2304.05560v4 [cs.HC] 25 Jul 2023

arxXiv

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis

JIE GAO, Singapore University of Technology and Design, Singapore

KENNY TSU WEI CHOO, Singapore University of Technology and Design, Singapore
JUNMING CAO, Fudan University, China

ROY KA-WEI LEE, Singapore University of Technology and Design, Singapore
SIMON PERRAULT, Singapore University of Technology and Design, Singapore

A typical collaborative
qualitative analysis process

1 Collaboration in code
' development phase

Click the button to Directly add codes or choose
2b -2

2a Select text , N
add codes one from the dropdown list

Independent

Open Coding interface

|

L ' Four
l collaboration
methods

]
\

!

\

!

\

!

\

!

\

!

CoAlcoder '
!

\

\

!

\

!

\

rounds '
\

.

Discussion &
Development of

\
\

!

!

\

!

!

\

!

!

Multiple '
!

\

!

!

\

!

.
codebook .
\

Final Codebook

l 3a 3 me me (3c),.me (3d

!. !. * ‘ Asynchronous
Final Coding Process S !.

ne, me
L

J Synchronous

l;.‘ Human coder Almodel —» Model training}

Fig. 1. Al-assisted Collaborative Qualitative Analysis (CQA): 1) A typical CQA process, where collaboration
mainly occurs during the coding development phase; 2) To explore the potential for Al to streamline this
phase, we introduce CoAlcoder, an Al-assisted collaborative qualitative coding tool that provides code
suggestions with confidence levels based on users’ coding history; 3) We also propose four distinct CQA
methods to utilize CoAlcoder: 3a) Without Al, Asynchronous, not Shared Model, 3b) With Al, Asynchronous,
not Shared Model, 3c) With Al, Asynchronous, Shared Model, and 3d) With Al, Synchronous, Shared Model.

While Al-assisted individual qualitative analysis has been substantially studied, Al-assisted collaborative
qualitative analysis (CQA) — a process that involves multiple researchers working together to interpret data —

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference acronym XX, June 03-05, 2018, Woodstock, NY

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00

https://doi.org/XXXXXXX XXXXXXX

https://doi.org/XXXXXXX.XXXXXXX

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

remains relatively unexplored. After identifying CQA practices and design opportunities through formative
interviews, we designed and implemented CoAlcoder, a tool leveraging Al to enhance human-to-human
collaboration within CQA through four distinct collaboration methods. With a between-subject design, we
evaluated CoAlcoder with 32 pairs of CQA-trained participants across common CQA phases under each
collaboration method. Our findings suggest that while using a shared Al model as a mediator among coders
could improve CQA efficiency and foster agreement more quickly in the early coding stage, it might affect the
final code diversity. We also emphasize the need to consider the independence level when using Al to assist
human-to-human collaboration in various CQA scenarios. Lastly, we suggest design implications for future
Al-assisted CQA systems.

CCS Concepts: « Human-centered computing — Collaborative and social computing systems and
tools.

Additional Key Words and Phrases: Qualitative Coding, Collaboration, Al-assisted Qualitative Analysis, Coding
Quality, Al-assisted Human-to-Human Collaboration

ACM Reference Format:

Jie Gao, Kenny Tsu Wei CHOO, Junming Cao, Roy Ka-Wei Lee, and Simon Perrault. 2023. CoAlcoder: Examining
the Effectiveness of Al-assisted Human-to-Human Collaboration in Qualitative Analysis. In . ACM, New York,
NY, USA, 38 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Collaborative Qualitative Analysis (CQA) process enables the synthesis of diverse perspectives
to establish collective interpretations within a team [31, 65]. This iterative procedure involves a
thorough analysis of reading, identification, and coding of crucial data, followed by multiple rounds
of discussions to form a codebook (see Figure 1A) [65]. Despite its efficacy, the process is laborious
and time-consuming, even for experienced researchers [31, 57].

Meanwhile, the emergence of Artificial Intelligence (Al), with its capacity to swiftly identify pat-
terns in data, has been employed to enhance individual qualitative analysis (QA), thereby reducing
the human effort required. For instance, QA is often interpreted as a classification task, utilizing
algorithms such as Support Vector Machines (SVM) to categorize text into distinct code groups
[70]. Additionally, QA can be seen as a topic modeling task [9, 39, 52], where the Latent Dirichlet
Allocation (LDA) is employed to derive topics from the large-scale text, offering a comprehensive
overview of the content. Furthermore, QA can be approached as a keyword-matching task. This
process involves using specific formulas (e.g., definition OR define) made from keywords to
search for vector representations of text that contain these particular keywords. The search results
are then associated with the corresponding codes that include the same keywords [57, 66].

Despite the growing integration of Al in individual qualitative analysis, it remains unclear whether
and how Al can be utilized to enhance the efficiency of CQA, as the majority of current support tools
for CQA largely depend on traditional techniques [29, 33, 71]. Therefore, we delve into this nascent
area of Al-assisted collaborative qualitative analysis, and utilize Al in the initial stages of CQA,
where significant collaborations occur (see Figure 1), with an aim to examine whether integrating
AT has a potential to enhance the efficiency of human-to-human collaboration within the context of
CQA. Our investigation distinguishes itself from existing methods that primarily tackle individual
qualitative coding tasks, and more generally, human-Al collaboration [9, 46, 57, 66, 70].

To this end, we conducted a series of semi-structured interviews with QA researchers possessing
different levels of experience. The findings from the interviews not only confirmed the primary
steps involved in CQA [65] but also shed light on our participants’ expectations for the role of Al
as a mediator among coders.

https://doi.org/XXXXXXX.XXXXXXX

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

Based on these insights, we designed and implemented CoAlcoder and its Al ! model using the
Rasa NLU pipeline? with a pre-trained word embedding. The model is fine-tuned in real-time, using
the coding histories of the team as training data. Subsequently, when a user works on a new chunk
of text, the Al model classifies the user’s selected text into relevant classes and provides real-time
code suggestions. By doing this, we expect that users, upon encountering new codes from the
suggested list, could promptly become aware of potential coding conflicts within their team. This
would prompt them to actively scrutinize their coding decisions and foster mutual understanding
among team members, resulting in a more refined discussion in later coding stages.

Following that, to examine how AI can assist human-to-human collaboration within CQA, we
designed four methods to use CoAlcoder: Condition A: Without Al, Asynchronous, not Shared Model,
Condition B: With Al, Asynchronous, not Shared Model, Condition C: With AL, Asynchronous, Shared
Model, and Condition D: With Al, Synchronous, Shared Model (see Figure 1(3)). The system, along with
its four collaboration methods, was then evaluated using 32 pairs of participants, all well-trained in
CQA. Each of the four methods was assigned to eight pairs.

Our evaluation illuminates a key trade-off (i.e., coding efficiency vs. coding quality) and a crucial
factor (i.e., the level of independence among coders) to consider when integrating an Al mediator
into the initial stages of CQA: 1) low independence (i.e., more communication among coders)
may achieve high efficiency and initial inter-rater reliability (IRR) but low code diversity; 2) high
independence (i.e., less communication among coders) may achieve low efficiency and initial IRR,
but higher code diversity. Moreover, we highlight the importance of context in the application of
Al-assisted CQA: whether a situation values efficiency or code diversity, and whether maximal
coding efficiency is always beneficial. These aspects necessitate careful consideration, taking into
account the specific requirements and context.

We contribute in the following ways:

e Enhancing the understanding of CQA behaviors, challenges, and anticipated Al roles through
semi-structured interviews. Identifying the potential of Al in facilitating human-to-human
collaboration within the context of CQA.

e Designing and implementing CoAlcoder system, featuring four methods that augment human-
to-human collaboration within CQA. The specific design features and guidelines introduced
have the potential to inspire future research and development of Al-assisted CQA systems.

e Evaluating the four proposed Al-assisted CQA methods, demonstrating Al’s potential to
enhance the efficiency of human-to-human collaboration during the early stages of CQA,
along with the associated trade-off.

2 RELATED WORK
2.1 Collaborative Qualitative Analysis

Qualitative research is widely embraced across various disciplines, including but not limited to social
science, anthropology, political science, psychology, educational research, and human-computer
interaction [19, 24, 50]. CQA plays an important role in qualitative research and fosters robust and
dependable interpretations of qualitative data [7, 31, 65]. Cornish et al. provide a more detailed
definition of CQA, describing it as "a process in which there is joint focus and dialogue among
two or more researchers regarding a shared body of data, to produce an agreed interpretation” [25].
Subsequently, Richards et al. delve deeper into the CQA methodology, breaking it down into a

Natural Language Understanding (NLU) is an important part of Natural Language Processing (NLP), which falls under the
broader umbrella of Artificial Intelligence (AI). In this work, for the sake of convenience and to maintain clarity, we will be
using NLU, NLP, and Al interchangeably to refer to the language processing techniques and potential models employed.
Zhttps://rasa.com/docs/rasa/

https://rasa.com/docs/rasa/

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

six-stage process [65]. The process starts with team planning, followed by open and axial coding.
Then, the team formulates and tests an initial codebook. After passing this test, the final coding
procedure occurs, concluding with a review of the codebook and the determination of overarching
themes.

Although the CQA process has been broadly utilized [24, 31], its iterative and collaborative
nature - encompassing reading, interpreting, discussing, and analyzing data - has been observed
by researchers as a factor that contributes to its time-consuming nature [33]. In particular, the
codebook development phase, including open coding and discussion, necessitates a substantial
degree of collaboration. Each coder independently adds codes and compares data, and the lead
coder embarks on several iterative discussions with team members. The aim of these discussions is
to categorize and structure the codes, leading to the creation of a codebook [7, 65, 69].

Recently, the emergence of Al has captured significant interest, particularly given its strong
abilities for quickly understanding and making inferences from data [1, 3]. In this work, we
concentrate primarily on the integration of Al into the aforementioned iterative process. Our
objective is to investigate whether employing Al could enhance the efficiency of discussion and
communication among coders, a deviation from the traditional approach-communication among
coders only commences following the open coding phase.

2.2 Approaches for Individual (Semi)Automatic Coding

Due to limited research concerning the integration of Al into CQA, our review examines its
utilization in individual QA. In particular, numerous solutions have been proposed to aid in indi-
vidual qualitative coding. These include rule-based methods [26, 35, 46, 57, 66], text classification
[12, 66, 70], topic modeling [9, 10, 51, 51, 52], and active learning approaches [70], among others.

One significant approach involves rule-based methods, which utilize a combination of various
keywords to match text [32, 46, 57]. For example, Marathe et al. [57] presented a Python framework
that uses coding rules, formulated manually and combined using Boolean operators such as AND,
OR, and NOT. These are used to search for matching text within qualitative data and associate the
text with codes when the cosine similarity exceeds a pre-set threshold. Rietz et al. [66], aiming to
provide end-users with the flexibility to edit and refine coding rules during the coding process,
introduced Cody, this interactive tool allows users to interactively modify rules generated by the
model and define their own codes during the coding process. These user-generated rules serve as
the training data for a machine-learning model, leading to the better production of code suggestions.

Nevertheless, relying solely on code rules created by humans limits flexibility and necessitates
additional human effort. As a result, researchers have proposed leveraging computer systems to
detect code patterns [35, 60]. For instance, Nelson [60] introduced a three-step approach (pattern
detection, refinement, and confirmation) that utilizes techniques like unsupervised machine learning
and word frequency scores. These techniques assist researchers in identifying novel patterns within
their data, facilitating scalable and inductive exploratory analysis. To preserve users’ control
and agency in the qualitative coding process, Gebreegziabher et al. [35] presented PaTAT, which
identifies explainable patterns within the user’s coding data simultaneously during the coding
process, offering predictions for potential future codes. These works imply that the utilization of
(semi)automatic code pattern detection for partial coding automation has significant promise.

Furthermore, text classification techniques have gained widespread usage in qualitative analysis.
For example, Yan et al. [70] proposed an approach that employed Support Vector Machine (SVM)
classification, utilizing pre-selected features and parameters. The SVM model was trained using
codes assigned by human coders, enabling the classification of large-scale text data. Similarly, in
Cody by Rietz et al. [66], a logistic regression model with stochastic gradient descent (SGD) learning
was trained to classify unseen data based on the available annotations.

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

In addition, topic modeling techniques such as Latent Dirichlet Allocation (LDA) have been
explored to unveil hidden topics within qualitative data [10, 42, 51]. This is discovered to be similar
to the outcomes of the results derived from open coding, indicating the potential application of
topic modeling in qualitative analysis [10].

In conclusion, this review reveals potential for integrating Al into QA to enhance its efficiency.
Similarly, we harnessed users’ inputs as training data, to fine-tune the text classification model
with pre-trained word embedding, which can provide code predictions promptly when users make
requests during the coding process.

2.3 Existing Tools to Support CQA

Numerous works have been investigated to assist CQA using traditional technologies. For example,
Zade et al. [71] proposed a strategy that enables coders to order the degrees of consensus, using
tree-based ranking metrics to quantify coding ambiguity. This ordering can extend from the most
ambiguous to the least, or from low to high agreement. Likewise, Aeonium, introduced by Drouhard
et al.[29], is a visual analytics system that assists team members with tools to review, edit, and add
code definitions and examples shared within the team. It also enables monitoring of the coding
history throughout the process, with the aim of revealing disagreements and reducing ambiguity.
Furthermore, Ganji et al. [33] introduced Code Wizard, a visualization tool embedded in Excel that
leverages the certainty level of the codes assigned by all coders to highlight highly ambiguous
codes. In addition, it enables the aggregation of individual coding tables, the automated sorting
and comparison of coded data, and the calculation of inter-rater reliability. All the above works
improve discussions between coders, allowing coders to focus on the most challenging aspects of
the work. However, they caused the CQA process to diverge somewhat from the traditional coding
procedure, introducing additional steps and consequently increasing the overall complexity [23].
As a consequence, these tools demand much learning and acclimatization, which could potentially
pose new challenges for users.

On the other hand, current commercial CQA software like MaxQDA3, Atlas.ti%, nVivo® and
Google Docs [32, 61], demonstrate a more intuitive and user-friendly approach, largely maintaining
the familiarity of traditional coding procedures while offering the benefits of modern collaborative
tools. MaxQDA, for instance, provides a feature for merging coding documents from multiple
coders once independent coding is complete [2, 57, 62]. The web version of Atlas.ti and Google
Docs boasts even more advanced capabilities: they permit multiple users to code simultaneously
and synchronize modifications in real time. The seamless integration of simultaneous coding and
real-time synchronization significantly reduces workflow disruptions and promotes efficient and
effective collaboration, addressing the issue of delayed information updates among team members,
a common drawback found in other systems [57]. However, we’ve noticed that tools like Atlas.ti
and Google Docs allow users to code and view others’ codes within a shared document. This
functionality could potentially introduce substantial bias among coders [7], as it means that a
coder’s work is continually visible to their peers. Therefore, we strive to strike a balance between
collaborative efforts and individual perspectives through Al mediation, ultimately enhancing the
quality and integrity of the coding process in CQA.

Meanwhile, there’s a growing interest in leveraging Al to augment CQA. For example, Rietz et
al. [66] recognized the potential of Al in CQA and call for efforts to examine the extent to which
code rules and formulas can assist multiple coders in discussing their interpretations of codes

3https://www.maxqda.com
4https://atlasti.com
Shttps://lumivero.com/products/nvivo/nvivo-product-tour/

https://www.maxqda.com
https://atlasti.com
https://lumivero.com/products/nvivo/nvivo-product-tour/

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

during the coding process. The authors also suggested investigating how coders interact with
suggestions generated based on their co-coder’s coding rules. This underscores the prospective
advantages that Al integration could introduce to the CQA process.

