
AirIndex: Versatile Index Tuning Through Data and Storage
Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

{supawit2,wenjie3,yongjoo}@illinois.edu
CreateLab, University of Illinois at Urbana-Champaign

ABSTRACT

The end-to-end lookup latency of a hierarchical index—such as a
B-tree or a learned index—is determined by its structure such as the
number of layers, the kinds of branching functions appearing in
each layer, the amount of data we must fetch from layers, etc. Our
primary observation is that by optimizing those structural parame-
ters (or designs) specifically to a target system’s I/O characteristics
(e.g., latency, bandwidth), we can offer a faster lookup compared
to the ones that are not optimized. Can we develop a systematic
method for finding those optimal design parameters? Ideally, the
method must have the potential to generate almost any existing
index or a novel combination of them for the fastest possible lookup.

In this work, we present a new data-and-I/O-aware index builder
(called AirIndex) that can find high-speed hierarchical index de-
signs in a principled way. Specifically, AirIndex minimizes an
objective expressing the end-to-end latency in terms of various
designs—the number of layers, types of layers, and more—for given
data and a storage profile, using a graph-based optimization method
purpose-built to address the computational challenges rising from
the inter-dependencies among index layers and the exponentially
many candidate parameters in a large search space. Our evaluations
confirm that AirIndex can find optimal index designs, build them
within the times comparable to existing methods, and deliver up to
4.1× faster lookup than a lightweight B-tree library (LMDB), 3.3×–
46.3× faster than state-of-the-art learned indexes (RMI/CDFShop,
PGM-index, ALEX/APEX, PLEX), and 2.0× faster than Data Cal-
culator’s suggestion on various dataset and storage settings.
ACM Reference Format:

Supawit Chockchowwat, Wenjie Liu, Yongjoo Park. 2024. AirIndex: Versa-
tile Index Tuning Through Data and Storage. In Proceedings of ACM SIG-

MOD/PODS International Conference on Management of Data (SIGMOD ’24).

ACM, New York, NY, USA, 18 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Hierarchical indexes (e.g., binary search tree, B-tree) allow us to
quickly locate a relevant item by fetching (only) a small fraction of
data inside each index layer. The B-tree [17, 19, 25, 72] has been a
conventional choice for many data systems such as PostgreSQL [56],
MySQL [8], ZLog [7], BTRFS [58], etc. More recently, it has been
shown that by using learned models (i.e., regression functions of-
fering approximate pointers) in place of the (exact) child pointers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Fast Slow

Small

Large

Tall &

Narrow

Shallow

& Wide

Local SSD

Cloud Storage

Latency (RTT)

B
a
n
d
w
i
d
t
h

Figure 1: Expected optimal structures by I/O characteristics.

AirIndex finds the optimal structure in a large design space.

inside a B-tree’s internal nodes, we can reduce the amount of data
we need to fetch for each layer, lowering the overall lookup la-
tency [31, 33, 41, 43, 50]. In general, the amount of data indicated
by those exact/approximate branching pointers—along with the
number of layers—determine the overall lookup latency of an index.

Despite their effectiveness, (most) existing indexes have a com-
mon limitation, making them often suboptimal for novel system
environments with different I/O characteristics. That is, due to their
nearly fixed index structures (e.g., the number of layers, the types of

layers), existing indexes cannot deliver as fast performance as the ones

specifically designed in consideration of the data access cost of a target

system environment. For instance, in Figure 1, if an index is main-
tained directly on remote storage with relatively high I/O latency
(e.g., in cloud systems like Amazon Aurora [67] and Delos [16]),
we might be able to achieve faster lookup speeds by creating a
wider/shallower index (e.g., larger fanout in B-trees, more accu-
rate models in learned indexes), mitigating the impact of high I/O
latency with fewer data fetches required for index traversal. In con-
trast, if an index is maintained on a local SSD (e.g., SQLite [63]) with
fast I/O latency (or relatively smaller bandwidth), we can create
a narrower/taller index (e.g., smaller fanout in B-trees, less accu-
rate models in learned indexes) for faster lookup. In other words,
depending on a different system environment, an optimal index
structure may vary, causing significant performance gaps between
fixed index structures and the ones adapting to target environments
(§2). This observation closely resembles the one made by Gray and
Graefe [36] for determining an optimal B-tree page size in relation
to page access cost. However, its utility-based approach is specific to
conventional indexes with exact child pointers, meaning it cannot
be generalized to a wider class of indexes with learned models.

In this work, we tackle this limitation with AirIndex, a general

index-building framework that can efficiently find an (optimal) low-

latency index structure in consideration of profiled I/O characteristics

as well as data distribution. The core difference of AirIndex is that
it can balance the properties of all the layers simultaneously (in-
cluding their total count) to optimize the expected (cache-aware)
end-to-end latency by solving amathematical optimization problem.
During the optimization, AirIndex considers many different de-
sign choices (e.g., the number of layers, fanout, model types, model

ar
X

iv
:2

30
6.

14
39

5v
3

 [
cs

.D
B

]
 1

 S
ep

 2
02

3

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

Table 1: Summary of existing work. ▲/✗ indicates limited/no support.

Method Approx. Pointer? I/O Aware? Novelty Weakness/Difference

B-trees [17, 25] ✗ ✗ First B-tree proposal No search for optimal fanout
RMI [45] ✔ ✗ First approximate branching No hyperparameter tuning, fixed two-layer structure
ALEX/APEX [30] ✔ ✗ Updatable with learned models No optimization for end-to-end latency
5minRules [36] ✗ ✔ Heuristic for B-tree page size Restricted tuning, fixed branching across layers
CDFShop [53] ✔ ✗ Searches Pareto efficient RMIs Inconclusive tuning, not optimize for latency
Data Calculator [38] ▲ ✔ Evaluates end-to-end performance Inefficient tuning, restricted branching functions
Ours (AirIndex) ✔ ✔ I/O-aware exact/approx. layers Optimization focuses on lookup than updates

size/accuracy), often producing a heterogeneous index consisting
of different types of layers: an index may have a B-tree-like design
for one layer and a model-based design for another layer. While
the primary contribution of AirIndex is demonstrating significant
improvements in lookup speeds enabled by its principled search
technique, its approach can easily integrate with existing orthogo-
nal work (e.g., ALEX [31]) to allow insert/delete without complete
reconstruction. To our knowledge, no previous work has formally

studied an efficient search technique for optimizing the entire index

structure in consideration of I/O performance and has evaluated its

practical performance benefits with comprehensive experiments.

Challenge. The core challenge in finding an optimal index struc-
ture is the lack of an efficient mechanism that can compare the
quality of exponentially many candidate structures. For example,
we need to consider indexes with different heights (i.e., 1, 2, . . .); for
an index of height 𝐿, there are 𝐿 layers to build; and for each layer,
we need to compare various branching functions (e.g., B-tree-like
child pointers, regression-based learned models). Moreover, the
design decision we make for layers are dependent on one another;
that is, if we alter the design of a layer, it affects the other compo-
nents that depend on this layer (i.e., all the other layers on top of it)
due to the inherent nature of hierarchical indexes, complicating the
search process. Finally, we must be able to evaluate the goodness of
each index for (arbitrary) target storage media.

Our Approach. AirIndex can be understood as a search pro-
cess (AirTune) inside a high-dimensional design space consist-
ing of exponentially many feasible candidate structures. Each

(entire) candidate structure is a model: We mathematically rep-
resent each candidate structure using a unified index model (called
AirIndex-Model), a high-level abstraction that expresses diverse
hierarchical indexes parametrically L(𝚯), where 𝚯 = (Θ1, . . . ,Θ𝐿)
are layer-specific design parameters (such as fanout, model accu-
racy/size), and L(𝚯) is the (cache-aware) end-to-end lookup la-
tency (i.e., cumulative time for traversing the index). That is, given
a parameter set 𝚯, there exists an associated physical index; and
the index takes L(𝚯) time for finding a relevant item via traver-
sal (thus, the lower the better). Search: Our key contribution
is an efficient search algorithm for finding an optimal design 𝚯

∗

at which L(𝚯) has the smallest value. Since the design includes
both numeric and categorical values, gradient-descent-like opti-
mization algorithms are inapplicable. We devise a novel algorithm
by translating our problem into a graph traversal; that is, each de-
sign represents a vertex (or state) in the search space and an edge is
drawn from 𝚯𝐴 to 𝚯𝐵 if 𝚯𝐵 is immediately reachable from 𝚯𝐴 by

stacking another layer on top. While our algorithm involves actual
index construction—because for some types of layers, their quality
depends on data distribution requiring actual construction—our
algorithm can quickly find𝚯∗ with bounded time by avoiding visits
to the (low-quality) states unlikely to reach an optimal one.
Orthogonal Work. Database research has a long history in index
design such as (1) leveraging the properties of emerging hardware,
(2) employing machine learning for compact layers, and (3) target-
ting for different data layouts. We summarize more closely related
work in Table 1 while providing comprehensive discussions in §8.
Our work is largely orthogonal to those existing work because we
do not propose a new type of index per se; instead, we study how
to combine existing techniques under a unified framework to build
an index specifically tuned for target I/O characteristics.
Contribution. In this work, we make the following contributions:
(1) We illustrate the significance of optimizing indexes with both

data and storage (§2).
(2) We formulate the index optimization as a search for the optimal

design parameters of a unified index model (§4).
(3) We design an efficient graph-based search method (§5).
(4) We empirically study AirIndex with various datasets and stor-

age and show that AirIndex can offer up to 2.0×–46.3× faster
lookup speed compared to state-of-the-art methods (§7).

Finally, §8 discusses related work, and §9 concludes this work.

2 MOTIVATION

We present why we need a new index builder that considers the
end-to-end lookup latency (§§ 2.1 to 2.3).

2.1 Need for I/O-Aware Optimization

In this section, we motivate the need for environment-specific index
optimization with concrete examples showing there is no single
dominant index structure (e.g., B-trees with fixed fanout) that can
offer superior performance for all system environments.
Example. We have two candidate B-tree structures: B200 and
B5000 (Note: special cases of AirIndex-Model). B200 consists of 4
KB nodes, each with 200 fanout. B5000 consists of 100 KB nodes,
each node with 5,000 fanout. Both B200 and B5000 index the same
dataset with one million distinct keys, stored in 4 KB pages.

To index the dataset, B200 needs three layers (because the third
layer can hold up to 2003 = 8𝑀 pointers). Likewise, B5000 needs
two layers (because the second layer can hold up to 50002 = 25𝑀
pointers). Note that while B5000 is shallower than B200, fetching

AirIndex: Versatile Index Tuning Through Data and Storage SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

· · ·
· · · · · ·

Data Layer (1M records)

(a) B200: B-tree with 200 child pointers

· · ·

Data Layer (1M records)

(b) B5000: B-tree with 5,000 child pointers

SSD CloudStorage

0.5

1

1.5

2

Re
la
tiv

e
La
te
nc
y

B200 B5000

(c) Lookup Speed Comparison

Figure 2: Need for I/O-aware Optimization. Depending on system environments (SSD and CloudStorage), employing different

B-tree designs (B200 and B5000) achieve higher expected performance in end-to-end lookup latency.

Step

Step

Data

16KB

16KB

16KB

(a) Tuned B-tree

PWL

PWL

Data

8KB

10KB

96B

(b) Tuned PWL Index

Step

PWL

Data

4KB

2KB

3KB

(c) AirIndex

(a) (b) (c)
0

500

1,000

1,500

La
te
nc
y
(𝜇
s)

Data Layer 1 Root

(d) Lookup Speed Comparison

Figure 3: Indexes built for gmm dataset stored on SSD (250𝜇s latency, 175MB/s bandwidth) and their estimated latency. Bold

numbers show the average read sizes of components in a query: root layer, partial first index layer, and partial data layer.

each node of B5000 takes longer because its page size is 25× larger.
Figures 2a and 2b depict these structures.

Interestingly, neither of these two indexes (i.e., B200 and B5000)
is superior to the other, if we compare their lookup latencies based
on a widely used formula: (data transfer time) = (latency) + (data
size) / (bandwidth); that is, (1) B200 offers higher performance than
B5000 if we store data on SSD having 100 𝜇s latency and 1 GB/s
bandwidth, and that (2) B5000 offers higher performance than B200

if we store data on CloudStorage having 100 ms latency and 100
MB/s bandwidth. Specifically, in SSD, B5000 is 21% slower than
B200 because B200 needs to retrieve 3 nodes and 1 data page, taking
416 𝜇s (= 3 × (100𝜇s + 4KB / (1GB/s)) + (100𝜇s + 4KB / (1GB/s)))
while B5000 needs to retrieve 2 nodes and 1 data page, taking 504
𝜇s (= 2 × (100𝜇s + 100KB / (1GB/s)) + (100𝜇s + 4KB / (1GB/s))). In
contrast, inCloudStorage, B200 is 32% slower than B5000withB200
taking 400.16 ms and B5000 taking 302.04 ms. Figure 2c summarizes
this relative performance strength. For each environment, the figure
reports the relative difference in end-to-end lookup time. This shows
that different index structures offer higher lookup performance,
depending on the storage device.

2.2 Need for Layer-Wise Optimization

In this section, we explain why we need to consider different types
of branching functions for different layers. That is, a homogeneous
index—consisting of the same type of layers—may offer poorer
performance even with careful tuning in comparison to a tuned
heterogeneous index—consisting of different types of layers.

General Lookup Process. In general, we can consider a lookup
process with a hierarchical index as a series of data fetch operations
that proceed as follows: the root (or the 𝑖-th) layer is fetched, based
on which we determine what data we need to fetch in the next
(or the (𝑖 − 1)-th) layer. This iteration repeats until we reach the
data layer. This means that in each layer, we can use any type of
monotonically increasing function (with respect to search keys)

that can tell us what data we need to fetch in the subsequent layer.
For example, a B-tree layer has a property such that for all the keys
between two adjacent separators, we get the same child pointer (or
the same range of data we need to fetch), which can be expressed
as a step function that jumps at separators. This gives rise to our
unified index model, AirIndex-Model, allowing different types of
branching functions in different layers (§4).

