
Efficient Maximum 𝑘-Defective Clique Computation with
Improved Time Complexity

Lijun Chang

Lijun.Chang@sydney.edu.au

The University of Sydney

Sydney, Australia

ABSTRACT
𝑘-defective cliques relax cliques by allowing up-to 𝑘 missing edges

from being a complete graph. This relaxation enables us to find

larger near-cliques and has applications in link prediction, cluster

detection, social network analysis and transportation science. The

problem of finding the largest 𝑘-defective clique has been recently

studied with several algorithms being proposed in the literature.

However, the currently fastest algorithm KDBB does not improve

its time complexity from being the trivial O(2𝑛), and also, KDBB’s
practical performance is still not satisfactory. In this paper, we ad-

vance the state of the art for exact maximum 𝑘-defective clique

computation, in terms of both time complexity and practical perfor-

mance. Moreover, we separate the techniques required for achieving

the time complexity from others purely used for practical perfor-

mance consideration; this design choice may facilitate the research

community to further improve the practical efficiency while not sac-

rificing the worst case time complexity. In specific, we first develop

a general framework kDC that beats the trivial time complexity of

O(2𝑛) and achieves a better time complexity than all existing algo-

rithms. The time complexity of kDC is solely achieved by our newly

designed non-fully-adjacent-first branching rule, excess-removal

reduction rule and high-degree reduction rule. Then, to make kDC
practically efficient, we further propose a new upper bound, two

new reduction rules, and an algorithm for efficiently computing a

large initial solution. Extensive empirical studies on three bench-

mark graph collections with 290 graphs in total demonstrate that

kDC outperforms the currently fastest algorithm KDBB by several

orders of magnitude.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; • Informa-
tion systems→ Social networks.

ACM Reference Format:
Lijun Chang. 2023. Efficient Maximum 𝑘-Defective Clique Computation

with Improved Time Complexity. Proc. ACM Manag. Data 1, 3 (SIGMOD),

Article 209 (September 2023), 14 pages. https://doi.org/10.1145/3617313

Author’s address: Lijun Chang, Lijun.Chang@sydney.edu.au, The University of Sydney,

Sydney, Australia.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/9-ART209 $15.00

https://doi.org/10.1145/3617313

1 INTRODUCTION
The relationship among entities in many applications, such as so-

cial media, communication networks, collaboration networks, web

graphs, and the Internet, can be naturally captured by the graph

model. As a result, real-world graph data is abundant, and graph-

based data analysis has been widely used to extract insights for

guiding the decision-making process. In particular, the problem of

identifying dense (i.e., cohesive) subgraphs has been extensively

studied [10, 24], since it servesmany applications. For example, iden-

tifying large dense subgraphs has been used for detecting anomalies

in financial networks [2], identifying real-time stories in social me-

dia [3], detecting communities in social networks [5], and finding

protein complexes in biological networks [40].

Clique (i.e., complete subgraph) is a classic notion for defining

dense subgraphs, which requires every pair of distinct vertices

in the subgraph to be directly connected by an edge. It is easy

to see that a clique is the densest structure that a subgraph can

be. As a result, clique related problems have been extensively ex-

plored in the literature, and many advancements have been made

regarding clique computation. For example, it has been shown that

the maximum clique is not only NP-hard to compute exactly [23],

but also NP-hard to approximate within a factor of 𝑛1−𝜖 for any

constant 0 < 𝜖 < 1 [19]; here 𝑛 denotes the number of vertices

in the input graph 𝐺 . Nevertheless, exact algorithms have been

studied both theoretically and practically in the literature. The

state-of-the-art time complexity for maximum clique computation

is O∗ (1.1888𝑛) [33], and one of the practically efficient algorithms

isMC-BRB [8]; here the O∗ notation hides polynomial factors. In

addition, the problems of enumerating all maximal cliques, enu-

merating all cliques of the maximum size, and enumerating and

counting all cliques with 𝑘 vertices for a small 𝑘 have also been

extensively studied [9, 14, 20, 27, 42].

Requiring a large subgraph to be fully connected however is of-

ten too restrictive for many applications, such as complex network

analysis [31], considering that data is often noisy or incomplete.

Hence, various clique relaxations have been formulated in the litera-

ture, such as quasi-clique [1], 𝑘-plex [4], 𝑘-club [6], and 𝑘-defective

clique [49]. In this paper, we focus on the 𝑘-defective clique, which

allows a subgraph to miss up-to 𝑘 edges to be a complete subgraph;

note that a 𝑘-defective clique for 𝑘 = 0 is a clique. The concept of

𝑘-defective clique was formulated in [49] for predicting missing

interactions between proteins in biological networks. Besides, it

also finds applications in cluster detection [39], transportation sci-

ence [38], and social network analysis [17, 21]. Since a clique is

also a 𝑘-defective clique for any 𝑘 ≥ 0, the maximum 𝑘-defective

clique is no less than and usually can be much larger than the

maximum clique. Consider the graph in Figure 1, it is easy to see

that the maximum clique size is 4, while the maximum 𝑘-defective

ar
X

iv
:2

30
9.

02
63

5v
1

 [
cs

.D
S]

 6
 S

ep
 2

02
3

https://orcid.org/0000-0002-6830-3900
https://doi.org/10.1145/3617313
https://orcid.org/0000-0002-6830-3900
https://doi.org/10.1145/3617313

Conference’17, July 2017, Washington, DC, USA Lijun Chang

clique size for any 𝑘 ≤ 4 is 4 + 𝑘 ; specifically, the entire graph is

a 4-defective clique, and the remaining graph after removing any

vertex is a 3-defective clique.

Figure 1: Clique vs. 𝑘-Defective Clique
The problem of maximum 𝑘-defective clique computation is also

NP-hard [48]. The state-of-the-art time complexity for maximum

𝑘-defective clique computation that beats the trivial O∗ (2𝑛) time

complexity is achieved by theMADEC+ algorithm proposed in [11],

which runs in O∗ (𝜎𝑛
𝑘
) time where 𝜎𝑘 < 2 is the largest real root of

the equation 𝑥2𝑘+3 − 2𝑥2𝑘+2 + 1 = 0. Although a graph coloring-

based upper bound aswell as other pruning techniques are proposed

in [11] aiming to improve the practical performance ofMADEC+,
it is shown in [16] that the graph coloring-based upper bound

proposed in [16] is ineffective andMADEC+ is inefficient in practice

especially when 𝑘 ≥ 10. For example, for 𝑘 ≥ 15 on the Facebook

graphs collection (please refer to Section 4 for the description of

the dataset), even the version ofMADEC+ that is further optimized

by the authors of [16] was still not able to find the maximum 𝑘-

defective clique for any graph instance with a time limit of 3 hours.

With the goal of enhancing the practical performance, the KDBB
algorithm is designed in [16] which proposes and incorporates

preprocessing as well as multiple pruning techniques. Nevertheless,

KDBB is still inefficient, and moreover, no time complexity better

than O∗ (2𝑛) has been proved for KDBB.
In this paper, we aim to advance the state of the art for maximum

𝑘-defective clique computation, both theoretically and practically.

We first develop a general backtracking framework kDC based on

our newly designed non-fully-adjacent-first branching rule (BR),
excess-removal reduction rule (RR1) and high-degree reduction

rule (RR2). We prove that our framework runs in O∗ (𝛾𝑛
𝑘
) time

where 𝛾𝑘 < 2 is the largest real root of the equation 𝑥𝑘+3 − 2𝑥𝑘+2 +
1 = 0. In comparison, the time complexity ofMADEC+ is O∗ (𝛾𝑛

2𝑘
)

by observing that 𝜎𝑘 = 𝛾
2𝑘 . Note that 𝛾𝑘 < 𝛾

2𝑘 . Thus, we advance

the state of the art regarding the theoretical time complexity. We

remark that the time complexity of kDC is solely achieved by our

branching rule BR and reduction rules RR1 and RR2, and these

are the minimal requirements for achieving the time complexity

of O∗ (𝛾𝑛
𝑘
). We deliberately separate the techniques required for

achieving the time complexity from the ones used purely for improv-

ing the practical performance, such that others may further improve

the efficiency while retaining the time complexity of O∗ (𝛾𝑛
𝑘
).

Tomake kDC practically efficient, we further propose techniques

from three aspects: an improved graph coloring-based upper bound

(UB1), a degree-sequence-based reduction rule (RR3), a second-
order reduction rule (RR4), and a new algorithm Degen-opt for
efficiently computing a large initial solution. Specifically, given a

graph 𝑔 and a 𝑘-defective clique represented by its set of vertices

𝑆 such that 𝑆 ⊆ 𝑉 (𝑔), our improved coloring-based upper bound

UB1 computes an upper bound of the largest 𝑘-defective clique

that is in 𝑔 and contains 𝑆 , and prunes the backtracking instance

(𝑔, 𝑆) if the computed upper bound is no larger than the currently

found largest solution. Same as the graph coloring-based upper

bound proposed in [11], UB1 also utilizes graph coloring; but UB1
computes a much tighter (i.e., smaller) upper bound than [11]. In

essence, a (greedy) graph coloring is used to partition the vertices

into independent sets, by observing that all vertices with the same

color form an independent set. Let 𝜋1, . . . , 𝜋𝑐 be a partitioning of

𝑉 (𝑔) \𝑆 into independent sets. The upper bound computed in [11] is

|𝑆 | +∑𝑐
𝑖=1min(⌊ 1+

√
8𝑘+1
2
⌋, |𝜋𝑖 |), which is based on the observation

that an independent set with more than ⌊ 1+
√
8𝑘+1
2
⌋ vertices will

miss more than 𝑘 edges and thus cannot be all contained in the same

𝑘-defective clique. The upper bound of [11] has two deficiencies.

Firstly, it allows 𝑐 independent sets, each of size up-to ⌊ 1+
√
8𝑘+1
2
⌋, to

be included into the solution for computing the upper bound; this

will actually introduce almost 𝑐×𝑘 missing edges, much larger than

the allowed 𝑘 missing edges. In particular, if |𝜋𝑖 | ≥ ⌊ 1+
√
8𝑘+1
2
⌋ for

each 1 ≤ 𝑖 ≤ 𝑐 , then the upper bound becomes |𝑆 | + 𝑐 × ⌊ 1+
√
8𝑘+1
2
⌋,

while |𝑆 | +𝑐 +𝑘 is a much smaller upper bound. Secondly, it ignores

the missing edges within 𝑆 and the missing edges between 𝑆 and

𝑉 (𝑔) \ 𝑆 ; for example, the upper bound remains the same even if

𝑆 already has 𝑘 missing edges. Our UB1 computes a tighter upper

bound than |𝑆 | + 𝑐 + 𝑘 − |𝐸 (𝑆) | by resolving the above two issues;

here 𝐸 (𝑆) denotes the set of missing edges in 𝑆 .

Contributions. Our main contributions are as follows.

• We develop a general framework kDC for computing the

maximum 𝑘-defective clique in O∗ (𝛾𝑛
𝑘
) time, based on our

newly designed branching rule BR and reduction rules RR1
and RR2; here 𝛾𝑘 < 2 is the largest real root of the equation

𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0. (Section 3.1)

• Wepropose a new upper boundUB1 based on graph coloring,
which can be computed in linear time and is much tighter

than the upper bounds proposed in [11, 16]. (Section 3.2.1)

• We propose two new reduction rules RR3 and RR4 that can

be conducted in linear time. (Section 3.2.2)

• We propose an algorithm Degen-opt for computing a large

initial 𝑘-defective clique in O(𝛿 (𝐺) ×𝑚) time, where𝑚 is

the number of edges and 𝛿 (𝐺) ≤
√
𝑚 is the degeneracy of𝐺 .

(Section 3.3)

We also conduct extensive empirical studies on three benchmark

graph collections with 290 graph instances in total to evaluate our

techniques (Section 4). The results show that (1) on the real-world

graphs collection, kDC with a time limit of 3 seconds solves even
more graph instances than the existing fastest algorithm KDBB
with a time limit of 3 hours, and (2) on the 41 Facebook graphs that

have more than 15, 000 vertices, kDC is on average three orders

of magnitude faster than KDBB. In addition, our ablation studies

demonstrate that each of our additional techniques (i.e., upper

bound UB1, reduction rules RR3 and RR4, and initial solution

computation) improves the practical efficiency of kDC.

Efficient Maximum 𝑘-Defective Clique Computation with Improved Time Complexity Conference’17, July 2017, Washington, DC, USA

2 PRELIMINARIES
In this paper, we focus on a large unweighted and undirected graph
𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of undi-

rected edges; we consider only simple graphs, i.e., without self-
loops and parallel edges. Let 𝑛 = |𝑉 | and 𝑚 = |𝐸 | denote the

cardinalities of 𝑉 and 𝐸, respectively. We denote the undirected

edge between 𝑢 and 𝑣 by both (𝑢, 𝑣) and (𝑣,𝑢); then, 𝑢 (resp. 𝑣)

is said to be adjacent to and a neighbor of 𝑣 (resp. 𝑢). The set of

neighbors of 𝑢 in 𝐺 is 𝑁𝐺 (𝑢) = {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}, and the

degree of 𝑢 in 𝐺 is 𝑑𝐺 (𝑢) = |𝑁𝐺 (𝑢) |. Given a vertex subset 𝑆 of

𝐺 , we use 𝐺 [𝑆] to denote the subgraph of 𝐺 induced by 𝑆 , i.e.,

𝐺 [𝑆] = (𝑆, {(𝑢, 𝑣) ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑆}). For ease of presentation, we
simply refer to an unweighted and undirected graph as a graph,

and omit the subscript 𝐺 from the notations when the context is

clear. For an arbitrary given graph 𝑔, we denote its set of vertices

and its set of edges by 𝑉 (𝑔) and 𝐸 (𝑔), respectively.
Definition 2.1 (Clique). A graph 𝑔 is a clique (i.e., complete graph)

if it has an edge between every pair of distinct vertices, i.e., |𝐸 (𝑔) | =
|𝑉 (𝑔) | (|𝑉 (𝑔) |−1)

2
or equivalently, 𝑑𝑔 (𝑢) = |𝑉 (𝑔) | − 1,∀𝑢 ∈ 𝑉 (𝑔).

Definition 2.2 (𝑘-Defective Clique). A graph 𝑔 is a 𝑘-defective

clique if it misses at most 𝑘 edges, i.e., |𝐸 (𝑔) | ≥ |𝑉 (𝑔) | (|𝑉 (𝑔) |−1)
2

−𝑘 .
The definition of 𝑘-defective clique relaxes the definition of

clique by allowing a few (i.e., 𝑘) missing edges, and 0-defective

cliques are cliques. Obviously, if a subgraph 𝑔 of 𝐺 is a 𝑘-defective

clique, then the subgraph of 𝐺 induced by vertices 𝑉 (𝑔) is also
a 𝑘-defective clique. Thus, in this paper, we simply refer to a 𝑘-
defective clique by its set of vertices, and measure the size of a

𝑘-defective clique 𝐶 ⊆ 𝑉 by the number of vertices, i.e., |𝐶 |.

𝑣1

𝑣2 𝑣3 𝑣4

𝑣5𝑣6

𝑣7

𝑣8

𝑣9 𝑣10

𝑣11

𝑣12

Figure 2: An example graph
The property of 𝑘-defective clique is hereditary, i.e., any subset of

a 𝑘-defective clique is also a 𝑘-defective clique. A 𝑘-defective clique

𝐶 of 𝐺 is a maximal 𝑘-defective clique if every proper superset of 𝐶

in𝐺 is not a 𝑘-defective clique, and is amaximum 𝑘-defective clique
if its size is the largest among all 𝑘-defective cliques of 𝐺 ; note

that the maximum 𝑘-defective clique is not unique. Consider the

graph in Figure 2, {𝑣8, 𝑣9, . . . , 𝑣12} is a maximum clique and is also

a maximum 1-defective clique. In addition, both {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6}
and {𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣6} are maximum 1-defective cliques that miss the

edge (𝑣2, 𝑣4) and the edge (𝑣1, 𝑣5), respectively. {𝑣1, 𝑣2, . . . , 𝑣6} is a
maximum 2-defective clique that misses edges (𝑣2, 𝑣4) and (𝑣1, 𝑣5).