In summary, while collaboration plays a crucial role in qualitative analysis, and Al has been
extensively studied in individual qualitative analysis, the domain of Al-assisted collaborative
qualitative analysis remains relatively unexplored. To fill this research gap, we conducted an
investigation comprising a series of semi-structured interviews with HCI researchers possessing
diverse levels of expertise. Drawing on insights from our interviews, we developed CoAlcoder,
employing four distinct Al-assisted collaboration techniques in its evaluation. The focus of this
evaluation was to investigate the impact of these collaboration techniques on the dynamics of
coding efficiency and coding outcomes, in order to give us a deeper understanding of AI's potential
in fostering human-to-human collaboration within the context of CQA. Lastly, we seek to derive
valuable design implications from our findings, which can serve as guidelines for developing more
effective and efficient collaborative coding tools in the future.

3 FORMATIVE INTERVIEW

To understand the current CQA practices, challenges, and users’ anticipations when integrating
AJ, we conducted a series of semi-structured interviews with HCI researchers possessing varying
levels of CQA experience. Our university’s Institutional Review Board (IRB) granted approval for
these interviews.

3.1 Methodology

Our semi-structured interviews involved 8 HCI researchers (4 females, 4 males, mean age = 29.9
years), all of whom possessed experience in QA and CQA. The participants encompassed two
postdoctoral researchers (P1, P2), two senior graduate researchers (P3, P4) regularly utilizing (C)QA
in their work, and four junior graduate researchers (P5, P6, P7, P8) possessing a minimum of 1.5
years of experience in (C)QA. Further details, including their respective fields of study, educational
background, software used for (C)QA, and the duration of QA use in their research, can be found
in Table 1.

During the interview, we asked participants to reflect upon and share their most notable CQA
experiences. In addition to narrating their experiences, we requested participants to demonstrate
their data coding process via screen sharing when feasible. We also explored the challenges they
encountered with their chosen tools, as well as their expectations concerning potential Al assistance
in the process. All interviews, lasting between 20 and 60 minutes, were conducted virtually, audio-
recorded, and transcribed through Zoom to facilitate subsequent analysis.

Table 1. Demographics of Interview Participants. Every participant was working in tje field of HCl and was a
master’s student or above.

Participant ID Fields of Study Education QA Software QA Experience (Years)
P1 HCI, Mobile Computing Postdoc Excel 9
P2 HCI, Healthcare Postdoc nVivo/Atlas.ti/MaxQDA/Excel 7
P3 HCI, Ubicomp Ph.D. student Atlas.ti/Excel 4
P4 HCI, AI Ph.D. student Whiteboard/Google Sheet 4
P5 HCI, VR Ph.D. student Word/Excel/nVivo 2
P6 HCI, Healthcare Master’s Student Google Docs 35
P7 HCI, Chatbot Master’s Student Atlas.ti 3
P8 HCI, Security, Privacy | Master’s Student Atlas.ti/Excel 1.5

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

In order to derive nuanced insights from our data, two authors, including the interviewer and an
experienced qualitative researcher, employed a CQA process as per Richards et al. [65]. The coders
began with independent open coding of two representative transcripts (P2, P3). Following this
initial round, they convened to discuss similarities, reconcile code conflicts, and establish consensus
on a primary codebook. The codebook was then tested and refined using two additional interview
transcripts (P1, P4). Lastly, the first coder processed the remaining four transcripts (P5-P8). The
findings from this process are presented in the following subsection.

3.2 Findings

3.2.1 Basic CQA Process. Our participants generally followed the main steps of the CQA process
outlined by Richard et al. [65]. The following summarises their practices:

(1) Each coder in the team receives a copy of the data (e.g., interview transcripts, qualitative
notes). They individually review the material and identify key points and primary codes
through a process known as initial coding or open coding.

(2) The coders convene to discuss their respective codes and selected key points. During these
discussions, they address any discrepancies or differences in understanding and interpretation
of the codes. Through this, they aim to reach a consensus and propose a primary codebook.
One participant described this process as follows: "The first level of analysis is like: I have a
copy of the data, and my collaborator has another copy, and we’ll assign primary codes. Then
we sat down and discussed them, and see if he or she agrees. If there is disagreement, we will
rethink the code and discuss." (P1, postdoc with 9 years of QA experience).

(3) The coders proceed to code additional data and expand the content within the codebook. This
iterative process is often repeated for several rounds until the codes stabilize. One participant
explained this process as follows: "Based on the existing [codes in] open coding, we can roughly
divide it into several pieces [or groups], and then pick out a few themes. [Sometimes] it is difficult
to determine the theme, then there will be several rounds discussions [to decide the themes]." (P6,
Master’s student with 3.5 years of QA experience).

(4) Once the codebook reaches a stable state, one or more coders employ this finalized codebook
to code the remaining data.

(5) The coders proceeded to generate reports based on their findings. These reports synthesized
the coded data and identified emerging themes, patterns, and examples derived from the
analysis.

However, in our inquiries about the specific methods employed for CQA, there were different
responses regarding their preferred approaches. Some participants indicated utilizing grounded the-
ory [15, 24], while others mentioned adopting thematic analysis [14, 56, 67]. These methodological
choices were influenced by the specific requirements and objectives of their respective projects.

Specifically, when time and resources permit, and when participants discern the primary value of
their project in the findings of qualitative research—especially in the absence of solid expectations
or hypotheses for the data—they typically engage in a more strict CQA process [50] or even
grounded theory, as previously described. This approach fosters a deeper, more inductive, and
nuanced understanding, consequently leading to insightful revelations. One participant explained
the rationale behind this approach: "I think the reason [for following a strict CQA process in this
project] maybe because first, we have more people and collaborators, and secondly, because this paper
mostly depends on the qualities of the codes we’ve evolved. We wish it’s a primary contribution, so
it’s like the difference in purpose [determines the methods and the strictness levels we use]." (P4, Ph.D.
student with 4 years of QA experience).

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

In the context of a study that encompasses mixed contributions, participants tend to favor
thematic analysis when they have clear expectations and a more structured framework in mind.
This approach, encompassing steps from "Generate initial codes" to "Define themes" [14, 56], places
a greater emphasis on the testing and refinement of pre-defined themes than strictly following
the step-by-step collaboration described above. One potential deviation observed is the utilization
of a predefined codebook instead of initiating the coding process with open coding, which is a
characteristic of the traditional CQA methodology. As explained by one participant: "For me, for
example, if it’s research mostly employing mixed methods, meaning you have both quantitative and
qualitative data, in that case, if you have the quantitative research, then you use the qualitative to
support this argument from another perspective. In that case, you can directly go for something like
thematic analysis, and it’s easy because you know what to expect." (P3, Ph.D. student with 4 years of
QA experience).

3.2.2 Difficulties in Performing Collaborative Qualitative Analysis.

D1: Slow and time-consuming. The participants unanimously acknowledged that CQA is a time-
intensive endeavor. The complete process of qualitative coding alone can span several weeks
to several months for individual coders. When collaboration is involved, the duration is further
extended due to "multiple rounds" of discussion and testing a comprehensive codebook (P4, Ph.D.
student with 4 years of QA experience). As expressed by one participant: "It does take a lot of time. A
30-minute interview could be converted into seven or eight thousand words. I had to spend an hour or
two to do independent coding, and another three hours to discuss." (P5, Ph.D. student with 2 years of
QA experience). Moreover, in cases where the coding process extends over a significant duration,
coders often find it necessary to re-read the text during the reflection stage. "The difficulty [of CQA]
could be time-consuming. Especially if you do it twice, you have to read it again." (P1, a postdoc with
9 years of QA experience). Additionally, if one of the coders in the coding team works at a slower
pace or struggles to keep up with the progress, it can result in an extension of the overall coding
time (P3, Ph.D. student with 4 years of QA experience).

Yet, the time-consuming nature of the CQA process presents a valuable opportunity for junior
researchers to actively engage and contribute, as they often have more flexibility and availabil-
ity, allowing them to dedicate ample time to the rigorous coding process involved in CQA. For
example, half of the participants (P1-P4) were involved in projects that fostered collaboration with
junior researchers, including those with little to no prior coding experience. Remarkably, in these
collaborations, the code suggestions from both groups were treated with equal importance and
consideration. One participant explained their approach: "Actually I work with some junior students.
In this case, I think the first time we would encourage them to read the book chapters about how to
conduct coding...After a few runs of demonstrations, in most cases, they become, you know, better QA
[coders]." (P4, Ph.D. student with 4 years of QA experience)

D2: Coding bias and the struggle for independent coding. In a strict CQA process, individual coders
are expected to do coding independently from their own perspectives. However, the current QA
software available, such as Atlas.ti, often poses challenges in merging codes when coders perform
open coding independently in separate documents. This limitation can lead to coders relying on
shared documents on Atlas.ti Web or Google Docs to label the data, benefitting from their easy and
real-time data synchronization feature.

However, this shared feature has its drawbacks. The visibility of each other’s codes may result
in mutual influence, potentially biasing the coding process. This concern was reported by 6 out
of 8 participants. As one participant described: "So the main one [difficulty] is usually very hard to
separately do the coding...if one person has coded, then the next person will see that person’s coding,

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

which means that you are influenced by other coders’ coding. You cannot select codes you added or
switch off all the coding coming from others’ perspectives. The view gets very overlapped and then gets
very confusing." (P2, postdoc with 7 years of QA experience).

Similarly, although P6 did not explicitly mention the issue of code bias, it was observed through
her shared coding practices that she utilized Google Docs to collaborate with her colleagues on a
shared page. This collaborative approach inadvertently allowed all collaborators to view and access
the codes being generated.

D3: Trade-offs in utilizing QA software vs. traditional text editors. Most participants (6/8) favored
traditional text editing tools like Google Docs and Excel over professional QA software like Atlas.ti
or nVivo, finding the current features of text editors sufficient for their needs. "We use Excel because
it just has all essential functions that we need, like filtering, data validation and removing duplicates."
(P1, postdoc with 9 years of QA experience).

This can also be seen as an outcome of the deliberation of weighing the learning costs against
the potential benefits: QA software such as nVivo is described as having a "steep learning curve"
(P4, Ph.D. student with 4 years of QA experience), yet it seemingly does not provide substantial
advantages over conventional tools. Users anticipate more sophisticated features in return for their
significant learning investment—like auto-grouping similar codes among coders. This deliberation
often leads many to favor simpler tools that are easier to master and require a lower investment in
learning. One Ph.D. student with 2 years of QA experience (P5) shared, "I also tried to use nVivo [to
do collaboration]. I found that when using nVivo, I can not group together codes and text from three
coders [automatically]. So later we just used Excel."

However, shifting to traditional text editors can pose challenges when handling large and diverse
datasets, especially with an extensive codebook. As one participant noted, "The final codebook
is very large, with a lot of themes, it is troublesome to read." (P5, Ph.D. student with 2 years QA
experience). Moreover, users may forget their proposed codes in open coding, relying on "memory
and perception" (P6, Master’s student with 3.5 years of QA experience) to generate the initial codebook.
This often complicates subsequent stages of qualitative coding, requiring additional work, such as
expanding the codebook or necessitating another round of CQA.

D4: Trade-offs of using a predefined codebook. Some participants (3/8) indicated that the practice
of lead coders proposing a primary codebook for the team to follow could streamline the coding
process. As one participant described, "I developed an initial codebook. I sent a copy to the two coders
to let them do some coding on their own. Then after 1 week, they sent it back to me with their codes.
Then we do a comparison to solve the disagreements." (P8, Master’s student with 1.5 years of QA
experience).

Yet, this could potentially restrict the benefits of CQA. P1, a postdoc with 9 years of QA experience,
shared her opinion, "It sorts of restricts the categories. They only had to code the data in a certain
way."

However, some participants acknowledged situations where, despite recognizing it as less than
"strict", they would adopt this strategy due to time constraints: "For my project, we have very limited
time to do coding, then my collaborator and I do coding for the whole transcripts with the codebook I
proposed. If I have enough time, I would definitely do a stricter qualitative analysis."(P4, Ph.D. student
with 4 years of QA experience).

D5: Interpretational variations and granularity challenges. Interpretational divergence is a common
occurrence among coders working on the same data, leading to distinct coding outcomes. P1, a
postdoc with 9 years of QA experience, stated, "The difficulty comes after [coding] the first round
codes. We always have different ways of interpreting things.". Furthermore, coders could assign

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

codes with differing levels of specificity, causing extra work and necessitating further discussion to
reconcile the codes: "My codes are broader, my partner is more specific. My codes usually cover the
whole category. But hers give a bit more subcategories...the thing is I don’t want the subcategories. I
Jjust want all the codes to be the same categories."(P7, Master’s student with 3 years of QA experience).

3.2.3 Suggestions for Al-assisted CQA tools.

S1: Al generates code suggestions based on code history. The majority of our participants (6/8)
express a desire for Al to provide code suggestions, with the most preferred source being their
personal coding history. "So if this content and that content suddenly matches up, it would be nice for
Al to just assist me and say, ‘hey, you’ve done this before! Why don’t you assign this code to this code
that you have already assigned?’ And I may not have remembered, because there were a lot of things I
processed along the way." (P1, a postdoc with 9 years of QA experience).

P3, a Ph.D. student with 3 years of QA experience, expressed skepticism towards an Al system in
which codes are derived from external sources, such as other projects or Al-generated suggestions:
"Initially, the coding is a thinking process. I don’t want to interrupt the [open coding] thing. I don’t
want to be biased by somebody in the thinking process...Because any suggestion is biased. Once I finish
initial coding, Al can suggest like, for example, then Al just shows like these are similar. These are
different. Then I can use that feature similar to the initial coding. Then you refer my codes to feed the
Al suggestions. I think that can improve the coding. If Al suggests [by its own], I don’t trust anyway."

S2: Al facilitates coding conflict detection. In our discussions with participants, we confirmed
Zade et al’s [71] previous analysis that a text selection analyzed by multiple coders could lead to
1) divergence: entirely distinct or even opposing interpretations, or 2) diversity: identical inter-
pretations conveyed through different expressions, such as "not bad" and "well". Both scenarios
necessitate coders to scrutinize the text, highlight the disparities and engage in a dialogue to reach
a consensus on the final code. This process represents a significant time commitment.

To handle the "diversity" conflict, our participants (4/8) anticipate that Al can play a crucial
role in automatically detecting variations in codes assigned by different coders to the same text.
This would prompt them to continuously reassess their coding choices in real-time throughout
the coding process. As described by P7, I think the collaboration is a matter of recommending what
other collaborators have already done...for instance, one sentence, ‘oh the chatbot did not understand
me.” Then my code is ‘chatbot is stupid’, and the code of another coder is ‘chatbot has insufficient data’.
Al may detect this difference [in real time]." (P7, Master’s student with 3 years of QA experience).

Moreover, P7 further explained that this conflict detection can take place during the coding
process, fostering timely discussion among coders and eliminating the necessity to recall the
meaning of their own codes or engage in manual one-by-one comparisons after coding. As a
result, they would only need to allocate a lower amount of time to resolve discrepancies. This is
particularly true when confronting with code "divergence": "Then the difference may be detected. Al
says, ‘So what’s the difference? Why did you choose a different code? If you choose this code, can you
give a reason why you choose this code?’ Then I tell the other coder to come back, ‘guys. Let us discuss’
(P7, Master’s student with 3 years of QA experience).