Formally, we express such a design space with Θ𝑙 for 𝑙-th layer,
and 𝚯 = (Θ1, . . . ,Θ𝐿) describes an entire index design. The follow-
ing examples demonstrate that by allowing Θ𝑖 ≠ Θ𝑗 for 𝑖 ≠ 𝑗 , we
can construct an index with lower end-to-end latency.

Concrete Example. Suppose two types of branching functions—
step functions (Step) appearing in B-trees and piece-wise linear
functions (PWL) employed in RMI [45]. Formally, a step function
is a 𝑝-piece constant function that 𝑦step (𝑥) = [𝑏𝑖 , 𝑏𝑖+1), while a
PWL is a 𝑝-piece band function (widen linear functions) 𝑦PWL (𝑥) =
[𝑚𝑖𝑥+𝑐𝑖−𝛿𝑖 ,𝑚𝑖𝑥+𝑐𝑖+𝛿𝑖) for 𝑥 ∈ [𝑎𝑖 , 𝑎𝑖+1). We present a case where
by combining Step and PWL, we can build a higher-performing
index than the ones solely comprising Step or PWL, respectively.

First, we construct an optimal B-tree index (Figure 3a) by com-
paring the latencies of multiple B-trees with different node sizes
(100 bytes–10 MB): for the dataset we use, 16KB nodes offer the
fastest lookup. In Figure 3d, we show the costs of index traversal
to fetch each layer from the root to the data layer to find the rele-
vant key-value; For the tuned B-tree, the end-to-end latency takes
slightly longer than 1,000𝜇s. Likewise, we construct an optimal
index solely consisting of PWL layers (Figure 3b). The dataset we
consider has its keys distributed favorably for PWL; thus, we need
smaller layers than the optimal B-tree, needing to fetch 96B for the
root, 8KB for Layer 1, and 10KB for the data layer. Accordingly, the
overall latency shown in Figure 3d is also lower than the B-tree.

In contrast, by combing Step and PWL, we can discover an in-
dex (denoted by AirIndex) with significantly more compact layers

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

Lookup (§4.2)

Storage

Layer

Interface

AirTune (§5)

Storage

Layer

(e.g., SSD,

NFS)
A
i
r
I
n
d
e
x

client

Figure 4: AirIndex Architecture. AirIndexmanages indexes

on Storage Layer (e.g., SSD, NFS, cloud storage APIs) via its

Storage Layer Interface that abstracts read/write operations.

overall (Figure 3c). Specifically, while AirIndex’s root layer is big-
ger in size compared to the tuned PWL index, it allows fetching
significantly smaller amounts of data for the other layers (i.e., Layer
1 and the data layer), lowering the end-to-end latency. In theory, an
optimal index with heterogeneous layers is guaranteed to deliver
performance not worse than the optimal index with homogeneous
layers. Nevertheless, the amount of improvement we can offer with
layer-wise optimization well compensates for the increase in search
effort, as we demonstrate with more empirical results in §7.

2.3 Need for Novel Index Tuning

New Search Space. Because of the new connection between ma-
chine learning and indexing [45], the search space has grown ex-
ponentially, including models types (e.g., linear models to neural
networks) as well as their parameters (e.g., regression coefficients,
weights), hyperparameters (e.g., fitting methods, regularization
weights), and error correction algorithm (i.e., last mile search). The
search space expands exponentially as each index sub-structure,
like layer or node, can choose its model design individually.
Lack of Predictability. Unlike traditional indexes, learned indexes
have an unpredictable performance before fitting them to the data,
which consequently increases tuning costs.While we can rigorously
analyze some traditional indexes like B-trees [17, 25] and skip-
lists [57] to predict their worst-case or average-case performance
given a set of hyperparameters (e.g., fanout, level fraction, key prefix
size), analyzing learned indexes and learned models is much more
challenging because: (1) learning performance depends on non-
trivial statistics of dataset, in which the dependency may not yet
be explainable, (2) learned models often comprise of many learning
components whose existing theories may not combine together,
and (3) learning may unreliably produce poorly fitted models due
to randomization or numerical instability. As a result, learned index
tuning needs to pay the price to fit models or restrict the search
space to a limited set of well-understood learned models.
Existing Tuning’s Limitations. Existing tuning methods are ei-
ther restricted, inconclusive, or inefficient. Traditional tuners like
[36] only apply to restricted sets of indexes prior to learned in-
dexes, missing opportunities to fit better to data patterns and so
save lookup latency. On the other hand, many existing learned
index tuners inconclusively recommend many index designs, for
example, CDFShop [53] finds many Pareto efficient RMIs while
PGM-index [33] and PLEX [64] reduce their parameters into fewer
hyperparameter(s), delegating selection or hyperparameter tuning
to their users. Lastly, naïve methods such as brute-force search,
grid search, or binary search incur large overheads due to excessive
fitting or multiple sequential passes on the full dataset. Later, our

Table 2: Notations and their meaning.

Input to AirIndex

𝑥 Key
𝑦 = [𝑦−, 𝑦+) Position (range) on storage
𝐷 Key-position dataset
𝑇 (Δ) Storage profile, time to read Δ bytes from storage

Design Parameters (§4)

𝐿 Number of index layers
𝚯 Parameters across all index layers
Θ𝑙 Parameters describing the 𝑙-th index layer
𝑠 (Θ𝑙) Size of the 𝑙-th index layer
Δ(𝑥 ;Θ𝑙) Read size of 𝑥 predicted by 𝑙-th index layer
Δ(𝐷 ;Θ𝑙) Average read size over keys in dataset 𝐷
𝑦̂ = [𝑦̂−, 𝑦̂+) A predicted position on storage
L𝑆𝑀 Index lookup cost from storage model

Search Process (§5)

𝐹 ∈ F Node builder mapping a 𝐷 into a Θ
𝑘 Number of top candidates to branch out
1 + 𝜖 exponential base for granularity exponentiation
𝜆𝑙𝑜𝑤 , 𝜆ℎ𝑖𝑔ℎ Bounds for granularity exponentiation
𝜏 (𝐷) Index complexity, the ideal index lookup cost
𝜏 (𝐷) Step index complexity, an upper bound to 𝜏 (𝐷)

experiments (§7.5) verify that these existing methods find subopti-
mal indexes and incur large tuning overheads. Therefore, a novel
index tuning is needed to identify the optimal learned index from a
much larger search space by efficiently balancing learning costs.

3 SYSTEM OVERVIEW

We describe AirIndex’s core components (§3.1) and a storage pro-
file representing I/O performance (§3.2).

3.1 Architecture

AirIndex is an index library for sorted key-value data stored on
a Storage Layer (e.g., SSD, NFS). AirIndex can work with various
storage devices by extending its storage interface. AirIndex stores
indexes together with the data on Storage Layer while part of them
may be cached. Internally, AirIndex consists of three components—
Lookup, Builder, and Storage Layer Interface—as depicted in Fig-
ure 4. First, Storage Layer Interface provides the consistent ab-
straction over different storage interfaces/devices (e.g., virtual file
systems (VFS), over SSD or object storage, cloud storage services)
such as creating files and reading/writing serialized objects. Based
on this consistent interface, we can profile the time needed to read
Δ bytes (§3.2). Second, Lookup provides a querying interface. Given
a key, the module traverses an index as it fetches necessary data
(e.g., ranges within index layers) if not cached, caches the fetched
data if space is available (§4), and makes inferences on what data it
needs to fetch next (§4.2), until it finds the value associated with
the key (or if finds there are no such keys indexed). Finally, Builder
finds optimal index designs and builds/stores actual indexes on
storage (§§ 5.1 to 5.3). How Builder finds high-quality index designs
efficiently is the key contribution of this work.

3.2 Storage Model

AirIndex relies on storage performance profile 𝑇 (Δ), which rep-
resents the time taken for the storage layer to read consecutive

AirIndex: Versatile Index Tuning Through Data and Storage SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

... ...

... ...

Δ(𝑥 ;Θ𝑙)

𝑠 (Θ𝑙)
𝐿-th Layer

Data (0th Layer)

1st Layer

2nd Layer
...

D
er
iv
e Lookup

Figure 5: A hierarchical index of 𝐿 layers. The 𝑙-th layer looks

up the data in the (𝑙 − 1)-th layer. The close-up diagram lay-

outs key-value pairs (ellipses) stored in pages. It shows layer’s

size 𝑠 (Θ𝑙) and precision Δ(𝑥 ;Θ𝑙) of a key whose node on 𝑙-th

layer and relevant key-value on (𝑙 − 1)-th are colored.

data of size Δ bytes. Considering that the read time T is proba-
bilistic (e.g., due to variability, system loads, access paths, address
alignment, lower-level optimizations), AirIndex is interested in
the conditional expectation 𝑇 (Δ) = E[T |Δ]. For example, 𝑇 (Δ)
can be an affine function 𝑇aff (Δ) = ℓ + Δ/𝐵 with latency ℓ and
bandwidth 𝐵. If the latency and bandwidth uniformly varies in
[ℓ0, ℓ1] and [𝐵0, 𝐵1], after calculating the expectation, the storage
profile becomes 𝑇aff-uniform (Δ) = ℓ1+ℓ0

2 + Δ(ln𝐵1−ln𝐵0)
𝐵1−𝐵0

. While we
implement the affine storage model 𝑇aff (Δ) parameterized by ℓ and
𝐵, our optimization works with any monotonically increasing𝑇 (Δ).

Currently, we consider a deterministic and time-independent
𝑇 (Δ), summarizing over other variables that are unnecessary for
index tuning. Future directions can extend 𝑇 (Δ) from a determin-
istic function to a distribution conditioned on the read size Δ to
incorporate the randomness. Such storage models would enrich
AirIndex to tune on more complex goals such as fastest tail latency
(e.g., lowest p99) or highest reliability (e.g., lowest latency variance).

3.3 Points of Applications

AirIndex applies to any index building in a system life cycle when
lookup operations from storage need to be performant. AirIndex
primarily aims for two types of applications. (1) Immutable indexes’
bulk loading: AirIndex naturally builds high-speed indexes that do
not change; nonetheless, the application can still support changing
data with existing techniques such as gapped arrays and LSM-tree
compaction. (2) Updatable indexes’ initial design and maintenance:
users can utilize AirIndex to build the initial index structure, then
follow any updatable index protocol compatible with the structure.
After the index has mutated significantly, users can re-build the
index using AirIndex as a part of vacuum processes.

AirIndex incurs computation overhead but is designed to mini-
mize its real-time overhead. Although not required, a system with
high parallelism is preferable. Alternatively, users can trade off
tuning accuracy for an overhead reduction through configurations.

4 AIRINDEX-MODEL: UNIFIED INDEX MODEL

In this section, we mathematically model hierarchical indexes by
representing them with design parameters 𝚯, which are also used
to express their lookup latencies. These mathematical models are
the foundations of our optimization process described in §5.

Figure 6: Two node types with key-position examples. Left:

5-piece step. Right: band with points and width.

4.1 Hierarchical Indexes

A hierarchical index is a data structure that maintains data locations
in a layered internal structure, consisting of explicit 𝐿 index layers—
𝐼1, 𝐼2, . . . 𝐼𝐿 . Here, 𝐼𝐿 refers to the root and 𝐼1 refers to the bottom-
most one, next to the data layer denoted 𝐼0. A data system can
query a hierarchical index for the location of a desired item, then
retrieve the item from the location. Accordingly, a high-quality
index must quickly find the location in a database, namely, key-
position collection 𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1, where 𝑥𝑖 is the 𝑖-th key with
data on a position 𝑦𝑖 = 𝑦 (𝑥𝑖) = [𝑦− (𝑥𝑖), 𝑦+ (𝑥𝑖)) (i.e. range of data).

Index Layer. Given a key, an index layer points to a range of data
(in the next layer) that contains the information associated with
the key. The system then can read the range of data from the next
layer, and continues the index traversal until it reaches the data
layer. To support partial reads, an index layer consists of one or
more nodes; for a specific key, there is only one node associated
with it. Conceptually, a node is a function from a key to its position
(as defined shortly), and an index layer is a piecewise function
comprising its node functions. This composite structure enables
partial data reads and lower data access costs.

Node. A node is the smallest data structure that maps a key to its
position in the next layer. Given a key 𝑥 , a node predicts a position
𝑦 : X → Y in range that encompasses the actual position 𝑦 (𝑥).

Node 𝑦 : 𝑦 (𝑥) = [𝑦− (𝑥), 𝑦+ (𝑥)) ⊇ [𝑦− (𝑥), 𝑦+ (𝑥)) = 𝑦 (𝑥) (1)
While our optimization framework can support any such func-

tion 𝑦 that satisfies Eq (1), AirIndex currently implements two
types of nodes sketched in Figure 6. First, a step node (step) is a
step function, or a 𝑝-piece constant function parameterized by par-
tition keys a = (𝑎1, . . . , 𝑎𝑝) and partition positions b = (𝑏1, . . . , 𝑏𝑝).
In other words, 𝑦step (𝑥 ; a, b) = [𝑏𝑖 , 𝑏𝑖+1) for 𝑥 ∈ [𝑎𝑖 , 𝑎𝑖+1). Sec-
ond, a linear band node (band) is a thick linear function travel-
ing through two key-position points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) with
a width 𝛿 : 𝑦band (𝑥 ;𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝛿) = [𝑚𝑥 + 𝑐 − 𝛿,𝑚𝑥 + 𝑐 + 𝛿)
where 𝑚 = (𝑦2 − 𝑦1)/(𝑥2 − 𝑥1) and 𝑐 = 𝑦1 −𝑚𝑥1. A step node
is 16𝑝 bytes in size while a linear band node is 40 bytes. For exam-
ple, consider a dataset with 4 key-position pairs: 𝐷 = {(𝑥,𝑦)} =
{(1, [0, 10)), (4, [10, 20)), (5, [20, 25)), (7, [25, 35))} as in Figure 6. A
step node can represent this key-position collection with 𝑝 = 5,
a = (1, 4, 5, 7,∞), and b = (0, 10, 20, 25, 35), guaranteeing the exact
prediction 𝑦step (𝑥 ; a, b) = 𝑦 for all (𝑥,𝑦) ∈ 𝐷 . Note that a step
node having fewer pieces can be valid but would have a higher er-
ror. Alternatively, a band node can approximately represent 𝐷 with
(𝑥1, 𝑦1) = (1, 0), (𝑥2, 𝑦2) = (4, 10), 𝛿 = 15. We encourage readers to
verify that 𝑦band (𝑥 ; 4, 0, 7, 25, 35) ⊇ 𝑦 for all (𝑥,𝑦) ∈ 𝐷 .