To facilitate the presentation, we denote the set of edges that

are missing from a graph 𝑔 by 𝐸 (𝑔), i.e., (𝑢, 𝑣) ∈ 𝐸 (𝑔) if and only

if 𝑢 ≠ 𝑣 and (𝑢, 𝑣) ∉ 𝐸 (𝑔); we call the edges of 𝐸 (𝑔) as non-edges
of 𝑔. Thus, 𝑔 is a 𝑘-defective clique if and only if |𝐸 (𝑔) | ≤ 𝑘 . For

two vertices 𝑢 and 𝑣 that are not adjacent (i.e., not connected by an

edge), we call 𝑣 (resp. 𝑢) a non-neighbor of 𝑢 (resp. 𝑣); note that a
vertex is considered neither a neighbor nor a non-neighbor
of itself. We denote the set of all non-neighbors of 𝑢 in 𝐺 by

Table 1: Frequently used notations

Notation Meaning

𝐺 = (𝑉 , 𝐸) an unweighted and undirected graph with vertex set

𝑉 and edge set 𝐸

𝑔 = (𝑉 (𝑔), 𝐸 (𝑔)) a subgraph of𝐺

𝑆,𝐶 ⊆ 𝑉 𝑘-defective cliques

𝑁𝑆 (𝑢) the set of 𝑢’s neighbors that are in 𝑆

𝑁𝑆 (𝑢) the set of 𝑢’s non-neighbors that are in 𝑆

𝑑𝑆 (𝑢) the number of 𝑢’s neighbors that are in 𝑆

𝐸 (𝑆) the set of (undirected) edges in the subgraph of 𝑔 (or

𝐺) induced by 𝑆

𝐸 (𝑆) the set of (undirected) non-edges in the subgraph of

𝑔 (or𝐺) induced by 𝑆

𝑁𝐺 (𝑢) = 𝑉 (𝐺) \ (𝑁𝐺 (𝑢) ∪𝑢); note that, for presentation simplicity,

we denote the union of a set 𝑆 and a vertex 𝑢 by 𝑆 ∪ 𝑢, and denote

the subtraction of 𝑢 from 𝑆 by 𝑆 \ 𝑢. For any set 𝑆 of vertices and

a vertex 𝑢 (where 𝑢 could be either in or not in 𝑆), we abbreviate

𝑁𝐺 [𝑆∪𝑢] (𝑢) as 𝑁𝑆 (𝑢) and abbreviate 𝑁𝐺 [𝑆∪𝑢] (𝑢) as 𝑁𝑆 (𝑢).
Problem Statement. Given a graph 𝐺 = (𝑉 , 𝐸) and an integer

𝑘 ≥ 1, we study the problem of maximum 𝑘-defective clique com-

putation, aiming to find the largest 𝑘-defective clique in 𝐺 .

Frequently used notations are summarized in Table 1.

2.1 Degeneracy Ordering, 𝑘-Core and 𝑘-Truss
In this subsection, we review the concepts of degeneracy ordering,

𝑘-core and 𝑘-truss, which will be used in Section 3.2.3.

Definition 2.3 (Degeneracy ordering). Given a graph 𝐺 , an order-

ing (𝑣1, 𝑣2, . . . , 𝑣𝑛) of its vertices is a degeneracy ordering if for each
1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑖 is the vertex with the smallest degree in the subgraph

of 𝐺 induced by vertices {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑛}.
Definition 2.4 (𝑘-core [37]). Given a graph 𝐺 and an integer 𝑘 ,

the 𝑘-core of 𝐺 is the maximal subgraph 𝑔 of 𝐺 such that every

vertex 𝑢 ∈ 𝑉 (𝑔) has degree 𝑑𝑔 (𝑢) ≥ 𝑘 in the subgraph 𝑔.

𝑘-core is a vertex-induced subgraph. The degeneracy ordering can
be computed in O(𝑚) time by the peeling algorithm [10, 28], which

iteratively removes the vertex with the smallest degree from the

graph and appends it to the end of the ordering. Note that, although

the 𝑘-core can also be computed by the peeling algorithm, it is

usually more efficient to directly compute the 𝑘-core by iteratively

removing vertices of degree smaller than 𝑘 from the graph [10]. The

largest 𝑘 such that 𝐺 contains a non-empty 𝑘-core is known as the

degeneracy of 𝐺 , denoted 𝛿 (𝐺); note that 𝛿 (𝐺) ≤
√
𝑚 [14]. For

the graph in Figure 2, (𝑣7, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣8, 𝑣9, 𝑣10, 𝑣11, 𝑣12) is a
degeneracy ordering. The entire graph is a 3-core, and the subgraph

obtained by removing 𝑣7 is a 4-core; 𝛿 (𝐺) = 4, as it has no 5-core.

Definition 2.5 (𝑘-truss [46]). Given a graph 𝐺 and an integer

𝑘 , the 𝑘-truss of 𝐺 is the maximal subgraph 𝑔 of 𝐺 such that ev-

ery edge (𝑢, 𝑣) ∈ 𝐸 (𝑔) participates in at least 𝑘 − 2 triangles, i.e.,
|𝑁𝑔 (𝑢) ∩ 𝑁𝑔 (𝑣) | ≥ 𝑘 − 2,∀(𝑢, 𝑣) ∈ 𝐸 (𝑔).

𝑘-truss is a subgraph of the (𝑘 − 1)-core, and is an edge-induced
subgraph. 𝑘-truss can be considered as a higher-order version of

𝑘-core. That is, each edge corresponds to a node, and each triangle

corresponds to a hyper-edge, in a hyper-graph. Hence, the 𝑘-truss

can be computed in a similar way to 𝑘-core, but the time com-

plexity becomes O(𝛿 (𝐺) ×𝑚) [46]. For the graph in Figure 2, the

Conference’17, July 2017, Washington, DC, USA Lijun Chang

entire graph is a 3-truss, the subgraph obtained by removing edges

{(𝑣7, 𝑣1), (𝑣7, 𝑣6), (𝑣7, 𝑣5)} (and thus also vertex 𝑣7) is a 4-truss, and

the subgraph induced by vertices {𝑣8, 𝑣9, . . . , 𝑣12} is a 5-truss which
is contained in the 4-core.

3 OUR APPROACH
In this section, we propose an efficient algorithm kDC for exact max-

imum 𝑘-defective clique computation. As the maximum 𝑘-defective

clique computation problem is NP-hard [48], our algorithm kDC,
as well as all other exact algorithms, will run in exponential time in

the worst case. Nevertheless, our algorithm kDC beats the trivial

time complexity of O∗ (2𝑛) where the O∗ notation hides polyno-

mial factors. Specifically, we prove that our algorithm kDC runs in

O∗ (𝛾𝑛
𝑘
) time where 𝛾𝑘 < 2 is the largest real root of the equation

𝑥𝑘+3−2𝑥𝑘+2+1 = 0; note that this improves the state-of-the-art time

complexity O∗ (𝛾𝑛
2𝑘
) [11], as 𝛾𝑘 increases regarding 𝑘 (i.e., 𝛾𝑘 < 𝛾

2𝑘).

In the following, we first in Section 3.1 present the framework

of kDC and prove its time complexity. Then, we in Section 3.2

propose upper bounds and reduction rules to improve the practical

performance of kDC. Lastly, we in Section 3.3 present a heuristic

algorithm for initially computing a large 𝑘-defective clique.

3.1 The Framework of kDC
Our algorithm falls into the category of branch-and-bound search

(also known as backtracking) algorithms; we will use the terms

backtracking and branch-and-bound search interchangeably. The

general idea is as follows. Let (𝑔, 𝑆) denote an instance of the back-

tracking, where 𝑔 is a graph and 𝑆 ⊆ 𝑉 (𝑔) is a 𝑘-defective clique in
𝑔. The goal of solving an instance is to find the largest 𝑘-defective

clique in the instance; a 𝑘-defective clique is said to be in the in-
stance (𝑔, 𝑆) if it is in 𝑔 and contains 𝑆 . To solve the instance (𝑔, 𝑆), a
backtracking algorithm will select a branching vertex 𝑏 ∈ 𝑉 (𝑔) \ 𝑆 ,
and then recursively solve two new instances that are generated

based on 𝑏: one instance includes 𝑏 into 𝑆 , and the other removes 𝑏

from 𝑔 (and thus excludes 𝑏 from being added into 𝑆). Solving the

instance (𝐺, ∅) thus finds the maximum 𝑘-defective clique in𝐺 . All

the instances that are generated in solving the instance (𝐺, ∅) form
a binary search tree, a snippet of which is shown in Figure 3. Each

node of the search tree, denoted by 𝐼𝑖 , represents an instance of the

backtracking (i.e., 𝐼𝑖 = (𝑔𝑖 , 𝑆𝑖)), and has two children representing

the two new instances that are generated based on the branching

vertex of the instance 𝐼𝑖 . For example, in Figure 3, the branching

vertex selected for the instance 𝐼0 is 𝑏0, and the two new instances

that are generated based on 𝑏0 are 𝐼1 (which includes 𝑏0 into the

solution) and 𝐼𝑞+1 (which removes 𝑏0 from the graph); the actions

of including 𝑏0 and removing 𝑏0 are, respectively, represented as

labels +𝑏0 and −𝑏0 on the corresponding edges in the search tree.

Backtracking algorithms differ from each other in three aspects:

• Branching techniques determine which vertex is selected

as the branching vertex, e.g., 𝑏0 for the instance 𝐼0 and 𝑏1
for the instance 𝐼1 in Figure 3.

• Reducing techniques reduce the size of an instance, i.e.,

transform an instance (𝑔, 𝑆) to another equivalent instance

(𝑔′, 𝑆′) with |𝑉 (𝑔′) \ 𝑆 ′ | ≤ |𝑉 (𝑔) \ 𝑆 |.1

1
Note that, reducing techniques could also remove edges from the graph, e.g., the

reduction rule RR6 in Section 3.2.2. We omit the discussions here for simplicity.

. . .

<latexit sha1_base64="Sfy8AwMARdHxu8OZqn0Pctl6YPQ=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIR67Lgpu4q2gfUUpLptA5NkzCZKKUI/oBb/TTxD/QvvDOmoBbRCUnOnHvPmbn3+nEgEuU4rzlrYXFpeSW/Wlhb39jcKm7vNJMolYw3WBREsu17CQ9EyBtKqIC3Y8m9sR/wlj860/HWLZeJiMIrNYl5d+wNQzEQzFNEXZ733F6x5JQds+x54GaghGzVo+ILrtFHBIYUY3CEUIQDeEjo6cCFg5i4LqbESULCxDnuUSBtSlmcMjxiR/Qd0q6TsSHttWdi1IxOCeiVpLRxQJqI8iRhfZpt4qlx1uxv3lPjqe82ob+feY2JVbgh9i/dLPO/Ol2LwgCnpgZBNcWG0dWxzCU1XdE3t79UpcghJk7jPsUlYWaUsz7bRpOY2nVvPRN/M5ma1XuW5aZ417ekAbs/xzkPmkdl96TsXhyXqpVs1HnsYR+HNM8KqqihjgZ5D/GIJzxbNSu0UuvuM9XKZZpdfFvWwwecp4/t</latexit>

I1

<latexit sha1_base64="5IqEco9yajTMEbH8UsSab+ftnXA=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIi1mXBTd1VtLVQS0nSaR2aJmEyUUoR/AG3+mniH+hfeGecglpEJyQ5c+49Z+be6ychT6XjvOashcWl5ZX8amFtfWNzq7i900rjTASsGcRhLNq+l7KQR6wpuQxZOxHMG/shu/JHpyp+dctEyuPoUk4S1h17w4gPeOBJoi7OepVeseSUHb3seeAaUIJZjbj4gmv0ESNAhjEYIkjCITyk9HTgwkFCXBdT4gQhruMM9yiQNqMsRhkesSP6DmnXMWxEe+WZanVAp4T0ClLaOCBNTHmCsDrN1vFMOyv2N++p9lR3m9DfN15jYiVuiP1LN8v8r07VIjHAia6BU02JZlR1gXHJdFfUze0vVUlySIhTuE9xQTjQylmfba1Jde2qt56Ov+lMxap9YHIzvKtb0oDdn+OcB61K2T0uu+dHpVrVjDqPPezjkOZZRQ11NNAk7yEe8YRnq25FVmbdfaZaOaPZxbdlPXwAnweP7g==</latexit>

I2

<latexit sha1_base64="OwamWrcKlmbO4jgXUlDOHL5fk/E=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIR67Lgpu4q2gdoKcl0WoemSUwmSimCP+BWP038A/0L74xTUIvohCRnzr3nzNx7/TgQqXSc15w1N7+wuJRfLqysrq1vFDe3mmmUJYw3WBRESdv3Uh6IkDekkAFvxwn3Rn7AW/7wRMVbtzxJRRReyHHMOyNvEIq+YJ4k6vy0e9Mtlpyyo5c9C1wDSjCrHhVfcIUeIjBkGIEjhCQcwENKzyVcOIiJ62BCXEJI6DjHPQqkzSiLU4ZH7JC+A9pdGjakvfJMtZrRKQG9CSlt7JEmoryEsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VItHHsa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3KN4Qphp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQfOg7B6V3bPDUrViRp3HDnaxT/OsoIoa6miQ9wCPeMKzVbNCK7PuPlOtnNFs49uyHj4ANLaQLQ==</latexit>

Iq

<latexit sha1_base64="sjjdzlinldeaIqij6rXKZ2vBghI=">AAAC0HicjVHLSsNAFD2Nr1pfVZduUosgCCURsS4LbnRXxT6gKSVJpzU0ryYTsZQibv0Bt/pV4h/oX3hnTEEtohOSnDn3njNz77VC14m5pr1mlLn5hcWl7HJuZXVtfSO/uVWPgySyWc0O3CBqWmbMXMdnNe5wlzXDiJme5bKGNTgV8cYNi2In8K/4KGRtz+z7Ts+xTU5U+9wodMZDo3CgG4VJJ1/USppc6izQU1BEuqpB/gUGughgI4EHBh+csAsTMT0t6NAQEtfGmLiIkCPjDBPkSJtQFqMMk9gBffu0a6WsT3vhGUu1Tae49EakVLFHmoDyIsLiNFXGE+ks2N+8x9JT3G1Efyv18ojluCb2L9008786UQtHDyeyBodqCiUjqrNTl0R2Rdxc/VIVJ4eQOIG7FI8I21I57bMqNbGsXfTWlPE3mSlYsbfT3ATv4pY0YP3nOGdB/bCkH5f0i6NipZyOOosd7GKf5llGBWeookbeQzziCc/KpXKr3Cn3n6lKJtVs49tSHj4AaDSTXA==</latexit>

Iq+1

<latexit sha1_base64="+nWeOLRNZD0TL8eRmO9R04zqUsg=">AAAC0HicjVHLSsNAFD2Nr1pfVZduUosgCCUpYl0W3Oiuin1AU0qSTmtoXk0mYilF3PoDbvWrxD/Qv/DOGEEtohOSnDn3njNz77VC14m5pr1klLn5hcWl7HJuZXVtfSO/udWIgySyWd0O3CBqWWbMXMdnde5wl7XCiJme5bKmNTwR8eY1i2In8C/5OGQdzxz4Tt+xTU5U58wodCcjo3BQNgrTbr6olTS51Fmgp6CIdNWC/DMM9BDARgIPDD44YRcmYnra0KEhJK6DCXERIUfGGabIkTahLEYZJrFD+g5o105Zn/bCM5Zqm05x6Y1IqWKPNAHlRYTFaaqMJ9JZsL95T6SnuNuY/lbq5RHLcUXsX7rPzP/qRC0cfRzLGhyqKZSMqM5OXRLZFXFz9UtVnBxC4gTuUTwibEvlZ59VqYll7aK3poy/ykzBir2d5iZ4E7ekAes/xzkLGuWSflTSzw+L1Uo66ix2sIt9mmcFVZyihjp5j/CARzwpF8qNcqvcfaQqmVSzjW9LuX8HapeTXQ==</latexit>

Iq+2

<latexit sha1_base64="5Z7/hRZfP0/jzBBsMW9ZS7Dex5E=">AAAC0HicjVHLSsNAFD2Nr1pfVZduUosgCCVRsS4LbnRXxT7AlJKk0xqaV5OJWEoRt/6AW/0q8Q/0L7wzpqAW0QlJzpx7z5m591qh68Rc014zyszs3PxCdjG3tLyyupZf36jHQRLZrGYHbhA1LTNmruOzGne4y5phxEzPclnD6p+IeOOGRbET+Jd8GLKWZ/Z8p+vYJieqdWYU2qOBUdg7MArjdr6olTS51Gmgp6CIdFWD/AsMdBDARgIPDD44YRcmYnquoENDSFwLI+IiQo6MM4yRI21CWYwyTGL79O3R7iplfdoLz1iqbTrFpTcipYod0gSUFxEWp6kynkhnwf7mPZKe4m5D+lupl0csxzWxf+kmmf/ViVo4ujiWNThUUygZUZ2duiSyK+Lm6peqODmExAncoXhE2JbKSZ9VqYll7aK3poy/yUzBir2d5iZ4F7ekAes/xzkN6vsl/aiknx8WK+V01FlsYRu7NM8yKjhFFTXyHuART3hWLpRb5U65/0xVMqlmE9+W8vABbPqTXg==</latexit>