3.3 Study Limitation

It is important to acknowledge that our findings may have limitations. One main limitation is
the background of our participants, as all but one (P2) are coming from a technology-oriented
background, as indicated in Table 1. This could potentially impact our findings, as their projects often
involve mixed methods and practices that may be influenced by their technological perspectives
rather than perspectives and methods rooted in social science or psychology. Our study also includes

10

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

participants with varying experience with CQA (experts and non-experts). Our goal here was to
encompass a range of perspectives and experiences, allowing us to address both the learning issues
associated with applying CQA and the inherent issues that arise in its implementation.

3.4 Discussion

In practical applications, similar CQA steps are employed by our participants with slightly different
forms, but the majority of practitioners primarily adhere to the six CQA steps proposed by Richards
et al. [65]. Regarding the anticipated stages of Al integration, our findings support the conclusions
drawn in the previous study conducted by Feuston et al. [30], that Al can be effectively incorporated
into the inductive coding process. However, unlike previous research that primarily focuses on
utilizing Al for pattern identification and data interpretation at this stage, our findings demonstrate
an alternative use of Al: detecting coding conflicts between coders and facilitating collaborative
interpretation and evolution of data among them. Building upon the established CQA stages and
the anticipated integration of Al, we have designed a study task for our evaluation of CoAlcoder
consisting of three primary phases: 1) open coding, 2) codebook formation through discussion, and
3) coding using the codebook.

Our findings also confirmed several noteworthy challenges and limitations associated with
CQA. These include the time-consuming nature of the process [57, 66], difficulties in achieving
consensus among coders [25, 29, 30, 45, 71], and the presence of software-related issues [30, 43, 45].
In particular, we have identified a new limitation related to coding bias arising from the challenges
of independent coding. This limitation is particularly observed in the current CQA software that
facilitates real-time collaboration and coding on a shared document among coders. For instance, in
platforms like Google Docs and Atlas.ti Web, users have visibility into each other’s codes while
co-coding. This visibility negatively impacts their willingness to use CQA software as it introduces
a potential bias in the coding process.

In an effort to mitigate this limitation, we propose a solution that involves leveraging Al as
an intermediary between the two coders. Instead of directly revealing each other’s codes, our
system retrieves and analyzes the coded data from both coders in real time. Incorporating the
distinct perspectives of each coder, our Al system generates code suggestions that serve as indirect
indicators of coding differences, which facilitate awareness of differences among the coders. This
awareness encourages them to reconsider and reflect upon their own codes during the coding
process, rather than solely during post-coding discussions. By doing this, we aim to minimize bias
in the existing coding process when using traditional real-time collaboration software such as
Google Docs, Atlas.ti Web, and others.

4 SYSTEM DESIGN

Based on the insights from the interviews, we have proceeded to design and implement a platform
that harnesses the power of Al to facilitate the CQA process.

4.1 Design Consideration

(1) Independence and convenience: To keep both independence and convenience (D2), each
coder is assigned a separate web page with the same data, but allows access to others’ coding
results by simply clicking a link rather than navigating through the cumbersome process of
exporting and importing that current non-web software necessitates [57].

(2) Lower learning curve: To mask the complexity of Al and flatten the learning curve (D3), our
system is designed to emulate familiar platforms like Google Docs, specifically its "comment”
function. This design enables the addition and removal of codes in a way that users can
readily comprehend and navigate. Moreover, the web page or coding interface allows data

11

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

selection at various granularity levels for code addition, similar to existing commercial QA
software.

(3) List of code suggestions: Our approach to collecting coding history and generating code
suggestions for coders has the potential to yield significant time savings and reduce manual
effort (D1). In accordance with Rietz et al. [66], our approach includes providing multiple
Al suggestions, each accompanied by a confidence level. This aims to bring attention to the
inherent uncertainty of codes and curtails the potential risk of thoughtlessly adopting these
suggestions [20, 21, 45].

(4) User autonomy: Code suggestions are revealed only upon user request, emulating the natural
coding process. This fosters active thinking before viewing suggestions, minimizing the risk of
being unintentionally guided in unwanted directions [45] by direct exposure to others’ codes
(D2). This is beneficial as it encourages independent thinking, a tool to combat groupthink
[44].

(5) Collaboration: The coding histories of both coders are comparatively analyzed and sub-
sequently input into an Al classification model. This model then generates a range of Al
suggestions for coders upon request (S1). It not only provides a reference point to users based
on their own coding history but also integrates their partner’s history. Through this design,
our goal is to foster awareness of disparities among coders, thus enhancing their understand-
ing and reflection of the data. This becomes particularly beneficial when addressing coding
styles or logic conflicts [4] within a group.

(6) Usage in inductive coding: Beyond the system, instead of enforcing a rigid, predefined
codebook that could potentially constrain coders (D4), we place importance on the dynamic
nature of the inductive coding process in the evaluation.

The specific design components of our prototype, CoAlcoder, are elaborated in the following
subsections.

4.2 Interface

The interface (see Figure 2) is built on two components: 1) Etherpad®, an open-source collaborative
text editor that supports multiple users editing text in real-time [6, 11, 38], and 2) its plugin,
ep_comment_pages’, which allows for adding comments beside the text. To create a code, users
select the text of significance — click on the "comment" button — type in the code OR select from
a list of Al-generated code suggestions — press "save". The interface also provides features for
coders to review the code history, re-edit, and delete the code in case they change their minds.
Additionally, the customized version of ep_comment_pages offers code suggestion lists containing a
maximum of five codes when requested by the user. These codes are ranked by their confidence
level, which ranges from 0 to 1.

4.3 Al Model

The Al model harnesses the Rasa NLU framework?, to generate code suggestions upon a user re-
quest. Previously, Rasa [13, 17] has been deployed in the domain of HCI for handling conversations
in several prototype models [64]. Specifically, we employ a recommended NLU pipeline from Rasa
to train an NLU classification model®. This pipeline incorporates multiple components: SpacyNLP,

Shttps://etherpad.org/

"https://github.com/ether/ep_comments_page
8https://rasa.com/docs/rasa/
“https://rasa.com/docs/rasa/tuning-your-model/#configuring-tensorflow

12

https://etherpad.org/
https://github.com/ether/ep_comments_page
https://rasa.com/docs/rasa/
https://rasa.com/docs/rasa/tuning-your-model/#configuring-tensorflow

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

code editing history

1) select text 2 Click on the button 3 Add codes directly or select 4 Codes are displayed beside
to add codes I/ one from the dropdown list '«’ the text
i | | :
N I |
E - ! L 5 Click on the code to edit it or
| H 3 /’ reselect from the dropdown list
] N
: ! b R
1 1 i 1
!] ! 1 ;
: ! P :
! < 1 ! |
| i M !
| | i 1
: | : 1
! : i ‘
| v I '
1 i i
| | 1
: ; <
! ! Click on the button to check
: ' 6
1
|

Fig. 2. The CoAlcoder interface. Creating a code: (1) Users select the text of significance and (2) click the
comment button to add codes. (3) Users can add codes directly or select one from the dropdown list. (4) The
created code is shown beside the selected text. (5) Click on the code to edit it directly or reselect codes. (6)
Click on the button to check the code editing history.

a Saveand process user’s codes
nlu: g Request code suggestions for the
.) TN lect t
- intent: poor_service selected data
Selected data: Next time | come back to town |
will definitely stop here for more pizza!

examples: | | Train NLU model
“intent_ranking":[

One round lasted

- Mentioned to our waitress,
10-20 seconds

but nothing came of it
- The chef can't even cut through |

ham or hard bread (tried on all 3 {"name’
occasions), beef, shrimp again {“name”: “

{“name

intent: satisfied c Replace models {"name’

examples: | {“name”: “poor_service”, “confidence”:
- Should be a staple in the Northeast
- Next time | come back to town | will

definitely stop here for more pizza!

Fig. 3. The pipeline for training and updating the CoAlcoder model, designed to facilitate code suggestion
requests. (a) Save and process user’s coding data: This step involves saving, retrieving, and processing each
coder’s coding data. The retrieved data is then used to generate an nlu.yml file, which contains coded text (i.e.,
examples) and codes (i.e., intent). (b) Train NLU Model: This process trains a new model using the updated
nlu.yml, which takes about six seconds or longer, depending on the coding data size. (c) Replace models:
This process substitutes the old model with the newly trained one, approximately requiring four seconds per
model. (d) Request code suggestions: The user requests code suggestions from the server. Initially, CoAlcoder
requests code suggestions from server1. If this fails, the request is then rerouted to server2, thereby sustaining
the impression of continuously updated code suggestions for the user.

SpacyTokenizer, SpacyFeaturizer, RegexFeaturizer, LexicalSyntacticFeaturizer, two in-
stances of CountVectorsFeaturizer, and DIETClassifier.

13

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

Within this pipeline, the SpacyNLP language model ‘en_core_web_sm’'° is selected for training
efficiency consideration, comparing to larger pre-trained language models utilized in the SpacyFea-
turizer!'!. Moreover, the DIET (Dual Intent and Entity Transformer) Classifier [16] is selected for its
capability to perform multi-class classification. The NLU pipeline operates on a computer equipped
with Ubuntu 20.04, Tensorflow (2.6.1), CUDA (11.2), and an Nvidia GPU Quadro K2200 graphics
card, in conjunction with installed software like Rasa (3.0), Node.js (17.2.0), and MongoDB (5.0.4).

The Al model, trained on users’ coding histories, may not provide suggestions for the initial few
requests due to a lack of historical data. However, as the data pool expands, it gains the capability
to generate up to five code recommendations for each request, sorted according to their respective
confidence levels. The DIET Classifier computes these confidence levels, indicating the cosine
similarity score between predicted labels and text!?.

4.4 Training and Updating Pipeline

The training and updating pipeline is shown in Figure 3.

4.4.1 Save and Retrieve Data. Each user’s coding data is individually stored in the database. To
identify conflicts, the codes of each coder are compared with both their own and their peers’ coding
histories. The codes are subsequently grouped and deduplicated, readying them as inputs for the
NLU pipeline. For example, if two sentences are labeled with the same code, they are grouped
into one "intent" (akin to the "class" concept in Machine Learning, and equivalent to "code" in this
work) in the Rasa NLU data file, nlu.yml If a single sentence is coded with two distinct codes by
two coders, it serves as an "example" for both "intent" in the Rasa NLU file. If two codes convey
similar meanings but have different expressions, they are interpreted as two separate "intent" (in
the current version of CoAlcoder). It should be noted that this process may slightly vary under the
four conditions outlined in Section 5.

4.4.2 Train and Reload NLU Models in Real Time. Firstly, the nlu.yml file is fed into the NLU
pipeline for automatic training of the new NLU model. Secondly, the trained model is promptly
uploaded to the Rasa server via HTTP API, replacing the previous model. Lastly, we configure two
Rasa Open Source servers to run on ports 5005 and 5000, respectively. These servers act as buffers
for user requests, utilizing server swapping. Users have the capability to request code suggestions
through HTTP from either of the two servers. In case CoAlcoder fails to receive a response from
one server due to the server’s ongoing model update process, it swiftly switches to the other
server as an alternative. The complete pipeline typically requires approximately 10 to 20 seconds
or longer, depending on the size of the coding data. Users experience a seamless process without
any interruptions caused by model updates.

5 USER EVALUATION DESIGN

We proposed four collaboration methods for using CoAlcoder (see Figure 5). To ensure a fair
evaluation, we focus on novice users who primarily participate in the CQA process (see section
3.2.2) and undergo requisite coding training. We further strive for an evaluation of CoAlcoder across
varied collaboration modes in a between-subject study, considering they may originate from a
similar starting point. This user study has been approved by our university’s IRB.

Ohttps://spacy.io/usage/models

111t should be noted that our coding materials in the evaluation consist solely of simulated job interview transcripts and do
not encompass any specialized domain knowledge.

2https://rasa.com/docs/rasa/components/#dietclassifier

14

https://rasa.com/docs/rasa/components/#dietclassifier

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

Interviewer: How are you doing today?

Interviewee: I'm doing very well. How are you?

Interviewer: Good. So tell me about yourself.

Interviewee: I'm currently a junior at MIT. I'm studying biology. Ummm | am interested in pursuing some sort of a future in
medicine but | don't know if necessarily like the medschool route or more the research side but you know
having to do with patient care and drugs and things like that. So within the broader field but I'm not sure
specifically what path yet. Interviewer: Okay great. So tell me about a time when you demonstrated leadership.

Interviewee: Umm okay. So umm the summer after my sophomore year of high school | actually went on a leadership trip.
Um so it was through uh my summer camp and some other camps are a part of the same foundation and we
actually went on a trip to Israel for the summer.

Interviewer: Wow okay.

Interviewee: And it was the first time I'd ever been which was very exciting um. And it was a very cool experience 'cause
not only were they teaching a lot of leadership skills but also a lot of you know the daily activities we did like
going for really long hikes and things just kind of brought out that innate like 'someone has to make sure
everyone brought enough water.

Interviewer: Right.

Interviewee: And you know make sure the group's staying together and things like that um. So that was definitely something
that | think impacted me a lot.

Fig. 4. One sample interview transcript in coding task.

5.1 Task

We simulated a CQA task encompassing three main steps: independent and open coding, codebook
formation through discussion, and codebook application. Due to the multiple factors involved
in our study, we simplified the study by focusing on the CQA process involving two users. To
determine the optimal duration for each phase and the overall study, we conducted a pilot test with
eight participants (5 females, 3 males, mean age = 24.7).

We selected mock interview transcripts from an open-source dataset [59] as the text materials to
be coded in our study. This dataset covers various general topics, including leadership, personal
weaknesses, and challenging experiences, which are familiar and accessible to most users. To ensure
control over potential effects on both the Al model and user understanding, we specifically chose
three transcripts that exhibit better clarity and coherence, each consisting of approximately 1000
words. Part of a sample interview transcript is provided in Figure 4.

5.2 Independent Variables (IVs) and Conditions

To understand the impact of Al on human-to-human collaboration in CQA, we identified three
factors for our study:

(1) AI{With, Without}: Whether or not AI (the NLU model) is applied to provide code suggestions.
This IV aims to understand whether the use of Al affects CQA performance.

(2) Synchrony {Synchronous, Asynchronous}: Whether or not two coders do coding in real-time
and simultaneously. This IV aims to understand whether CQA performance is achieved
similarly in synchronous and asynchronous modes.

(3) Shared Model {With, Without}: Whether or not two coders use a shared NLU model to request
Al suggestions. The shared model can collect coding history from both coders and be trained
on it to provide code suggestions. Without a Shared model, each coder can only get Al
suggestions based on his/her own coding history. This IV aims to understand if a shared
model affects the CQA performance.

15

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

We combined these factors and removed meaningless and duplicate combinations, resulting in
four final conditions (A-D) for the collaboration (see Table 2). The final conditions are shown in
Figure 5.

Table 2. The combinations of the three factors, which are not entirely independent of each other. For instance,
the absence of Al renders the Shared Model factor irrelevant, making conditions C7 and C8 nonsensical.
Synchronous coding is only applicable in the presence of a Shared Model, as the order in which coding occurs
is inconsequential without a shared model. Thus, certain conditions become identical due to the absence of a
shared model, namely C1 and C2, as well as C3 and C4.

Combination C1 C2 C3 C4 C5 C6 C7 C8

Al x x v v v vV x X
Synchrony x v v x x VvV x V
Shared Model X x x x Vv Vv V V/
Condition A A B B C D x x

Condition A: Without Al, Asynchronous, not Shared Model (Traditional Coding): In Phase 1, each
coder independently applies codes to the first two interview transcripts using distinct web pages.
In Phase 2, the coders convene to establish a shared codebook. During Phase 3, they independently
apply codes to the third transcript based on the codebook. As new codes are entered, the model
undergoes automatic updates.