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

Algorithm 1: AirIndex Query Process, Lookup(𝑥 ; 𝑦̂𝐿, 𝐿)
Input: Query key 𝑥 , root position 𝑦̂𝐿 , number of layers 𝐿
Output: Relevant key-value (𝑥, 𝑣)

1 for 𝑙 from 𝐿 to 0 do
2 { (𝑥 [𝑖], 𝑣 [𝑖]) }𝑖 ← Read(𝑦̂𝑙 (𝑥)) // Storage access

3 𝑣𝑙 ← Search(𝑥, { (𝑥 [𝑖], 𝑣 [𝑖]) }𝑖)
4 if In index layer, 𝑙 ≥ 1 then
5 𝑦̂𝑙−1 ← ReconstructNode(𝑣𝑙)

6 return (𝑥, 𝑣) = (𝑥, 𝑣0)

Currently, these two node types are sufficient. Together, they fit
sorted key-position collections accurately. step adapts to discon-
tinuities while band regresses well with regularly sized key-value
pairs [32]. They also possess many efficient fitting methods that
pass over the entire key-position collection only once. Further-
more, with these types, AirIndex-Model can already incorporate
many existing learned indexes such as PGM-Index [33], ALEX [31],
RadixSpline [43], SIndex [69], XModel [70].
Parameters (to be tuned). The collection of all parameters 𝚯 is a
nested tuple of parameters that is sufficient to represent a hierarchi-
cal index instance. In particular, 𝚯 specifies the number of layers 𝐿
followed by 𝐿 layer-wise parameters Θ𝑖 which in turn specifies the
node type, number of nodes 𝑛𝑙 , and all node parameters.

𝚯 = (𝐿, (Θ1, . . . ,Θ𝐿)), Θ𝑙 = (NodeType, 𝑛𝑙 , (𝜃1, . . . , 𝜃𝑛𝑙)) (2)
Node-specific parameters (𝜃1, . . . , 𝜃𝑛𝑙) for 𝑛𝑙 nodes depend on

the corresponding NodeType. For example, if NodeType = step(𝑝),
𝜃𝑖 = (a𝑖 , b𝑖) where |a𝑖 | = |b𝑖 | = 𝑝 . If NodeType = band, 𝜃𝑖 =

(𝑥 (𝑖)1 , 𝑦
(𝑖)
1 , 𝑥

(𝑖)
2 , 𝑦

(𝑖)
2 , 𝛿𝑖). We choose to specify a single node type

per layer over multiple node types per layer because (1) it reduces
the serialization overhead per node which reduces read volume and
so overall lookup latency, and (2) it simplifies our tuning (§5.2).
Examples. As a general class of indexes, hierarchical index exam-
ples include traditional indexes like B-tree and learned indexes like
RMI, PGM-index, balanced ALEX/APEX, and PLEX. For example,
2-layer balanced B-tree with fanout 3 is a hierarchical index as in
Eq (3) where 𝜃𝑖, 𝑗 and 𝜃𝑘 are appropriate step function parameters
to encode keys and pointers in the leaf and root nodes respectively.

𝚯B-Tree = (2, (Θ1,Θ2)),
Θ2 = (step, 3, (𝜃1, 𝜃2, 𝜃3)),

Θ1 = (step, 32, (𝜃𝑖, 𝑗)𝑖, 𝑗∈{1,2,3})
(3)

RMI with a cubic root node 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 and 8 linear
intermediate nodes (𝛼𝑖𝑥 +𝛽𝑖) ±𝜀𝑖 is a hierarchical index as in Eq (4).
PGM-index, balanced ALEX/APEX, and PLEX can be similarly
instantiated as hierarchical indexes by extending the node types.

𝚯RMI = (2, (Θ1,Θ2)),
Θ2 = (cubic, 1, ((𝑎, 𝑏, 𝑐, 𝑑))),

Θ1 = (linear, 8, ((𝛼𝑖 , 𝛽𝑖 , 𝜀𝑖))𝑖∈{1,...,8})
(4)

4.2 Query Process

Functionally, a query process takes in a search key 𝑥 and outputs its
relevant key-value (𝑥, 𝑣). It internally consults index layers inside
a hierarchical index, starting from its root layer 𝐿, traversing down

Table 3: Optimization summary

Design variables 𝚯:
𝐿 Number of layers
NodeType𝑙 Node type in layer 𝑙 ∈ {1, . . . , 𝐿}
𝑛𝑙 Number of nodes in layer 𝑙 ∈ {1, . . . , 𝐿}
𝜃𝑙,𝑖 Parameters of the 𝑖-th node in layer 𝑙 , 𝑖 ∈ {1, . . . , 𝑛𝑙 }

Fixed variables:
𝑇 Storage profile
X Query key distribution
𝐷 Key-position collection 𝐷 = { (𝑥𝑖 , 𝑦𝑖) }𝑛𝑖=1
Constraints Valid index 𝑦̂ (𝑥) ⊇ 𝑦 for all (𝑥, 𝑦) ∈ 𝐷

Objective Minimize expected latency L𝑆𝑀 (X;𝚯,𝑇) , Eq (7)

Algorithm AirTune (§5)

one index layer at a time to look up the relevant position of the
query key, and finally retrieving the target value.

Alg. 1 formalizes AirIndex’s overall query process, traversing
through the index hierarchy of relevant node(s) 𝑦𝐿, . . . , 𝑦0 to re-
trieve the relevant key-value (𝑥, 𝑣). There are mainly three steps in
each iteration in an index layer: (1) AirIndex reads potentially rel-
evant raw bytes {(𝑥 [𝑖], 𝑣 [𝑖])}𝑖 , (2) it then searches for the relevant
raw bytes 𝑣𝑙 based on the tagged key {𝑥 [𝑖]}𝑖 , and (3) AirIndex de-
serializes 𝑣𝑙 to reconstruct the next relevant node 𝑦𝑙−1 and predicts
the next position 𝑦𝑙−1 (𝑥). At the end when 𝑙 = 0, AirIndex returns
the value with the query key (𝑥, 𝑣0) = (𝑥, 𝑣).

Such a clearly defined query process allows us to estimate a hier-
archical index performance for tuning. Given appropriate statistics
on the hierarchical index and a storage model, we can translate
Alg. 1 into the latency formula incorporating different lookup costs.

4.3 Latency Under Storage Model

For index traversals, the dominant costs are storage accesses (Alg. 1,
line 2), compared to other internal computations including rele-
vant value searching, data deserialization, and node prediction.
Following the iterations in Alg. 1, there are exactly 𝐿 + 1 sequential
storage accesses corresponding to reading 𝐿 index layers and the
data layer. Specifically, AirIndex first reads the entire root layer
of size 𝑠 (Θ𝐿) bytes, then partially reads Δ(𝑥 ;Θ𝑙+1) = |𝑦𝑙 (𝑥) | bytes
from the next index layer, and so on until it reaches the data layer
to read Δ(𝑥 ;Θ1) = |𝑦0 (𝑥) | bytes. Using a storage profile 𝑇 (§3.2),
we express L𝑆𝑀 (𝑥 ;𝚯,𝑇), the query latency to find a value for a
key 𝑥 under the storage model, as follows:

L𝑆𝑀 (𝑥 ;𝚯,𝑇) = 𝑇 (𝑠 (Θ𝐿)) +
𝐿∑︁
𝑙=1

𝑇 (Δ(𝑥 ;Θ𝑙)) (5)

To obtain expected latency over multiple keys, we aggregate
query latencies, each specific to key 𝑥 , over a query key distribution
X. In this work, we set X to be a uniform distribution over existing
keys in the key-position collection 𝐷 .

L𝑆𝑀 (X;𝚯,𝑇) = E
𝑥∼X

[
𝑇 (𝑠 (Θ𝐿)) +

𝐿∑︁
𝑙=1

𝑇 (Δ(𝑥 ;Θ𝑙))
]

(6)

Given a key-position collection 𝐷 , a storage profile 𝑇 , and a
query key distribution X, our objective (Eq (7)) is to minimize this
expected query latency where 𝚯 represents a hierarchical index

AirIndex: Versatile Index Tuning Through Data and Storage SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

0-th Layer (Data)

La
ye
rb

ui
ld
er

𝐹
1

La
ye
rb

ui
ld
er

𝐹
2

La
ye
rb

ui
ld
er

𝐹
3

La
ye
rb

ui
ld
er

𝐹
4

La
ye
rb

ui
ld
er

𝐹
5

La
ye
rb

ui
ld
er

𝐹
6

La
ye
rb

ui
ld
er

𝐹
7

rootroot

Best structure Top-𝑘 Candidates Candidate

root root root root

root
1st Layer

2nd Layer

Recursion
order

Figure 7: An instance of AirTune execution, starting from

the bottom (data layer) to the top. The label “root” indicates

that the candidate should be the root layer with no further

index layer. In this illustration, the algorithm has 7 layer

builders and selects 𝑘 = 3 top candidates to branch out.

valid over 𝐷 . Table 3 summarizes this optimization problem.

𝚯
∗ = argmin

𝚯

E
𝑥∼X

[
𝑇 (𝑠 (Θ𝐿)) +

𝐿∑︁
𝑙=1

𝑇 (Δ(𝑥 ;Θ𝑙))
]

(7)

5 AIRTUNE: SEARCH WITH BOUNDED VISITS

This section describes AirIndex’s optimization algorithm, Air-
Tune, which solves the optimzation defined earlier (Table 3). We
first describe the overall process (§5.1). Then we explain important
components in detail: index layer builders (§5.2), pruning technique
for computational efficiency (§5.3), and parallelization techniques
(§5.4). Finally, we analyze its time complexity (§5.5).

5.1 Guided Graph Search

AirTune is a guided graph search; it starts from an origin vertex,
walks over edges to different vertices, and stops when a stopping
criterion is satisfied. Each vertex represents a layer in a hierarchical
index. As the special case, the origin vertex𝑢0 represents the dataset
being indexed. Each edge from a vertex 𝑢 to another vertex 𝑢′

represents a layer builder building an index layer 𝑢′ based on 𝑢.
A path from the origin represents a particular hierarchical index
design. For example, a path (𝑢0, 𝑢1, 𝑢2) is roughly equivalent to data
and index layers (𝐼0, 𝐼1, 𝐼2) where the index layers have parameters
𝚯 = (2, (Θ1,Θ2)). Two paths with common vertices represent two
hierarchical index designs that share lower layers; thus, AirTune
can reuse layer-building results in those common lower layers.

On a vertex, AirTune first explores all outgoing edges, i.e. pos-
sible candidate index layers from all available layer builders (§5.2,
Alg. 2, lines 3–6). Layer builder explorations are the most expensive
step, but they are independent of one another and embarrassingly
parallelizable. AirTune leverages this observation to reduce the
tuning time overhead (§5.4). Upon receiving all candidates, it con-
sults heuristic guidance to select only the top-𝑘 candidates (§5.3,
Alg. 2 line 7) to continue the search recursively (Alg. 2 lines 8–12).
Selecting a few promising candidates is an important mechanism
to limit the branching factor, avoiding exponential time complexity
(see analysis in §5.5). At the end of a recursive search, AirTune

Algorithm 2: AirIndex Index Tuning, AirTune (𝐷 ;𝑇, F)
Input: Key-position collection 𝐷 = { (𝑥𝑖 , 𝑦𝑖) }𝑛𝑖=1, storage profile𝑇 ,

layer builders F
Output: Index structure 𝚯∗

// Check stopping criterion

1 if L𝑆𝑀 (𝐷 ; (),𝑇) < IdealLatencyWithIndex(𝑇) then
2 return () // Cannot improve with additional layer

// Build multiple next layer candidates

3 for 𝐹 in F do

4 Θnext ← 𝐹 (𝐷) // Build next layer (§5.2)

5 𝐷next ← Outline(Θnext) // Turn into key-positions

6 C ← C ⊕ { (Θnext, 𝐷next) } // Append candidate

// Select top-𝑘 candidates (§5.3)

7 C ← Select(C, 𝑘)
// Build indexes on top-𝑘 candidates

8 for (Θnext, 𝐷next) in C do

9 𝚯
∗
next ← AirTune (𝐷next;𝑇, F) // Call recursively

10 𝚯new ← (Θnext) ⊕ 𝚯
∗
next // Prepend layer

11 if L𝑆𝑀 (𝐷 ;𝚯new ,𝑇) < L𝑆𝑀 (𝐷 ;𝚯∗,𝑇) then
12 𝚯

∗ ← 𝚯new // Select the better structure

13 return 𝚯
∗

compares all the options using the latency formula under a storage
model (Eq (6)) and returns the best hierarchical index design.

To decide when to stop searching, AirTune determines whether
an additional index layer will be beneficial. That is, if the ideal index
layer–the best (possibly impossible) layer we can build on top–does
not reduce the query latency, AirTune stops further exploration
and declare the current vertex as the root index layer (Alg. 2, lines
1–2). Specifically, an ideal index has the minimal size of 𝑠 (Θ) = 1
byte and the finest precision Δ(𝑥 ;Θ) = 1 byte.
Example. If we have 7 layer builders and set 𝑘 = 3, an execution
of AirTune could look like Figure 7. That is, AirTune starts from
the origin data-layer vertex (the long rectangle at the bottom) and
explores all 7 layer builders, resulting in 7 vertices (rectangles of
varying sizes in the middle). The guidance then tells AirTune to
search deeper into 𝑘 = 3 candidates of them (red and blue high-
lighted rectangles). AirTune stops at one of the candidates because
it is too small to gain any benefit from an ideal index layer. For
the rest, AirTune continues exploring, selecting top-3 candidates,
and finally stops at 2nd layer candidates. After comparing all op-
tions, AirTune reports the best path (all red highlighted rectangles),
representing the fastest hierarchical index design.

5.2 Layer Builders

A layer builder is a method to produce a valid index layer on top of
existing index layer(s). In other words, it is a mapping 𝐹 (𝐷) = Θ
such that Θ satisfies a valid index layer 𝑦 (𝑥) ⊇ 𝑦 for all (𝑥,𝑦) ∈ 𝐷 .