Iq+3

<latexit sha1_base64="3XI9JWD4uQNN1M9m/IVd7JLL1IA=">AAACy3icjVHLSsNAFD2Nr1pfVZduokVwVRIR67LgRhdCBfuAtpQkndahaRInE6HWLv0Bt/pf4h/oX3hnTEEtohOSnDn3nDtz73Ujn8fSsl4zxtz8wuJSdjm3srq2vpHf3KrFYSI8VvVCPxQN14mZzwNWlVz6rBEJ5gxdn9XdwamK12+ZiHkYXMlRxNpDpx/wHvccSVTjvLXbGR/eTDr5glW09DJngZ2CAtJVCfMvaKGLEB4SDMEQQBL24SCmpwkbFiLi2hgTJwhxHWeYIEfehFSMFA6xA/r2addM2YD2Kmes3R6d4tMryGlinzwh6QRhdZqp44nOrNjfco91TnW3Ef3dNNeQWIlrYv/yTZX/9alaJHo40TVwqinSjKrOS7Mkuivq5uaXqiRliIhTuEtxQdjTzmmfTe2Jde2qt46Ov2mlYtXeS7UJ3tUtacD2z3HOgtph0T4u2pdHhXIpHXUWO9jDAc2zhDLOUEFVz/ERT3g2LozYuDPuP6VGJvVs49syHj4A5heSBg==</latexit>

I2q

<latexit sha1_base64="VwWuY56GTNPUVhYSn8JL0tn37vo=">AAAC0HicjVHLSsNAFD2Nr1pfVZduUovgxpKIWJcFN7qrYh/QlJKk0xqaV5OJWEoRt/6AW/0q8Q/0L7wzpqAW0QlJzpx7z5m591qh68Rc014zytz8wuJSdjm3srq2vpHf3KrHQRLZrGYHbhA1LTNmruOzGne4y5phxEzPclnDGpyKeOOGRbET+Fd8FLK2Z/Z9p+fYJieqfW4UOuOhUTgwCvqkky9qJU0udRboKSgiXdUg/wIDXQSwkcADgw9O2IWJmJ4WdGgIiWtjTFxEyJFxhglypE0oi1GGSeyAvn3atVLWp73wjKXaplNceiNSqtgjTUB5EWFxmirjiXQW7G/eY+kp7jaiv5V6ecRyXBP7l26a+V+dqIWjhxNZg0M1hZIR1dmpSyK7Im6ufqmKk0NInMBdikeEbamc9lmVmljWLnpryvibzBSs2NtpboJ3cUsasP5znLOgfljSj0v6xVGxUk5HncUOdrFP8yyjgjNUUSPvIR7xhGflUrlV7pT7z1Qlk2q28W0pDx9tF5Ne</latexit>

Iq�1

<latexit sha1_base64="+7hqr5zGEm3iO/baLczH2fdo78c=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIR67Lgpu4q2gfUUpLptA5NkzCZKKUI/oBb/TTxD/QvvDOmoBbRCUnOnHvPmbn3+nEgEuU4rzlrYXFpeSW/Wlhb39jcKm7vNJMolYw3WBREsu17CQ9EyBtKqIC3Y8m9sR/wlj860/HWLZeJiMIrNYl5d+wNQzEQzFNEXZ73nF6x5JQds+x54GaghGzVo+ILrtFHBIYUY3CEUIQDeEjo6cCFg5i4LqbESULCxDnuUSBtSlmcMjxiR/Qd0q6TsSHttWdi1IxOCeiVpLRxQJqI8iRhfZpt4qlx1uxv3lPjqe82ob+feY2JVbgh9i/dLPO/Ol2LwgCnpgZBNcWG0dWxzCU1XdE3t79UpcghJk7jPsUlYWaUsz7bRpOY2nVvPRN/M5ma1XuW5aZ417ekAbs/xzkPmkdl96TsXhyXqpVs1HnsYR+HNM8KqqihjgZ5D/GIJzxbNSu0UuvuM9XKZZpdfFvWwweaR4/s</latexit>

I0
<latexit sha1_base64="VGUj0vhS8HOoikr2gW7RcMqpO18=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkUQhJKIqAsXBTe6q2AfUEtJptN2MM2EZFIsxYU/4Fb/TPwD/QvvjCmoRXRCkjPn3nNm7r1+FIhEOc5rzpqbX1hcyi8XVlbX1jeKm1v1RKYx4zUmAxk3fS/hgQh5TQkV8GYUc2/oB7zh357reGPE40TI8FqNI94eev1Q9ATzlKYO/I7TKZacsmOWPQvcDJSQraosvuAGXUgwpBiCI4QiHMBDQk8LLhxExLUxIS4mJEyc4x4F0qaUxSnDI/aWvn3atTI2pL32TIya0SkBvTEpbeyRRlJeTFifZpt4apw1+5v3xHjqu43p72deQ2IVBsT+pZtm/lena1Ho4dTUIKimyDC6Opa5pKYr+ub2l6oUOUTEadyleEyYGeW0z7bRJKZ23VvPxN9Mpmb1nmW5Kd71LWnA7s9xzoL6Ydk9LrtXR6XKWTbqPHawi32a5wkquEAVNfIe4BFPeLYuLWmNrLvPVCuXabbxbVkPH2POkD8=</latexit>

+b0

<latexit sha1_base64="Cel8SFyF5AXRG2oea0Rg/olDQwU=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkUQhJKIqAsXBTe6q2AfUEtJptN2MM2EZFIsxYU/4Fb/TPwD/QvvjCmoRXRCkjPn3nNm7r1+FIhEOc5rzpqbX1hcyi8XVlbX1jeKm1v1RKYx4zUmAxk3fS/hgQh5TQkV8GYUc2/oB7zh357reGPE40TI8FqNI94eev1Q9ATzlKYO/I7bKZacsmOWPQvcDJSQraosvuAGXUgwpBiCI4QiHMBDQk8LLhxExLUxIS4mJEyc4x4F0qaUxSnDI/aWvn3atTI2pL32TIya0SkBvTEpbeyRRlJeTFifZpt4apw1+5v3xHjqu43p72deQ2IVBsT+pZtm/lena1Ho4dTUIKimyDC6Opa5pKYr+ub2l6oUOUTEadyleEyYGeW0z7bRJKZ23VvPxN9Mpmb1nmW5Kd71LWnA7s9xzoL6Ydk9LrtXR6XKWTbqPHawi32a5wkquEAVNfIe4BFPeLYuLWmNrLvPVCuXabbxbVkPH2YukEA=</latexit>

+b1

<latexit sha1_base64="0UP9wCLF4jNOBQtFTgIcHgvvtWQ=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwY0lE1IWLghvdVbAPqKUk02k7mGZCMimW4sIfcKt/Jv6B/oV3xhTUIjohyZlz7zkz914/CkSiHOc1Z83NLywu5ZcLK6tr6xvFza16ItOY8RqTgYybvpfwQIS8poQKeDOKuTf0A97wb891vDHicSJkeK3GEW8PvX4oeoJ5SlMHfsfpFEtO2THLngVuBkrIVlUWX3CDLiQYUgzBEUIRDuAhoacFFw4i4tqYEBcTEibOcY8CaVPK4pThEXtL3z7tWhkb0l57JkbN6JSA3piUNvZIIykvJqxPs008Nc6a/c17Yjz13cb09zOvIbEKA2L/0k0z/6vTtSj0cGpqEFRTZBhdHctcUtMVfXP7S1WKHCLiNO5SPCbMjHLaZ9toElO77q1n4m8mU7N6z7LcFO/6ljRg9+c4Z0H9sOwel92ro1LlLBt1HjvYxT7N8wQVXKCKGnkP8IgnPFuXlrRG1t1nqpXLNNv4tqyHD2iUkEE=</latexit>�b0

<latexit sha1_base64="vPVf+R/J6FtOdbEwMxMTaaB/ghg=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwY0lE1IWLghvdVbAPqKUk02k7mGZCMimW4sIfcKt/Jv6B/oV3xhTUIjohyZlz7zkz914/CkSiHOc1Z83NLywu5ZcLK6tr6xvFza16ItOY8RqTgYybvpfwQIS8poQKeDOKuTf0A97wb891vDHicSJkeK3GEW8PvX4oeoJ5SlMHfsftFEtO2THLngVuBkrIVlUWX3CDLiQYUgzBEUIRDuAhoacFFw4i4tqYEBcTEibOcY8CaVPK4pThEXtL3z7tWhkb0l57JkbN6JSA3piUNvZIIykvJqxPs008Nc6a/c17Yjz13cb09zOvIbEKA2L/0k0z/6vTtSj0cGpqEFRTZBhdHctcUtMVfXP7S1WKHCLiNO5SPCbMjHLaZ9toElO77q1n4m8mU7N6z7LcFO/6ljRg9+c4Z0H9sOwel92ro1LlLBt1HjvYxT7N8wQVXKCKGnkP8IgnPFuXlrRG1t1nqpXLNNv4tqyHD2r0kEI=</latexit>�b1

<latexit sha1_base64="tE0EqnGNsXuodqx/QaTp3Kk2sCo=">AAACx3icjVHLSsNAFD2Nr1pfVZdugkVwY0mKqAsXBTe6q2AfUEtJ0mkbmheTSbEUF/6AW/0z8Q/0L7wzTkEtohOSnDn3njNz73WTwE+FZb3mjIXFpeWV/GphbX1jc6u4vdNI44x7rO7FQcxbrpOywI9YXfgiYK2EMyd0A9Z0Rxcy3hwznvpxdCMmCeuEziDy+77nCEkdud1Kt1iyypZa5jywNShBr1pcfMEteojhIUMIhgiCcAAHKT1t2LCQENfBlDhOyFdxhnsUSJtRFqMMh9gRfQe0a2s2or30TJXao1MCejkpTRyQJqY8TlieZqp4ppwl+5v3VHnKu03o72qvkFiBIbF/6WaZ/9XJWgT6OFM1+FRTohhZnaddMtUVeXPzS1WCHBLiJO5RnBP2lHLWZ1NpUlW77K2j4m8qU7Jy7+ncDO/yljRg++c450GjUrZPyvb1cal6rkedxx72cUjzPEUVl6ihTt5DPOIJz8aVERtj4+4z1chpzS6+LePhA21UkEM=</latexit>�b2

<latexit sha1_base64="I9UvdzIWS+yGZOdLl959lAkAsVY=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkUQxJKIqAsXBTduhAr2AbWUJJ3W0LycTIRau/QH3Op/iX+gf+GdcQS1iE5Icubcc+7MvddNAj8VlvWSM6amZ2bn8vOFhcWl5ZXi6lo9jTPusZoXBzFvuk7KAj9iNeGLgDUTzpzQDVjDHZzIeOOG8dSPowsxTFg7dPqR3/M9RxDV3HE7o+tde9wplqyypZY5CWwNStCrGhefcYkuYnjIEIIhgiAcwEFKTws2LCTEtTEijhPyVZxhjAJ5M1IxUjjEDujbp11LsxHtZc5UuT06JaCXk9PEFnli0nHC8jRTxTOVWbK/5R6pnPJuQ/q7OldIrMAVsX/5PpX/9claBHo4UjX4VFOiGFmdp7Nkqivy5uaXqgRlSIiTuEtxTthTzs8+m8qTqtplbx0Vf1VKycq9p7UZ3uQtacD2z3FOgvpe2T4o2+f7pcqxHnUeG9jENs3zEBWcooqamuMDHvFknBmpcWvcfUiNnPas49sy7t8ByUiR/g==</latexit>

+bq�1
<latexit sha1_base64="HgfO2Xo7+rT/eFLp7IaUtGjbs4k=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVw05KIqAsXBTduhAq2FmopSTqtQ/NyMhFq7dIfcKv/Jf6B/oV3xhTUIjohyZlzz7kz91439nkiLes1Z8zMzs0v5BcLS8srq2vF9Y1GEqXCY3Uv8iPRdJ2E+Txkdcmlz5qxYE7g+uzSHZyo+OUtEwmPwgs5jFk7cPoh73HPkUQ1y25ndFO2x51iyapYepnTwM5ACdmqRcUXXKGLCB5SBGAIIQn7cJDQ04INCzFxbYyIE4S4jjOMUSBvSipGCofYAX37tGtlbEh7lTPRbo9O8ekV5DSxQ56IdIKwOs3U8VRnVuxvuUc6p7rbkP5ulisgVuKa2L98E+V/faoWiR6OdA2caoo1o6rzsiyp7oq6ufmlKkkZYuIU7lJcEPa0c9JnU3sSXbvqraPjb1qpWLX3Mm2Kd3VLGrD9c5zToLFXsQ8q9vl+qXqcjTqPLWxjl+Z5iCpOUUNdz/ERT3g2zozEuDPuP6VGLvNs4tsyHj4AzhaSAA==</latexit>�bq�1

Figure 3: A snippet of the (binary) search tree T of a back-
tracking algorithm
• Upper bounding techniques prune an instance, as well as

the entire search subtree rooted at the instance, if a computed

upper bound of the largest 𝑘-defective clique in the instance

is no larger than the best solution found so far.

In this paper, we propose new techniques from all the three as-

pects for the problem of maximum 𝑘-defective clique computation.

In this subsection, we only present the techniques that are required

to achieve our time complexity of O∗ (𝛾𝑛
𝑘
), and defer other practical

techniques to Sections 3.2 and 3.3.

3.1.1 Techniques for Achieving Our Time Complexity. We first pro-

pose the following non-fully-adjacent-first branching rule (BR),
which prefers branching on a vertex that is not fully adjacent to 𝑆 .

BR (non-fully-adjacent first branching rule). Given an in-
stance (𝑔, 𝑆), the branching vertex is selected as the one of

𝑉 (𝑔) \𝑆 that has at least one non-neighbor in 𝑆 ; if all vertices

of𝑉 (𝑔)\𝑆 are adjacent to all vertices of 𝑆 , then the branching
vertex is an arbitrary vertex of 𝑉 (𝑔) \ 𝑆 .

Note that, the way of selecting a branching vertex will not compro-

mise the correctness of the algorithm, as long as the union of 𝑆 and
the branching vertex forms a 𝑘-defective clique. To achieve our time

complexity, we also propose the following two reduction rules.

RR1 (excess-removal reduction rule). Given an instance (𝑔, 𝑆),
for a vertex𝑢 ∈ 𝑉 (𝑔) \𝑆 satisfying |𝐸 (𝑆∪𝑢) | > 𝑘 , we remove

𝑢 from 𝑔.

RR2 (high-degree reduction rule). Given an instance (𝑔, 𝑆),
for a vertex 𝑢 ∈ 𝑉 (𝑔) \ 𝑆 satisfying |𝐸 (𝑆 ∪ 𝑢) | ≤ 𝑘 and

𝑑𝑔 (𝑢) ≥ |𝑉 (𝑔) | − 2, we greedily add 𝑢 to 𝑆 .

The reduction ruleRR1 ensures that the union of 𝑆 and any branch-

ing vertex (including the one selected by our branching rule BR)
form a valid 𝑘-defective clique, by noting that all reduction rules are
applied before the branching rule. The correctness of the reduction
rule RR1 is trivial, and we prove the correctness for the reduction

rule RR2 in the lemma below.

Lemma 3.1. Given an instance (𝑔, 𝑆), for a vertex 𝑢 ∈ 𝑉 (𝑔) \ 𝑆
satisfying |𝐸 (𝑆∪𝑢) | ≤ 𝑘 and 𝑑𝑔 (𝑢) ≥ |𝑉 (𝑔) |−2, there is a maximum
𝑘-defective clique in the instance that contains 𝑢.

Proof. The case of 𝑑𝑔 (𝑢) = |𝑉 (𝑔) | − 1 (i.e., 𝑢 is adjacent to all

other vertices in 𝑔) is trivial. Let’s focus on the case of 𝑑𝑔 (𝑢) =
|𝑉 (𝑔) | − 2 and consider a maximum 𝑘-defective clique 𝐶 in the

instance that does not contain 𝑢, i.e., 𝑢 ∉ 𝐶 and 𝑆 ⊆ 𝐶 ⊆ 𝑉 (𝑔). Let
𝑣 be the unique non-neighbor of 𝑢 in 𝑔. Then, 𝑣 must be in 𝐶 , as

otherwise 𝐶 ∪𝑢 would be a 𝑘-defective clique of size larger than 𝐶 .

We consider two cases depending on whether 𝑣 ∈ 𝑆 .
Case-I: 𝑣 ∉ 𝑆 . That is, 𝑣 ∈ 𝐶 \ 𝑆 . It is easy to verify that 𝐶 ∪ 𝑢 \ 𝑣 is
a 𝑘-defective clique of the same size as 𝐶 and contains 𝑢 and 𝑆 .