Condition B: With AL Asynchronous, not Shared Model: In Phase 1, each coder independently
applies codes to the first two interview transcripts, each utilizing an individual model on separate
web pages. These two independent models are automatically trained during the coding process,
with the training data sourced from their individual code histories. In Phase 2, the coders convene
to formulate a shared codebook. During Phase 3, they independently apply codes to the third
transcript based on the codebook, with the model undergoing automatic updates as new codes are
entered.

Condition C: With Al, Asynchronous, Shared Model: In Phase 1, coderl independently assigns
codes to the first two interview transcripts. The model is concurrently trained and offers real-time
code suggestions as the coding process unfolds. Once coder1 completes the task, coder2 commences
coding on a separate web page. Initially, the code suggestions are entered by coder1’s coding history.
Over time, as coder2’s codes are introduced, they are incorporated into the suggested codes. In
Phase 2, the coders collaborate to create a shared codebook. During Phase 3, they independently
assign codes to the third transcript using the codebook, triggering automatic updates of the model
as new codes are inputted.

Condition D: With AL Synchronous, Shared Model: In Phase 1, both coders independently assign
codes to the first two interview transcripts, each working on a separate web page. As the coding
process progresses, CoAlcoder accesses their individual code histories and automatically trains the
model 3-6 times per minute. Upon request, it then provides code suggestions for both coders. In
Phase 2, the coders collaborate to develop a shared codebook. During Phase 3, they independently
apply codes to the third transcript using the codebook. The model is automatically updated when
new codes are inputted.

5.3 Participants

A total of 64 participants (41 females, 23 males), ranging from 18 to 57 years old (mean=25.3,
median=23), were recruited through our university’s email system and public channels on Telegram
targeting other universities within Singapore. All participants were native English speakers and

16

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

Condition A: Condition B: Condition C: Condition D:
Without Al With Al With Al With Al
Asynchronous Asynchronous Asynchronous Synchronous
not Shared Model not Shared Model Shared Model Shared Model
CoTTTTTTTT T] [1 CoTTTTTTTT T] CoTTTTTTTT T]
I I I | I I I V.
i i i i i O i i L1 Almodel :
: P mame RS L, e | 1
! ! ! 1 ! Asynchronous ! ! ! ' m® |
! !. !. : : v v : : . : : L, J : 3 B9, Human Coder 3
I I I i i I i I
: P : Bind. - W R || — Model training |
I I I | I I I I
I I I | I I I I

Phase 1 Independent and Open Coding
| P P P |
Phase 2 Discussing and Proposing Codebook
i i i [i i i
Phase 3 Applying Codebook

Fig. 5. Four Approaches to Collaboration in Qualitative Analysis. Condition A: Without Al, Asynchronous,
not Shared Model (Traditional Coding): Both coders independently apply codes. Condition B: With Al, Asyn-
chronous, not Shared Model: Each coder applies codes using their respective NLU models. Condition C: With
Al, Asynchronous, Shared Model: The coders apply codes asynchronously with a shared NLP model. Coder1
begins the process, during which the NLP model trains and offers real-time Al suggestions. Once Coder1
completes the task, Coder2 commences with coding. Condition D: With Al, Synchronous, Shared Model: The
coders apply codes synchronously with a shared NLP model.

reported no prior experience in qualitative analysis. In accordance with our university and national
guidelines for participant reimbursement, each participant received an hourly compensation of 10
Singapore Dollars.

5.4 Procedure

The final study process was structured based on the setup depicted in Figure 6. A total of 64
participants were divided into 32 pairs, with each study group comprising 8 pairs. The allocation of
participants to the four study groups was random, corresponding to the four conditions specified
in Figure 5.

To ensure participants had a thorough understanding of the task, we conducted an approximately
15-minute training session prior to the study. The training session consisted of two key components:

(1) Instruction: Participants received instruction from an instructor’s explanation that demon-
strated how to use CoAlcoder for selecting the text, adding codes in Phase 1, creating a
codebook in Phase 2, and applying it in Phase 3.

(2) Training Tutorial and Q&A: Participants were shown a video explaining the principles
of qualitative coding, and they also received a written tutorial explaining the concepts of
qualitative coding, codes, subcodes, and accompanying examples. A question and answer
session was held to address any queries and ensure clarity.

Following the training session, participants engaged in the three phases as illustrated in Figure
6. After the study, we also gathered demographics information and invited participants to pro-
vide feedback through an interview regarding their experience with the system. The interview
encompassed questions about their experience using the software, focusing on individual and
collaborative coding challenges, as well as their attitude towards CoAlcoder’s features. A detailed
list of questions can be found in the study protocol within the Appendix A. With the participants’
consent, we made audio recordings of the post-interviews to facilitate subsequent analysis. This

17

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

I [le. I ~ [i
cor o ! [I Lo D :
. ;‘H;..!.HDJ Dl ooy T .“];
!Instructor Coder | | P& codebook! | PPY | 1Instructor s e |
! . ! 11 Codebook |
Trainin L b L Lo Interview
9 +—— Phasel —t—T— Phase2 —t——t— Phase3 —+

before coding | ! . v . after coding

Fig. 6. Study procedure. Both coders underwent training in CQA, prior to the formal coding process. Phase
1 (Independent and Open Coding): In this phase, both coders individually performed coding for two
interview materials, following the assigned study setup (<20 minutes). Phase 2 (Discussion and Codebook
Formation): During this phase, the two coders engaged in discussions to collaboratively create a structured
codebook using Google Sheets (<40 minutes). Phase 3 (Application of the Codebook): In this phase, the
coders independently applied the codes from the agreed codebook during their individual coding sessions
(<10 minutes). At the end of each phase, participants were required to complete a survey and interview (=5
minutes).

analysis allowed us to gather valuable insights and perspectives on the user experience of the tasks.

In addition, we implemented the following measures to ensure the tasks were performed effec-
tively:

(1) Time reminders: Regular reminders were provided to participants to keep them aware of the
remaining time. For example, notifications were given when there were 15 minutes left and 5
minutes left in the allotted time frame.

(2) Coding quality check: We monitored their codes and selected text to address any questions,
issues, or potential misunderstandings that participants may have encountered during the
task. However, we made a conscious effort to minimally interfere with their coding process
to maintain the integrity of their work.

(3) Encouragement for diverse codes: Actively encouraged participants to generate a wide range
of diverse codes during the coding process.

5.5 Dependent Variables (DVs)

5.5.1 Coding Time. This DV quantifies the time taken for each of the three phases of the study
(see Figure 6). An approximate 90-minute time limit was enforced to regulate the study duration
for each pair. Specifically, the time allotment for each phase is as follows: Training: ~ 15 minutes;
Phase 1: < 20 minutes; Phase 2: < 40 minutes; Phase 3: < 10 minutes; Post survey and interview: ~
5 minutes. This structure was established in light of our pilot studies, during which we observed
that most participants were able to satisfactorily complete the coding task. However, the actual
coding time usage may deviate from the estimate. We assessed the actual time used in each phase
for further analysis.

5.5.2 Inter-rater reliability (IRR). IRR is a metric that gauges the level of consensus among multiple
coders [49]. In our study, we specifically employ Cohen’s kappa (x), a measure designed to compute
agreement between two coders [58]. The computation of k encompasses both Phase 1 and Phase 3.

5.5.3 Code Diversity. This DV quantifies the diversity of proposed codes, a factor that is intimately
linked to coding quality. To measure this, we count the number of unique codes—also referred to as
first-level codes—and subcodes, or second-level codes. Here, "unique" signifies that variations of a
similar meaning are counted as a single code.

18

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

5.5.4 Code Coverage. This DV quantifies the degree of overlap between the individual coders’
codebooks and the merged codebook, at both the first and second coding levels. This applies to the
initial codebook from Phase 1 and the users’ proposed codebook in Phase 2. The merged codebook
is iteratively developed by consolidating common codes from the 32 codebooks created during
Phase 2.

The formula used for the calculation is:
Code C __ |Coders’ Codebook N Merged Codebook|
oae Loverage = |Merged Codebook]| >

where N represents the intersection of the two codebooks, and "| |" signifies the number of codes.

5.6 Data Analysis

5.6.1 Step 1: Data Integrity and Quality Checking. Following data collection, our next step was to
verify the integrity and quality of the collected data:

(1) 85% Completion Rate: Participants should complete coding for more than 85% of the provided
data within the given time'3;

(2) Task Correctness and Active Collaboration: We examined whether participants performed
tasks correctly and collaborated actively. Instances of extremely low code diversity, such
as using a single broad code like "Experience” to describe all examples in the interview
transcripts, were a cause for concern. This lack of diversity suggested an inability to form a
quality codebook. Additionally, pairs that were not willing or able to engage in productive

discussion, choosing instead to develop their own individual codebooks, were noted.

Four pairs that did not meet these two criteria were omitted and replaced with new participants
to maintain the data integrity and quality.

5.6.2 Step 2: Generating Initial Codebooks. Phase 1 and Phase 2 represent the "pre-discussion”
and "post-discussion” stages, respectively. In the pre-discussion stage, the codes present a higher
degree of variation. Following the discussion stage, these varied codes have been deliberated and
consolidated, with differing variants merged.

In order for us to assess the IRR, code diversity and code coverage, two authors then manually
formed initial codebooks for each pair. These codebooks were specifically designated for assessing
the aforementioned DVs, and were neither shared with nor used by the participants at any stage
during the experiment. They first coordinated to merge codes of similar meaning, adhering to
the following criteria and steps: codes conveying similar meanings but expressed differently were
treated as second-level codes; subsequently, the authors collaborated to propose a corresponding
first-level code for each central meaning in the initial codebook. For example, "Introduction of
Leadership Experience", "Description of Leadership Experience", and "Application of
Leadership" serve as three second-level codes that fall under one first-level code: Leadership.
For more details, please refer to Table 3.

5.6.3 Step 3: Measuring DVs. We evaluated various DVs, including Coding Time, IRR, Code Diversity,
and Code Coverage, throughout the three phases.

In terms of Coding Time, we concluded each phase as soon as coders exceeded the time limit.
All but four pairs completed the coding task within this limit — two in Condition B: With Al
Asynchronous, not Shared Model, one in Condition C: With AL Asynchronous, Shared Model, and one
in Condition D: With Al, Synchronous, Shared Model. However, we still consider these four groups
as "completed" due to their achievement of a minimum 85% completion rate.

130ur time regulations were established based on pilot studies, during which most native speaker participants were able to

complete the coding tasks. This is designed to prevent the study from becoming overly lengthy, which could lead to fatigue
and a subsequent loss of focus and motivation.

19

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

Table 3. Part of a sample of the initial codebook (Phase 1). Each row containing second-level codes is counted
as a single first-level code. This codebook demonstrates a "Code Diversity" of 5 first-level codes alongside 10
second-level codes.

First-level
lrst-leve Second-level Code
Code
. . . . Not very sure about
Career Goal Personal introduction and future (career) goals | Choosing of (academic and career) route
future (career) goal
Personal Interest | Personal introduction and interest area. Interest in oil fossil fuels
Leadership Introduction of leadership experience Description of leadership experience. Application of leadership
Teamwork Intro of working with team on big project
Initiative Shows initiative

Table 4. Part of a sample codebook, which is formulated from the 27-minute discussion in Phase 2 between
participants P27 and P28 under Condition D: With Al, Synchronous, Shared Model. The "First-level Code"
column represents the first-level codes generated during this discussion. The "Second-level Code" column,
on the other hand, contains codes proposed by them in Phase 1. The "Example" column showcases selected
segments of the original text.

First-level Code | Second-level Code Example

Ummm I am interested in pursuing some sort of a future in
medicine but I don’t know if necessarily like the med school
Uncertain about the future route or more the research side but you know having to do
Interest and goals with patient care and drugs and things like that. So within
the broader field but I'm not sure specifically what path yet

I think for me where I'm where I am at this point where I'm
deciding between sort of going the medical school route or
the research route;

I’'m very interested in energy applications so um from alternative
Show interest in energy to more traditional sources so basically oil and fossil fuels.
alternative energy Um and kind of optimizing that industry I think there’s a lot of
potentials there so that’s where my main interest is.

For IRR, we segmented the complete interview data into sentences — represented codes numeri-
cally as "0" (for sentences without codes), "1", "2", "3", etc. — Cohen’s Kappa (k) was calculated for
first-level codes in Phases 1 and 3, as Phase 2 was a discussion session without new coding data.
Due to the considerable variability, second-level codes were excluded from IRR computation as it
was infeasible.

For Code Diversity and Code Coverage, both first-level and second-level codes from the initial
codebook and the proposed codebook were incorporated into the computing process.

Moreover, we conducted a thematic analysis [14, 56] for the interview audio transcripts, given
that most data align with the structure provided by the interview questions.

5.6.4 Step 4: Statistical Analysis. We conducted a non-parametric analysis on the quantitative data
(Coding Time, IRR), given concerns about the normality of the distribution of the data collected.
Consequently, Kruskal-Wallis test was employed to identify the main effect, and Mann-Whitney
U-test was used for pairwise comparisons.

6 QUANTITATIVE RESULTS
6.1 Coding Time

6.1.1 Total Time. The average total time for each study group and the average used time for three
phases is shown in Figure 7 and 8. A Kruskal-Wallis test did not reveal any main effect of the

20

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

conditions on the total time to complete the study ()((23) = 6.71,p = .082). In general, Condition
D: With AL Synchronous, Shared Model was the fastest (M = 46.56 mins), followed by Condition
C: With Al Asynchronous, Shared Model (M = 49.38 mins), Condition B: With Al Asynchronous,
not Shared Model (M = 54.69 mins) and Condition A: Without Al, Asynchronous, not Shared Model
(M = 57.31 mins). The time for individual phases is however more informative to understand the
potential effect of AT on CQA performance, therefore, we also analyzed the time for each phase.

Average Total Coding Time
Kruskal-Wallis Test: X = 6.71, p =.082

70
57731
60 54769
750 T
z
S
w
= 30
" 20
10
0
Without Al With Al With Al With Al
Asynchronous Asynchronous Asynchronous Synchronous
not Shared Model not Shared Model ~ Shared Model Shared Model
A (8) (©) ©)

Fig. 7. Average Total Coding Time for Each Condition (A, B, C, and D). Error bars show .95 confidence intervals.
A Kruskal-Wallis test showed no main effect.

Average Coding Time for Three Phases

Without Al, Asynchronous, not Shared Model (A) With Al, Asynchronous, not Shared Model (B)

With Al, Asynchronous, Shared Model (C) With Al, Synchronous, Shared Model (D)
0 Kruskal-Wallis Test: X2 =9.03, p =.028 Kruskal-Wallis Test: X2 = 6.33, p =.096 Kruskal-Wallis Test: X2 = 1.59, p = .661
35
31}13 sz
_.30 *x 27113
? *
225 2325
2 5 1900 1813 17,69
o S 16.06 I
=15 I
=
10 79 694 619 563
5 " I
0
Phase1 Phase2 Phase3

Fig. 8. Average Coding Time for Three Phases. Error bars show .95 confidence intervals. We report the results
of the individual Kruskal-Wallis tests, and, if necessary, pairwise comparisons, where * : p < .05, %% : p < .01.