In theory, there is a large number of ways of building index
layers. For example, a method 𝐴1 can find the smallest collection
of band that covers 𝐷 with error at most 𝜆 bytes using 𝑂 (𝑛2) for
𝑛 key-position pairs. In 𝑂 (𝑛), another method 𝐴2 could quickly
and mindlessly connect every other𝑚 key-position points into a
collection of band. To avoid exploring every possible method, we

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

4 8 16 32 64

1B 1MB 1TB 1EB

20
40
60
80
100

Collection Size 𝑠𝐷

𝜏
(𝐷

;𝑇
)(
m
s)

(a) Varying 𝐵 (MB/s), ℓ = 16ms

1B 1MB 1TB 1EB

100

200

300

Collection Size 𝑠𝐷
𝜏
(𝐷

;𝑇
)(
m
s)

(b) Varying ℓ (ms), 𝐵 = 16MB/s

Figure 8: Index complexity 𝜏 (𝐷 ;𝑇) as function of data size 𝑠𝐷
and affine storage profile 𝑇 (parameterized by latency ℓ , and

bandwidth 𝐵). Different line represent different variations

in bandwidth (left) and latency (right).

choose a set of good layer builders that (1) run quickly (say, time
complexity 𝑂 (𝑛)), (2) build small and accurate index layers, and (3)
synergetically cover different data patterns together. In the earlier
examples, method 𝐴1 builds the optimal band index layer but is
too slow, while method 𝐴2 is fast but builds a suboptimal band
index layer. In addition, {𝐴1, 𝐴2} is also not a good set of methods,
because they only cover the band node type.

To cover the two types of nodes (step and band) on different data
patterns, AirIndex currently deploys three types of layer builders,
each generating many layer builders by varying hyperparameters.
(1) Greedy Step (GStep(𝑝, 𝜆𝐺𝑆)) builds 𝑝-piece step nodes with
precision at most 𝜆𝐺𝑆 bytes by greedily packing key-position pairs.
(2) Greedy Band (GBand(𝜆𝐺𝐵)) builds band nodes by greedily fit-
ting as many key-position pairs as possible using the monotone
chain convex hull [10]. (3) Equal Band (EBand(𝜆𝐸𝐵)) builds band
nodes by grouping key-position pairs in equal-size position ranges.
Please see our extended script [66] for further details.

AirIndex generates the set of candidate layer builders F by
sampling the granularity exponentially: 𝜆𝑙𝑜𝑤 , 𝜆𝑙𝑜𝑤 (1 + 𝜖), 𝜆𝑙𝑜𝑤 (1 +
𝜖)2, . . . 𝜆ℎ𝑖𝑔ℎ where (𝜆𝑙𝑜𝑤 , 𝜆ℎ𝑖𝑔ℎ) are the bounds and 𝜖 > 0 controls
the exponentiation base. For example, if 𝜆𝑙𝑜𝑤 = 28, 𝜆ℎ𝑖𝑔ℎ = 220, and
1 + 𝜖 = 2 with 𝑝 = 16, then F contains 39 builders in total:

F ={GStep(16, 28), GStep(16, 29), . . . , GStep(16, 220)}
∪ {GBand(28), GBand(29), . . . , GBand(220)}
∪ {EBand(28), EBand(29), . . . , EBand(220)}

(8)

5.3 Top-k Candidates by Index Complexity

Before branching out, AirTune selects only top-𝑘 candidates with
the highest potential to be in the optimal design. For each candi-
date (Θ𝑖 , 𝐷𝑖), AirTune evaluates its quality as a summation of a
“remaining work” heuristic function 𝜏 (𝐷 ;𝑇) and its layer-specific
lookup latency. Then, it selects top-𝑘 candidates with 𝑘 lowest
estimated costs (argmin𝑘 denotes top-𝑘 arguments of the minima).

{(Θ𝑖 , 𝐷𝑖)}𝑘𝑖=1 = argmin
(Θ𝑖 ,𝐷𝑖) ∈C

𝑘 𝜏 (𝐷𝑖) + E
𝑥∼X
[𝑇 (Δ(𝑥 ;Θ𝑖))] (9)

Choice of Heuristic Function. Ideally, if there exists an oracle
that reveals the optimal search latency, we could simply select
the best candidate and avoid branching out entirely. This optimal
search latency of dataset 𝐷 under storage profile 𝑇 is called index

complexity 𝜏 (𝐷 ;𝑇). Unfortunately, 𝜏 (𝐷 ;𝑇) is unknown for a large
class of indexes supported by AirIndex.

Instead, AirTune estimates candidates’ quality using an upper
bound to the index complexity: step index complexity 𝜏 (𝐷 ;𝑇) ≥
𝜏 (𝐷 ;𝑇). 𝜏 (𝐷 ;𝑇) is the optimal search latency considering only
step index layers (i.e. B-tree layers). Since the quality of step-
based layers can be analytically computed, we obtain an efficient
algorithm that depends only on the collection size 𝑠𝐷 and storage
profile 𝑇 . Figure 8 shows the general shape of 𝜏 (𝐷 ;𝑇) solved with
the algorithm. Please see our extended report [66] for more details.

5.4 Parallel Tuning

AirIndex is highly parallelizable from three sources of parallelisms
as described below, ordered from finest to coarsest layers. It is
worth noting that, with a proper branching (Theorem 5.1), the
node-building step is the primary target for parallelization.
From Data Partitioning. AirIndex partitions the key-position
collections, uses a layer builder to build sub-range candidates, and
merges them into a candidate. This is possible because AirIndex’s
existing layer builders generate a piecewise function that can be
merged together across different key ranges. By default, AirIndex
breaks a key-position collection into partitions, each containing 1
million key-position pairs. Thus, AirIndex can scale with growing
data sizes by increasing the level of parallelisms accordingly.
From Across Layer Builders. Although Alg. 2 calls layer builders
in loops, the invocations are independent of one another. AirIndex
conveniently turns the for-loop into a parallel mapping to produce
(Θnext, 𝐷next) and collecting into the candidate set C. With more
parallelisms, AirIndex can then scale along with the diversity of
layer builders to capture wider key-position patterns.
From Branching. AirIndex can recursively call Alg. 2 in parallel
and select the best index structure with the minimum storage model
cost. This source of parallelism allows AirIndex to explore more
candidate branches and especially higher structures when favored
by the storage profile (e.g., low bandwidth and low latency).

5.5 Analysis

Branching recursive optimization requires a balancing between
the branching factor and depth. If AirTune branches out to too
many candidates relative to the index depth, it would become un-
controllably slow. On the other extreme, it could miss the optimal
candidate branch. We first analyze the tuning time complexity with
respect to a choice of hyperparameter. Then, we attempt to provide
an approximation factor of the automatic tuning.

Theorem 5.1. Time complexity: Let there be 𝑛 key-position pairs,

𝐿 layers to be explored at most according to the storage profile 𝑇 , and

|F | layer builders. If AirTune selects at most 𝑘 ≤ 𝐿+1√𝑛 candidates

then the time complexity is at most 𝑂 ((𝐿 + 1) |F |𝑛).

Proof. Suppose the data 𝐷 consist of 𝑛 key-position pairs with
total data size 𝑠𝐷 . Let 𝐿 be the maximum number of layers expected
to be explored, which has the upper bound 𝐿max ≥ 𝐿: the number
of layers chosen by the step index complexity.

Because our layer builders all process a𝑂 (𝑛) key-position collec-
tion in 𝑂 (𝑛) time, the time to build all |F | candidates is 𝑂 (|F |𝑛).

AirIndex: Versatile Index Tuning Through Data and Storage SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

Next, considering the worst case compression ratio𝑂 (𝑛
1

𝐿+1) and the
number of branches 𝑘 , we expect𝑂 (𝑛

𝐿
𝐿+1) key-position pairs and so

the time complexity in the next layer is 𝑂 (|F |𝑘𝑛
𝐿

𝐿+1). The branch-
ing and compression of key-position pairs continue until the root
layer. In summary, the total time complexity in 𝐿-layer branching
recursion is as followed whose last step is the closed-form formula
to the geometric series.

𝑂

(
|F |

𝐿∑︁
𝑙=0

𝑘𝑙𝑛
𝐿+1−𝑙
𝐿+1

)
= 𝑂

(
|F |𝑛 1 − 𝑘

𝐿+1/𝑛
1 − 𝑘/𝑛

1
𝐿+1

)
(10)

Under 𝑘𝐿+1/𝑛 ≤ 1 (i.e. 𝑘 ≤ 𝐿+1√𝑛), this reduces to𝑂 (|F |(𝐿+1)𝑛)
when 𝑛 →∞. □

5.6 Other Implementation Details

We implement AirIndex in Rust [1]. Like many data systems, it
has two explicit levels in its memory hierarchy: the underlying
storage and its internal read-through cache. AirIndex interacts
with storage through an abstract interface, in which concrete im-
plementations serve partial range reads at their best effort. Cur-
rently, AirIndex’s internal zero-copy read-through cache employs
a first-in-first-out (FIFO) eviction policy due to its admission sim-
plicity. Apart from customized node type format, AirIndex serial-
izes the metadata together with root layer as a byte array in the
Postcard [55] format via Serde [60].

6 EXTENSIONS

Supporting Updates. Although AirIndex does not optimize for
write workloads, it can tune and build an index that supports write
operations. For example, we can augment the data layer into a
gapped array, allowing insertion into gaps and deletion without
changing index layers. When gaps are filled or expected to be
filled, we can enlarge data layer’s gaps and build a new index with
AirIndex. AirIndex can also serves as the initial bulk loading of an
updatable index (e.g. ALEX/APEX). However, the updatable index
may evolve suboptimally. To reduce the frequency of structural
index updates, we can enlarge the position granularity from bytes
to pages, or we can buffer writes similarly to LSM-trees [26, 54].

Cache-aware Optimization. AirIndex can find an optimal cache-
aware index design by additionally considering the distribution of
cache hit 𝐶𝑙 and the cost of cache access Lcache. This modification
then only affects the index complexity 𝜏 and candidate selection
in AirTune. While this work does not include explicit results for
cache-aware optimization, Figure 10 indicates that the indexes built
with cache-pessimistic optimization already offer high performance
than other existing methods across a wide range of cache warmness.

Pre-SearchAssessment. Upon significant data orworkload change,
we can first assess the potential performance gain through the step
index complexity (§5.3). Based on the assessment, users can better
decide whether to tune the index. Step index complexity is a loose
upper bound of the gain, however. Future works combining more
accurate index complexity, what-if index design techniques, and
data/workload trackers would help avoid unnecessary search costs
for marginal performance gain.

7 EXPERIMENT

We empirically study AirIndex to demonstrate its faster search
(§7.2), benefits of automatic index designs (§7.3), adaptability under
wide ranges of I/O profile (§7.4), and quick build time (§7.5).

7.1 Setup

The experiment locates on two physical components: compute and
storage. The former hosts benchmark scripts to execute queries
against systems and measure their performance. These scripts to-
gether with required binaries are stored on local storage (i.e. Azure
OS Disk). Meanwhile, the latter stores both datasets and indexes.
Our benchmark consists of 40 runs in each setting: the 𝑖-th prepares
the environment (e.g., clear cache1), loads/executes the 𝑖-th list of
one million query keys sequentially, and measures the elapsed time.
We summarise those runtimes with average and standard deviation.

System Environment. We use Azure cloud platform [12], specif-
ically D8s_v3 (8 vCPUs, 32 GiB RAM) with Ubuntu 20.04. The
VM connects to two types of storage. (1) NFS: Azure network file
system [15] hosted on Azure Blob Storage [13] (StorageV2, stan-
dard performance, zone-redundant storage, hot access tier). (2) SSD:
Azure Premium SSD [14] with P20 performance tier (256 GiB, 2300
IOPS, 150 MBps, read/write host caching). 3) HDD: Azure Stan-
dard HDD [14] (1024 GiB, 500 IOPS, 60 MBps, no host caching). All
resources are allocated within the same East US region.

Baselines. We compare AirIndex to a traditional database index,
learned indexes, and our manual configuration counterpart. Al-
though many of them are in-memory indexes, we integrate them
onto external storages whose implementations are in their respec-
tive forks [2–6]. We manually tune each of the baselines through
microbenchmarks. (1) LMDB: LMDB [48] is a B-tree database that
accesses its data on storage through mmap. (2)RMI: RMI [41, 53] is a
top-down learned index with a compact two-layer structure where
the top one contains only one perfectly accurate node partitioning
key space to the bottom nodes. We utilize CDFShop [53] to recom-
mend function types and select the most accurate RMI across all
datasets. (3) PGM-index: PGM-index [33] is a learned index with
bounded precision across all layers. PGM-index partitions the key-
position collection to build the next bottom-most layer towards the
top. (4) ALEX/APEX: ALEX/APEX [31] is an updatable learned in-
dex built top-down like RMI but further arrange key-value pairs in
its layout (notably, “gapped array” to buffer structural changes). (5)
PLEX: PLEX [64] is a learned index with compact Hist-Tree (CHT)
layered on top of RadixSpline [43] (RS). Although PLEX optimizes
most parameters, its user need to specify the maximum prediction
error 𝜖 . We select 𝜖 = 2048 based on a benchmark on a setting
(Figure 12d). (6) Data Calculator: Data Calculator [38, 39]
is a data layout design engine that calculates the performance of a
data structure. We follow its auto-completion and build its recom-
mended data layout within AirIndex’s framework. (7) B-tree: A
B-tree-like structure implemented using AirIndex (4KB pages and
255 fanout), which serves as the most controlled baseline.

1For both NFS and SSD, we execute sysctl vm.drop_caches=3 on a VM, clearing
Linux-related caches such as page cache, entries, and inodes. For NFS, we also unmount
and re-mount the Azure Blob Storage NFS to reload its client.