Efficient Maximum 𝑘-Defective Clique Computation with Improved Time Complexity Conference’17, July 2017, Washington, DC, USA

Case-II: 𝑣 ∈ 𝑆 . There must exist a vertex of 𝐶 \ 𝑆 that has at least

one non-neighbor in 𝐶 , since otherwise 𝐶 ∪ {𝑢} would also be a

valid 𝑘-defective clique by noting that |𝐸 (𝑆 ∪𝑢) | ≤ 𝑘 ; let𝑤 be such

a vertex of 𝐶 \ 𝑆 . It is easy to verify that 𝐶 ∪ 𝑢 \𝑤 , which contains

𝑢 and 𝑆 , is a 𝑘-defective clique of the same size as 𝐶 . □

Algorithm 1: kDC-t(𝐺,𝑘)
Input: A graph𝐺 and an integer 𝑘

Output: A maximum 𝑘-defective clique𝐶∗ of𝐺

1 𝐶∗ ← ∅;
2 Branch&Bound-t(𝐺, ∅) ;
3 return𝐶∗;

Procedure Branch&Bound-t(𝑔, 𝑆)
4 (𝑔′, 𝑆 ′) ← apply reduction rules RR1 and RR2 to (𝑔, 𝑆) ;
5 if 𝑔′ is a 𝑘-defective clique then update𝐶∗ by𝑉 (𝑔′) and return;
6 𝑏 ← a vertex of𝑉 (𝑔′) \ 𝑆 ′ that has at least one non-neighbor in 𝑆 ′;

/* If there is no such a vertex, then 𝑏 is an arbitrary

vertex of 𝑉 (𝑔′) \ 𝑆 ′ */;

7 Branch&Bound-t(𝑔′, 𝑆 ′ ∪ 𝑏) ; /* Left branch includes 𝑏 */;

8 Branch&Bound-t(𝑔′ \ 𝑏, 𝑆 ′) ; /* Right branch excludes 𝑏 */;

Based on the above discussions, the pseudocode of our algorithm

kDC-t is shown inAlgorithm 1; here t stands for theoretical as the al-
gorithm only considers the theoretical aspect. It takes a graph𝐺 and

an integer 𝑘 as input, and outputs a maximum 𝑘-defective clique𝐶∗

of𝐺 which is achieved by recursively invoking Branch&Bound-t to
grow a partial solution 𝑆 that is initialized as ∅ (Line 2). In the pro-

cedure Branch&Bound-t, we first apply reduction rules RR1 and

RR2 to reduce the instance (𝑔, 𝑆) to a potentially smaller instance

(𝑔′, 𝑆′) satisfying 𝑉 (𝑔′) ⊆ 𝑉 (𝑔) and 𝑆 ′ ⊇ 𝑆 (Line 4). If 𝑔′ itself is a
𝑘-defective clique, then we update the currently found largest 𝑘-

defective clique 𝐶∗ by 𝑉 (𝑔′) and backtrack (Line 5). Otherwise, we

pick a branching vertex 𝑏 based on our branching rule BR (Line 6),

and then generate two new instances of Branch&Bound-t and go

into recursion (Lines 7–8).

g2

v2

v3

v4

v5

v6

v7

v8

v9

v1

g1

Figure 4: Running example for Algorithm 1 (thick edge indi-
cates full connection between the subgraphs)

Example 3.2. Consider the example graph in Figure 4 where

thick edge indicates full connection between the corresponding

subgraphs, i.e., 𝑣1 is adjacent to every other vertex, and every vertex

of𝑔1 is adjacent to every vertex of𝑔2. Suppose𝑘 = 3, when invoking

Branch&Bound-t with 𝑔 = 𝐺 and 𝑆 = ∅, our reduction rule RR2
will greedily and iteratively move 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 to 𝑆 . Then, an

arbitrary vertex of {𝑣6, . . . , 𝑣9} can be selected as the branching

vertex; suppose 𝑣6 is selected. The newly generated left branch

would have 𝑆1 = {𝑣1, . . . , 𝑣6}, and the reduction rules RR1 and

RR2 would have no effect for 𝑆1; note that the graph 𝑔 will remain

unchanged in the remaining part of this example. The branching

vertex selected for 𝑆1 could be either 𝑣8 or 𝑣9 (as they are not fully

adjacent to 𝑆1) but not 𝑣7 (which is fully adjacent to 𝑆1); suppose

𝑣8 is selected. The newly generated left branch for 𝑆1 would have

𝑆2 = {𝑣1, . . . , 𝑣6, 𝑣8} which contains three non-edges, and thus the

reduction rule RR1 will remove 𝑣7 and 𝑣9 from the graph.

3.1.2 Time Complexity Analysis of Algorithm 1. To analyze the

time complexity of Algorithm 1, we consider the search tree T
of recursively invoking Branch&Bound-t, as shown in Figure 3.

To avoid confusion, we refer to nodes of the search tree by nodes,
and vertices of a graph by vertices. Recall that each node of T
represents an instance of Branch&Bound-t, i.e., (𝑔, 𝑆), and has two

children: the left child includes the branching vertex 𝑏 to 𝑆 , and

the right child excludes 𝑏 from 𝑔. It is worth mentioning that each

child may also include or exclude other vertices due to applying

reduction rulesRR1 andRR2. We use 𝐼 , 𝐼 ′, 𝐼0, 𝐼1, . . . to denote nodes
of T , and use 𝐼 .𝑔 and 𝐼 .𝑆 to respectively denote the graph 𝑔 and

the partial solution 𝑆 of the Branch&Bound-t instance to which 𝐼

corresponds. We would like to emphasize that 𝐼 .𝑔 and 𝐼 .𝑆 denote
the ones obtained after applying the reduction rules at Lines 4–
5 of Algorithm 1, not the ones input to Branch&Bound-t; note that
Line 5 can be regarded as applying the following reduction rule:

• If 𝑔′ is a 𝑘-defective clique, then all vertices of𝑉 (𝑔′) \ 𝑆 ′ are
moved to 𝑆 ′.

In this case, the instance will not generate any children (i.e., any

new instances) and thus becomes a leaf node. We measure the size

of 𝐼 by the number of vertices in the graph 𝐼 .𝑔 that are not in the

partial solution 𝐼 .𝑆 , i.e., |𝐼 | = |𝑉 (𝐼 .𝑔) | − |𝐼 .𝑆 | = |𝑉 (𝐼 .𝑔) \ 𝐼 .𝑆 | ≥ 0. It

is easy to see that |𝐼 ′ | ≤ |𝐼 | − 1 whenever 𝐼 ′ is a child of 𝐼 — e.g., the
branching vertex 𝑏 of 𝐼 is in 𝑉 (𝐼 .𝑔) \ 𝐼 .𝑆 but not in 𝑉 (𝐼 ′ .𝑔) \ 𝐼 ′ .𝑆 —
and |𝐼 | = 0 whenever 𝐼 is a leaf node.

Before proving the time complexity, we first state the following

important property of exhaustively applying the reduction rules

RR1 and RR2, whose proof is omitted due to space limitation.

Lemma 3.3. After exhaustively applying the reduction rules RR1
andRR2, the resulting instance (𝑔, 𝑆) satisfies the following condition:
• For every vertex 𝑢 ∈ 𝑉 (𝑔) \ 𝑆 , it holds that |𝐸 (𝑆 ∪𝑢) | ≤ 𝑘 and
𝑑𝑔 (𝑢) < |𝑉 (𝑔) | − 2.

i.e., all vertices of𝑉 (𝑔) \ 𝑆 have at least two non-neighbors in 𝑔.

We are now ready to prove the time complexity of Algorithm 1

in the following lemma and theorem.

Lemma 3.4. Let T be the search tree of running Algorithm 1 (i.e.,
recursively invoking Branch&Bound-t). For any node 𝐼 of T , the
number of leaf nodes in the subtree of T rooted at 𝐼 , denoted ℓ (𝐼), is
at most 𝛾 |𝐼 |

𝑘
, where 1 < 𝛾𝑘 < 2 is the largest real root of the equation

𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0.

Proof. We prove the lemma by induction. For the base case that

𝐼 is a leaf node, it is trivial that ℓ (𝐼) = 1 ≤ 𝛾
|𝐼 |
𝑘

since 𝛾𝑘 > 1 and

|𝐼 | = 0. For a non-leaf node 𝐼 , for any path (𝐼0 = 𝐼 , 𝐼1, . . . , 𝐼𝑞−1, 𝐼𝑞)
with 𝑞 ≥ 1 that starts from 𝐼 and always visits the left child in the

search tree T , it is trivial that
ℓ (𝐼) = ℓ (𝐼𝑞+1) + ℓ (𝐼𝑞+2) + · · · + ℓ (𝐼2𝑞) + ℓ (𝐼𝑞)

here, 𝐼𝑞+1, 𝐼𝑞+2, . . . , 𝐼2𝑞 are the right child of 𝐼0, 𝐼1, . . . , 𝐼𝑞−1, respec-
tively, as illustrated in Figure 3. To bound ℓ (𝐼), let’s specifically
consider the path (𝐼0 = 𝐼 , 𝐼1, . . . , 𝐼𝑞) where 𝐼𝑞 is the first node such

Conference’17, July 2017, Washington, DC, USA Lijun Chang

that |𝐼𝑞 | ≤ |𝐼𝑞−1 | − 2; this implies that for 1 ≤ 𝑖 < 𝑞, |𝐼𝑖 | = |𝐼𝑖−1 | − 1
and consequently𝑉 (𝐼𝑖 .𝑔) = 𝑉 (𝐼 .𝑔) and the reduction rules at Line 4

of Algorithm 1 have no effect on 𝐼𝑖−1. Note that such a node 𝐼𝑞
always exists since (1) 𝐼 .𝑔 is not a 𝑘-defective clique (otherwise, 𝐼

would be a leaf node) and (2) a leaf node 𝐼 ′ satisfies |𝐼 ′ | = 0 (i.e.,

𝐼 ′ .𝑆 = 𝑉 (𝐼 ′ .𝑔) ≠ 𝑉 (𝐼 .𝑔) and thus 𝐼 ′ would satisfy the condition).

Hence, the following two facts hold.

Fact 1. |𝐼𝑖 | ≤ |𝐼𝑖−𝑞−1 | − 1 ≤ |𝐼 | + 𝑞 − 𝑖 , for 𝑞 + 1 ≤ 𝑖 ≤ 2𝑞.

Fact 2. |𝐼𝑞 | ≤ |𝐼𝑞−1 | − 2 ≤ |𝐼 | − 𝑞 − 1.
Now, we prove that the following fact also holds.

Fact 3. 𝑞 ≤ 𝑘 + 1.
We prove Fact 3 by contradiction. Suppose𝑞 ≥ 𝑘+2. Let 𝐼𝑥 be the last

node, on the path (𝐼0 = 𝐼 , 𝐼1, . . . , 𝐼𝑥 , . . . , 𝐼𝑞), satisfying the condition
that all vertices of 𝑉 (𝐼𝑥 .𝑔) \ 𝐼𝑥 .𝑆 are adjacent to all vertices of 𝐼𝑥 .𝑆 ,

i.e., the branching vertex 𝑏𝑥 selected for 𝐼𝑥 has no non-neighbor

in 𝐼𝑥 .𝑆 ; without loss of generality, we assume such an 𝐼𝑥 exists,

otherwise the following proof still holds by setting 𝑥 = 0. Then,

|𝐸 (𝐼𝑥 .𝑆) | ≥ 𝑥 since (1) each branching vertex added to 𝐼𝑥 .𝑆 along the

path (𝐼0 = 𝐼 , . . . , 𝐼𝑥−1) has at least two non-neighbors (according to
Lemma 3.3), and (2) all these non-neighbors are in 𝐼𝑥 .𝑆 (according to

the definition of 𝐼𝑥); note that, according to the definition of 𝐼𝑞 , the

reduction rules have no effect on 𝐼𝑖 for 1 ≤ 𝑖 < 𝑞. This implies that

𝑥 ≤ 𝑘 . Then, according to the definition of 𝐼𝑥 and our branching

rule BR, for each 𝑖 with 𝑥 +1 ≤ 𝑖 < 𝑞, the branching vertex selected

for 𝐼𝑖 has at least one non-neighbor in 𝐼𝑖 .𝑆 , and consequently,

|𝐸 (𝐼𝑞 .𝑆) | ≥ |𝐸 (𝐼𝑥 .𝑆) | + (𝑞 − 𝑥 − 1) ≥ 𝑞 − 1 ≥ 𝑘 + 1
contradicting that 𝐼𝑞 .𝑆 is a 𝑘-defective clique. Hence, Fact 3 holds.

Based on Facts 1, 2 and 3, we have

ℓ (𝐼) = ℓ (𝐼𝑞+1) + ℓ (𝐼𝑞+2) + · · · + ℓ (𝐼2𝑞) + ℓ (𝐼𝑞)

≤ 𝛾 |𝐼𝑞+1 |
𝑘

+ 𝛾 |𝐼𝑞+2 |
𝑘

+ · · · + 𝛾 |𝐼2𝑞 |
𝑘
+ 𝛾 |𝐼𝑞 |

𝑘

≤ 𝛾 |𝐼 |−1
𝑘

+ 𝛾 |𝐼 |−2
𝑘

+ · · · + 𝛾 |𝐼 |−𝑞
𝑘

+ 𝛾 |𝐼 |−𝑞−1
𝑘

≤ 𝛾 |𝐼 |−1
𝑘

+ 𝛾 |𝐼 |−2
𝑘

+ · · · + 𝛾 |𝐼 |−𝑘−1
𝑘

+ 𝛾 |𝐼 |−𝑘−2
𝑘

(1)

where 𝛾
|𝐼 |−1
𝑘

+ 𝛾 |𝐼 |−2
𝑘

+ · · · + 𝛾 |𝐼 |−𝑘−1
𝑘

+ 𝛾 |𝐼 |−𝑘−2
𝑘

≤ 𝛾
|𝐼 |
𝑘

if 𝛾𝑘 is no

smaller than the largest real root of the equation 𝑥𝑘+2−𝑥𝑘+1− · · ·−
𝑥−1 = 0which is equivalent to the equation 𝑥𝑘+3−2𝑥𝑘+2+1 = 0 [15].

The first few solutions to the equation are 𝛾0 = 1.619, 𝛾1 = 1.840,

𝛾2 = 1.928, 𝛾3 = 1.966, 𝛾4 = 1.984 and 𝛾5 = 1.992. □

Theorem 3.5. Let 𝑃1 be the time complexity of running Lines 4–6
of Algorithm 1, which is polynomial in 𝑛. Then, the time complexity
of Algorithm 1 is O(𝑃1 × 𝛾𝑛𝑘) and is O∗ (𝛾𝑛

𝑘
), where 𝛾𝑘 < 2 is the

largest real root of the equation 𝑥𝑘+3 − 2𝑥𝑘+2 + 1 = 0.

Proof. Firstly, as the search tree T is a full binary tree, the total

number of nodes in the search tree is at most twice the number of

its leaf nodes. Secondly, it is easy to see that the time complexity of

each node is 𝑃1. Thus, the theorem holds. □

The existing best time complexity for the problem of maxi-

mum 𝑘-defective clique computation is achieved by the algorithm

MADEC+ [11], which is O∗ (𝜎𝑛
𝑘
) where 𝜎𝑘 is the largest real root of

𝑥2𝑘+3−2𝑥2𝑘+2 +1 = 0. It is easy to see that 𝜎𝑘 = 𝛾
2𝑘 . Thus, the time

complexity of MADEC+ is O∗ (𝛾𝑛
2𝑘
) and is higher than our time

complexity considering that 𝛾𝑘 < 𝛾
2𝑘 . Our algorithm has two main

features that enable the improved time complexity. Firstly, after

exhaustively applying our reduction rules RR1 and RR2, every
vertex in 𝑉 (𝑔) \ 𝑆 will have at least two non-neighbors as stated

in Lemma 3.3; as a result, we can prove Fact 3 above. If we do not

apply RR2, then we will only be able to bound 𝑞 by 2𝑘 + 1 for Fact
3 and get the same time complexity as [11]. For example, consider

the graph in Figure 4 again and suppose 𝑘 = 2 and 𝐼0 .𝑆 = {𝑣1}.
The branching vertex selected for 𝐼0 could be 𝑏0 = 𝑣2, and we

have 𝐼1 .𝑆 = {𝑣1, 𝑣2}. The branching vertex selected for 𝐼1 could

be 𝑏1 = 𝑣4 and we get 𝐼2 .𝑆 = {𝑣1, 𝑣2, 𝑣4}. Similarly, we could have

𝑏2 = 𝑣3, 𝐼3 .𝑆 = {𝑣1, . . . , 𝑣4}, 𝑏3 = 𝑣5, 𝐼4 .𝑆 = {𝑣1, . . . , 𝑣5}, 𝑏4 = 𝑣6
and 𝐼5 .𝑆 = {𝑣1, . . . , 𝑣6}. Only in instance 𝐼5, the reduction rules will

finally have any effect (e.g., remove vertices {𝑣8, 𝑣9}); thus 𝑞 = 5.

The second feature of our algorithm is our new branching rule.

We remark that after incorporating our reduction rules RR1 and

RR2 into [11], its time complexity could be improved to roughly

O∗ (𝛾𝑛
3𝑘/2). However, this is still higher than our time complexity.