6.1.2 Phase 1. We found a significant main effect of the conditions in Phase 1 ()((23) = 9.03,
p =.028). A post-hoc pairwise comparison with a Mann-Whitney U-Test shows that the coding
time (M = 16.06 mins) for Condition C: With AL Asynchronous, Shared Model was significantly
faster. In particular, we found a significant difference between Condition C: With Al Asynchronous,
Shared Model and Condition A: Without AL, Asynchronous, not Shared Model (M = 19 mins, U = 59.0,
p =.005). We also found a significant difference between Condition C: With Al Asynchronous, Shared
Model and Condition B: With AL Asynchronous, not Shared Model (M = 18.13 mins, U = 51.5, p = .044).

21

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

No significant differences were found between Condition D: With Al Synchronous, Shared Model
and other conditions.

Overall, the average coding time for Phase 1 with Al conditions was decreased by 4.6%-15.5%
compared to the baseline Condition A: Without AI, Asynchronous, not Shared Model. This also meant
that Al conditions (B, C, D) resulted in a 9.0% faster coding time on average.

6.1.3 Phase 2. While we observed that Condition D: With Al Synchronous, Shared Model was the
fastest in the discussion phase, a Kruskal-Wallis test did not show any significant main effect of
the condition on time. The time used for discussion in Phase 2 was between 23.25 mins for Condition
D: With AL Synchronous, Shared Model and 31.13 mins for Condition A: Without AL, Asynchronous,
not Shared Model (see Figure 8).

6.1.4 Phase 3. Phase 3 was overall very fast, ranging from 5.63 mins for Condition D: With Al
Synchronous, Shared Model to 7.19 mins for Condition A: Without Al Asynchronous, not Shared
Model. We did not find any significant main effect of the conditions on time (p = .661).

6.2 Inter-rater Reliability

The average IRR ranges from 0.16 to 0.31 on average in Phase 1. The IRR then increased to 0.51-0.65
by the end of Phase 3, after discussion (Phase 2) (see Figure 9).

Average Inter-rater Reliability
Without Al, Asynchronous, not Shared Model (A)
With Al, Asynchronous, not Shared Model (B)
With Al, Asynchronous, Shared Model (C)

With Al, Synchronous, Shared Model (D)

Kruskal-Wallis Test: X2=7.84, p < .05 Kruskal-Wallis Test: X2=1.73, p = .631

f 1.0

D 0.8 0.65 0.64
g 06 /—‘* % 0.51 iy 0:3

g 0.4 0381 0.29

2 0.16 0:16

¢ 02 I I

S

o 0.0

Phase1 Phase3

Fig. 9. Average Inter-coder Reliability after Phase 1 and after Phase 3. Error bars show .95 confidence intervals.
We report the results of the individual Kruskal-Wallis tests, and, if necessary, pairwise comparisons, where
#*:p < .05 %% :p < .01

6.2.1 Phase 1. A Kruskal-Wallis test shows that there is a marginal main effect on the IRR
from the four conditions in Phase 1 ()((23) = 7.85, p = .049). Post-hoc pairwise comparisons
showed that IRR scores are a bit higher for Al conditions with Shared Model: IRR in Condition
A: Without Al, Asynchronous, not Shared Model was significantly lower than Condition D: With
Al Synchronous, Shared Model (U = 9.0, p = .015). IRR in Condition B: With Al, Asynchronous, not
Shared Model was significantly lower compared to Condition D: With AL Synchronous, Shared Model
(U =13.0,p = .049).

6.2.2 Phase 3. We did not observe any main effect between the four conditions for the IRR,
ranging from 0.51 in Condition A: Without AI, Asynchronous, not Shared Model to 0.65 in Condition
B: With AL Asynchronous, not Shared Model (p = .631).

22

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

6.3 Code and Subcode Diversity

The terms, code (i.e., first-level code) and subcode (i.e., second-level code), are as defined as per
section 5.6.2 and 5.6.3. The code and subcode diversity results are summarized in Figure 10. Our
focus will be primarily on Phase 1 and Phase 2. We have opted not to include Phase 3 in our
discussion, given that it employs the same codes and subcodes as Phase 2, thus having similar
diversity.

Average Code Diversity Average Subcode Diversity
Without Al, Asynchronous, not Shared Model (A) Without Al, Asynchronous, not Shared Model (A)
With Al, Asynchronous, not Shared Model (B) With Al, Asynchronous, not Shared Model (B)
With Al, Asynchronous, Shared Model (C) With Al, Asynchronous, Shared Model (C)
With Al, Synchronous, Shared Model (D) With Al, Synchronous, Shared Model (D)
123
3 Kruskal-Wallis Test: X?=7.98, p=.046 Kruskal-Wallis Test: X?=1.67, p =.643 % Kruskal-Wallis Test: X*=6.61, p =.085 Kruskal-Wallis Test: X?=1.25 p =.741
S 1
® o % 30025
5— 16 14'8% .00 3 30
€ 14 g 2488
5 12 9g10:50 2% 21,50
5 10 ! 2 20 17125
3 7.888.00 5 4400 - 1363
Q - L
2 Z Gfo GT?’ g1 1? 1150[
=z =]
> Z 10
g 4 S
< 0 ; 0
Phase1 Phase2 Phase 1 Phase2

Fig. 10. Average Code and Subcode Diversities in Phase 1and Phase 2. Error bars show .95 confidence intervals.
A Kruskal-Wallis test is conducted for the main effect in each phase. Pairwise comparison is performed using
Mann-Whitney U-Test with a two-sided alternative, where * : p < .05, %% : p < .01.

6.3.1 Phase 1. A Kruskal-Wallis test shows a significant main effect of the condition on code
diversity in Phase 1 ()((23) = 7.98, p = .046). Pairwise comparisons show that the observed diversity
was lower for conditions with Al and Shared model: the code diversity for Condition C: With Al
Asynchronous, Shared Model (M = 9.88 unique codes) was significantly lower than for Condition A:
Without Al, Asynchronous, not Shared Model (M = 14.88, U = 54.0, p = .023).

Subcode diversity did not seem to be impacted by our four conditions in Phase 1 (Xé) =6.61,
p = .085). However, it has an average number of unique subcodes ranging from 17.25 in Condition
C: With Al Asynchronous, Shared Model to 30.25 in Condition A: Without Al Asynchronous, not
Shared Model.

6.3.2 Phase 2. A Kruskal-Wallis test shows that there was no main effect in terms of Code
Diversity after Phase 2 ()(?3) = 1.67, p = .64). The number of items decreased compared to Phase
1, with the average ranging from 6.00 (Condition A: Without AIL, Asynchronous, not Shared Model)
to 8.00 (Condition C: With Al, Asynchronous, Shared Model). This lack of main effect was also
visible for subcode diversity ()((23) = 1.25, p = .74) with the number of subcodes being between

11.5 items (Condition C: With AL Asynchronous, Shared Model) and 14.00 items (Condition B: With
Al Asynchronous, not Shared Model).

6.4 Code and Subcode Coverage

We report and summarize the average code and subcode coverage in Figure 11.

23

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

6.4.1 Phase 1. We found that no main effect for code coverage between the four conditions in
Phase 1 ()((23) =4.79, p = .19), where the coverage of code ranged from 0.75 (Condition C: With Al,
Asynchronous, Shared Model) to 0.86 (Condition A: Without Al, Asynchronous, not Shared Model).

6.4.2 Phase 2. Similarly, no main effect was found after Phase 2 (Xé) = 1.78, p = .62) with
coverage ranging from 0.70 (Condition C: With AL, Asynchronous, Shared Model) to 0.80 (Condition
D: With AL Synchronous, Shared Model).

Average Code Coverage Average Subcode Coverage
Without Al, Asynchronous, not Shared Model (A) Without Al, Asynchronous, not Shared Model (A)
With Al, Asynchronous, not Shared Model (B) With Al, Asynchronous, not Shared Model (B)
With Al, Asynchronous, Shared Model (C) With Al, Asynchronous, Shared Model (C)

With Al, Synchronous, Shared Model (D) With Al, Synchronous, Shared Model (D)

Kruskal-Wallis Test: X2=4.79, p =188 Kruskal-Wallis Test: X2=1.78, p =.619 Kruskal-Wallis Test: X2=3.35, p =341 Kruskal-Wallis Test: X?>=1.11, p=.775
1.0 1.0

0.86 0.86 080

= k 0J78 =
5 08 OTSOT OT f 0f70 T < 08
z L
o 06 % 0.6
jo2}
© 2 041
g 04 o 04 082 _ 030 083 157080
8 3 022 0724 f

0.2 © 02

0.0 0.0

Phase1 Phase2 Phase1 Phase2

Fig. 11. Average Coverage of Code and Subcode in Phase 1 and Phase 2. Error bars show .95 confidence
intervals. We report the results of the individual Kruskal-Wallis tests.

7 TRIANGULATION WITH QUALITATIVE RESULTS

In summary, our quantitative results reveal nuanced disparities among our four conditions with
respect to time duration, IRR, and code diversity in Phase 1. However, no significant differences
were discerned within Condition A: Without AL, Asynchronous, not Shared Model and Condition B:
With AL Asynchronous, not Shared Model, or Condition C: With Al, Asynchronous, Shared Model and
Condition D: With AL Synchronous, Shared Model. Most observed variations, therefore, were between
Condition A: Without Al, Asynchronous, not Shared Model and Condition B: With Al, Asynchronous,
not Shared Model on one side, and Condition C: With Al, Asynchronous, Shared Model and Condition
D: With AL Synchronous, Shared Model on the other.

Despite the modest size of the statistically significant differences observed in our study, it is
worth noting that even such small results can have meaningful implications [5, 41]. The trends
we discerned lead us to a two-fold set of primary findings: First, we found that in the context of
our proposed CQA conditions, AI without a shared model may not improve coding efficiency as
effectively as the shared model. Second, we found that combining Al with a shared model could
potentially accelerate coding speed and achieve a higher level of initial IRR. However, this advantage
came with a slight reduction in code diversity during the code development phase. To confirm our
primary findings, we employ a triangulation method that combines qualitative results, as discussed
in the following.

24

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

7.1 Lower Initial Coding Time

While our results indicate that only Condition C: With AL Asynchronous, Shared Model significantly
decreased the coding time in Phase 1, with Condition D: With Al Synchronous, Shared Model not
reaching statistical significance, there is a suggestive trend that participants under conditions with
both Al and a shared model tend to engage in less discussion time in Phase 2 (refer to Figure 8)
and less coding time overall (refer to Figure 7). The observed decrease ranges from 13.8% to 18.9%
for total time, 4.6% to 15.5% for Phase 1, and 12.8% to 25.3% for Phase 2. However, this trend does
not extend to Phase 3. To validate these preliminary observations, a follow-up study with larger
datasets would be beneficial in the future.

Additionally, it is important to note that due to study constraints, we had to enforce a time limit
of 20 minutes for Phase 1, leading to the discontinuation of the coding task for four pairs who
did not complete it within the regulated time (see section 5.6.3). Consequently, the differences
observed between Condition A: Without AL, Asynchronous, not Shared Model, which closely adhered
to the 20-minute limit in Phase 1 (refer to Figure 7), and the other conditions may actually be more
substantial in real-world usage. However, further data would be required to support this conclusion.

7.2 Higher Initial IRR

Likewise, participants using Al & Shared Model tended to exhibit higher IRR in Phase 1. The
increased IRR in Condition C: With Al Asynchronous, Shared Model and Condition D: With Al,
Synchronous, Shared Model during this phase can be attributed to participants’ ability to leverage
the shared model, allowing them to update their codes more effectively. This early involvement in
the negotiation and merging process, facilitated by the shared model, enables participants to reach
an agreement and shared understanding sooner in the initial coding stages. One participant from
Condition C: With Al, Asynchronous, Shared Model noted, "After I wrote (a code), I would check if the
suggested codes are better." (P33 in Condition C: With AL, Asynchronous, Shared Model). Similarly, in
Condition D: With Al Synchronous, Shared Model, another participant mentioned, "It could have
another word for ‘introduction’. For example, maybe my partner will say ‘intro’. But if you want to
formalize things, then we realized that introduction is a more formalized code." (P31 in Condition D:
With Al Synchronous, Shared Model).

7.3 Lower Diversity

While the shared model enabled participants to save time and reach code convergence in the early
phases of coding, it also resulted in lower code diversity. On average, in comparison to our baseline
condition Condition A: Without Al Asynchronous, not Shared Model (Mean = 14.88), the total number
of unique codes decreased by 5.00 (in Condition C: With Al Asynchronous, Shared Model) and 4.33
(in Condition D: With Al Synchronous, Shared Model). This reduction can be attributed to the higher
overall agreement among participants, which naturally limits the variety of codes used. Additionally,
the usage of suggested codes, shared among participants in Condition C: With Al, Asynchronous,
Shared Model and Condition D: With Al Synchronous, Shared Model, further contributes to the
decrease in code diversity.

7.4 Effect of Synchrony

It is interesting to note that the synchrony of coding (Synchronous or Asynchronous) did not seem
to have an impact on CQA performance, as we did not observe any significant differences between
Condition C: With Al Asynchronous, Shared Model and Condition D: With Al Synchronous, Shared
Model. Nevertheless, we did observe effects from the qualitative results.

25

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

First, we noticed that some coders in Condition C: With Al Asynchronous, Shared Model tended
to rely more on the Al code suggestions, rather than proposing their own codes. This behavior
might be attributed to their reliance on a model extensively trained using the first coder’s codes. As
a result, participants expressed concerns about potential bias introduced by the shared model and
expressed worry that the code diversity and coverage in the open coding process (Phase 1) would be
reduced. "Bias was a bit problematic. Because when you’re given suggestions that you might not need,
but it shows it has a high confidence level, then subconsciously, I guess you might try to incorporate it
[...] which you might not have done otherwise." (P48 in Condition C: With AL, Asynchronous, Shared
Model). This concern is substantiated by our quantitative results.

Second, differences in coding speed could contribute to a similar effect, as slower coders may
end up reusing code generated by faster, synchronous coders. As one participant explained, "We
both generated a common knowledge base... but because I was doing slower, then a suggestion coming
out with a 0.9 confidence score, which is the code I would have written. That’s why I feel biased." (P30
in Condition D: With Al Synchronous, Shared Model).

It is crucial to note that the coders were not aware that the suggestions originated from the
first coder’s input, believing them to be Al-generated until it was revealed in the post-interview.
We believe that leveraging the shared model is valuable; however, if the second coder was made
aware of whether a suggestion originated from the Al or a previous coder, could alter their level of
reliance on the suggestions and potentially impact the dependency between both coders.

7.5 Positive feedback from Shared Model Conditions

While the use of a Shared Al model may involve a trade-off in terms of coding speed, IRR, and
code diversity, it is notable that the conditions utilizing Shared Al models resulted in more positive
experiences among participants. In both Condition C: With Al Asynchronous, Shared Model and
Condition D: With Al Synchronous, Shared Model, 5 out of 8 pairs reported a smooth and swift
coding process with the system.

Participants elaborated on the reasons behind their positive experiences. For instance, the shared
model streamlined the coding process by enabling participants to reuse their own or their partners’
previous codes. As one participant noted, "Because it already has the options that I have entered
before, it’s faster if I want to add the same code in other paragraphs. I don’t have to keep referring to
what I wrote above." (P37 in Condition C: With Al Asynchronous, Shared Model). They expressed
appreciation for the shared model’s ability to offer timely suggestions, which substantially assisted
them in refining their code expressions. This sentiment was aptly encapsulated by one participant
who remarked, "It sometimes has a better phrase or better word. You can just take from that." (P34 in
Condition D: With AL Synchronous, Shared Model).