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

; ; ; ; ; ; ; ; LMDB RMI/CDFShop PGM-index ALEX/APEX PLEX Data Calculator B-tree AirIndex

books fb osm wiki gmm
0

100

200

300
589ms 833ms

La
te
nc
y
(m

s)

(a) NFS

books fb osm wiki gmm
0

5

10

15
21ms 20ms 48ms 188ms

La
te
nc
y
(m

s)

(b) SSD

books fb osm wiki gmm
0
30
60
90
120

130ms 145ms 332ms 471ms

La
te
nc
y
(m

s)

(c) HDD

Figure 9: Average first-query latency comparison on NFS, SSD, and HDD storages across different datasets. In each storage and

dataset setting, the bars represent the average latencies over random keys. LMDB, RMI, PGM-index, ALEX/APEX, PLEX, Data

Calculator, B-tree, and AirIndex, from left to right. The shorter a bar, the faster the corresponding method serves queries.

; ; ; ; ; ; ; ; LMDB RMI/CDFShop PGM-index ALEX/APEX PLEX Data Calculator B-tree AirIndex

1 103 106
10−1
100
101
102
103

Number of Queries

La
te
nc
y
(m

s/
op

)

(a) NFS, books

1 103 106
10−1
100
101
102
103

Number of Queries

La
te
nc
y
(m

s/
op

)

(b) NFS, osm

1 103 106
10−2
10−1
100
101
102

Number of Queries
La
te
nc
y
(m

s/
op

)
(c) SSD, books

1 103 106
10−2
10−1
100
101
102

Number of Queries

La
te
nc
y
(m

s/
op

)

(d) SSD, osm

Figure 10: Average latency curves on NFS and SSD with the books and osm datasets. A combination of a line color and a marker

style represents eachmethod: LMDB, RMI, PGM-index, ALEX/APEX, PLEX, Data Calculator, B-tree, AirIndex, respectively.

Note the logarithm scales on both axes. Latency curves to the bottom-left corner represent faster methods.

Datasets. First, we use the SOSD benchmark [42, 52], including
books (800M), fb (200M), osm (800M), and wiki (200M). Each of
these contains 200-800 million 64-bit integer keys stored consec-
utively in an array. Given a query integer key, the task is to find
its offset position in the array. Equivalently, it asks the systems for
the rank of the query integer. As an unusual dataset, wiki contains
many duplicated keys in which the task is to find the smallest offset
of the key. Second, for more diverse data patterns, we also use a
synthetic dataset, gmm, generated from a Gaussian mixture model
(GMM) of 100 normal distribution clusters over 800 million keys.

7.2 Faster End-to-end Lookup Speed

We study cold-state and warm-state latencies separately. Cold-state
latency is useful for understanding the performance under short-
lived executions (e.g., serverless, ad-hoc workloads) and very large
data (e.g., many tables, large indexes). Afterward, we study warm-
state latency curves over different warmnesses. §7.4 later discusses
index structures discovered by AirIndex.

Cold-state Latency. AirIndex is consistently one of the fastest
methods at searching the first query, across datasets and storage
(Figure 9). Compared to LMDB (B-tree), AirIndex is 2.4×–2.7×
faster on NFS and 2.6×–4.1× faster on HDD. AirIndex is on par
with LMDB on SSD. Similarly, AirIndex is 2.0×–2.4× faster than
B-tree on NFS but performs equally well on SSD on HDD. This
difference across storages suggests that LMDB and B-tree struc-
tures are tuned to disk-scale storage profiles like SSD’s, so they
underperform on storage on a different scale like NFS.

Compared to learned index baselines, AirIndex is reliably faster
without unexpectedly long latency arising from tuning difficul-
ties. While RMI performs reasonably well, it has two limitations.

First, its fixed two-layer structure makes it rigid to the underlying
storage. Second, because RMI’s top-down building assigns a dispro-
portionate amount of data to intermediate nodes, the second-layer
precision varies substantially. This later effect is more pronounced
in gmm. Overall, AirIndex delivers lower latencies more reliably
than RMI, being 1.2×–2.6× faster on NFS, 1.0×–2.2× faster on SSD,
and 1.4×–5.9× faster on HDD. PGM-index suffers on books, fb,
and osm, but is competitive on wiki and gmm. Upon closer inspec-
tion, PGM-index fits poorly with the former three, creating larger
indexes than those in the latter two. AirIndex is on par with PGM-
index on wiki and gmm, but outperforms on other datasets with
3.0×–7.2×, 5.8×–11.7×, and 9.0×–15.6× speedup on NFS, SSD, and
HDD respectively. Similarly, AirIndex is faster than ALEX/APEX
in all settings except in gmm SSD, with 1.7×–10.1×, 1.3×–46.3×, and
3.0×–22.2× speedup on NFS, SSD, and HDD. ALEX/APEX performs
poorly in osm because its root node holds 2M child pointers with
more than 15MB of data. Lastly, AirIndex is faster than PLEX
on NFS and HDD with 1.5×–2.2×, and 1.7×–3.3× speedup. Both
methods perform equally well on SSD: AirIndex is 1.7× faster
at searching osm, but 1.4× slower at gmm. Upon closer inspection,
PLEX’s compact histogram tree fit osm poorly (762KB in size) but
fit gmm exceptionally better (0.6KB in size).

Compared to Data Calculator, AirIndex searches in a richer
set of indexes and so it is consistently faster: 1.4×–2.0×, 1.2×–1.5×,
and 1.0×–1.4× speedup on NFS, SSD, and HDD. On the bright
side, Data Calculator generally has a faster lookup than B-tree
because of its storage-aware tuning and B-tree’s fixed structure.

Warm-state LatencyCurve. Aswe continue querying (and caching
more), the queries become progressively faster shown as per-query
latency curves in Figure 10. Here, a point (𝑥,𝑦) in the latency curve

AirIndex: Versatile Index Tuning Through Data and Storage SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

1 2 3 4 5
0

100
200

Tuned

Number of Layers 𝐿

La
te
nc
y
(m

s)

(a) Varying 𝐿 on NFS

28 210 212 214 216 216.3 218 220
0

100
200

Tuned

Granularity 𝜆

La
te
nc
y
(m

s)

(b) Varying 𝜆 on NFS

1 2 3 4 5
0
2
4
6

Tuned

Number of Layers 𝐿

La
te
nc
y
(m

s)

(c) Varying 𝐿 on SSD

28 210 211.6 212 214 216 218 220
0
2
4
6

Tuned

Granularity 𝜆

La
te
nc
y
(m

s)

(d) Varying 𝜆 on SSD

Figure 11: Comparison of average first-query latencies between AirIndex-tuned designs (in red) and manual alternatives across

NFS and SSD (fb dataset) varying numbers of layers 𝐿 and granularities 𝜆. The error bars display standard deviations.

AirIndex
0

100
200
300
400

La
te
nc
y
(m

s)

(a) AirIndex

1KiB 2KiB 4KiB 8KiB 16KiB 32KiB
0

100
200
300
400

La
te
nc
y
(m

s)

(b) LMDB, varying page size

1 2 3 4 5 6 7 8 9 10
0

100
200
300
400

La
te
nc
y
(m

s)

(c) RMI/CDFShop, varying configurations

28 29 210 211 212 213 214 215
0

100
200
300
400

La
te
nc
y
(m

s)

(d) PLEX, varying 𝜀

Figure 12: Comparison of average first-query latencies on the books dataset in NFS between AirIndex-tuned design (left) and

other methods with varying knobs. RMI’s settings are recommended by CDFShop with the least accurate (fewer models) on the

left and the most accurate (more models) on the right. The error bars display standard deviations of the latency.

implies that a system completes 𝑥 queries in 𝑥 × 𝑦 seconds. The
differences in accelerations across methods can be explained by
their index structures. In hierarchical indexes, shorter and narrower
indexes accelerate more aggressively than taller and wider indexes
because fewer (random) queries are needed to touch all nodes in
a narrower index layer. For example, in osm dataset, ALEX/APEX
accelerates faster than LMDB because of its shorter index with a
one-node root as opposed to a full B-tree. Even though AirIndex
optimizes for cold-state latency, the tuned structure is still faster for
warm-state latency, ranging from 100 to 100K queries. Such a range
of warmness is useful for a large collection of datasets, short-lived
search sessions, or limited memory environments.

7.3 Layer-wise Optimization Helps

Speedup over Hierarchical Indexes. To empirically verify that
AirIndex tunes accurately and finds a fast index, we compare
AirIndex’s tuned index designs against manually configured ones
in terms of their first-query latencies. Figure 11 presents the com-
parison on numbers of layers 𝐿 and granularity hyperparameter 𝜆
across the two storage within the same dataset fb. In all settings
and variable dimensions, AirIndex consistently finds the fastest
index designs. Inspecting the trends, we observe that 𝜆 forgivingly
admits a larger optimal region, even in the logarithmic scale, than
the number of layers 𝐿. This allows AirIndex to select a coarse
granularity exponentiation base 1+𝜀 without risking suboptimality.

We have also experimented with other dimensions such as the
granularity exponentiation base 1+ 𝜀 and the set of node estimators
to discover any trade-off. Lower bases 1 + 𝜀 result in faster indexes
but with only insignificant gain for a higher cost in a longer tuning
time. Awider set of node estimators and types provides some fitness
advantages. The impact is clear when the data pattern is exclusive
to a node type, for example, band nodes fit perfectly on a uniformly
random key set (uden64 from [42]) while step nodes do not.

Speedup over Well-tuned Baselines. AirIndex is faster than all
baseline configurations, and so is faster than optimal baselines. Fig-
ure 12 varies all permissible page sizes of LMDB, all 10 RMI settings
recommended by its optimizer, and 8 chosen 𝜀 in PLEX to cover the
optimal valley. We observe that AirIndex is 2.7×, 1.5×, and 1.7×
faster that the optimal LMDB, RMI, and PLEX, respectively. Our sim-
ilar experiment with B-tree by varying 𝜆 granularity shows 1.3×
speed up. These gaps from optimal baselines suggest the benefit to
consider a larger class of indexes (i.e. AirIndex-Model).

7.4 Adaptive to I/O Performance

On Testing Storages. Indeed, AirIndex discovers different optimal
index structures for the NFS and SSD/HDD storages in previous
experiments. NFS indexes have 𝐿 = 1 index layer with only band
node types, while SSD/HDD indexes have 𝐿 = 2 layers with a mix
of band-band, band-step, and step-band node types. The sizes of
root layers 𝑠 (Θ𝐿) and precisions Δ range from 36KB to 328KB in
NFS and 864B to 16KB in SSD/HDD, depending on dataset size and
complexity. Among 5 datasets, osm is the most challenging one,
reflecting the same observation from [52]. Please see our extended
manuscript [66] for specific index structures.

On Latency-Bandwidth Spectrum. If we have a storage with
latency ℓ and bandwidth 𝐵, what would the fastest index look like?
We answer this question as a whole, on a wide spectrum of latency
ℓ ∈ [1𝜇s, 1000s] and bandwidth 𝐵 ∈ [1KB/s, 1TB/s]. Figure 13
shows AirIndex adapting its index to the diverse range of storage
profiles. Higher bandwidth or latency promotes shallower indexes
with coarser precision (larger total read volume). In the extreme,
AirIndex proposes no index at all, i.e. fetching the entire data layer
to search locally. On the other hand, lower bandwidth or latency
promotes taller indexes with finer precision. Although this trend is
similar to a well-known tuning rule of thumb for B-tree, AirIndex
offers a more complete tuning on a much larger class of indexes,
for any data pattern, and storage profile.

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

1𝜇s 1ms 1s 1000s
Latency

1KB/s

1MB/s

1GB/s

1TB/s

Ba
nd

w
id
th

Number of Layers

0

2

4

6

8

(a) Number of layers

1𝜇s 1ms 1s 1000s
Latency

1KB/s

1MB/s

1GB/s

1TB/s

Ba
nd

w
id
th

Total Read Volume

2KiB

32KiB

1MiB

32MiB

1GiB

(b) Total Read volume

1𝜇s 1ms 1s 1000s
Latency

1KB/s

1MB/s

1GB/s

1TB/s

Ba
nd

w
id
th

Optimal Lookup Latency

10𝜇s
100𝜇s
1ms
10ms
100ms
1s
10s
100s
1000s

(c) Optimal cost

1𝜇s 1ms 1s 1000s
Latency

1KB/s

1MB/s

1GB/s

1TB/s

Ba
nd

w
id
th

Optimal EMM Cost

NFS
SSD
HDD

10𝜇s

100𝜇s

1ms

10ms

100ms

1s

10s

100s

1000s

Figure 13: Impact of storage latency/bandwidth on AirIndex’s index design. The fb dataset is used. Note the logarithm scales

covering 1KB/s – 1TB/s bandwidth and 1𝜇s – 1000s latency. The number of layers 𝐿, total read volume 𝑠 (Θ𝐿) +
∑𝐿
𝑙=1 E𝑥∼X Δ(𝑥 ;Θ𝑙),

and the optimal costs are displayed in color annotated in the sidebar. NFS, SSD, and HDD performances are marked accordingly.

; ; ; ; ; ;Rel. Bandwidth: 0.01× 0.1× 1× 10× 100×

0.001× 1× 1000×
1×

10×

100×

Relative Latency

Re
l.
Sl
ow

do
w
n

(a) Variability on NFS

0.001× 1× 1000×
1×

10×

Relative Latency

Re
l.
Sl
ow

do
w
n

(b) Variability on SSD

Figure 14: Extreme errors (±3 and ±2 magnitude differences

in latencies/bandwidths) expectedly make tuned indexes sub-

optimal compared to correctly tuned ones. Left: the index is

tuned for NFS (50 ms, 12 MB/s). Right: the index is tuned for

SSD (250 𝜇s, 175 MB/s). fb is the underlying dataset.

With Storage Variability. Storage performance may vary. If it
varies within a magnitude, AirIndex’s tuned index mostly stays
optimal. In fact, it does so if the performance remains within the
same band (i.e. same color in Figure 13a and Figure 13b) as the
profiled performance. However, if the actual performance𝑇 ′ varies
across many magnitudes, the index tuned with inaccurate storage
profile 𝑇 can be suboptimal as shown in Figure 14 through the
relative slowdown of the index 𝚯 tuned with the inaccurate profile
𝑇 based on the index 𝚯

′ tuned with the actual profile 𝑇 ′ in ret-
rospect: L𝑆𝑀 (X;𝚯,𝑇)/L𝑆𝑀 (X;𝚯′,𝑇 ′). For example, if the actual
NFS latency is 0.001 times smaller than the profiled NFS latency
(i.e., 50𝜇s instead of 5ms), the originally tuned index would be 35
times slower than the accurately tuned index.