Thus, our branching rule is better than that ofMADEC+ [11].
It is interesting to observe that the state-of-the-art time complex-

ity for maximum 𝑘-plex computation is similar to O∗ (𝛾𝑛
𝑘
); specifi-

cally, it is O∗ (𝛾𝑛
𝑘−1) [13, 50]. This is because an inequality similar

to Equation (1) is also proved and utilized in [13, 50]. But, we re-

mark that our techniques and arguments to obtain Equation (1) are

different from that of [13, 50] due to different problem natures.

Algorithm 2: kDC(𝐺,𝑘)
1 𝐶∗ ← heuristically compute a large 𝑘-defective clique of𝐺 ;

2 𝑔← apply reduction rules to reduce𝐺 ;

3 Branch&Bound(𝑔, ∅) ;
4 return𝐶∗;

3.1.3 Incorporating Other Practical Techniques. Algorithm 1 is used

for illustrating the bare minimum needed to achieve our time com-

plexity of O∗ (𝛾𝑛
𝑘
), and its practical performance would not be sat-

isfactory. Thus, we propose to further incorporate other practical

techniques, such as preprocessing, upper bound-based pruning and

more reduction rules, into our algorithm. The pseudocode of our

practically improved algorithm kDC is given in Algorithm 2. In

kDC, we first heuristically compute a large 𝑘-defective clique of

𝐺 (Line 1), whose details will be given in Section 3.3. Let 𝐶∗ be
the heuristically computed 𝑘-defective clique. We then use |𝐶∗ | to
reduce 𝐺 by removing unpromising vertices and edges (Line 2);

the details will be given in Section 3.2.3. After that, we go into

backtracking by invoking the procedure Branch&Bound.
Branch&Bound is similar to Branch&Bound-t in Algorithm 1,

but with the following additions. Firstly, besides RR1 and RR2,
we also apply other reduction rules at Line 4 of Algorithm 1; these

reduction rules will be presented in Section 3.2.2. Secondly, before

picking a branching vertex at Line 6 of Algorithm 1, we also com-

pute an upper bound of the maximum 𝑘-defective clique in the

instance (𝑔′, 𝑆′), and prune the entire instance if the computed

upper bound is no larger than |𝐶∗ |; this implies that no 𝑘-defective

clique in the instance (𝑔′, 𝑆′) is of size larger than 𝐶∗. Details of
the upper bound computation will be presented in Section 3.2.1.

Efficient Maximum 𝑘-Defective Clique Computation with Improved Time Complexity Conference’17, July 2017, Washington, DC, USA

Let 𝑃2 be the time complexity of running Lines 1–2 of Algo-

rithm 2. The time complexity of kDC is O(𝑃2 + 𝑃1 × 𝛾𝑛𝑘) and is

also O∗ (𝛾𝑛
𝑘
). That is, applying these additional techniques does not

affect the exponential part of our time complexity in Theorem 3.5.

3.2 Upper Bounds and Reduction Rules
3.2.1 Upper Bounds. For the upper bound-based pruning, we pro-

pose an improved graph coloring-based upper bound. Before that,

we first present the existing graph coloring-based upper bound

proposed in [11], where the graph coloring is mainly used to parti-

tion the vertices into independent sets. Specifically, a coloring of

a graph is assigning each vertex a color such that for every edge

in the graph, its two end-points have different colors. Given an

instance (𝑔, 𝑆) and a coloring of 𝑉 (𝑔) \ 𝑆 with 𝑐 distinct colors

{1, 2, . . . , 𝑐}, let 𝜋1, 𝜋2, . . . , 𝜋𝑐 be the partitioning of 𝑉 (𝑔) \ 𝑆 based

on their colors; that is, each 𝜋𝑖 consists of all vertices with color 𝑖

and thus is an independent set. The upper bound in [11] is

|𝑆 | +∑𝑐
𝑖=1min

(⌊
1+
√
8𝑘+1
2

⌋
, |𝜋𝑖 |

)
(2)

This is based on the observation that an independent set with

more than ⌊ 1+
√
8𝑘+1
2
⌋ vertices will miss more than 𝑘 edges and thus

cannot be all contained in the same 𝑘-defective clique. However,

the upper bound computed by Equation (2) has two deficiencies.

• It considers the partitions 𝜋1, . . . , 𝜋𝑐 independently, and thus

would include much more vertices than necessary for com-

puting the upper bound. For example, suppose |𝜋𝑖 | ≥ ⌊ 1+
√
8𝑘+1
2
⌋,

∀1 ≤ 𝑖 ≤ 𝑐 , then the upper bound becomes |𝑆 | +𝑐 · ⌊ 1+
√
8𝑘+1
2
⌋.

But obviously |𝑆 | + 𝑐 +𝑘 is a much smaller upper bound (e.g.,

when 𝑐 is large); this is because adding any 𝑠𝑖 vertices of 𝜋𝑖
to 𝑆 will introduce at least 𝑠𝑖 − 1 non-edges.
• It does not consider the non-edges in 𝑆 , and the non-edges

between 𝑆 and 𝑉 (𝑔) \ 𝑆 .
As a result, the upper bound computed by Equation (2) is not tight.

S π1 π3π2

Figure 5: Running example for graph coloring-based upper
bound computation (the graph consists of 11 vertices and 27

edges where (𝜋1, 𝜋2, 𝜋3) forms a 3-partite clique, i.e., all edges
are between a vertex of 𝜋𝑖 and a vertex of 𝜋 𝑗 for 𝑖 ≠ 𝑗)

Example 3.6. Consider the graph 𝑔 in Figure 5 and the partial

solution 𝑆 consisting of two isolated vertices (i.e., without any

adjacent edges). Besides 𝑆 , the other part of 𝑔 is a 3-partite clique

with vertex sets 𝜋1, 𝜋2 and 𝜋3; note that, there is no edge between

𝑆 and 𝑉 (𝑔) \ 𝑆 . Thus, a graph coloring of 𝑉 (𝑔) \ 𝑆 would assign

all vertices of 𝜋𝑖 with color 𝑖 , for 1 ≤ 𝑖 ≤ 3. Suppose 𝑘 = 3, then

⌊ 1+
√
8𝑘+1
2
⌋ = 3. As |𝜋1 | = |𝜋2 | = |𝜋3 | = 3, the graph coloring-based

upper bound computed by Equation (2) is 2 + 3 × 3 = 11. However,

it is easy to observe that the maximum 𝑘-defective clique in the

instance (𝑔, 𝑆) is of size only 3, as we can only add one more vertex

without violating the 𝑘-defective clique definition.

In this paper, we still utilize the graph coloring-based partitioning

𝜋1, . . . , 𝜋𝑐 for computing the upper bound, but we compute a much

tighter (i.e., smaller) upper bound than Equation (2) by resolving

the above two deficiencies, as follows.

UB1 (improved coloring-based upper bound). For each par-
tition 𝜋𝑖 , we first sort its vertices into non-decreasing or-

der regarding |𝑁𝑆 (·) | and then define the weight of the

𝑗-th vertex in the sorted order, denoted 𝑣𝑖 𝑗 , to be w(𝑣𝑖 𝑗) =
|𝑁𝑆 (𝑣𝑖 𝑗) | + 𝑗 − 1, where the index 𝑗 starts from 1. Finally, let

𝑣1, 𝑣2, . . . , be an ordering of 𝑉 (𝑔) \ 𝑆 in non-decreasing or-

der regarding their weights w(·). The maximum 𝑘-defective

clique in the instance (𝑔, 𝑆) is of size at most |𝑆 | plus the
largest 𝑖 such that

∑𝑖
𝑗=1 w(𝑣 𝑗) ≤ 𝑘 − |𝐸 (𝑆) |.

The general idea is that (1) adding any 𝑠𝑖 ≥ 0 vertices of 𝜋𝑖 to

𝑆 will introduce at least

∑𝑠𝑖
𝑗=1

w(𝑣𝑖 𝑗) ≥
𝑠𝑖 (𝑠𝑖−1)

2
non-edges, and

(2) (𝑠1, 𝑠2, . . . , 𝑠𝑐) is determined greedily and interdependently. It

can be verified that the upper bound computed by UB1 is at most

(and can be much smaller than) |𝑆 | + 𝑐 + 𝑘 − |𝐸 (𝑆) |, and is also no

larger than that computed by Equation (2).

Proof of UB1. For any𝑘-defective clique𝐶 in the instance (𝑔, 𝑆)
that contains 𝑠𝑖 vertices of 𝜋𝑖 for each 1 ≤ 𝑖 ≤ 𝑐 , the number of

missing edges in 𝐶 is

|𝐸 (𝐶) | ≥ |𝐸 (𝑆) | +∑𝑐
𝑖=1

(
𝑠𝑖 (𝑠𝑖−1)

2
+∑𝑠𝑖

𝑗=1
|𝑁𝑆 (𝑣𝑖 𝑗) |

)
= |𝐸 (𝑆) | +∑𝑐

𝑖=1

∑𝑠𝑖
𝑗=1

(
|𝑁𝑆 (𝑣𝑖 𝑗) | + 𝑗 − 1

)
= |𝐸 (𝑆) | +∑𝑐

𝑖=1

∑𝑠𝑖
𝑗=1

w(𝑣𝑖 𝑗)

≥ |𝐸 (𝑆) | +∑𝑠1+···+𝑠𝑐
𝑗=1

w(𝑣 𝑗)

The first inequality follows from the fact that adding 𝑠𝑖 vertices 𝑆𝑖
of 𝜋𝑖 to 𝑆 will introduce

• at least
𝑠𝑖 (𝑠𝑖−1)

2
non-edges between vertices of 𝑆𝑖 (since 𝑆𝑖

is an independent set), and

• at least

∑𝑠𝑖
𝑗=1
|𝑁𝑆 (𝑣𝑖 𝑗) | non-edges between 𝑆 and 𝑆𝑖 (since the

vertices of 𝜋𝑖 are ordered such that |𝑁𝑆 (𝑣𝑖1) | ≤ |𝑁𝑆 (𝑣𝑖2) | ≤
|𝑁𝑆 (𝑣𝑖3) | ≤ · · ·).

The second inequality follows from the fact that the vertices of

𝑉 (𝑔) \ 𝑆 are ordered such that w(𝑣1) ≤ w(𝑣2) ≤ w(𝑣3) ≤ · · · .
Consequently, UB1 follows from the fact that |𝐸 (𝐶) | ≤ 𝑘 as 𝐶 is a

𝑘-defective clique. □

Example 3.7. Continue Example 3.6. Now we show how UB1
computes the upper bound. As |𝑁𝑆 (𝑣) | = 2 for each 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 ,
the weights of the vertices in 𝜋𝑖 for 1 ≤ 𝑖 ≤ 3 are all {2, 3, 4}. Thus,
the weights of all vertices of 𝑉 (𝑔) \ 𝑆 are {2, 2, 2, 3, 3, 3, 4, 4, 4}. As
|𝐸 (𝑆) | = 1, the upper bound computed by UB1 is 2 + 1 = 3, which

is significantly tighter than that computed in Example 3.6.

In addition, we also adopt the following two upper bounds from

the literature.

UB2. The maximum 𝑘-defective clique in the instance (𝑔, 𝑆) is
of size at most min𝑢∈𝑆 𝑑𝑔 (𝑢) + 1 + 𝑘 [11].

UB3. Given an instance (𝑔, 𝑆), let 𝑣1, 𝑣2, . . . be an ordering of

𝑉 (𝑔) \ 𝑆 in non-decreasing order regarding their numbers of

non-neighbors in 𝑆 , i.e.|𝑁𝑆 (·) |. The maximum 𝑘-defective

Conference’17, July 2017, Washington, DC, USA Lijun Chang

clique in the instance (𝑔, 𝑆) is of size at most |𝑆 | plus the
largest 𝑖 such that

∑𝑖
𝑗=1 |𝑁𝑆 (𝑣 𝑗) | ≤ 𝑘 − |𝐸 (𝑆) | [16].

3.2.2 Reduction Rules. Besides the two reduction rules RR1 and

RR2 presented in Section 3.1, we further propose two new reduc-

tion rules based on the size of the currently found best solution (i.e.,

currently found largest 𝑘-defective clique). Let 𝑙𝑏 be the size of the
currently found best solution, then we will not be interested in

any solution of size ≤ 𝑙𝑏. We first present and prove the reduction

rule RR3 that is derived from the upper bound UB3.
RR3 (degree-sequence-based reduction rule). Given an in-

stance (𝑔, 𝑆), let 𝑣1, 𝑣2, . . . be an ordering of 𝑉 (𝑔) \ 𝑆 in non-

decreasing order regarding their numbers of non-neighbors

in 𝑆 , i.e., |𝑁𝑆 (·) |. For a vertex 𝑣𝑖 with 𝑖 > 𝑙𝑏 − |𝑆 | and
|𝑁𝑆 (𝑣𝑖) | > 𝑘 − |𝐸 (𝑆) | −∑𝑙𝑏−|𝑆 |

𝑗=1
|𝑁𝑆 (𝑣 𝑗) |, we can remove 𝑣𝑖

from 𝑔.

Proof of RR3. Consider the instance (𝑔, 𝑆 ∪ 𝑣𝑖) which is ob-

tained from (𝑔, 𝑆) by adding 𝑣𝑖 ∈ 𝑉 (𝑔) \𝑆 to 𝑆 , and denote 𝑆 ∪ 𝑣𝑖 by
𝑆 ′. Let 𝑣 ′

1
, 𝑣 ′

2
, . . . be an ordering of𝑉 (𝑔) \𝑆 ′ in non-decreasing order

regarding their numbers of non-neighbors in 𝑆 ′. UB3 states that

the maximum 𝑘-defective clique in the instance (𝑔, 𝑆′) is of size at
most |𝑆 ′ | plus the largest 𝑖′ such that

∑𝑖′
𝑗=1 |𝑁𝑆 ′ (𝑣 ′𝑗) | ≤ 𝑘 − |𝐸 (𝑆 ′) |.

Note that, we have∑𝑙𝑏−|𝑆 |
𝑗=1

|𝑁𝑆 ′ (𝑣 ′𝑗) | ≥
∑𝑙𝑏−|𝑆 |

𝑗=1
|𝑁𝑆 (𝑣 𝑗) |

> 𝑘 − |𝐸 (𝑆) | − |𝑁𝑆 (𝑣𝑖) | = 𝑘 − |𝐸 (𝑆 ′) |

where the first inequality follows from the fact that |𝑁𝑆 ′ (𝑣) | ≥ |𝑁𝑆 (𝑣) |
holds for every 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 ′, and the second inequality follows

from the statement of the reduction rule RR3. Consequently, the
maximum 𝑘-defective clique in the instance (𝑔, 𝑆′) is of size strictly
less than |𝑆 ′ | + (𝑙𝑏 − |𝑆 |) = 𝑙𝑏 + 1. That is, every 𝑘-defective clique
that is in the instance (𝑔, 𝑆) and contains 𝑣𝑖 is of size at most 𝑙𝑏,

and thus we can remove 𝑣𝑖 from 𝑔. □

Then, we propose the reduction rule RR4.
RR4 (second-order reduction rule). Given an instance (𝑔, 𝑆)

with 𝑆 ≠ ∅, for any vertex𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑉 (𝑔)\𝑆 , let 𝑆 ′ = 𝑆∪𝑣 ,
𝑐𝑛(𝑢, 𝑣) be the number of common neighbors of 𝑢 and 𝑣 in

𝑆 ′ = 𝑉 (𝑔) \ 𝑆 ′, 𝑐𝑛𝑜𝑛(𝑢, 𝑣) be the number of common non-

neighbors of𝑢 and 𝑣 in 𝑆 ′, 𝑥𝑛(𝑢, 𝑣) be the number of vertices

that are exclusive neighbors of either𝑢 or 𝑣 in 𝑆 ′; specifically,
𝑥𝑛(𝑢, 𝑣) = |𝑁

𝑆 ′ (𝑢) \ 𝑁𝑆 ′ (𝑣) | + |𝑁𝑆 ′ (𝑣) \ 𝑁𝑆 ′ (𝑢) |.
If |𝑆 ′ | +𝑐𝑛(𝑢, 𝑣) +min

(
𝑘− |𝐸 (𝑆 ′) |, 𝑥𝑛(𝑢, 𝑣)

)
+min

(
𝑐𝑛𝑜𝑛(𝑢, 𝑣),

max(0, ⌊ 𝑘−|𝐸 (𝑆
′) |−𝑥𝑛 (𝑢,𝑣)
2

⌋)
)
≤ 𝑙𝑏, then we can remove 𝑣

from 𝑔.