The shared model also facilitated coders in aligning their understanding with their partner’s
during the coding process. As one participant explained, "For me, yes, coding efficiency was improved.
Because my partner was coding just the main points... When I was doing my own coding, I could
see [these] main points. It definitely helped me understand what was going on." (P17 in Condition D:
With AL Synchronous, Shared Model). This can also prompt them to compare their own viewpoints
against a broader range of perspectives. P48 in Condition C: With Al, Asynchronous, Shared Model
noted, "So [Al] suggested weakness [as a code], I thought it could be society. I want to say this kind
of inconsistency is just a difference of opinion [of what] terms or labels here."

In contrast, the majority of participants expressed a neutral or negative attitude towards coding
efficiency, while only one participant (P63) from Condition B: With AL Asynchronous, not Shared
Model perceived an improvement.

26

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

7.6 Similarity of Codebooks across Conditions

Overall, our main DVs allow us to understand how AI might help with coding. However, it can still
be hard to find out whether the results across our four conditions are similar or at least comparable.
We thus identify the 7 most common first-level codes in the formed codebook for each condition
(see Appendix Table 5). Overall, the themes are rather similar (despite a slightly different ranking),
suggesting that the results are consistent across the four conditions. Most code categories appeared
in all four codebooks, e.g. introduction, leadership, weakness, hiring.

8 DISCUSSION
8.1 Trade-off: Coding Efficiency vs. Coding Quality

Overall, the introduction of Al with Shared Model has the potential to streamline the early coding
process, saving time and fostering early consensus on codes, as reflected by higher initial IRR.
However, this comes at the cost of reduced initial code diversity. We recognize the inherent trade-off
between Coding Time & IRR and Diversity — essentially, the balance between coding efficiency
and coding quality — as a persistent characteristic of the early stages of CQA, particularly when
seeking shared Al mediator assistance.

8.1.1 Al & Shared Model Fosters Strong Discussions. Previously, we referenced Zade et al., who iden-
tified two types of disagreements that can occur during coding: ‘diversity’ (varying interpretations
of a single core idea) and ‘divergence’ (distinct core ideas) [71].

For the former, we found users often favor consistency in coding outcomes across coders over
excessive diversity. In this context, the shared model proves beneficial, aiding coders in refining
their phrasing. For the latter, we noted that while coders appreciated Al code suggestions—rooted
in their collective coding history—they still actively formulated their own codes, especially when
facing divergent disagreements.

This process encourages real-time comparison and validation, prompting coders to critically
reassess their coding decisions against alternate perspectives. When incorporated into subsequent
discussions, these reflective insights enrich the overall dialogue. As a result, Al can serve a crucial
role as a facilitator in human-to-human collaboration, stimulating more substantive and engaging
discussions.

8.1.2 Potential Pitfalls. While Al and Shared Model bring considerable benefits, it is crucial not to
overlook the following two potential challenges.

Reduced Diversity. We argue that code diversity, by introducing varied perspectives, plays a
crucial role in enhancing coding quality within the CQA process [7, 65]. It is crucial to ensure
that coding practices do not excessively compromise coding quality or diversity. Otherwise, users
may resort to traditional tools that ensure coding quality through extensive discussions between
collaborators on a line-by-line and code-by-code basis. Therefore, we call for the need for further
research in this area to address this challenge. For instance, one approach is to enable the system to
generate synonyms or keywords of potential codes as references for coders, apart from the original
code suggestions [57]. Moreover, allowing the system to easily highlight nuanced differences
and compare text selections, by linking back to prior data with simple clicks, can deepen coders’
understanding and thus yield more insightful codes.

Over-reliance. Moreover, we must acknowledge the potential risk of users becoming overly
dependent on the system. This tendency can be exacerbated when users aim to increase their speed,
encounter challenges in formulating code names, or face discrepancies in coding speed among
coders. Such over-reliance could potentially decrease the propensity to seek different opinions,

27

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

leading users to only choose from system suggestions, particularly during asynchronous coding.
This also raises concerns about a potential loss of diversity and nuance in coding, especially in
loosely-defined coding tasks where multiple iterations may be necessary to reach consensus on
a codebook. In future studies, measures to curb over-reliance on the Al system could include
providing explanations for code suggestions [68], interface warnings to indicate excessive system
use, or even temporary system disabling if over-reliance is detected.

8.2 Is Al & Shared Model the best for CQA? Considering Different Application Scenarios

In light of the points discussed in the previous subsections, we do not argue that AI & Shared Model
is the best solution for CQA.

8.2.1 Supporting Different Contexts with Different Independence Level. Our evaluation revealed
that the four collaboration methods effectively simulated four distinct levels of independence, each
potentially desirable in different real-life scenarios (see section 3). In conditions without AI or
Shared Model (Condition A, B), coders maintained the highest level of independence, with no
communication during the code development phase. Conversely, under conditions with Al & Shared
Model (Condition C, D), coders demonstrated a lower level of independence—indirectly connected
and communicating through the Al mediator.

The evaluation of different levels of independence yielded varying results. A higher level of
independence was found to generate greater code diversity with lower efficiency, while a lower
level of independence resulted in lower code diversity with higher code efficiency. Align with
this, the feedback obtained from participants during the interview (see section 3.2.2) indicates that
they usually compromise some independence in favor of enhanced coding efficiency when time
constraints are present.

The observation, coupled with our formative interviews, has enabled us to discern two distinct
scenarios in the context of CQA: efficiency-oriented and creativity-oriented.

In the former, researchers facing time constraints or requiring both qualitative and quantitative
results may be inclined to sacrifice some rigidity in coding for improved coding efficiency. As
a result, they might prefer alternative methods, such as using pre-defined themes in analysis,
over strict adherence to the Grounded Theory process, which is often seen as more inductive,
requiring meticulous, line-by-line open coding [56]. Therefore, when integrating Al to facilitate
human-to-human collaboration, some level of communication between coders may be beneficial
and acceptable. However, efficiency should not be prioritized to the point of jeopardizing code
diversity or undermining the primary goal of CQA—to glean multiple perspectives.

For the latter, in research domains that might heavily rely on creativity, perspective, and critical
thinking (e.g., Psychology, Anthropology), it is crucial to minimize external influences and maintain
a high degree of independent thought and self-autonomy. For instance, researchers may choose to
use separate coding models that generate code suggestions based on each coder’s individual coding
history.

In summary, we underscore the need to consider varying levels of independence across
diverse contexts, as this can impact the trade-off and balance among different coding outcomes
when leveraging an Al mediator to facilitate human-to-human collaboration within the realm of

COA.

8.2.2 Support Different User Groups with Al & Shared Model. We believe that CoAlcoder has the
potential to be beneficial for various user groups. In our study, we involved participants who had
limited experience with qualitative coding. Based on the feedback from interviewees, this particular
user group frequently engages in CQA analysis and codebook creation (see section 3.2.2).

28

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

CoAlcoder for the Learning purpose of Novices. During our study, participants expressed a positive
reception towards the code suggestions, particularly in the initial stages of the coding process. One
participant mentioned, "Firstly, I did not know what to put because I don’t know what is required"
(P49 in Condition C: With Al Asynchronous, Shared Model). Another participant stated, "Quite
useful, because at least I can start. That’s how I'm supposed to do it" (P36 in Condition C: With Al,
Asynchronous, Shared Model). These responses indicate that participants found the system helpful
in overcoming the initial challenges of understanding coding requirements and getting started with
the analysis.

Moreover, participants reported that the system was easy to use. As one participant remarked,
"It seems pretty easy to use" (P63). By providing a user-friendly interface, our system addresses
the learning curve issues highlighted in prior research [45, 70] associated with conventional
qualitative QA software like nViVo and Atlas.ti. This suggests potential to mitigate users’ reliance
on traditional collaboration software like Google Docs and Sheets, which are not specifically
designed for qualitative analysis.

CoAlcoder for Expert Users. We contend that expert coders might derive benefits from our
system, as it has the potential to save their time and facilitate higher levels of agreement through
Al mediation. We also speculate that expert users may not rely on the system heavily, thereby
mitigating the risk of over-reliance. However, further evaluation with expert users is necessary to
substantiate this hypothesis.

9 DESIGN IMPLICATION

Beyond insights into human-to-human collaboration via Al mediation, we also identify design
implications for human-Al collaboration, such as the impact of coding granularity and the cultivation
of trust between humans and Al

9.1 Impact of Coding Granularity on Human-Al collaboration

Coding granularity includes the unit-of-analysis (UoA) and code specificity. The UoA delineates
the level at which text annotations are made, for example, on a flexible or sentence level [66]. Code
specificity refers to the varying degrees of detail in a code, for instance, it can range from a broad
code to a more specific one. In our evaluation, we did not regulate the UoA and code specificity and
left the selection of text and codes open. This approach mirrors real-world coding processes, where
individuals often apply codes at various units and code specificity [66]. We noted two significant
implications arising from this setup.

9.1.1 Establishing Optimal Coding Granularity for both Al and Human Coders. We first observed a
significant variation in coders’ interpretation and application of codes, from broad generalities,
which often lack informational depth, to more specific interpretations that may not apply universally.
A participant clarified, "So let’s say for ‘leadership’ code, right? We should write like ‘introduction to
leadership’ and then it can be applied across the 200 (transcripts). If you write like ‘introduction to
event planning’, we can’t use it, as not everybody organized [event]." (P17 in Condition D: With Al
Synchronous, Shared Model).

Al generates suggestions by learning patterns and structures in the data it has been trained on.
They are more likely to generalize based on the most prominent features or patterns in the data
instead of understanding context, nuance, and the complexity of human language and emotions, as
noted by a participant in Jiang et al’s study [45]. This limitation can have significant implications for
how coders approach their work. If coders become aware that Al systems are more likely to suggest
or recognize broad codes, they might deliberately write broader codes to ensure compatibility with
Al suggestions, which could lead to oversimplification of the data and possibly missing out on

29

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

nuanced or intricate details. It also highlights the necessity for human involvement in Al-assisted
qualitative coding. The human coder’s role becomes critical in guiding the Al providing the nuance,
context, and deeper understanding that the Al may lack. Strategic considerations include the level of
specificity in code selection and the possibility of optimizing codes that can be efficiently processed
by both Al and human understanding. The goal is to design an Al-assisted system that is not
completely dependent on AI but instead integrates the strengths of both AI and human coders to
overcome the identified limitations.

9.1.2 Impact of Coding Granularity on IRR Calculation. Another challenge we encountered was
the evaluation of quality. This issue becomes particularly problematic when calculating IRR, as
precise numeric codes on similar levels of the text are usually required for its calculations. When
coders choose codes or text of varying levels, it can lead to ambiguity [18] as it becomes challenging
to determine if they’ve assigned identical codes to a particular unit. To address this challenge, a
potential strategy is to regulate coding units or pre-discuss "soft rules" for agreed-upon levels of
units (e.g., sentences, paragraphs) before conducting coding [49, 63]. However, to maintain user
flexibility in our study, we opted to map the assigned codes to sentence level after coding for IRR
calculation. Future research can explore the combination of these two methods to maximize the
advantages they bring.

9.1.3 Impact of Coding Granularity on Stability of Suggestions. We noted occasional system in-
stability due to frequent retraining, which could change suggestion order or composition and
disrupt established interaction patterns. One participant noted, "When I selected one sentence of
this paragraph, the code is there. But when I select the whole paragraph, the [same] code is not there
[any more]." (P47 in Condition C: With Al, Asynchronous, Shared Model). This instability presents
challenges for coders’ user experience who predictively interact with the system and rely on
prediction stability [54]. However, users primarily using the system for decision-making aid and
consistently choosing from the suggestion list might have minimal reliance on prediction stability.
For them, minor alterations might not pose significant issues, as long as the system continues to
provide relevant and accurate suggestions. Furthermore, a user’s dependence on prediction stability
could also evolve with familiarity with the system. Novice users might rely heavily on the system’s
suggestions stability, while experienced users might develop their own interaction strategies. From
the model’s perspective, prediction stability depends on the extent of data changes between training
iterations. If the newly added data closely mirrors the pre-existing data, the model’s predictions
could remain stable. Conversely, if the new data significantly diverges, predictions might undergo
noticeable changes. Employing strategies like incremental learning, where the model learns from
new data without forgetting previous knowledge, could potentially maintain stable predictions
[36].

9.2 Trust and User Expectations

While we strive for maximum accuracy in Al systems, it is important to acknowledge that achieving
perfection, especially in tasks involving subjective data, is challenging [20, 45].

9.2.1 Calibrate Users’ Expectation Before Coding. Previous research has demonstrated that unre-
alistic user expectations can lead to reduced user satisfaction with Al systems [8, 22, 40, 48]. In
our evaluation, participants exhibited a notable initial expectation regarding the AI’s capability
to provide suggestions. If the system failed to meet their expectations, participants resorted to
manually entering their own codes. Additionally, the occasional inaccuracies in the AI's suggestions
brought confusion and might damage their confidence in the Al "For one sentence I thought it was

30

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

"interest". The number [for the other suggestion] was like 0.9 but for "interest" was like 0.00 something.
I'was a bit confused." (P62 in Condition B: With AL, Asynchronous, not Shared Model).

Additionally, participants expressed a desire for more timely results when requesting code
suggestions. However, our current "retrieve-train-predict” process takes at least 10 more seconds,
even when utilizing a GPU. This delay in providing suggestions may have impacted participants’
willingness to utilize the Al suggestions. "One difficulty is the code I put in takes a while to come out
when I want to use it again for another passage." (P38 in Condition C: With Al, Asynchronous, Shared
Model).

In future work, in addition to enhancing the accuracy and stability of the system, managing
users’ expectations will be crucial. One approach could involve calibrating users’ expectations by
providing information about the system’s capabilities, expected accuracy, and the possibility of
errors. Furthermore, making the suggestions more explainable and interpretable could provide
users with insights into the underlying reasoning, potentially easing users’ doubts, distrust, and
frustration [37, 47, 53, 55].

9.2.2 Can Imperfect Suggestions Help? Research suggests that even imperfect Al can still pro-
vide valuable assistance to users [48]. In our case, when Al suggestions are in conflict with the
assumptions made by coders, it indicates the possibility of either partially incorrect or completely
incorrect suggestions. When Al suggestions partially align with users’ thoughts, they can select
the suggested codes and implement minor adjustments. Therefore, these suggestions can still
assist users in making code decisions, and this valuable user input can contribute to improving the
model’s performance in subsequent training. When Al suggestions are completely not matched,
users have the option to bypass the suggestions and manually enter their own codes.

However, some coders may not be aware of the aforementioned strategy. When they encounter
imperfect suggestions, their trust in the Al system can diminish. "I guess I did not use [the Al
suggestions] much, because the words I needed wouldn’t not be suggested. But I guess if one suggestion
is a bit close to what you are thinking, it’s enough. But if you want to put your exact thoughts, then I
guess doing it manually would be better." (P48 in Condition C: With Al Asynchronous, Shared Model).
Sometimes, a relevant code suggestion may not be among the top five suggestions but could instead
appear within the top ten. Therefore, it would be beneficial for users to have access to a longer list
of codes upon request. While this feature may not be frequently utilized, it would grant users more
control over the system. "I think for myself, [the system] wasn’t that helpful... because there’s only
five in the drop-down list. Even if I want something that is exactly the same words, but it’s not in the
top five recommended, I cannot get it. There isn’t a scroll down or something." (P32 in Condition C:
With AL Asynchronous, Shared Model).

Overall, it is important to communicate to coders about the capabilities of the Al system and
how to effectively respond to imperfect code suggestions. Such information can enhance coders’
understanding of Al system’s capabilities and limitations, allowing them to fully leverage it.