7.5 Competitive Build Time

Total Build Time. Figure 15a measures index build times on a
machine with 2 AMD EPYC 7552 48-Core Processors (192 CPUs in
total). Build times in LMDB, RMI, PGM-index, and ALEX/APEX
only account for data loading, inserting into the system, and writ-
ing to files, excluding their manual hyperparameter tuning. Data
Calculator’s build time includes parallelized autocompletion and
index building. All methods use all available cores.

Thanks to its parallel tuning (§5.4), AirIndex’s total build time
is competitive with other baselines. AirIndex is 3.8×, 5.9×, and
4.3× faster than LMDB, RMI/CDFShop, and ALEX/APEX. while
AirIndex both tunes and builds as fast as RMI (excluding CDFShop

time), PGM-index, and PLEX build their indexes. Compared to
Data Calculator’s autocompletion and building, AirIndex is
2.3× faster despite exploring a larger class of indexes. Nonetheless,
AirIndex tuning and building are 2.7× slower compared to its fixed
structure counterpart B-tree. If needed to be faster, AirIndex can
relax some hyperparameters (e.g. number of candidates, granularity
base and bounds) to trade its speed with its tuning accuracy.

Search Overhead. Figure 15b measures search overheads—the dif-
ferences between total build time and build time given a known
configuration (i.e., CDFShop’s search procedure on RMI struc-
tures, Data Calculator’s autocompletion, AirIndex’s AirTune
excluding the time for building the optimal index). AirIndex incurs
non-negligible search overhead (around 50 ns/key on the 192-core
machine, or 9.6 𝜇s/key on single-core machines); however, this
search overhead is lower compared to other methods. Because of
its parallelization and top-𝑘 candidate selection limiting branching,
AirIndex finds its index structure 7.8× and 3.3× faster than learned
index tuningmethod CDFShop and traditional index tuningmethod
Data Calculator, respectively. In contrast, Data Calculator’s
parallelized autocompletion is slow because it tries all design com-
binations similarly to a grid search. We note that CDFShop outputs
multiple index structures on a Pareto front.

7.6 Applicable to Read-Write Workloads

We implement a proof-of-concept updatable AirIndex based on
the gapped array [31] that allocates empty gaps on data layer for
AirIndex to insert a key-value at any available gap within the
predicted position 𝑦 (𝑥). Our read-write benchmark follows that of
[31]. It initially inserts 100M keys sampled from osm and measures
the time to complete 10K queries consisting of cycles of 𝑟 read and
𝑤 write operations. Four workloads vary the read/write proportion:
(1) Read-Only: (𝑟,𝑤) = (1, 0), (2) Read-Write: 𝑟 = 19,𝑤 = 1, (3)
Write-Heavy: 𝑟 = 1,𝑤 = 1, (4) Write-Only: 𝑟 = 0,𝑤 = 1. The
benchmark samples read keys uniformly from the inserted key set
and samples write keys from the non-inserted key set.

In Figure 16, our prototype remains the fastest compared to
updatable baselines (LMDB and ALEX/APEX) across all workloads,
confirming that tuning for lookup speed is relevant to both read
and write performances. Apart from the direct relation to read
operations, lookup speed is relevant to write operations because

AirIndex: Versatile Index Tuning Through Data and Storage SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

200M 400M 600M 800M
0

100
200
300
400

Data Size (Keys)

Bu
ild

Ti
m
e
(s)

LMDB PLEX
RMI/CDFShop Data Calculator
PGM-index B-tree
ALEX/APEX AirIndex

(a) Total Time to Build Index

200M 400M 600M 800M
0
50
100
150
200
250
300

Data Size (Keys)

Se
ar
ch

O
ve
rh
ea
d
(s)

RMI/CDFShop
Data Calculator
AirIndex

(b) Search Overhead Time

Figure 15: Index build and search overhead for different data sizes (200, 400, 600, and 800 million keys) from the gmm dataset.
Build times for LMDB, RMI, PGM-index, ALEX/APEX, and PLEX do not include their manual tuning time.

Read-Only Read-Write Write-Heavy Write-Only

0

1,000
2,000
3,000

Tp
ut
.(
op

/s
) LMDB

ALEX/APEX
AirIndex

Figure 16: Average throughputs of LMDB, ALEX/APEX, and

AirIndex across read-write workloads on osm dataset in SSD.

all methods need to first look up the insertion position from their
indexes before writing the target key-value pair.

8 RELATEDWORK

Our work is built on top of the vast amount of existing research on
index design and optimization as summarized below; however, our
unified model (AirIndex-Model) and efficient search (AirTune)
enables a high-quality data and I/O-aware hierarchical index.

Storage-aware Indexes. Besides the original B-trees [17, 25], many
works have studied unique storage properties to design indexes
specifically optimized for certain storage, such as CPU cache [35],
SRAM cache [23], disk [24], NVMe [68], and distributed cloud [19,
71, 72]. As the most generic of all, [18] designs B-Trees that perform
well for any I/O page size 𝑃 ; however, its storage profile (cache-
oblivious model) only limits to 𝑇 (Δ) = 𝑂 (⌊Δ/𝑃⌋). Also, skip list
has been adapted to various settings, such as multi-core [29], cache-
sensitive for range queries [62], non-uniform access [27], and dis-
tributed nodes [37]. In contrast, AirIndex takes a general approach
by composing an optimization problem in consideration of stor-
age profiles, which makes it possible to adapt its structure without
re-evaluating the parameters when the transfer size changes.

Index Tuning. AirIndex automates index designs by improving
on long-standing heuristics such as “use larger pages for larger
bandwidth” [11, 36, 49]. Rather than deciding what index to build,
other index tuning techniques determine when and where to build
index, as a well-known index selection problem (ISP) [21, 28, 34, 40,
51, 59, 65], which are orthogonal to our work.

Data Calculator [38, 39] helps designing efficient data struc-
tures by evaluate the cost of a structure in a what-if fashion in
relation to workload and hardware. However, its auto-completion
search—recursively trying all possible designs (|E | = 1016 dis-
cretized designs)— scales poorly, which worsens if we extend Data
Calculator’s periodic table and cost synthesis flowchart with
learned indexes. AirIndex solves this challenge for index design.

Learned Indexes. Previousworks largely focus on tuning in-memory
indexes. [53] demonstrates an interactive model tool that allows

users to modify RMI configuration (per-layer node type and branch-
ing factor) and observe the resulting model fitness. Although the
tool provides automatic tuning, it measures the lookup latency
by benchmarking each configuration, which can be expensive on
a larger scale. [64] formulates a lookup cost function and tunes
a single maximum error hyperparameter to build a combination
of RadixSpline [43] and a compact histogram tree. In contrast,
AirIndex encompasses a larger index design space, and more im-
portantly, targets a different cost setting where I/O cost is dominant.

Many manually tuned learned indexes have shown success sto-
ries in the context of external storage. [26] studies favorable con-
ditions to learn data patterns and integrates learned indexes as an
optimization into an LSM-based storage system on disk. For NVM
storages, [22] adapts ALEX [31] to cooperate with the preferred
access pattern. Instead of predicting locations of written records, [9]
uses learned indexes to distribute data into blocks in BigTable [20].
Similarly, [47] deploys learned indexes to organize on-disk spatial
data into shards and pages, reducing I/O costs over other spatial
trees. With the learning paradigm at the core, [44] re-designs a
database system that supports data persistence on disk but is only
evaluated in the in-memory mode without disk accesses. Many
of these works have already involved parameter tuning but as a
manual tuning step for each setting. While we share common tun-
ing principles, AirIndex can be seen as a fine-grained automatic
optimization of learned index structures.

9 CONCLUSION

This work presents a novel index-building technique, AirIndex,
that can build high-speed hierarchical indexes by learning from
both data and I/O characteristics—the first of its kind. To achieve its
goal, AirIndex formulates an optimization problem consisting of a
large hierarchical index search space and a lookup latency objec-
tive function (AirIndex-Model). To overcome the computational
challenges rising from the inter-dependency between index layers
and exponentially many candidate designs, AirIndex explores the
search space using a purpose-built graph-search method (AirTune).
Our experiments verify that AirIndex accurately finds the optimal
configuration and provides performance gains over conventional
indexes as well as state-of-the-art learned indexes. In many applica-
tions, the decisions on data placements—local disks, cloud storage,
network file system—are relatively fixed, which makes AirIndex’s
data-and-I/O-aware optimization appealing to achieve significantly
faster lookup compared to the ones not specifically optimized.

ACKNOWLEDGMENTS

This work is supported in part by Microsoft Azure.

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

REFERENCES

[1] [n.d.]. https://github.com/illinoisdata/airindex-public.
[2] [n.d.]. https://github.com/illinoisdata/lmdb.
[3] [n.d.]. https://github.com/illinoisdata/RMI.
[4] [n.d.]. https://github.com/illinoisdata/PGM-index.
[5] [n.d.]. https://github.com/illinoisdata/ALEX_ext.
[6] [n.d.]. https://github.com/illinoisdata/airindex-public/tree/main/src/bin/data_

calculator.rs.
[7] [n.d.]. A high-performance distributed shared-log for Ceph. https://github.com/

cruzdb/zlog. [Online; accessed December-27-2022].
[8] [n.d.]. MySQL. https://www.mysql.com/. [Online; accessed December-27-2022].
[9] Hussam Abu-Libdeh, Deniz Altinbüken, Alex Beutel, Ed H. Chi, Lyric Doshi, Tim

Kraska, Xiaozhou Li, Andy Ly, and Christopher Olston. 2020. Learned Indexes
for a Google-scale Disk-based Database. CoRR abs/2012.12501 (2020).

[10] A. M. Andrew. 1979. Another Efficient Algorithm for Convex Hulls in Two
Dimensions. Inf. Process. Lett. 9, 5 (1979), 216–219.

[11] Raja Appuswamy, Goetz Graefe, Renata Borovica-Gajic, and Anastasia Ailamaki.
2019. The five-minute rule 30 years later and its impact on the storage hierarchy.
Commun. ACM 62, 11 (2019), 114–120.

[12] Microsoft Azure. [n.d.]. Azure. https://azure.microsoft.com. [Online; accessed
Jul-17-2022].

[13] Microsoft Azure. [n.d.]. Azure Blob Storage. https://azure.microsoft.com/en-
us/services/storage/blobs/. [Online; accessed Jul-17-2022].

[14] Microsoft Azure. [n.d.]. Azure managed disk types. https://docs.microsoft.com/
en-us/azure/virtual-machines/disks-types. [Online; accessed Jul-17-2022].

[15] Microsoft Azure. [n.d.]. Network File System (NFS) 3.0 protocol support for Azure
Blob Storage. https://docs.microsoft.com/en-us/azure/storage/blobs/network-
file-system-protocol-support. [Online; accessed Jul-17-2022].

[16] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri,
Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi, et al. 2020.
Virtual consensus in delos. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 20). 617–632.
[17] R. Bayer and E. M. McCreight. 1972. Organization and maintenance of large

ordered indexes. Acta Informatica 1 (1972), 173–189. Issue 3. https://doi.org/10.
1007/BF00288683

[18] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. 2000. Cache-
Oblivious B-Trees. In FOCS. IEEE Computer Society, 399–409.

[19] Huang Bin and Peng Yuxing. 2014. An efficient distributed B-tree index method
in cloud computing. Open Cybernetics and Systemics Journal 8 (2014). Issue 1.
https://doi.org/10.2174/1874110x01408010302

[20] Fay Chang, JeffreyDean, SanjayGhemawat,Wilson C. Hsieh, DeborahA.Wallach,
Michael Burrows, Tushar Chandra, Andrew Fikes, and Robert Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data (Awarded Best Paper!).
In OSDI. USENIX Association, 205–218.

[21] Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin ’What-if’ Index
Analysis Utility. In SIGMOD Conference. ACM Press, 367–378.

[22] Leying Chen and Shimin Chen. 2021. HowDoes Updatable Learned Index Perform
on Non-Volatile Main Memory?. In ICDE Workshops. IEEE, 66–71.

[23] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. 2001. Improving index
performance through prefetching. SIGMOD Record (ACM Special Interest Group

on Management of Data) 30 (2001). Issue 2. https://doi.org/10.1145/376284.375688
[24] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. 2002. Fractal

prefetching B+-Trees: Optimizing both cache and disk performance. Proceedings
of the ACM SIGMOD International Conference on Management of Data.

[25] Douglas Comer. 1979. UBIQUITOUS B-TREE. Comput Surv 11 (1979). Issue 2.
[26] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2020. From WiscKey
to Bourbon: A Learned Index for Log-Structured Merge Trees. In OSDI. USENIX
Association, 155–171.

[27] Henry Daly, Ahmed Hassan, Michael F. Spear, and Roberto Palmieri. 2018. Nu-
Mask: High performance scalable skip list for NUMA. Leibniz International Pro-
ceedings in Informatics, LIPIcs 121. https://doi.org/10.4230/LIPIcs.DISC.2018.18

[28] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A
Scalable, Portable, and Interactive Index Advisor for Large Workloads. Proc.

VLDB Endow. 4, 6 (2011), 362–372.
[29] Ian Dick, Alan Fekete, and Vincent Gramoli. 2017. A skip list for multicore.

Concurrency Computation 29 (2017). Issue 4. https://doi.org/10.1002/cpe.3876
[30] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. Proceedings of the ACM SIGMOD International Conference on Management

of Data. https://doi.org/10.1145/3318464.3389711
[31] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. In SIGMOD Conference. ACM, 969–984.

[32] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2020. Why Are Learned
Indexes So Effective?. In Proceedings of the 37th International Conference on Ma-

chine Learning (Proceedings of Machine Learning Research), Hal Daumé III and
Aarti Singh (Eds.), Vol. 119. PMLR, 3123–3132. https://proceedings.mlr.press/
v119/ferragina20a.html

[33] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proc. VLDB Endow.