Proof of RR4. Let’s consider the instance (𝑔, 𝑆′). It is easy to

verify that 𝑐𝑛(𝑢, 𝑣), 𝑐𝑛𝑜𝑛(𝑢, 𝑣) and 𝑥𝑛(𝑢, 𝑣) represent disjoint sub-
sets of vertices of 𝑉 (𝑔) \ 𝑆 ′ and 𝑐𝑛(𝑢, 𝑣) + 𝑐𝑛𝑜𝑛(𝑢, 𝑣) + 𝑥𝑛(𝑢, 𝑣) =
|𝑉 (𝑔) \ 𝑆 ′ |. We consider two cases depending on whether 𝑘 −
|𝐸 (𝑆 ′) | > 𝑥𝑛(𝑢, 𝑣). Firstly, if 𝑘 − |𝐸 (𝑆 ′) | ≤ 𝑥𝑛(𝑢, 𝑣), then the maxi-

mum 𝑘-defective clique in the instance (𝑔, 𝑆′) will be of size at most

|𝑆 ′ | +𝑐𝑛(𝑢, 𝑣)+ (𝑘−|𝐸 (𝑆 ′) |), since (1) adding any exclusive neighbor
of𝑢 or 𝑣 to 𝑆 ′ will introduce at least one non-edge and (2) adding any
common non-neighbor of 𝑢 and 𝑣 to 𝑆 ′ will introduce at least two

non-edges. Similarly, if 𝑘 − |𝐸 (𝑆 ′) | > 𝑥𝑛(𝑢, 𝑣), then the maximum

𝑘-defective clique in the instance (𝑔, 𝑆′) will be of size at most |𝑆 ′ | +
𝑐𝑛(𝑢, 𝑣) + 𝑥𝑛(𝑢, 𝑣) + min(𝑐𝑛𝑜𝑛(𝑢, 𝑣), ⌊ 𝑘−|𝐸 (𝑆

′) |−𝑥𝑛 (𝑢,𝑣)
2

⌋). In sum-

mary, the maximum 𝑘-defective clique in the instance (𝑔, 𝑆′) is of
size atmost |𝑆 ′ |+𝑐𝑛(𝑢, 𝑣)+min

(
𝑘−|𝐸 (𝑆 ′) |, 𝑥𝑛(𝑢, 𝑣)

)
+min

(
𝑐𝑛𝑜𝑛(𝑢, 𝑣),

max(0, ⌊ 𝑘−|𝐸 (𝑆
′) |−𝑥𝑛 (𝑢,𝑣)
2

⌋)
)
and RR4 is correct. □

From the proofs of RR3 and RR4, it can be observed that the

reduction rules are actually designed based on upper bounds; for

example, RR3 is based on UB3. The general idea is that, given an

instance (𝑔, 𝑆) and a vertex 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 , if an upper bound of the

instance (𝑔, 𝑆 ∪ 𝑣) is at most 𝑙𝑏, then we can remove 𝑣 from 𝑔. It

is easy to see that an alternative strategy is to directly generate

the instance (𝑔, 𝑆 ∪ 𝑣) which will then be pruned by the upper

bounds; this will have the same pruning effects as the reduction

rules. The advantage of using reduction rules to remove 𝑣 from

𝑔 is that the reduction rules can be applied more efficiently by

computation sharing; in particular, applying the reduction rules

for all vertices of 𝑉 (𝑔) \ 𝑆 can be conducted in linear time in total

(see Section 3.2.3), while generating all the sub-instances and then

pruning by the upper bounds would take quadratic time. On the

other hand, it is also worth mentioning that an upper bound could

be designed based on RR4; we do not use it in this paper since

computing this upper bound is time-consuming.

In addition, we also utilize the following two reduction rules

from the literature.

RR5. Given an instance (𝑔, 𝑆), for any vertex 𝑣 ∈ 𝑉 (𝑔) \ 𝑆
whose degree is less than 𝑙𝑏 − 𝑘 , we can remove 𝑣 from

𝑔 [11].

RR6. Given a graph𝐺 , for any edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) whose num-

ber of common neighbors in𝐺 is less than 𝑙𝑏 −𝑘 − 1, we can
remove the edge (𝑢, 𝑣) from 𝐺 [16].

3.2.3 Time Complexity Analysis. Now, we analyze the time com-

plexity of all the upper bounds and reduction rules. Firstly, for the

upper bounds UB1–UB3, it is easy to see that UB2 and UB3 can be

computed in time linear to the number of edges (i.e., O(𝑚)); note
that, sorting vertices in UB3 can be conducted in linear time by

counting sort [12]. For UB1, we use the widely adopted greedy

approach to assign colors to vertices [8, 43]; that is, colors are as-

signed to vertices in the reverse order of the degeneracy ordering

(see Definition 2.3 for the definition of degeneracy ordering), and a

vertex is assigned the smallest color that has not been taken by its

neighbors. Consequently, UB1 can be computed in O(𝑚) time.

Secondly, for the reduction rules RR1–RR5, it is easy to see that
RR1, RR2 and RR3 can be exhaustively applied until convergence

(i.e., until the instance can no longer be reduced by these reduction

rules) in linear time. For RR4, we do not apply it exhaustively for

the sake of efficiency. Instead, we let 𝑢 be the vertex most recently

added to 𝑆 , and loop through each vertex 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 only once.

Observing that 𝑐𝑛(𝑢, 𝑣) = |𝑁
𝑆 ′ (𝑢) ∩𝑁 (𝑣) |, 𝑐𝑛𝑜𝑛(𝑢, 𝑣) = |𝑁𝑆 ′ (𝑢) | −

|𝑁
𝑆 ′ (𝑢) ∩ 𝑁 (𝑣) |, and 𝑥𝑛(𝑢, 𝑣) = |𝑉 (𝑔) \ 𝑆

′ | − 𝑐𝑛(𝑢, 𝑣) − 𝑐𝑛𝑜𝑛(𝑢, 𝑣),
applying RR4 for 𝑢 and 𝑣 can be conducted in O(𝑑𝑔 (𝑣)) time by

marking 𝑁
𝑆 ′ (𝑢) and 𝑁𝑆 ′ (𝑢) in a preprocessing step. Consequently,

applying RR4 once for all vertices 𝑣 ∈ 𝑉 (𝑔) \ 𝑆 takes O(𝑚) time in

total. For the reduction rule RR5, it actually reduces the graph 𝑔 to

its (𝑙𝑏 − 𝑘)-core (see Definition 2.4), i.e., a vertex is removed from

Efficient Maximum 𝑘-Defective Clique Computation with Improved Time Complexity Conference’17, July 2017, Washington, DC, USA

𝑔 if its degree in 𝑔 is smaller than 𝑙𝑏 − 𝑘 ; this can be conducted in

O(𝑚) time [10, 28]. Note that, if a vertex of 𝑆 is removed during

the process, then the instance (𝑔, 𝑆) is pruned (based on UB2).
Thirdly, for the reduction rule RR6, we only apply it in the

preprocessing (i.e., Line 2 of Algorithm 2) as it has a higher time

complexity than other reduction rules. Specifically, exhaustively

applying RR6 actually reduces the input graph𝐺 to its (𝑙𝑏 −𝑘 + 1)-
truss (see Definition 2.5), i.e., an edge (𝑢, 𝑣) is removed from𝐺 if the

number of common neighbors of its two end-points in 𝐺 is smaller

than 𝑙𝑏 − 𝑘 − 1; this can be conducted in O(𝛿 (𝐺) ×𝑚) time [46],

where 𝛿 (𝐺) is the degeneracy of 𝐺 and is at most

√
𝑚.

In summary, we apply reduction rules RR1–RR5 and upper

bounds UB1–UB3 in Branch&Bound; thus, 𝑃1 in Theorem 3.5 is

O(𝑚). For Line 2 of Algorithm 2, we first exhaustively apply RR5,
and then RR6. Thus, Line 2 of Algorithm 2 takes O(𝛿 (𝐺) ×𝑚) time.

3.3 Compute a Large Initial Solution
In this subsection, we discuss how to efficiently compute a large

initial 𝑘-defective clique at Line 1 of Algorithm 2. Firstly, we can

heuristically compute a 𝑘-defective clique in O(𝑚) time based on

the degeneracy ordering, i.e., the longest suffix of the degeneracy

ordering that is a 𝑘-defective clique. The pseudocode is shown in

Algorithm 3, denoted Degen.

Algorithm 3: Degen(𝐺,𝑘)
Input: A graph𝐺 and an integer 𝑘

Output: A large 𝑘-defective clique in𝐺

1 Compute a degeneracy ordering for the vertices of𝐺 ;

2 𝐶 ← the longest suffix of the degeneracy ordering that is a

𝑘-defective clique;

3 return𝐶 ;

As discussed at the end of Section 3.2.3, Line 2 of Algorithm 2

takes O(𝛿 (𝐺) ×𝑚) time; this is higher than the time complexity of

Degen. Thus, it makes sense to spend a little more time at Line 1 of

Algorithm 2 aiming to compute a larger initial solution. Motivated

by this, besides heuristically computing a degeneracy ordering-

based solution in the input graph 𝐺 , we also extract 𝑛 subgraphs

from 𝐺 — one subgraph for each vertex of 𝐺 — and heuristically

compute a degeneracy ordering-based solution in each of the sub-

graphs; the largest one among these 𝑛 + 1 solutions is then kept as

the initial solution. To bound the time complexity by O(𝛿 (𝐺) ×𝑚),
we extract the subgraphs based on a degeneracy ordering of 𝐺 .

Specifically, let (𝑣1, 𝑣2, . . . , 𝑣𝑛) be a degeneracy ordering of 𝐺 , the

subgraph extracted for 𝑣𝑖 then is the subgraph of 𝐺 induced by

the set of higher ranked neighbors of 𝑢 regarding the degeneracy

ordering, i.e., 𝑁 (𝑣𝑖) ∩ {𝑣𝑖+1, . . . , 𝑣𝑛}. The pseudocode is shown in

Algorithm 4, denoted Degen-opt. As the subgraph extracted for 𝑣𝑖
will have at most min(𝑑 (𝑣𝑖), 𝛿 (𝐺)) vertices, the time complexity of

Algorithm 4 is bounded by∑𝑛
𝑖=1min(𝑑 (𝑣𝑖), 𝛿 (𝐺))2 ≤

∑𝑛
𝑖=1 𝑑 (𝑣𝑖) × 𝛿 (𝐺) = 2 × 𝛿 (𝐺) ×𝑚

Consequently, by invoking Algorithm 4 at Line 1 of Algorithm 2,

𝑃2 in Section 3.1.3 is O(𝛿 (𝐺) ×𝑚), and the time complexity of kDC
is O(𝛿 (𝐺) ×𝑚 +𝑚 × 𝛾𝑛

𝑘
).

Example 3.8. Consider the graph in Figure 6, a degeneracy order-

ing is (𝑣1, 𝑣2, 𝑣5, 𝑣3, 𝑣4, 𝑣6, 𝑣7). Suppose 𝑘 = 1, the longest suffix that

Algorithm 4: Degen-opt(𝐺,𝑘)
Input: A graph𝐺 and an integer 𝑘

Output: A large 𝑘-defective clique in𝐺

1 𝐶 ← Degen(𝐺,𝑘) ;
2 Compute a degeneracy ordering for the vertices of𝐺 ;

3 for each vertex 𝑢 ∈ 𝑉 (𝐺) do
4 𝑁 + (𝑢) ← the set of higher ranked neighbors of 𝑢 in𝐺 ,

according to the degeneracy ordering;

5 𝑔← the subgraph of𝐺 induced by 𝑁 + (𝑢) ;
6 𝐶′ ← Degen(𝑔, 𝑘) ;
7 if |𝐶′ ∪𝑢 | > |𝐶 | then𝐶 ← 𝐶′ ∪𝑢;
8 return𝐶 ;

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

Figure 6: Running example for computing an initial solution
is a𝑘-defective clique is {𝑣4, 𝑣6, 𝑣7} of size 3; thus,Degen finds an ini-
tial solution of size 3. Now, let’s consider 𝑣1, its set of higher ranked

neighbors is𝑁 + (𝑣1) = {𝑣2, 𝑣3, 𝑣4}. It is easy to see that the subgraph
induced by 𝑁 + (𝑣1) is a 𝑘-defective clique. Thus, Degen-opt reports
the initial solution {𝑣1, 𝑣2, 𝑣3, 𝑣4} of size 4.

4 EXPERIMENTS
We have shown in Section 3.1 that our algorithm kDC achieves a

better time complexity than the existing algorithms for the problem

of maximum 𝑘-defective clique computation. In this section, we

show empirically that kDC also performs better than the existing

algorithms in practice. Specifically, we evaluate kDC against the

following existing algorithms.

• KDBB: the existing algorithm with the state-of-the-art prac-

tical performance proposed in [16].

• MADEC+p : the existing algorithm with the state-of-the-art

time complexity proposed in [11].

In addition, we also evaluate the following variants of our algorithm

kDC to test the effectiveness of the different components of kDC.

• kDC/UB1: kDC without the upper bound UB1.
• kDC/RR3&4: kDC without the reduction rules RR3 and

RR4.
• kDC-Degen: kDC with the initial solution (i.e., Line 1 of

Algorithm 2) computed by Degen and without applying the

reduction rule RR6 at Line 2 of Algorithm 2.

All our algorithms are implemented in C++ and compiled with

-O3 optimization.
2
All experiments are run in the single-thread

mode on a machine with an Intel Core i7-8700 CPU and 64GB main

memory and running Ubuntu 18.04.

Datasets. Same as [16], we run the algorithms on the following

three graph collections.

2
The source code of kDC is released at https://lijunchang.github.io/Maximum-kDC/

https://lijunchang.github.io/Maximum-kDC/

Conference’17, July 2017, Washington, DC, USA Lijun Chang

Table 2: Number of solved instances by the algorithms kDC,
KDBB and MADEC+p with a time limit of 3 hours (best per-
formers are highlighted in bold)

Real-world graphs Facebook graphs DIMACS10&SNAP

kDC KDBB MADEC+p kDC KDBB MADEC+p kDC KDBB MADEC+p
𝑘 = 1 133 117 115 114 110 110 37 36 36

𝑘 = 3 130 107 94 114 110 104 37 35 31

𝑘 = 5 127 104 81 114 108 78 37 34 28

𝑘 = 10 119 85 36 111 109 9 36 30 15

𝑘 = 15 110 68 26 101 103 0 29 25 10

𝑘 = 20 104 56 20 88 80 0 27 22 6

• The real-world graphs collection 3
contains 139 real-world

graphs from the Network Data Repository with up to 5.87 ×
10

7
vertices and 1.06 × 108 undirected edges.

• The Facebook graphs collection 4
contains 114 Facebook

social networks from the Network Data Repository with up

to 5.92 × 107 vertices and 9.25 × 107 undirected edges.

• TheDIMACS10&SNAPgraphs collection contains 37 graphs
with up to 1.04×106 vertices and 6.89×106 undirected edges.
Among the 37 graphs, 27 are from DIMACS10

5
and 10 are

from SNAP
6
.

Note that, the graphs included in these three collections are the

same ones tested in [16].

Metric.We record the total processing time of running an algorithm

on a graph instance for a specific 𝑘 . The recorded processing time

is the total CPU time excluding the I/O time of loading the graph

instance from disk to main memory. Same as [16], we choose 𝑘 from

{1, 3, 5, 10, 15, 20} and set a time limit of 3 hours for each testing.

4.1 Against the Existing Algorithms
In this subsection, we evaluate our algorithm kDC against the

existing algorithms KDBB and MADEC+p , regarding the efficiency.

The results on the number of solved instances with a time limit of

3 hours are shown in Table 2, which are also partially illustrated in

Figures 7 and 8.MADEC+p is an improved version, by the authors

of KDBB [16], of the MADEC+ algorithm proposed in [11]. As the
authors of [16] are not able to provide the code of algorithms KDBB
andMADEC+p , their numbers reported in Table 2 are obtained from

the original paper [16]; note that [16] tests exactly the same sets

of graphs for the three graph collections and also has the time

limit of 3 hours. From Table 2, we can see that KDBB significantly

outperforms MADEC+p (especially for 𝑘 ≥ 5), and our algorithm

kDC further outperforms KDBB with the only exception of 𝑘 = 15

on the Facebook graphs collection. We also would like to highlight

two other observations that can be observed from Figures 7 and

8. Firstly, on the real-world graphs collection, kDC with a time

limit of 3 seconds solves even more instances than KDBB with a

time limit of 3 hours. Secondly, on the Facebook graphs collection,

kDC solves all 114 instances with time limits of 125, 393 and 1353

seconds, respectively, for 𝑘 = 1, 3 and 5. This demonstrates the

practical superiority of kDC over the existing algorithms.