10 LIMITATION AND FUTURE WORK

This work has limitations. First, our research primarily involved novices participating in the system
evaluation. There were several reasons for this choice: 1) based on our initial interviews, training
novice users and integrating them into the CQA team is a common practice (see section 3.2.2);
2) in our investigation of collaboration factors within the CQA context (i.e., With/Without AlI,
Synchrony, Shared Model/No Shared Model), designing a between-subject design was necessary.
Ensuring a similar baseline experience among participants was also essential to maintain fairness
across conditions. In the study, we took measures to promote accurate task completion: a) we
provided thorough CQA training to all participants in each session, aiming to equip them with the

31

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

skills necessary to efficiently carry out the tasks; b) we monitored the participants’ coding results
and the quality of their work closely during the task to minimize disruption to their coding process
(see section 5.4); c) after collecting data, we carried out quality checks to verify the reliability and
completeness of the results (see section 5.6).

However, despite these measures, it’s important to acknowledge that our findings might differ
from those obtained from seasoned CQA experts. For example, in some isolated cases, we observed
a slight over-reliance on the system by novices. However, even when employing novices, the need
for discussion and collaboration persists. Therefore, experts could also derive benefits from the
time-saving capabilities of our system. Future research should broaden the user base to include
expert-expert and expert-novice pairs, as well as native-nonnative speakers, to explore other
potential advantages of the various collaboration diagrams.

Another limitation of our study is the lack of substantial statistical significance, which can
potentially be traced back to multiple factors. One key aspect is the inherent complexity of human
collaboration in the context of CQA tasks, which is multifaceted and nuanced, carries considerable
significance. For example, the diversity of reactions among coders to Al-suggested codes, or the
differences in the pace at which individual coders learn and adapt to the coding process. Additionally,
coders might have widely different coding strategies that influence their coding speed and the
quality of their output. Furthermore, while we opted for a potentially optimal number of Al
suggestions for the CoAlcoder’s design in this iteration, the influence of the number of suggestions
on user behaviors is an important design aspect to consider. It could also be interesting to examine
the impact of revealing Al suggestions either before or after users select the text.

Another consideration lies in system-related factors, including the frequency of training updates
and delay in achieving stable model accuracy, which are certainly significant. It is worth noting
that improving model performance on subjective annotation continues to be a key challenge in
fields like NLP [27] and HCI [20], and this aspect remains under explored in the context of CQA. In
future work, it would be advantageous to incorporate data augmentation technologies or other NLP
pipelines to enhance model performance. Moreover, the promising potential of advanced LLMs, e.g.,
GPT-4!, which demonstrate exceptional capabilities in understanding and generating text [72],
should not be overlooked. They could be harnessed to facilitate Al-assisted qualitative coding!® as
well as CQA [34].

These individual differences and system-related factors, though subtle, can cumulatively exert
a profound impact on collaborative coding dynamics and the detection of the final significant
difference. However, they remain largely unexplored. While we recognize their significance, our
main emphasis in this work lies in unearthing the possibilities and influence of AI mediation on
human collaborative dynamics within a CQA context. We strongly recommend further research in
this field, given the significant role of CQA in qualitative research and the current focus primarily
on Al’s application in individual qualitative analysis. Our goal is to pinpoint and investigate the
research gap, rather than establish a definitive or arbitrary methodology for Al-assisted CQA.

11 CONCLUSION

In this work, we delve into the Al-assisted human-to-human collaboration within the context of
CQA and assess various collaboration modes between coders. To the best of our knowledge, this
marks the first attempt to investigate the role of Al in the collaboration of qualitative coding, as
previous research primarily concentrated on individual coding with Al In pursuit of this goal,
we initially gained insights into coders’ CQA behaviors, challenges, and potential opportunities

4https://openai.com/research/gpt-4
15 Announcedon28thMarch2023:https://atlasti.com/ai-coding-powered-by-openai

32

https://openai.com/research/gpt-4
Announced on 28th March 2023: https://atlasti.com/ai-coding-powered-by-openai

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

through a series of semi-structured interviews. Following this, we developed and implemented a
prototype, CoAlcoder, designed to provide coders code suggestions based on their coding history. We
further introduced four collaboration methodologies and evaluated them using a between-subject
design with 64 participants (32 pairs). This led to the identification of the trade-off between coding
efficiency and coding quality, as well as the relationship between independence level and the coding
outcomes under varying CQA scenarios. We also highlighted design implications to inspire future
CQA system designs.

REFERENCES

[1] [n.d.]. How research Al can enhance your analysis. [EB/OL]. https://atlasti.com/research-hub/how-research-ai-can-
enhance-your-analysis#challenges-in-data-analysis Accessed May 19, 2023.

[2] [n.d.]. Secure & Seamless Cloud Collaboration for Teams. [EB/OL]. https://www.maxqda.com/teamcloud Accessed
January 27, 2022.

[3] [n.d.]. What is text mining? [EB/OL]. https://www.ibm.com/topics/text-mining Accessed May 19, 2023.

[4] Ercan Akpinar, Demet Erol, and Biilent Aydogdu. 2009. The role of cognitive conflict in constructivist theory:
An implementation aimed at science teachers. Procedia - Social and Behavioral Sciences 1, 1 (2009), 2402-2407.
https://doi.org/10.1016/j.sbspro.2009.01.421 World Conference on Educational Sciences: New Trends and Issues in
Educational Sciences.

[5] Douglas G Altman and] Martin Bland. 1995. Statistics notes: Absence of evidence is not evidence of absence. Bmj 311,
7003 (1995), 485. https://doi.org/10.1136/bm;j.311.7003.485

[6] Mohammad Amiryousefi, Masumeh Sadat Seyyedrezaei, Ana Gimeno-Sanz, and Manssor Tavakoli. 2021. Impact of
Etherpad-based Collaborative Writing Instruction on EFL Learners’ Writing Performance, Writing Self-efficacy, and
Attribution: A Mixed-Method Approach. Two Quarterly Journal of English Language Teaching and Learning University
of Tabriz 13, 28 (2021), 19-37. https://doi.org/10.22034/ELT.2021.47608.2432

[7] Ross C Anderson, Meg Guerreiro, and Joanna Smith. 2016. Are all biases bad? Collaborative grounded theory in
developmental evaluation of education policy. Journal of Multidisciplinary Evaluation 12, 27 (2016), 44-57. https:
//doi.org/10.56645/jmde.v12i27.449

[8] Zahra Ashktorab, Q. Vera Liao, Casey Dugan, James Johnson, Qian Pan, Wei Zhang, Sadhana Kumaravel, and Murray
Campbell. 2020. Human-AlI Collaboration in a Cooperative Game Setting: Measuring Social Perception and Outcomes.
Proc. ACM Hum.-Comput. Interact. 4, CSCW2, Article 96 (oct 2020), 20 pages. https://doi.org/10.1145/3415167

[9] Aneesha Bakharia, Peter Bruza, Jim Watters, Bhuva Narayan, and Laurianne Sitbon. 2016. Interactive Topic Modeling
for Aiding Qualitative Content Analysis. In Proceedings of the 2016 ACM on Conference on Human Information Interaction
and Retrieval (Carrboro, North Carolina, USA) (CHIIR ’16). Association for Computing Machinery, New York, NY, USA,
213-222. https://doi.org/10.1145/2854946.2854960

[10] Eric P. S. Baumer, David Mimno, Shion Guha, Emily Quan, and Geri K. Gay. 2017. Comparing Grounded Theory and
Topic Modeling: Extreme Divergence or Unlikely Convergence? 7. Assoc. Inf. Sci. Technol. 68, 6 (jun 2017), 1397-1410.
https://doi.org/10.1002/asi.23786

[11] Sarah Bebermeier and Denise Kerkhoff. 2019. Use and Impact of the Open Source Online Editor Etherpad in a
Psychology Students’ Statistics Class. Psychology Teaching Review 25, 2 (2019), 30-38.

[12] Alan Blackwell, L Church, M Jones, R Jones, Matthew Mahmoudi, M Marasoiu, S Makins, D Nauck, K Prince, A Semrov,
et al. 2018. Computer says ‘don’t know’-interacting visually with incomplete Al models. In Workshop on Designing
Technologies to Support Human Problem Solving-VL/HCC. 5-14.

[13] Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. 2017. Rasa: Open Source Language Understanding
and Dialogue Management. CoRR abs/1712.05181 (2017). arXiv:1712.05181 http://arxiv.org/abs/1712.05181

[14] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Quali-
tative Research in Psychology 3, 2 (2006), 77-101. https://doi.org/10.1191/1478088706qp0630a
arXiv:https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp0630a

[15] Antony Bryant and Kathy Charmaz. 2023. The SAGE Handbook of Grounded Theory. https://doi.org/10.4135/
9781848607941

[16] Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and Alan Nichol. 2020. DIET: Lightweight Language Understanding
for Dialogue Systems. CoRR abs/2004.09936 (2020). arXiv:2004.09936 https://arxiv.org/abs/2004.09936

[17] Junming Cao, Bihuan Chen, Longjie Hu, Jie Gao, Kaifeng Huang, and Xin Peng. 2023. Understanding the Complexity
and Its Impact on Testing in ML-Enabled Systems. arXiv:2301.03837 [cs.SE]

[18] Mariano Ceccato, Nadzeya Kiyavitskaya, Nicola Zeni, Luisa Mich, and Daniel M Berry. 2004. Ambiguity identification
and measurement in natural language texts. (2004).

33

https://atlasti.com/research-hub/how-research-ai-can-enhance-your-analysis#challenges-in-data-analysis
https://atlasti.com/research-hub/how-research-ai-can-enhance-your-analysis#challenges-in-data-analysis
https://www.maxqda.com/teamcloud
https://www.ibm.com/topics/text-mining
https://doi.org/10.1016/j.sbspro.2009.01.421
https://doi.org/10.1136/bmj.311.7003.485
https://doi.org/10.22034/ELT.2021.47608.2432
https://doi.org/10.56645/jmde.v12i27.449
https://doi.org/10.56645/jmde.v12i27.449
https://doi.org/10.1145/3415167
https://doi.org/10.1145/2854946.2854960
https://doi.org/10.1002/asi.23786
https://arxiv.org/abs/1712.05181
http://arxiv.org/abs/1712.05181
https://doi.org/10.1191/1478088706qp063oa
https://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1191/1478088706qp063oa
https://doi.org/10.4135/9781848607941
https://doi.org/10.4135/9781848607941
https://arxiv.org/abs/2004.09936
https://arxiv.org/abs/2004.09936
https://arxiv.org/abs/2301.03837

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

[19] Kathy Charmaz. 2014. Constructing grounded theory. Sage Publications.

[20] Nan-Chen Chen, Margaret Drouhard, Rafal Kocielnik, Jina Suh, and Cecilia R. Aragon. 2018. Using Machine Learning
to Support Qualitative Coding in Social Science: Shifting the Focus to Ambiguity. ACM Trans. Interact. Intell. Syst. 8, 2,
Article 9 (jun 2018), 20 pages. https://doi.org/10.1145/3185515

[21] Nan-chen Chen, Rafal Kocielnik, Margaret Drouhard, Vanessa Pefia-Araya, Jina Suh, Keting Cen, Xiangyi Zheng, and

Cecilia R Aragon. 2016. Challenges of applying machine learning to qualitative coding. In CHI 2016 workshop on human

centred machine learning.

Hao-Fei Cheng, Ruotong Wang, Zheng Zhang, Fiona O’Connell, Terrance Gray, F. Maxwell Harper, and Haiyi Zhu.

2019. Explaining Decision-Making Algorithms through UI Strategies to Help Non-Expert Stakeholders. In Proceedings

of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for

Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/3290605.3300789

Bonnie Chinh, Himanshu Zade, Abbas Ganji, and Cecilia Aragon. 2019. Ways of Qualitative Coding: A Case Study of

Four Strategies for Resolving Disagreements. In Extended Abstracts of the 2019 CHI Conference on Human Factors in

Computing Systems (Glasgow, Scotland Uk) (CHI EA °19). Association for Computing Machinery, New York, NY, USA,

1-6. https://doi.org/10.1145/3290607.3312879

[24] Juliet Corbin and Anselm Strauss. 2008. Basics of Qualitative Research (3rd ed.): Techniques and Procedures for Developing

Grounded Theory. https://doi.org/10.4135/9781452230153

Flora Cornish, Alex Gillespie, and Tania Zittoun. 2013. Collaborative analysis of qualitative data. The Sage handbook of

qualitative data analysis 79 (2013), 93. https://doi.org/10.4135/9781446282243

[26] Kevin Crowston, Xiaozhong Liu, and Eileen E. Allen. 2010. Machine Learning and Rule-Based Automated Coding of

Qualitative Data. In Proceedings of the 73rd ASIS&T Annual Meeting on Navigating Streams in an Information Ecosystem

- Volume 47 (Pittsburgh, Pennsylvania) (ASIS&T ’10). American Society for Information Science, USA, Article 108,

2 pages.

Aida Mostafazadeh Davani, Mark Diaz, and Vinodkumar Prabhakaran. 2022. Dealing with Disagreements: Looking

Beyond the Majority Vote in Subjective Annotations. Transactions of the Association for Computational Linguistics 10

(2022), 92-110. https://doi.org/10.1162/tacl_a_00449

[28] Jessica T. DeCuir-Gunby, Patricia L. Marshall, and Allison W. McCulloch. 2011. Developing and Using a Codebook for

the Analysis of Interview Data: An Example from a Professional Development Research Project. Field Methods 23, 2

(2011), 136-155. https://doi.org/10.1177/1525822X10388468

Margaret Drouhard, Nan-Chen Chen, Jina Suh, Rafal Kocielnik, Vanessa Pefia-Araya, Keting Cen, Xiangyi Zheng, and

Cecilia R. Aragon. 2017. Aeonium: Visual analytics to support collaborative qualitative coding. In 2017 IEEE Pacific

Visualization Symposium (PacificVis). 220-229. https://doi.org/10.1109/PACIFICVIS.2017.8031598

[30] Jessica L. Feuston and Jed R. Brubaker. 2021. Putting Tools in Their Place: The Role of Time and Perspective in
Human-AI Collaboration for Qualitative Analysis. Proc. ACM Hum.-Comput. Interact. 5, CSCW2, Article 469 (oct 2021),
25 pages. https://doi.org/10.1145/3479856

[31] Uwe Flick. 2013. The SAGE handbook of qualitative data analysis. SAGE Publications Ltd. https://doi.org/10.4135/

9781446282243

Fabio Freitas, Jaime Ribeiro, Catarina Brandéo, Luis Paulo Reis, Francislé N de Souza, and Anténio Pedro Costa. 2017.

Learn for yourself: The self-learning tools for qualitative analysis software packages. Digital Education Review 32

(2017), 97-117.

[33] Abbas Ganji, Mania Orand, and David W. McDonald. 2018. Ease on Down the Code: Complex Collaborative Qualitative
Coding Simplified with ’Code Wizard’. Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article 132 (nov 2018), 24 pages.
https://doi.org/10.1145/3274401

[34] Jie Gao, Yuchen Guo, Gionnieve Lim, Tianqin Zhang, Zheng Zhang, Toby Jia-Jun Li, and Simon Tangi Perrault. 2023.
CollabCoder: A GPT-Powered Workflow for Collaborative Qualitative Analysis. arXiv:2304.07366 [cs.HC]

[35] Simret Araya Gebreegziabher, Zheng Zhang, Xiaohang Tang, Yihao Meng, Elena L. Glassman, and Toby Jia-Jun Li.