13, 8 (2020), 1162–1175.
[34] Martin R. Frank, Edward Omiecinski, and Shamkant B. Navathe. 1992. Adaptive

and Automated Index Selection in RDBMS. In EDBT (Lecture Notes in Computer

Science), Vol. 580. Springer, 277–292.
[35] Goetz Graefe and Per Åke Larson. 2001. B-tree indexes and CPU caches. Pro-

ceedings - International Conference on Data Engineering (2001). https://doi.org/
10.1109/ICDE.2001.914847

[36] Jim Gray and Goetz Graefe. 1997. The Five-Minute Rule Ten Years Later, and
Other Computer Storage Rules of Thumb. SIGMOD Rec. 26, 4 (1997), 63–68.

[37] Jing He, Shao wen Yao, Li Cai, and Wei Zhou. 2018. SLC-index: A scalable skip
list-based index for cloud data processing. Journal of Central South University 25
(2018). Issue 10. https://doi.org/10.1007/s11771-018-3927-0

[38] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, and
Demi Guo. 2018. The Data Calculator: Data Structure Design and Cost Synthesis
from First Principles and Learned Cost Models. In SIGMOD Conference. ACM,
535–550.

[39] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester, and
Demi Guo. 2018. The Internals of the Data Calculator. CoRR abs/1808.02066
(2018).

[40] Ivo Jimenez, Huascar Sanchez, Quoc Trung Tran, and Neoklis Polyzotis. 2012.
Kaizen: a semi-automatic index advisor. In SIGMOD Conference. ACM, 685–688.

[41] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with
deep learning. arXiv preprint arXiv:1809.00677 (2018).

[42] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for Learned
Indexes. NeurIPS Workshop on Machine Learning for Systems (2019).

[43] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned
index. In aiDM@SIGMOD. ACM, 5:1–5:5.

[44] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume
Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. SageDB: A
Learned Database System. In CIDR. www.cidrdb.org.

[45] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The
case for learned index structures. Proceedings of the ACM SIGMOD International

Conference on Management of Data. https://doi.org/10.1145/3183713.3196909
[46] Kenneth Lange. 2016. MM optimization algorithms. SIAM.
[47] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A Learned

Index Structure for Spatial Data. In SIGMOD Conference. ACM, 2119–2133.
[48] LMDB. [n.d.]. Lightning Memory-Mapped Database Manager. http://www.lmdb.

tech/doc/ Online; accessed Jul-17-2022.
[49] David B. Lomet. 1998. B-tree Page Size When Caching is Considered. SIGMOD

Rec. 27, 3 (1998), 28–32.
[50] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang.

2021. APEX: A High-Performance Learned Index on Persistent Memory. arXiv
preprint arXiv:2105.00683 (2021).

[51] Vincent Y. Lum and Huei Ling. 1971. An optimization problem on the selection
of secondary keys. In ACM Annual Conference. ACM, 349–356.

[52] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmarking Learned
Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13.

[53] Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and
Optimizing Learned Index Structures. In SIGMOD Conference. ACM, 2789–2792.

[54] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.
The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica 33, 4 (1996), 351–
385.

[55] Postcard. [n.d.]. Postcard: A no_std + serde compatible message library for Rust.
https://github.com/jamesmunns/postcard. [Online; accessed July-17-2022].

[56] PostgreSQL. [n.d.]. PostgreSQL: The World’s Most Advanced Open Source
Relational Database. https://www.postgresql.org. [Online; accessed July-17-
2022].

[57] William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33, 6 (1990), 668–676.

[58] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-tree
filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013), 1–32.

[59] Mario Schkolnick. 1975. The Optimal Selection of Secondary Indices for Files.
Inf. Syst. 1, 4 (1975), 141–146.

[60] Serde. [n.d.]. Serde. https://serde.rs. [Online; accessed July-17-2022].
[61] Facebook Open Source. [n.d.]. RocksDB: A persistent key-value store. https:

//rocksdb.org/. [Online; accessed July-17-2022].

https://github.com/illinoisdata/airindex-public
https://github.com/illinoisdata/lmdb
https://github.com/illinoisdata/RMI
https://github.com/illinoisdata/PGM-index
https://github.com/illinoisdata/ALEX_ext
https://github.com/illinoisdata/airindex-public/tree/main/src/bin/data_calculator.rs
https://github.com/illinoisdata/airindex-public/tree/main/src/bin/data_calculator.rs
https://github.com/cruzdb/zlog
https://github.com/cruzdb/zlog
https://www.mysql.com/
https://azure.microsoft.com
https://azure.microsoft.com/en-us/services/storage/blobs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/storage/blobs/network-file-system-protocol-support
https://docs.microsoft.com/en-us/azure/storage/blobs/network-file-system-protocol-support
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://doi.org/10.2174/1874110x01408010302
https://doi.org/10.1145/376284.375688
https://doi.org/10.4230/LIPIcs.DISC.2018.18
https://doi.org/10.1002/cpe.3876
https://doi.org/10.1145/3318464.3389711
https://proceedings.mlr.press/v119/ferragina20a.html
https://proceedings.mlr.press/v119/ferragina20a.html
https://doi.org/10.1109/ICDE.2001.914847
https://doi.org/10.1109/ICDE.2001.914847
https://doi.org/10.1007/s11771-018-3927-0
https://doi.org/10.1145/3183713.3196909
http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
https://github.com/jamesmunns/postcard
https://www.postgresql.org
https://serde.rs
https://rocksdb.org/
https://rocksdb.org/

AirIndex: Versatile Index Tuning Through Data and Storage SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

[62] Stefan Sprenger, Steffen Zeuch, and Ulf Leser. 2017. Cache-sensitive skip list:
Efficient range queries on modern CPUs. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 10195 LNCS. https://doi.org/10.1007/978-3-319-56111-0_1
[63] SQLite. [n.d.]. SQLite. https://www.sqlite.org. [Online; accessed April-24-2021].
[64] Mihail Stoian, Andreas Kipf, Ryan Marcus, and Tim Kraska. 2021. PLEX: Towards

Practical Learned Indexing. CoRR abs/2108.05117 (2021).
[65] Michael Stonebraker. 1974. The choice of partial inversions and combined indices.

Int. J. Parallel Program. 3, 2 (1974), 167–188.
[66] Yongjoo Park Supawit Chockchowwat, Wenjie Liu. 2023. AirIndex: Versatile

Index Tuning Through Data and Storage (Extended Version). arXiv preprint

(2023).
[67] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,

Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon aurora: Design considerations
for high throughput cloud-native relational databases. In Proceedings of the 2017

ACM International Conference on Management of Data. 1041–1052.
[68] Li Wang, Zining Zhang, Bingsheng He, and Zhenjie Zhang. 2020. PA-Tree: Polled-

mode asynchronous B+ tree for NVMe. Proceedings - International Conference on
Data Engineering 2020-April. https://doi.org/10.1109/ICDE48307.2020.00054

[69] Youyun Wang, Chuzhe Tang, Zhaoguo Wang, and Haibo Chen. 2020. SIndex: A
Scalable Learned Index for String Keys. In Proceedings of the 11th ACM SIGOPS

Asia-Pacific Workshop on Systems (Tsukuba, Japan) (APSys ’20). Association for
Computing Machinery, New York, NY, USA, 17–24. https://doi.org/10.1145/
3409963.3410496

[70] Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based Ordered
Key-Value Store using Remote Learned Cache. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20). USENIX Association,
117–135. https://www.usenix.org/conference/osdi20/presentation/wei

[71] Sai Wu, Dawei Jiang, Beng Chin Ooi, and Kunlung Wu. 2010. Efficient btree
based indexing for cloud data processing. Proceedings of the VLDB Endowment 3
(2010). Issue 1. https://doi.org/10.14778/1920841.1920991

[72] Wei Zhou, Jin Lu, Zhongzhi Luan, Shipu Wang, Gang Xue, and Shaowen Yao.
2014. SNB-index: A SkipNet and B+ tree based auxiliary Cloud index. Cluster
Computing 17 (2014). Issue 2. https://doi.org/10.1007/s10586-013-0246-y

A AIRINDEX IN DETAIL

A.1 Layer Builders

A layer builder turns the target key-position collection 𝐷 into an
index layer Θ. In other words, it is a function 𝐹 (𝐷) = Θ where
𝐷 = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1 is a collection of keys 𝑥𝑖 together with their
positions 𝑦𝑖 , and Θ = {(𝑧 𝑗 , 𝜃 𝑗)}𝑛

+
𝑗=1 is the index layer containing

the per-node parameters 𝜃 𝑗 with per-node key range [𝑧 𝑗 , 𝑧 𝑗+1). To
build two types of nodes (step and band, sketched in Figure 6),
AirIndex currently deploys three types of layer builders below.
(1) Greedy Step (GStep(𝑝, 𝜆𝐺𝑆)) builds a 𝑝-piece step function

with precision at most 𝜆𝐺𝑆 bytes. It iterates over each key-
position pair (𝑥𝑖 , 𝑦𝑖) and greedily determines whether to create
the next constant function if 𝑦+

𝑖
− 𝑏𝑘 > 𝜆𝐺𝑆 where (𝑎𝑘 , 𝑏𝑘)

represents the current constant function. If so, the next con-
stant function has a partition key 𝑎𝑘+1 = 𝑥𝑖 and partition posi-
tion 𝑏𝑘+1 = 𝑦𝑖 . Once it reaches 𝑝 pieces of constant functions,
GStep(𝑝, 𝜆𝐺𝑆) generates a 𝑝-piece step node.

(2) Greedy Band (GBand(𝜆𝐺𝐵)) builds linear band nodes by greed-
ily fitting asmany key-position pairs as possible, using amethod
called monotone chain convex hull [10], until we have Δ(𝑥𝑖) >
𝜆𝐺𝐵 . Then, it generates a band node with (𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝛿). For
𝑛 key-position pairs, the convex hull inserts a key-position pair
in 𝑂 (𝑛) time (𝑂 (1) amortized insertion) and answers a feasibil-
ity query in𝑂 (𝑛 log𝑚) time (𝑂 (log𝑚) amortized query) where
𝑚 is the average number of key-position pairs included in one
linear band. Typically,𝑚 is small when 𝜆𝐺𝐵 is small.

(3) Equal Band (EBand(𝜆𝐸𝐵)) builds linear band nodes by group-
ing key-position pairs in equal-size position ranges. That is,
each group {(𝑥𝑙 , 𝑦𝑙), (𝑥𝑙+1, 𝑦𝑙+1), . . . , (𝑥𝑟 , 𝑦𝑟)} has a bounded

position range |𝑦−
𝑙
− 𝑦+𝑟 | ≤ 𝜆𝐸𝐵 . It then fits a linear band func-

tion to each group and creates a band node. Note that the pre-
cision Δ(𝑥𝑖) can vary depending on how “linear” the group is.
EBand(𝜆𝐸𝐵) groups by position ranges rather than key ranges
so that the worst-case precision is controlled by 𝜆𝐸𝐵 .

First, GStep(𝑝, 𝜆𝐺𝑆) is equivalent to bulk indexing in a sparse B-tree
with a fanout 𝑝 and page size 𝜆𝐺𝑆 bytes. Second, GBand(𝜆𝐺𝐵) is a
generalization from step functions to linear functions with precision
Δ(𝑥𝑖) ≤ 𝜆𝐺𝐵 . Third, EBand(𝜆𝐸𝐵) is another generalization focusing
on the key-position group size |𝑦−

𝑙
− 𝑦+𝑟 | ≤ 𝜆𝐸𝐵 .

Granularity Exponentiation. 𝜆𝐺𝑆 , 𝜆𝐺𝐵 , and 𝜆𝐸𝐵 are called gran-

ularity, which roughly control layer builders’ tendency to split
key-position pairs apart. Because they correlate with the result-
ing node’s precision Δ(𝑥 ;Θ), AirIndex needs to determine the
appropriate granularity for each node type.

AirIndex creates many candidate layer builders F by sampling
the granularity on an exponential grid: 𝜆𝑙𝑜𝑤 , 𝜆𝑙𝑜𝑤 (1 + 𝜖), 𝜆𝑙𝑜𝑤 (1 +
𝜖)2, . . . 𝜆ℎ𝑖𝑔ℎ where (𝜆𝑙𝑜𝑤 , 𝜆ℎ𝑖𝑔ℎ) are the bounds and 𝜖 > 0 controls
the exponentiation base. Smaller 𝜖 implies a finer search which
improves optimization accuracy but increases tuning time.

A.2 Cache

AirIndex uses a read-through cache in local memory. That is, if a
read range is present in the cache, AirIndex gets the layer view
directly from it. Otherwise, AirIndex reads from storage and fills
in the corresponding cache page(s). Filling a cache page and getting
a layer view are both zero-copy operations: they do not copy the
raw bytes but only their references. As the cache fills up, AirIndex
avoids more expensive storage reads, offering faster lookup speed;
nevertheless, to offer consistent performance, our optimization
minimizes the worst-case latency when there is no cached data.

A.3 Index Complexity

Before branching out, AirIndex selects only top-𝑘 candidates with
the highest potential to be in the optimal design. Suppose there
exists an oracle that minimizes the objective function on a key-
position collection 𝐷 under the storage profile. We call the optimal
search cost under storage profile 𝑇 : index complexity 𝜏 (𝐷 ;𝑇). If
𝜏 (𝐷 ;𝑇) is known, selection of candidates C = {(Θ𝑖 , 𝐷𝑖)} | F |𝑖=1 would
be as straightforward as Eq (11). That is, we could simply select the
top-1 candidate and avoid branching out.