To dive into a more detailed performance gain of kDC over

KDBB, we report the actual processing time of kDC and KDBB on

the subset of Facebook graphs that have more than 15, 000 vertices;

3
http://lcs.ios.ac.cn/~caisw/Resource/realworld%20graphs.tar.gz

4
https://networkrepository.com/socfb.php

5
https://www.cc.gatech.edu/dimacs10/downloads.shtml

6
http://snap.stanford.edu/data/

there are 41 such graphs. We report the results for 𝑘 = 1, 3, 5,

and 10 in Table 3, as KDBB only gave results for such 𝑘 values

in [16]; for now, please ignore the columns regarding algorithms

kDC/RR3&4, kDC/UB1, and kDC-Degen. The number of vertices

and edges in these graphs are also illustrated in Table 3. Note that,

an ‘−’ forKDBB indicates that the result is not available (specifically,

[16] didn’t report the results on the four graphs A-anon, B-anon,
konect, uci-uni), while an ‘−’ for our algorithms indicates that

the processing time is longer than the 3-hour limit. From Table 3,

we can observe that kDC consistently and significantly runs faster

than KDBB across all these testings. In particular, kDC on average

is 1552, 1754, 1636 and 820 times faster than KDBB for 𝑘 = 1,

3, 5 and 10, respectively. This further demonstrates the superior

performance of kDC over the existing fastest algorithm KDBB.
We also would like to discuss the performance of our algo-

rithm kDC on some large-scale graphs. Firstly, for the two graphs,

konect and uci-uni, in the Facebook graphs collection that have

58M vertices and 92M undirected edges (here M means ×106), kDC
is able to find the maximum 𝑘-defective clique within the time

limit for 𝑘 ≤ 5 and times out for larger 𝑘 values; please refer

to Table 3 for the results. Secondly, for the soc-orkut graph in

real-world graphs collection that have 3M vertices and 106M undi-

rected edges, kDC is able to find the maximum 𝑘-defective clique

within the time limit for 𝑘 ≤ 3 and times out for larger 𝑘 values.

Thirdly, we also tested kDC on the webbase-2001 graph (down-

loaded from https://law.di.unimi.it/datasets.php) that has 116M ver-

tices and 855M undirected edges. kDC is able to find the maximum

𝑘-defective clique for all the tested 𝑘 values within 30 seconds. It

will be our future work to further improve the number of solved

instances for the different 𝑘 values.

4.2 Ablation Studies
Now, we conduct ablation studies for our proposed techniques.

Firstly, we compare kDC with kDC/RR3&4 which is kDC without

applying our two reduction rules RR3 and RR4 that are described

in Section 3.2.2. The results for 𝑘 = 1, 3, 5, 10, 15, and 20 on the

real-world graphs collection are shown in Figure 7, and that on the

Facebook graphs collection are shown in Figure 8; specifically, we

vary the time limit and report the number of graph instances that are

solved by an algorithm within a specific time limit. We can see that

kDC consistently outperforms kDC/RR3&4, and the improvement

is more evident when 𝑘 becomes large; for example, for 𝑘 = 20 and

with a time limit of 3 hours, kDC solves 13 and 15 more instances

than KDBB on the real-world graphs collection and the Facebook

graphs collection, respectively. This demonstrates that our new

reduction rules RR3 and RR4 are effective in improving the effi-

ciency of maximum 𝑘-defective computation. However, we also

observe that kDC and kDC/RR3&4 perform similarly for 𝑘 ≤ 10

on the Facebook graphs collection; specifically, the processing time

of kDC/RR3&4 on 41 of the Facebook graphs for 𝑘 = 3 and 𝑘 = 10

are also listed in Table 3. One of the reasons is that the upper bound

UB1, which is used in both kDC and kDC/RR3&4, is very effective

for these testings, and as a result RR3 and RR4 do not prune many

additional vertices. To verify that, we also implement a version

of kDC without UB1, RR3 and RR4, denoted kDC/UB1&RR3&4,
and compare it with kDC/UB1. Our results show that kDC/UB1

http://lcs.ios.ac.cn/~caisw/Resource/realworld%20graphs.tar.gz
https://networkrepository.com/socfb.php
https://www.cc.gatech.edu/dimacs10/downloads.shtml
http://snap.stanford.edu/data/
https://law.di.unimi.it/datasets.php

Efficient Maximum 𝑘-Defective Clique Computation with Improved Time Complexity Conference’17, July 2017, Washington, DC, USA

Table 3: Processing time (in seconds) of kDC, kDC/RR3&4, kDC/UB1, kDC-Degen and KDBB on the 41 Facebook graphs with more
than 15, 000 vertices; the results of kDC/RR3&4, kDC/UB1 and kDC-Degen for 𝑘 = 1 and 𝑘 = 5 are omitted due to space limitations.
Best performers are highlighted in bold; if a running time is slow than the fastest running time by less than 10%, we also
consider it to be best. 𝑛 is the number of vertices and𝑚 is the number of edges in the graph.

𝑘 = 1 𝑘 = 3 𝑘 = 5 𝑘 = 10

𝑛 𝑚 kDC KDBB kDC kDC/RR3&4 kDC/UB1 kDC-Degen KDBB kDC KDBB kDC kDC/RR3&4 kDC/UB1 kDC-Degen KDBB
A-anon 3M 23M 5.0 - 5.2 5.1 29 6803 - 5.7 - 73 412 6540 - -

Auburn71 18K 973K 1.4 432 1.9 1.6 384 55 536 8.6 639 956 905 - - 1195

B-anon 2M 20M 7.9 - 8.4 8.1 57 - - 9.2 - 44 56 7858 - -

Berkeley13 22K 852K 0.18 425 0.18 0.18 0.42 6.5 452 0.19 506 0.34 0.39 61 55 630

BU10 19K 637K 0.09 252 0.15 0.15 1.1 6.5 290 0.39 332 4.0 5.1 16 35 370

Cornell5 18K 790K 1.1 393 2.1 2.0 194 249 922 2.6 1265 17 16 8670 - 2636

FSU53 27K 1M 0.35 209 0.40 0.23 - 80 610 2.8 828 248 221 - 8351 1400

Harvard1 15K 824K 0.76 347 0.82 0.85 91 284 421 0.94 517 11 10 3680 - 1354

Indiana 29K 1M 0.46 1142 0.46 0.48 21 95 1138 0.53 1261 19 20 1975 3710 1421

Indiana69 29K 1M 0.46 1134 0.46 0.48 21 97 1072 0.54 1186 19 20 1964 3706 1321

konect 59M 92M 8.1 - 8.2 7.9 9.7 178 - 9.4 - - - - - -

Maryland58 20K 744K 0.10 150 0.12 0.11 0.18 4.1 162 0.12 185 0.60 0.82 2.7 8.2 239

Michigan23 30K 1M 0.63 833 0.66 0.63 0.88 1556 1072 0.67 971 2.2 2.9 215 - 1384

MSU24 32K 1M 0.35 493 0.35 0.33 0.40 92 576 0.34 666 0.47 0.50 1.5 10227 879

MU78 15K 649K 0.10 182 0.13 0.12 0.53 1.1 200 0.32 215 67 68 393 203 306

NYU9 21K 715K 0.09 349 0.09 0.09 0.13 17 399 0.09 396 0.12 0.13 0.17 26 466

Oklahoma97 17K 892K 0.78 383 0.96 0.89 - 1162 2048 5.1 3938 379 334 - 10533 6926

OR 63K 816K 0.16 356 0.30 0.34 21 9.9 456 1.0 587 55 55 885 258 1486

Penn94 41K 1M 0.23 1139 0.23 0.22 0.25 8.2 1557 0.23 1820 0.29 0.32 0.35 20 1972

Rutgers89 24K 784K 0.08 219 0.07 0.07 0.09 0.04 276 0.08 279 0.20 0.22 1.4 7.1 386

Tennessee95 16K 770K 0.54 246 0.56 0.53 2.7 16 361 0.52 424 1.8 1.7 62 884 554

Texas80 31K 1M 0.56 342 0.66 0.62 4.6 52 423 0.73 534 80 70 1136 2603 753

Texas84 36K 1M 6.2 1490 13 11 6503 5555 1674 69 2769 1321 1134 - - 10253

UC33 16K 522K 0.07 156 0.07 0.06 1.6 1.3 171 0.07 181 0.14 0.15 148 3.2 263

uci-uni 58M 92M 13 - 13 12 14 206 - 14 - - - - - -

UCLA 20K 747K 0.09 190 0.09 0.09 0.11 0.04 206 0.09 237 0.14 0.15 0.17 4.9 290

UCLA26 20K 747K 0.09 184 0.09 0.09 0.12 0.04 207 0.09 215 0.14 0.15 0.19 4.9 288

UConn 17K 604K 0.06 109 0.06 0.05 0.06 0.04 126 0.06 169 0.13 0.16 0.22 2.5 194

UConn91 17K 604K 0.06 105 0.06 0.05 0.07 0.04 123 0.06 173 0.13 0.16 0.22 2.5 208

UF 35K 1M 0.58 793 0.58 0.84 - 282 1332 0.74 1602 27 29 - 8777 2579

UF21 35K 1M 0.57 787 0.58 0.84 - 281 1297 0.74 1542 27 29 - 8767 2571

UGA50 24K 1M 5.7 724 43 37 - 4895 1467 165 2459 3318 2856 - - 6794

UIllinois 30K 1M 0.68 486 0.69 0.65 2.9 93 644 0.65 806 3.6 3.5 342 8237 1245

UIllinois20 30K 1M 0.68 486 0.68 0.65 2.9 93 610 0.66 784 3.6 3.5 341 8195 1217

UMass92 16K 519K 0.15 226 0.15 0.15 0.19 25 245 0.17 265 0.30 0.37 0.58 82 318

UNC28 18K 766K 0.46 236 0.47 0.45 0.82 54 287 0.46 336 2.1 2.1 15 7278 380

USC35 17K 801K 0.31 232 0.31 0.30 0.60 390 267 0.31 334 0.52 0.47 7.7 6226 409

UVA16 17K 789K 0.43 341 0.45 0.49 2.4 130 387 0.57 400 14 19 310 8666 552

Virginia63 21K 698K 0.29 84 0.29 0.29 0.34 1.3 103 0.26 143 1.1 1.1 2.9 169 215

Wisconsin87 23K 835K 0.17 532 0.18 0.18 9.7 19 612 0.31 664 47 43 1323 292 924

wosn-friends 63K 817K 0.16 375 0.30 0.34 21 10.0 438 1.0 533 54 55 895 259 1260

solves 5, 8, and 14 more instances than kDC/UB1&RR3&4, respec-
tively, for 𝑘 = 3, 5 and 10 on the Facebook graphs collection with a

time limit of 100 seconds; this demonstrates that RR3 and RR4 are

effective in these settings when UB1 is not applied.

Secondly, we evaluate kDC against kDC/UB1which is kDCwith-

out applying our upper bound UB1 as introduced in Section 3.2.1.

The results are also reported in Figures 7 and 8 and Table 3. We

can see that kDC consistently outperforms kDC/UB1, and the im-

provement can be large, especially on the Facebook graphs. This

demonstrates that our upper bound UB1 is effective in improving

the performance of kDC. Also, we would like to remark that UB3 is
the upper bound proposed in KDBB [16], and is also used in kDC.
Thus, our upper bound UB1 is also tighter than the one proposed

in [16], as otherwise, the performance of kDC would be similar to

that of kDC/UB1.
Thirdly, we compare kDC with kDC-Degen which is kDC in-

voking Degen to compute the initial solution at Line 1 of Algo-

rithm 2 and without applying the reduction rule RR6 at Line 2

of Algorithm 2. As a result, the preprocessing of kDC-Degen (i.e.,

Lines 1–2 of Algorithm 2) takes only O(𝑚) time, in contrast to the

Table 4: The difference of preprocessing results between kDC
and kDC-Degen (𝐶0 denotes the initial solution obtained by
Line 1 of Algorithm 2; 𝑛0 and 𝑚0 respectively denote the
number of vertices and the number of edges in the reduced
graph obtained by Line 2 of Algorithm 2; subscripts denote
the algorithms with kDC-Degen being abbreviated as kDC-D)

Real-world graphs Facebook graphs

|𝐶0

kDC |
|𝐶0

kDC-D |
𝑛0

kDC
𝑛0

kDC-D

𝑚0

kDC
𝑚0

kDC-D

|𝐶0

kDC |
|𝐶0

kDC-D |
𝑛0

kDC
𝑛0

kDC-D

𝑚0

kDC
𝑚0

kDC-D
𝑘 = 1 1.19 0.27 0.26 1.30 0.03 0.02

𝑘 = 3 1.15 0.47 0.45 1.26 0.04 0.03

𝑘 = 5 1.13 0.52 0.52 1.24 0.06 0.04

𝑘 = 10 1.11 0.63 0.63 1.21 0.11 0.08

𝑘 = 15 1.09 0.68 0.69 1.19 0.16 0.13

𝑘 = 20 1.08 0.73 0.74 1.18 0.23 0.19

O(𝛿 (𝐺) ×𝑚) preprocessing time of kDC. The experimental results

are again shown in Figures 7 and 8 and Table 3. We can see that

kDC consistently outperforms kDC-Degen, and the gap is huge

when both 𝑘 and the time limit are small, e.g., when 𝑘 ≤ 5 and the

time limit is at most 10 seconds. To explain this, we also show the

Conference’17, July 2017, Washington, DC, USA Lijun Chang

0.04
kDC kDC/RR3&4 kDC/UB1 kDC-Degen KDBB

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

100

120

140

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(a) 𝑘 = 1

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

80

100

120

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(b) 𝑘 = 3

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

80

100

120

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(c) 𝑘 = 5

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

60

80

100

120
#

s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(d) 𝑘 = 10

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

60

80

100

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(e) 𝑘 = 15

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

40

60

80

100

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(f) 𝑘 = 20

Figure 7: Number of solved instances for real-world graphs
(vary time limit, best viewed in color)

0.04
kDC kDC/RR3&4 kDC/UB1 kDC-Degen KDBB

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

20

40

60

80

100

120

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(a) 𝑘 = 1

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

20

40

60

80

100

120

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(b) 𝑘 = 3

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

20

40

60

80

100

120

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(c) 𝑘 = 5

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

0

20

40

60

80

100

120

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(d) 𝑘 = 10

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

0

20

40

60

80

100

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(e) 𝑘 = 15

1 3

1
0

3
0

1
0
0

3
0
0

1
0
0
0

3
6
0
0

1
0
8
0
0

Time limit (seconds)

0

20

40

60

80

#
s
o
lv

e
d
 i
n
s
ta

n
c
e
s

(f) 𝑘 = 20

Figure 8: Number of solved instances for Facebook graphs
(vary time limit, best viewed in color)

Table 5: The (average and maximum) ratio of the maximum
𝑘-defective clique size over themaximum clique size for each
of the three graph collections

Real-world graphs Facebook graphs DIMACS10&SNAP

Avg Ratio Max Ratio Avg Ratio Max Ratio Avg Ratio Max Ratio

𝑘 = 1 1.067 1.5 1.032 1.25 1.046 1.200

𝑘 = 3 1.144 2 1.083 1.5 1.107 1.400

𝑘 = 5 1.201 2 1.118 1.67 1.169 1.600

𝑘 = 10 1.314 2.5 1.170 1.75 1.243 1.800

𝑘 = 15 1.422 3 1.223 2 1.313 2.000

𝑘 = 20 1.516 3.5 1.264 2.25 1.370 2.200

difference of preprocessing results between kDC and kDC-Degen
(i.e., Lines 1–2 of Algorithm 2) in Table 4. We can see that kDC
computes a larger initial solution and a smaller reduced graph than

kDC-Degen; the improvement is more significant when 𝑘 is small.

In summary, each of these additional techniques (i.e., reduction

rules RR3 and RR4, upper bound UB1, and computing a large

initial solution) improves the practical efficiency of kDC.

4.3 Properties of Maximum 𝑘-Defective Clique
In this subsection, we analyze the properties ofmaximum𝑘-defective

clique. Firstly, we compare the maximum 𝑘-defective clique size,

computed by kDC, with the maximum clique size, computed by

MC-BRB 7
[8], on the three graph collections. For each 𝑘 and each

7
https://lijunchang.github.io/MC-BRB/

Table 6: Number of graphs where the maximum 𝑘-defective
clique is an extension of a maximum clique

Real-world Facebook DIMACS10&SNAP

𝑘 = 1 133 114 37

𝑘 = 3 124 93 30

𝑘 = 5 114 77 28

𝑘 = 10 105 70 28

𝑘 = 15 98 62 23

𝑘 = 20 94 61 24

of the three graph collections, the results on the average and maxi-

mum ratio of
maximum 𝑘-defective clique size

maximum clique size
over all graphs that kDC

finishes within 3 hours are reported in Table 5 (the total number

of such graphs can be found in Table 2); we remark thatMC-BRB
successfully finds the maximum clique for all the graphs within

the time limit. From Table 5, we can see that on the real-world

graphs collection, the maximum 𝑘-defective clique size is on aver-

age 31% (and maximum 150%) larger than the maximum clique size

for 𝑘 = 10, and is on average 51% (and maximum 250%) larger for

𝑘 = 20. This demonstrates that the relaxation of 𝑘-defective clique

indeed enables us to find larger near-cliques.

