION
In this paper, we adapt large VIS datasets for training and evaluating
instance search techniques. We propose a two-stage architecture
to account for the difference between the two tasks, comprised of
instance segmentation and a CLIP image encoder. Despite our rela-
tively simple architecture, we achieve promising results without
performing any post-processing steps such as query expansion or
re-ranking. Our results suggest that the embeddings are discrimi-
native for small and textured, non-rigid, partly out-of-frame and
moderately occluded objects. However, some work remains to fill
the gap between the perfect and actual segmentations, as well as
techniques to handle heavily occluded objects. Future work may
explore incorporating VOT and VIS techniques to better handle

frames where objects are highly distorted, and where large parts of
the objects are out of frame. We hope our work may inspire further
research into adapting large visual object tracking datasets for the
instance search task.
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