(Θ∗, 𝐷∗) = argmin
(Θ𝑖 ,𝐷𝑖) ∈C

𝜏 (𝐷𝑖) + E
𝑥∼X
[𝑇 (Δ(𝑥 ;Θ𝑖))] (11)

Unfortunately, 𝜏 (𝐷 ;𝑇) is unknown for a large class of indexes
supported by AirIndex. Instead, AirIndex uses a surrogate upper
bound to the index complexity: step index complexity 𝜏 (𝐷 ;𝑇) ≥
𝜏 (𝐷 ;𝑇). Specifically, 𝜏 (𝐷 ;𝑇) imitates a step-function hierarchical
index that partitions the key-position collection 𝐷 into groups with
arbitrary position ranges. Let 𝑠𝐷 = 𝑦+|𝐷 | − 𝑦

−
1 be the total size of

the candidate layer, 𝜏 (𝐷 ;𝑇) tries to build ideal step indexes with
different numbers of layers 𝐿 ∈ {0, 1, . . . ,𝑂 (log 𝑠𝐷)}. For each 𝐿, it
perfectly balances both root layer size and subsequent precisions so
that 𝑠 (Θ𝐿) = Δ(𝑥 ;Θ𝑙) = 𝐿+1

√︃
𝑠𝐷𝑠

𝐿
𝑠𝑡𝑒𝑝 . This considers the total size

𝑠𝐷 and the ideal size for each 1-piece step node 𝑠𝑠𝑡𝑒𝑝 (e.g., 16 bytes
for 8-byte key and position types). Lastly, 𝜏 (𝐷 ;𝑇) then outputs the

https://doi.org/10.1007/978-3-319-56111-0_1
https://www.sqlite.org
https://doi.org/10.1109/ICDE48307.2020.00054
https://doi.org/10.1145/3409963.3410496
https://doi.org/10.1145/3409963.3410496
https://www.usenix.org/conference/osdi20/presentation/wei
https://doi.org/10.14778/1920841.1920991
https://doi.org/10.1007/s10586-013-0246-y

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

1 102 104 106
0

50

100

150

Number of Queries

La
te
nc
y
(m

s/
op

)

(a) NFS (B-tree)

1 102 104 106
0

50

100

150

Number of Queries

La
te
nc
y
(m

s/
op

)

(b) NFS (AirIndex)

1 102 104 106
0

1

2

Number of Queries

La
te
nc
y
(m

s/
op

)

(c) SSD (B-tree)

1 102 104 106
0

1

2

Number of Queries

La
te
nc
y
(m

s/
op

)

Data Layer
Layer 1
Layer 2
Root Layer

(d) SSD (AirIndex)

Figure 17: Latency breakdown of B-tree and AirIndex by the time spent reading different layers. The books dataset is used.
We vary the warmness by the number of queries from one to 1 million from left to right in logarithmic scale. Layer-wise

latencies are stacked from bottom up in their retrieval order (root index layer to data layer). For visual purposes, the plots then

interpolate linearly and fill areas in between with different colors indicating different layers.

1 102 104 106
0%

5%

10%

Number of Queries

La
te
nc
y
Fr
ac
tio

n SSD
NFS

(a) Non-I/O Fraction

1 102 104 106
0%

0.5%

1%

Number of Queries

La
te
nc
y
Fr
ac
tio

n

(b) Non-I/O Breakdown on NFS

1 102 104 106
0%

5%

10%

Number of Queries

La
te
nc
y
Fr
ac
tio

n Other
Find
Predict
Deser.
Cache

(c) Non-I/O Breakdown on SSD

Figure 18: Latency breakdown of AirIndex’s non-I/O operations over different levels of warmness (indicated by the numbers

of queries from one to 1 million). Left: the fraction of non-I/O operations—the rest is for I/O operations. Middle and right: a

deeper breakdown of latency spent on different types of I/O operations on NFS and SSD, respectively.

lowest storage model cost as the step index complexity (Eq (12)).

𝜏 (𝐷 ;𝑇) = min
𝐿∈{0,1,...,𝑂 (log 𝑠𝐷) }

(𝐿 + 1) ×𝑇
(

𝐿+1
√︃
𝑠𝐷𝑠

𝐿
𝑠𝑡𝑒𝑝

)
(12)

Note that 𝜏 (𝐷 ;𝑇) is only interested in the integer 𝑠𝐷 (not the dis-
tribution of𝐷); thus, 𝜏 (𝐷 ;𝑇) can be arithmetically computed (hence
cheap). Figure 8 shows the general shape of 𝜏 (𝐷 ;𝑇) with respect
to the collection size 𝑠𝐷 , under an affine storage profile 𝑇 . Notice
the sudden index complexity cliffs (such as those around 𝑠𝐷 = 1MB
in Figure 8b), marking the boundaries between different chosen
numbers of layers. The technique to minimize an objective based
on its cheaper upper bound is related to majorize-minimization
algorithms [46].

B BASELINES

We compare AirIndex to a traditional database index, learned
indexes, and our manual configuration counterpart, hosted at their
respective forks 2.
LMDB. LMDB [48] is a B-tree database that accesses its data on
storage through mmap. We have also tested PostgreSQL [56] and
RocksDB [61] but decided to present LMDB due to its competitive
performance in our setting.
RMI. RMI [41] is a top-down learned index with a compact two-
layer structure where the top one contains only one perfectly accu-
rate node partitioning key space to the bottom nodes. To build one,
we execute its provided optimizer for each dataset and select the
most accurate configuration describing index size and model types.
We then integrate RMI onto external memory setting by mmap-ing

2https://github.com/illinoisdata/lmdb, https://github.com/illinoisdata/RMI, https://
github.com/illinoisdata/PGM-index, https://github.com/illinoisdata/ALEX_ext, https:
//github.com/illinoisdata/airindex-public/tree/main/src/bin/data_calculator.rs

its parameter arrays so RMI can access its parameters through the
OS buffer cache.
PGM-index. PGM-index [33] is a learned index with bounded
precision across all layers. PGM-index partitions the key-position
collection to build the next bottom-most layer towards the top. To
benchmark in our settings, we use the MappedPGMIndex variant
that operates on file systems. Although its tuner does not satisfy
our target (fastest index, regardless of size), we adjust its error level
𝜀 ∈ {16, 32, . . . , 1024} to microbenchmark on wiki (chosen one
arbitrarily) and finally pick 𝜀 = 128.
ALEX/APEX. ALEX/APEX [31] is an updatable learned index built
top-down like RMI but further arrange key-value pairs in its layout
(notably, “gapped array” to buffer structural changes). We inte-
grate ALEX/APEX onto external memory setting by mmap-ing its
serialized node objects, key arrays, and value arrays.
PLEX. PLEX [64] is a learned index with compact Hist-Tree (CHT)
layered on top of RadixSpline [43] (RS). We integrate PLEX onto
external memory setting through mmap similarly to ALEX/APEX.
Although PLEX optimizes most parameters, its user need to specify
the maximum prediction error 𝜖 . We select 𝜖 = 2048 based on a
benchmark on a setting (Figure 12d).
Data Calculator. Data Calculator [38, 39] is a data layout
design engine that calculates the performance of a data struc-
ture. For index learning, we extend Data Calculator to auto-
complete recursion allowed (number of layers), fanout, key
partitioning. By following its cost synthesis flowcharts (Fig 5 in
[38] and Fig 29 in [39]), we identify data access primitives, profile
them on SSD and NFS for cost models, and execute a parallelized
auto-completion flow. Later, the selected data layout is built within
AirIndex’s framework.

https://github.com/illinoisdata/lmdb
https://github.com/illinoisdata/RMI
https://github.com/illinoisdata/PGM-index
https://github.com/illinoisdata/PGM-index
https://github.com/illinoisdata/ALEX_ext
https://github.com/illinoisdata/airindex-public/tree/main/src/bin/data_calculator.rs
https://github.com/illinoisdata/airindex-public/tree/main/src/bin/data_calculator.rs

AirIndex: Versatile Index Tuning Through Data and Storage SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023)

; ; ; ; LMDB RMI PGM-index ALEX/APEX

; ; ; Data Calculator B-tree AirIndex

0.5 1.0 2.0
0

100
200
300
400

Skewness

La
te
nc
y
(m

s)

(a) One-query Latency

0.5 1.0 2.0
102

103

104

Skewness
La
te
nc
y
(m

s)
(b) 100-query Latency

Figure 19: Effects of skewed query key distribution latency

across different methods on books dataset. Left: first query
latency over skewnesses 0.5, 1.0, and 2.0. Right: 100th latency

over the same skewnesses.

B-tree. A B-tree-like structure implemented using AirIndex’s
framework. It has 255-piece step nodes built with GStep(𝑝 =

255, 𝜆𝐺𝑆 = 4096), which is equivalent to a B-tree with 4KB node
pages and 255 fanout factors. This is the most controlled baseline
where the only difference is AirIndex’s storage- and data-aware
tuning.

C EXTENDED EXPERIMENTS

C.1 Latency Breakdown

We investigate the effect of our optimization by studying latency
breakdowns, by layers and by operations, respectively.
By Layer. We first decompose the end-to-end latency into the times
spent in retrieving each layer which includes I/O, cache read, and
all internal computation. Apart from some small exceptions, latency
measurements across layers roughly follow the storage profiles:
larger root size 𝑠 (Θ𝐿) and coarser precision Δ𝑙 (𝑥 ;Θ𝑙) reflects in a
longer latency spent in the corresponding layer. Over numbers of
queries, we also observe the alternating acceleration phenomenon
in more details. That is, the fast acceleration region indicate that
the topmost partially cached index layer is becoming fully cached.
For example, in Figure 17c between 103 and 104 queries, B-tree
searches faster because the speedup in its layer-1 index.

This breakdown also reveals factors unaccounted for inAirIndex.
For a prominent example, in the first query under SSD (Figures 17c
and 17d), both AirIndex and B-tree spend more time reading their
root and data layers as opposed to reading other index layers. This
is because index layers and data layer are stored in separate directo-
ries, forcing the file system (ext4) to slowly walk through different
paths of directory entries (dentry) to fetch index-layer and data-
layer inodes. Consequently, reading subsequent index layers stored
in the same directory is then significantly faster than expected.
Although these missing characteristics are crucial for future works
towards maximally fast indexes, we believe that AirIndex’s storage
profile is at an appropriate level of abstraction to adapt to diverse
types of storage.
By Operation. We categorize AirIndex’s operations into I/O and
non-I/O groups. The latter group contains in-memory caching,
data structure deserialization, node prediction, relevant key-value
finding, and other negligible steps. Figure 18a shows that these
non-I/O operations only account for up to 1.0% on NFS and 9.0%
on SSD, even after 1 million queries. These small non-I/O fractions
matches with our expectation. Because of its 4KB–5KB average

0 10 20 30
0

50

100

150

𝑘 , top-𝑘 candidates

Bu
ild

Ti
m
e
(s)

780

800

820

840

Co
st
L

(𝜇
𝑠
)

Build Time
Cost L
𝑘 = 5

Figure 20: Effects of hyperparameter 𝑘 in selecting top-𝑘

candidates to overall AirIndex’s building time and cost L.
We use books dataset and SSD profile.

precisions of tuned structures on NFS and SSD, AirIndex needs
more than a million query to completely cache the 6.4GB data layer.
As an improvement on its warm-state performance, AirIndex can
prefetch to warm up its cache more aggressively.

Figures 18b and 18c delve deeper into non-I/O operations to put
their significance into perspective. We found that caching occupies
non-I/O latencies increasingly over warmness. In the first query,
deserialization dominates because it needs to deserialize the root-
metadata file, send the root layer to cache, and reconstruct a nested
data structure for query processing. These two observations explain
the U-shape fraction of non-I/O operations on SSD. Aside from
those, finding operations (i.e. the last mile binary search) take a
considerable portion within non-I/O latency, but incomparably
small compared to I/O. If they were to grow larger, AirIndex would
have to consider smoothly transitioning to in-memory index rather
than a binary search on cache. Lastly, as expected, node prediction
is insignificant given that our current node types are simple.

C.2 Skewed Workload

Although AirIndex’s objective (Eq (7)) considers the query dis-
tribution X, future query distributions may change unexpectedly.
This experiment (Figure 19) builds AirIndex on the uniform distri-
bution X but requests keys sampled from a Zipf distribution with
parameters 0.5 (least skewed), 1.0, and 2.0 (most skewed). The more
skewed the query is, the faster all methods can respond at warm
state (Figure 19b). However, the skew does not affect first-query
latency as much across all methods (Figure 19a). Because AirIndex
is tuned for cold-state latency, higher skewness results in a quicker
takeover. For example, it takes 12k uniform queries for any meth-
ods (PGM-index) to take over AirIndex, but only 70, 41, and 725
queries in 0.5, 1.0, and 2.0 Zipf query.

C.3 Top-k Candidate Parameter Sweep

Across all experiments, we set 𝑘 = 5 as an arbitrary constant greater
than one and less than the number of node builders (|F | = 45). In
this experiment, we vary this hyperparameter 𝑘 to verify our un-
derstanding: as 𝑘 increases, build time should increase in 𝐿-degree
polynomial (𝐿 = 2 in this setting) while the optimized cost should
monotonically decrease. Figure 20 reaffirms this hypothesis, but also
shows that the available parallelism (192 CPUs) is able to hide the
polynomial build time more than we had expected (taking around
50 seconds up until 𝑘 = 20), implying that we could have selected a
higher 𝑘 to get a faster index at no additional build time cost.

SIGMOD ’24, June 11–16, 2024, Santiago, Chile (Accepted 23 May 2023) Supawit Chockchowwat, Wenjie Liu, Yongjoo Park

Received 15 January 2023; revised 20 April 2023; accepted 23 May 2023

	Abstract
	1 Introduction
	2 Motivation
	2.1 Need for I/O-Aware Optimization
	2.2 Need for Layer-Wise Optimization
	2.3 Need for Novel Index Tuning

	3 System Overview
	3.1 Architecture
	3.2 Storage Model
	3.3 Points of Applications

	4 AirIndex-Model: Unified Index Model
	4.1 Hierarchical Indexes
	4.2 Query Process
	4.3 Latency Under Storage Model

	5 AirTune: Search with Bounded visits
	5.1 Guided Graph Search
	5.2 Layer Builders
	5.3 Top-k Candidates by Index Complexity
	5.4 Parallel Tuning
	5.5 Analysis
	5.6 Other Implementation Details

	6 Extensions
	7 Experiment
	7.1 Setup
	7.2 Faster End-to-end Lookup Speed
	7.3 Layer-wise Optimization Helps
	7.4 Adaptive to I/O Performance
	7.5 Competitive Build Time
	7.6 Applicable to Read-Write Workloads

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A AirIndex in Detail
	A.1 Layer Builders
	A.2 Cache
	A.3 Index Complexity

	B Baselines
	C Extended Experiments
	C.1 Latency Breakdown
	C.2 Skewed Workload
	C.3 Top-k Candidate Parameter Sweep