Secondly, we look into the actual maximum 𝑘-defective clique

and check (1) whether it is an extension of a maximum clique and

(2) what fraction of its vertices have missing neighbors. Note that,

the maximum 𝑘-defective clique in a graph is not unique, and the

results reported here are based on the maximum 𝑘-defective clique

found by kDC and thus are only for the testings that finish within

https://lijunchang.github.io/MC-BRB/

Efficient Maximum 𝑘-Defective Clique Computation with Improved Time Complexity Conference’17, July 2017, Washington, DC, USA

Table 7: Average percentage of vertices that are not fully
connected in the maximum 𝑘-defective clique

Real-world Facebook DIMACS10&SNAP

𝑘 = 1 19.2% 6.1% 16.9%

𝑘 = 3 33.7% 15.9% 32.3%

𝑘 = 5 43.3% 23.0% 46.6%

𝑘 = 10 52.5% 34.4% 56.8%

𝑘 = 15 59.5% 43.7% 64.7%

𝑘 = 20 62.9% 50.3% 65.9%

the time limit of 3 hours. The results are shown in Tables 6 and 7,

respectively. From Table 6, we can see that for many, although not

all, of the graphs, the maximum 𝑘-defective clique found by kDC is

an extension of themaximum clique; specifically, the lowest fraction

is
62

101
≈ 61.4%which is achieved for 𝑘 = 15 on the Facebook graphs

collection. Nevertheless, we have shown in Table 5 that maximum 𝑘-

defective cliques are larger thanmaximum cliques. From Table 7, we

can see that the percentage of vertices that are not fully connected

in a maximum 𝑘-defective clique increases along with 𝑘 , which is as

expected. For 𝑘 ≥ 10 on the real-world graphs collection, more than

half of the vertices in a maximum 𝑘-defective clique have missing

neighbors in the 𝑘-defective clique.

5 RELATEDWORK
The study of 𝑘-defective clique computation is still in its early stage.

The first exact algorithm for computing the maximum 𝑘-defective

clique was proposed in [44], which is based on the Russian doll

search [45], a solver for general constraint optimization problems.

The algorithm of [44] was then improved in [18] with new prepro-

cessing rules as well as a better implementation. A branch-and-price

framework was designed in [17]. A continuous cubic formulation

was established in [39], which generalizes the Motzkin-Straus for-

mulation from the maximum clique problem to the maximum 𝑘-

defective clique problem; however, only heuristic algorithms are

designed in [39]. Chen et al. [11] proposed theMADEC+ algorithm
whose time complexity beats the trivial O∗ (2𝑛) time complexity,

and developed a graph coloring-based upper bound as well as other

pruning techniques. The KDBB algorithm proposed in [16] is the

currently fastest algorithm in practice, but its time complexity is the

trivial O∗ (2𝑛). In this paper we proposed the kDC algorithm which

not only has a better time complexity but also runs significantly

faster in practice than all existing algorithms.

The problem of (approximately) counting all 𝑘-defective cliques

of a particular size, for the special cases of 𝑘 = 1 and 2, was recently

formulated and studied in [21]. As the property of 𝑘-defective clique

is hereditary, the number of 𝑘-defective cliques could explode dras-

tically when the maximum 𝑘-defective clique size increases. Thus,

the maximum 𝑘-defective clique size may provide a rough indica-

tion on the counting results. In addition, the pruning techniques

proposed in this paper may speed up the enumeration and counting

of large 𝑘-defective cliques.
Another related problem is maximum clique computation, which

has been extensively studied both theoretically and practically.

From a theoretical perspective, the worst case time complexity has

been gradually improved from O∗ (1.4422𝑛) to O∗ (1.2599𝑛) [41],
O∗ (1.2346𝑛) [22], and O∗ (1.2108𝑛) [32], with the state of the art be-
ing O∗ (1.1888𝑛) [33]; however, these algorithms are of theoretical

interests only and have not been implemented. On the other hand,

a plethora of practical algorithms, without caring about the time

complexity analysis, have also been designed and implemented,

e.g., [7, 8, 25, 26, 29, 30, 34, 36, 42, 43, 47]. For these algorithms, up-

per bounds have been demonstrated to be critical for the practical

efficiency, and the most successful upper bounds are based on graph

coloring and MaxSAT reasoning. However, these techniques cannot

be easily extended to compute the maximum 𝑘-defective clique for

𝑘 ≥ 1, despite that 𝑘-defective clique is a relaxation of clique and

0-defective cliques are just cliques. For example, it was attempted

in [11] to adapt the graph coloring to compute an upper bound

of the maximum 𝑘-defective clique size, but as we demonstrated,

the adaptation failed to compute a tight upper bound and is not

effective in improving the efficiency. In contrast, we in this paper

proposed a much tighter upper bound based on graph coloring.

6 FINDING TOP-𝑟 𝑘-DEFECTIVE CLIQUES
In this section, we briefly discuss how to extend our techniques

to two variants of finding top-𝑟 𝑘-defective cliques. A thorough

investigation of these problems is beyond the scope of this paper,

and will be our future work.

Firstly, our techniques can be extended to find top-𝑟 maximal 𝑘-

defective cliques, i.e., find the 𝑟 maximal 𝑘-defective cliques that are

largest. To do so, wewill need tomodify our algorithm to enumerate

all large maximal 𝑘-defective cliques. Specifically, we will need to

(1) change the𝑑𝑔 (𝑢) condition ofRR2 to𝑑𝑔 (𝑢) ≥ |𝑉 (𝑔) |−1, (2) store
in C the set of 𝑟 currently found largest maximal 𝑘-defective cliques

rather than just the single largest one, (3) change the lower bound

𝑙𝑏 used in RR3–RR6 to be the size of the smallest 𝑘-defective

clique in C. Due to the first change, the time complexity would be

O∗ (𝛾𝑛
2𝑘
), the same as the maximum 𝑘-defective clique computation

algorithm of [11].

Secondly, our techniques can be extended to find top-𝑟 diversified

𝑘-defective cliques, i.e., find 𝑟 𝑘-defective cliques that collectively

cover/contain the most number of distinct vertices. Specifically, we

iteratively conduct the following until 𝑟 𝑘-defective cliques have

been reported or the graph becomes empty:

(1) find the maximum 𝑘-defective clique 𝐶 in the current graph

by invoking kDC,
(2) remove 𝐶 from the current graph.

Note that, this approach may not find the optimal result, but the

reported result provides a (1 − 1

𝑒)-approximation guarantee. The

time complexity is simply 𝑟 times that of kDC.

7 CONCLUSION
In this paper, we advanced the state of the art for the problem of

exact maximum 𝑘-defective clique computation, in terms of both

worst case time complexity and practical performance. In specific,

we first developed a general framework kDC based on our newly

designed branching rule BR and reduction rules RR1 and RR2.
We proved that our framework beats the trivial time complexity

of O∗ (2𝑛) and achieves a better time complexity than all existing

algorithms. Then to make kDC practically efficient, we further

proposed a new upper bound UB1, two reduction rules RR3 and

RR4, as well as an algorithm for efficiently computing a large initial

solution. Extensive empirical studies on three benchmark graph

Conference’17, July 2017, Washington, DC, USA Lijun Chang

collections with 290 graphs in total demonstrated the practical

superiority of kDC over the existing algorithms.

ACKNOWLEDGMENTS
The author is supported by the Australian Research Council Fund-

ings of FT180100256 and DP220103731.

REFERENCES
[1] James Abello, Mauricio G. C. Resende, and Sandra Sudarsky. 2002. Massive

Quasi-Clique Detection. In Proc. of LATIN’02 (Lecture Notes in Computer Science,
Vol. 2286). Springer, 598–612.

[2] Mohiuddin Ahmed, Abdun Naser Mahmood, and Md Rafiqul Islam. 2016. A

survey of anomaly detection techniques in financial domain. Future Generation
Computer Systems 55 (2016), 278–288.

[3] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen,

and Srikanta Tirthapura. 2014. Dense subgraph maintenance under streaming

edge weight updates for real-time story identification. VLDB J. 23, 2 (2014),

175–199.

[4] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. 2011. Clique Re-

laxations in Social Network Analysis: The Maximum k-Plex Problem. Operations
Research 59, 1 (2011), 133–142.

[5] Punam Bedi and Chhavi Sharma. 2016. Community detection in social networks.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 6, 3 (2016),

115–135.

[6] Jean-Marie Bourjolly, Gilbert Laporte, and Gilles Pesant. 2002. An exact algorithm

for the maximum k-club problem in an undirected graph. Eur. J. Oper. Res. 138, 1
(2002), 21–28.

[7] Randy Carraghan and Panos M. Pardalos. 1990. An Exact Algorithm for the

Maximum Clique Problem. Oper. Res. Lett. 9, 6 (Nov. 1990), 375–382.
[8] Lijun Chang. 2019. Efficient Maximum Clique Computation over Large Sparse

Graphs. In Proc. of KDD’19. 529–538.
[9] Lijun Chang. 2020. Efficient maximum clique computation and enumeration over

large sparse graphs. VLDB J. 29, 5 (2020), 999–1022.
[10] Lijun Chang and Lu Qin. 2018. Cohesive Subgraph Computation over Large Sparse

Graphs. Springer Series in the Data Sciences.

[11] Xiaoyu Chen, Yi Zhou, Jin-Kao Hao, and Mingyu Xiao. 2021. Computing max-

imum k-defective cliques in massive graphs. Comput. Oper. Res. 127 (2021),

105131.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2001. Introduction to Algorithms. McGraw-Hill Higher Education.

[13] Qiangqiang Dai, Rong-Hua Li, Hongchao Qin, Meihao Liao, and Guoren Wang.

2022. Scaling Up Maximal k-plex Enumeration. In Proc. of CIKM’22. 345–354.
[14] David Eppstein, Maarten Löffler, and Darren Strash. 2013. Listing All Maxi-

mal Cliques in Large Sparse Real-World Graphs. ACM Journal of Experimental
Algorithmics 18 (2013).

[15] Fedor V. Fomin and Dieter Kratsch. 2010. Exact Exponential Algorithms. Springer.
[16] Jian Gao, Zhenghang Xu, Ruizhi Li, and Minghao Yin. 2022. An Exact Algorithm

with NewUpper Bounds for theMaximum k-Defective Clique Problem inMassive

Sparse Graphs. In Proc. of AAAI’22. 10174–10183.
[17] Timo Gschwind, Stefan Irnich, Fabio Furini, and Roberto Wolfler Calvo. 2021.

A Branch-and-Price Framework for Decomposing Graphs into Relaxed Cliques.

INFORMS J. Comput. 33, 3 (2021), 1070–1090.
[18] Timo Gschwind, Stefan Irnich, and Isabel Podlinski. 2018. Maximum weight

relaxed cliques and Russian Doll Search revisited. Discret. Appl. Math. 234 (2018),
131–138.

[19] Johan Håstad. 1996. Clique is Hard to Approximate Within n
1-epsilon

. In Proc.
of FOCS’96. 627–636.

[20] Shweta Jain and C. Seshadhri. 2020. The Power of Pivoting for Exact Clique

Counting. In Proc. WSDM’20. ACM, 268–276.

[21] Shweta Jain and C. Seshadhri. 2020. Provably and Efficiently Approximating

Near-cliques using the Turán Shadow: PEANUTS. In Proc. of WWW’20. ACM /

IW3C2, 1966–1976.

[22] Tang Jian. 1986. An O(20.304n) Algorithm for Solving Maximum Independent

Set Problem. IEEE Trans. Computers 35, 9 (1986), 847–851.
[23] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Proc. of

CCC’72. 85–103.
[24] Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu C. Aggarwal. 2010. A Survey

of Algorithms for Dense Subgraph Discovery. In Managing and Mining Graph
Data. Advances in Database Systems, Vol. 40. Springer, 303–336.

[25] Chu-Min Li, Zhiwen Fang, and Ke Xu. 2013. Combining MaxSAT Reasoning and

Incremental Upper Bound for the Maximum Clique Problem. In Proc. of ICTAI’13.
[26] Chu-Min Li, Hua Jiang, and Felip Manyà. 2017. On minimization of the number

of branches in branch-and-bound algorithms for the maximum clique problem.

Computers & OR 84 (2017), 1–15.

[27] Ronghua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu Yu.

2020. Ordering Heuristics for k-clique Listing. Proc. VLDB Endow. 13, 11 (2020),
2536–2548.

[28] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and clustering

and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417–427.

[29] Panos M. Pardalos and Jue Xue. 1994. The maximum clique problem. J. global
Optimization 4, 3 (1994), 301–328.

[30] Bharath Pattabiraman, Md. Mostofa Ali Patwary, Assefaw Hadish Gebremedhin,

Wei-keng Liao, and Alok N. Choudhary. 2015. Fast Algorithms for the Maximum

Clique Problem onMassive Graphs with Applications to Overlapping Community

Detection. Internet Mathematics 11, 4-5 (2015), 421–448.
[31] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. 2013. On clique relaxation

models in network analysis. Eur. J. Oper. Res. 226, 1 (2013), 9–18.
[32] J. M. Robson. 1986. Algorithms for Maximum Independent Sets. J. Algorithms 7,

3 (1986), 425–440.

[33] J. M. Robson. 2001. Finding a maximum independent set in time𝑂 (2𝑛/4) . https:
//www.labri.fr/perso/robson/mis/techrep.html.

[34] RyanA. Rossi, David F. Gleich, andAssefawHadish Gebremedhin. 2015.

Parallel Maximum Clique Algorithms with Applications to Network

Analysis. SIAM J. Scientific Computing 37, 5 (2015).

[35] H. Sachs. 1963. Regular Graphs with Given Girth and Restricted

Circuits. Journal of the London Mathematical Society s1-38, 1 (1963),

423–429.

[36] Pablo San Segundo, Alvaro Lopez, and Panos M. Pardalos. 2016. A new

exact maximum clique algorithm for large and massive sparse graphs.

Computers & Operations Research 66 (2016), 81–94.

[37] Stephen B. Seidman. 1983. Network structure and minimum degree.

Social Networks 5, 3 (1983), 269 – 287.

[38] Hanif D. Sherali, J. Cole Smith, andAntonio A. Trani. 2002. AnAirspace

Planning Model for Selecting Flight-plans Under Workload, Safety, and

Equity Considerations. Transp. Sci. 36, 4 (2002), 378–397.
[39] Vladimir Stozhkov, Austin Buchanan, Sergiy Butenko, and Vladimir

Boginski. 2022. Continuous cubic formulations for cluster detection

problems in networks. Math. Program. 196, 1 (2022), 279–307.
[40] Apichat Suratanee, Martin H Schaefer, Matthew J Betts, Zita Soons,

Heiko Mannsperger, Nathalie Harder, Marcus Oswald, Markus Gipp,

Ellen Ramminger, GuillermoMarcus, et al. 2014. Characterizing protein

interactions employing a genome-wide siRNA cellular phenotyping

screen. PLoS computational biology 10, 9 (2014), e1003814.

[41] Robert Endre Tarjan and Anthony E. Trojanowski. 1977. Finding a

Maximum Independent Set. SIAM J. Comput. 6, 3 (1977), 537–546.
[42] Etsuji Tomita. 2017. Efficient Algorithms for Finding Maximum and

Maximal Cliques and Their Applications. In Proc. of WALCOM’17. 3–15.
[43] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi,

and Mitsuo Wakatsuki. 2010. A simple and faster branch-and-bound

algorithm for finding a maximum clique. In Proc. of WALCOM’10. 191–
203.

[44] Svyatoslav Trukhanov, Chitra Balasubramaniam, Balabhaskar Bala-

sundaram, and Sergiy Butenko. 2013. Algorithms for detecting optimal

hereditary structures in graphs, with application to clique relaxations.

Comput. Optim. Appl. 56, 1 (2013), 113–130.
[45] Gérard Verfaillie, Michel Lemaître, and Thomas Schiex. 1996. Russian

Doll Search for Solving Constraint Optimization Problems. In Proc. of
AAAI’96. AAAI Press / The MIT Press, 181–187.

[46] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive

Networks. PVLDB 5, 9 (2012).

[47] Jingen Xiang, Cong Guo, and Ashraf Aboulnaga. 2013. Scalable maxi-

mum clique computation using mapreduce. In Proc. of ICDE’13. 74–85.
[48] Mihalis Yannakakis. 1978. Node- and Edge-Deletion NP-Complete

Problems. In Proc. of STOC’78. ACM, 253–264.

[49] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein.

2006. Predicting interactions in protein networks by completing defec-

tive cliques. Bioinform. 22, 7 (2006), 823–829.
[50] Yi Zhou, Jingwei Xu, Zhenyu Guo, Mingyu Xiao, and Yan Jin. 2020.

Enumerating Maximal k-Plexes with Worst-Case Time Guarantee. In

Proc. of AAAI’20. 2442–2449.

https://www.labri.fr/perso/robson/mis/techrep.html
https://www.labri.fr/perso/robson/mis/techrep.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Degeneracy Ordering, k-Core and k-Truss

	3 Our Approach
	3.1 The Framework of kDC
	3.2 Upper Bounds and Reduction Rules
	3.3 Compute a Large Initial Solution

	4 Experiments
	4.1 Against the Existing Algorithms
	4.2 Ablation Studies
	4.3 Properties of Maximum k-Defective Clique

	5 Related Work
	6 Finding Top-r k-defective Cliques
	7 Conclusion
	Acknowledgments
	References