2023. PaTAT: Human-Al Collaborative Qualitative Coding with Explainable Interactive Rule Synthesis. In Proceedings

of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for

Computing Machinery, New York, NY, USA, Article 362, 19 pages. https://doi.org/10.1145/3544548.3581352

Christophe Giraud-Carrier. 2000. A Note on the Utility of Incremental Learning. AI Commun. 13, 4 (dec 2000), 215-223.

Nahid Golafshani. 2003. Understanding reliability and validity in qualitative research. The qualitative report 8, 4 (2003),

597-607. https://doi.org/10.46743/2160-3715/2003.1870

Max Goldman, Greg Little, and Robert C Miller. 2011. Real-time collaborative coding in a web IDE. In Proceedings of

the 24th annual ACM symposium on User interface software and technology. 155-164.

Ken Gorro, Jeffrey Rosario Ancheta, Kris Capao, Nathaniel Oco, Rachel Edita Roxas, Mary Jane Sabellano, Brandie

Nonnecke, Shrestha Mohanty, Camille Crittenden, and Ken Goldberg. 2017. Qualitative data analysis of disaster risk

reduction suggestions assisted by topic modeling and word2vec. In 2017 International Conference on Asian Language

[22

—

[23

—

[25

=

[27

—

[29

—

[32

—

[36
[37

—

[38

—

[39

—

34

https://doi.org/10.1145/3185515
https://doi.org/10.1145/3290605.3300789
https://doi.org/10.1145/3290607.3312879
https://doi.org/10.4135/9781452230153
https://doi.org/10.4135/9781446282243
https://doi.org/10.1162/tacl_a_00449
https://doi.org/10.1177/1525822X10388468
https://doi.org/10.1109/PACIFICVIS.2017.8031598
https://doi.org/10.1145/3479856
https://doi.org/10.4135/9781446282243
https://doi.org/10.4135/9781446282243
https://doi.org/10.1145/3274401
https://arxiv.org/abs/2304.07366
https://doi.org/10.1145/3544548.3581352
https://doi.org/10.46743/2160-3715/2003.1870

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

Processing (IALP). 293-297. https://doi.org/10.1109/IALP.2017.8300601

[40] G. Mark Grimes, Ryan M. Schuetzler, and Justin Scott Giboney. 2021. Mental models and expectation violations in

conversational Al interactions. Decision Support Systems 144 (2021), 113515. https://doi.org/10.1016/j.dss.2021.113515

Allan Hackshaw. 2008. Small studies: strengths and limitations. , 1141-1143 pages. https://doi.org/10.1183/09031936.

00136408

[42] Matt-Heun Hong, Lauren A. Marsh, Jessica L. Feuston, Janet Ruppert, Jed R. Brubaker, and Danielle Albers Szafir.

2022. Scholastic: Graphical Human-Al Collaboration for Inductive and Interpretive Text Analysis. In Proceedings of the

35th Annual ACM Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST °22). Association for

Computing Machinery, New York, NY, USA, Article 30, 12 pages. https://doi.org/10.1145/3526113.3545681

Tim Hopper, Hong Fu, Kathy Sanford, and Thiago Alonso Hinkel. 2021. YouTube for transcribing and Google drive for

collaborative coding: Cost-effective tools for collecting and analyzing interview data. The Qualitative Report 26, 3

(2021), 861-873. https://doi.org/10.46743/2160-3715/2021.4639

[44] Irving L Janis. 2008. Groupthink. IEEE Engineering Management Review 36, 1 (2008), 36. https://doi.org/10.1109/EMR.

2008.4490137

Jialun Aaron Jiang, Kandrea Wade, Casey Fiesler, and Jed R. Brubaker. 2021. Supporting Serendipity: Opportunities

and Challenges for Human-AlI Collaboration in Qualitative Analysis. Proc. ACM Hum.-Comput. Interact. 5, CSCW1,

Article 94 (apr 2021), 23 pages. https://doi.org/10.1145/3449168

Andreas Kaufmann, Ann Barcomb, and Dirk Riehle. 2020. Supporting Interview Analysis with Autocoding.. In HICSS.

1-10. https://hdl.handle.net/10125/63833

Bran Knowles, Mark Rouncefield, Mike Harding, Nigel Davies, Lynne Blair, James Hannon, John Walden, and Ding

Wang. 2015. Models and Patterns of Trust. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative

Work & Social Computing (Vancouver, BC, Canada) (CSCW ’15). Association for Computing Machinery, New York, NY,

USA, 328-338. https://doi.org/10.1145/2675133.2675154

Rafal Kocielnik, Saleema Amershi, and Paul N. Bennett. 2019. Will You Accept an Imperfect AI? Exploring Designs

for Adjusting End-User Expectations of Al Systems. In Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA,

1-14. https://doi.org/10.1145/3290605.3300641

Karen S Kurasaki. 2000. Intercoder reliability for validating conclusions drawn from open-ended interview data. Field

methods 12, 3 (2000), 179-194. https://doi.org/10.1177/1525822X0001200301

Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. 2017. Research Methods in Human-Computer Interaction

(2nd edition ed.). Morgan Kaufmann, Cambridge, MA.

William Leeson, Adam Resnick, Daniel Alexander, and John Rovers. 2019. Natural Language Processing (NLP) in

qualitative public health research: a proof of concept study. International Journal of Qualitative Methods 18 (2019),

1609406919887021. https://doi.org/10.1177/1609406919887021

Robert P Lennon, Robbie Fraleigh, Lauren J Van Scoy, Aparna Keshaviah, Xindi C Hu, Bethany L Snyder, Erin L

Miller, William A Calo, Aleksandra E Zgierska, and Christopher Griffin. 2021. Developing and testing an automated

qualitative assistant (AQUA) to support qualitative analysis. Family Medicine and Community Health 9, Suppl 1 (2021).

https://doi.org/10.1136/fmch-2021-001287

[53] Q. Vera Liao, Daniel Gruen, and Sarah Miller. 2020. Questioning the AI: Informing Design Practices for Explainable Al
User Experiences. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI °20). Association for Computing Machinery, New York, NY, USA, 1-15. https://doi.org/10.1145/3313831.3376590

[54] Huiting Liu, Avinesh P. V. S, Siddharth Patwardhan, Peter Grasch, and Sachin Agarwal. 2022. Model Stability with
Continuous Data Updates. CoRR abs/2201.05692 (2022). arXiv:2201.05692 https://arxiv.org/abs/2201.05692

[55] Brian Lubars and Chenhao Tan. 2019. Ask Not What AI Can Do, But What AI Should Do: Towards a Framework of
Task Delegability. CoRR abs/1902.03245 (2019). arXiv:1902.03245 http://arxiv.org/abs/1902.03245

[56] Moira Maguire and Brid Delahunt. 2017. Doing a thematic analysis: A practical, step-by-step guide for learning and
teaching scholars. All Ireland Journal of Higher Education 9, 3 (2017).

[57] Megh Marathe and Kentaro Toyama. 2018. Semi-Automated Coding for Qualitative Research: A User-Centered Inquiry
and Initial Prototypes. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/
3173574.3173922

[58] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia medica 22, 3 (2012), 276-282.

[59] Iftekhar Naim, M. Iftekhar Tanveer, Daniel Gildea, and Mohammed Ehsan Hoque. 2015. Automated prediction and
analysis of job interview performance: The role of what you say and how you say it. In 2015 11th IEEE International
Conference and Workshops on Automatic Face and Gesture Recognition (FG), Vol. 1. 1-6. https://doi.org/10.1109/FG.2015.
7163127

[41

—

[43

—

[45

—

[46

—

[47

—

[48

[t

[49

—

[50

[

(51

—

(52

—

—

35

https://doi.org/10.1109/IALP.2017.8300601
https://doi.org/10.1016/j.dss.2021.113515
https://doi.org/10.1183/09031936.00136408
https://doi.org/10.1183/09031936.00136408
https://doi.org/10.1145/3526113.3545681
https://doi.org/10.46743/2160-3715/2021.4639
https://doi.org/10.1109/EMR.2008.4490137
https://doi.org/10.1109/EMR.2008.4490137
https://doi.org/10.1145/3449168
https://hdl.handle.net/10125/63833
https://doi.org/10.1145/2675133.2675154
https://doi.org/10.1145/3290605.3300641
https://doi.org/10.1177/1525822X0001200301
https://doi.org/10.1177/1609406919887021
https://doi.org/10.1136/fmch-2021-001287
https://doi.org/10.1145/3313831.3376590
https://arxiv.org/abs/2201.05692
https://arxiv.org/abs/2201.05692
https://arxiv.org/abs/1902.03245
http://arxiv.org/abs/1902.03245
https://doi.org/10.1145/3173574.3173922
https://doi.org/10.1145/3173574.3173922
https://doi.org/10.1109/FG.2015.7163127
https://doi.org/10.1109/FG.2015.7163127

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

[60]

[61
[62

—

[63

—

[64]

[65

—

[66

—

[67]

[68]

[69]
[70]

[71]

[72]

Laura K Nelson. 2020. Computational grounded theory: A methodological framework. Sociological Methods & Research
49,1 (2020), 3-42. https://doi.org/10.1177/0049124117729703

Peter Nielsen. 2018. Collaborative Coding of Qualitative Data(White Paper).

Austin G Oswald. 2019. Improving outcomes with qualitative data analysis software: A reflective journey. Qualitative
Social Work 18, 3 (2019), 436-442. https://doi.org/10.1177/1473325017744860

Cliodhna O’Connor and Helene Joffe. 2020. Intercoder reliability in qualitative research: debates and practical guidelines.
International journal of qualitative methods 19 (2020). https://doi.org/10.1177/1609406919899220

David Porfirio, Evan Fisher, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2019. Bodystorming Human-
Robot Interactions. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 479-491. https:
//doi.org/10.1145/3332165.3347957

K Andrew R Richards and Michael A Hemphill. 2018. A practical guide to collaborative qualitative data analysis.
Journal of Teaching in Physical Education 37, 2 (2018), 225-231. https://doi.org/10.1123/jtpe.2017-0084

Tim Rietz and Alexander Maedche. 2021. Cody: An Al-Based System to Semi-Automate Coding for Qualitative
Research. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
’21). Association for Computing Machinery, New York, NY, USA, Article 394, 14 pages. https://doi.org/10.1145/3411764.
3445591

Jonathan A Smith. 2015. Qualitative psychology: A practical guide to research methods. Qualitative psychology (2015),
1-312.

Helena Vasconcelos, Matthew J6rke, Madeleine Grunde-McLaughlin, Tobias Gerstenberg, Michael S. Bernstein, and
Ranjay Krishna. 2023. Explanations Can Reduce Overreliance on Al Systems During Decision-Making. Proc. ACM
Hum.-Comput. Interact. 7, CSCW1, Article 129 (apr 2023), 38 pages. https://doi.org/10.1145/3579605

Maike Vollstedt and Sebastian Rezat. 2019. An Introduction to Grounded Theory with a Special Focus on Axial Coding and
the Coding Paradigm. Springer International Publishing, Cham, 81-100. https://doi.org/10.1007/978-3-030-15636-7_4
Jasy Liew Suet Yan, Nancy McCracken, and Kevin Crowston. 2014. Semi-automatic content analysis of qualitative
data. IConference 2014 Proceedings (2014). https://doi.org/10.9776/14399

Himanshu Zade, Margaret Drouhard, Bonnie Chinh, Lu Gan, and Cecilia Aragon. 2018. Conceptualizing Disagreement
in Qualitative Coding. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1-11. https://doi.org/10.1145/
3173574.3173733

Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and Toby Jia-Jun Li. 2023. VISAR: A Human-AI Argumentative
Writing Assistant with Visual Programming and Rapid Draft Prototyping. arXiv:2304.07810 [cs.HC]

36

https://doi.org/10.1177/0049124117729703
https://doi.org/10.1177/1473325017744860
https://doi.org/10.1177/1609406919899220
https://doi.org/10.1145/3332165.3347957
https://doi.org/10.1145/3332165.3347957
https://doi.org/10.1123/jtpe.2017-0084
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3411764.3445591
https://doi.org/10.1145/3579605
https://doi.org/10.1007/978-3-030-15636-7_4
https://doi.org/10.9776/14399
https://doi.org/10.1145/3173574.3173733
https://doi.org/10.1145/3173574.3173733
https://arxiv.org/abs/2304.07810

CoAlcoder: Examining the Effectiveness of Al-assisted
Human-to-Human Collaboration in Qualitative Analysis Conference acronym *XX, June 03-05, 2018, Woodstock, NY

A STUDY PROTOCOL

A.1 Welcome to AIQA Study!

Qualitative analysis (QA), a common method in human-computer interaction and social
computing research, involves a key process known as coding. This procedure is crucial for
discerning patterns and extracting insights from qualitative data, though it’s traditionally
labor-intensive and time-consuming. In recent years, researchers have introduced Artificial
Intelligence (AI) to enhance the efficiency of this process. However, they’ve largely overlooked
the collaborative aspect of the coding process. Our project seeks to bridge this gap by offering
an Al-based tool to streamline collaboration among coders. Utilizing Al to facilitate this
interaction could potentially improve coding efficiency, potentially saving considerable time
for QA researchers.

A.2 Task Introduction

You are a pair of researchers who are trying to perform qualitative analysis on interview
transcripts of students undergoing a preparatory mock interview. The research question is to
find general qualities of candidates (include good and bad ones).

Your task is to code the sentences so that we may obtain a meaningful analysis of the
transcripts. Here’s an example. If we were to analyse meeting transcripts, a likely thing to be
said during a meeting might be:

"Ok, can Alice please follow up with Bob on the designs".

o A reasonable way to code this sentence could be Action Items.

e A succinct subcode or description could be "A person was asked to follow up on a
task".

o This sentence would then be added as one of the examples of Action Items code.

Participants are also presented with a sample codebook table, specifically Table 1 from
DeCuir-Gunby et al’s work [28].

A.3 Introduction to Three Phases

In the introduction, the instructor presents various strategies for employing CoAlcoder, which
are designed to support distinct conditions across three phases of CQA.

A.4 Post-Study Interview Questions

(1) What challenges have you encountered during the labeling process when working
individually?

(2) What difficulties arise when you engage in collaborative labeling?

(3) In your opinion, how effectively does CoAlcoder manage these collaborative challenges?

(4) What is your reaction when you encounter a code in the code list that you did not
personally contribute?

(5) How would you describe your level of confidence when using the Alcoder?

(6) Has CoAlcoder’s assistance proven beneficial in resolving conflicts that arise during the
coding process? If so, how?

(7) How frequently do you utilize CoAlcoder, and what motivates this usage?

(8) Do you perceive that CoAlcoder enhances your coding efficiency and collaboration?
Could you please elaborate?

37

Conference acronym *XX, June 03-05, 2018, Woodstock, NY Gao and Perrault et al.

(9) Have you noticed a speed increase in the coding process after the formation of the
codebook? If so, how has this been achieved?
(10) Any other relevant and improvised questions.

B CODES IN CODEBOOKS GENERATED BY PARTICIPANTS

To facilitate an intuitive comparison of the results across four conditions, the table below presents
the ranking of codes in the formed codebook for each condition.

Table 5. The Ranking of Codes in Formed Codebook of Four Conditions. Only codes in the first level were

counted. The codes in every cell are different expressions of one core idea labelled in bold.

Condition A: Condition B: Condition C: Condition D:
Rankin Without Al With Al With AL With Al
J Asynchronous, Asynchronous, Asynchronous, Synchronous,
not Shared Model not Shared Model Shared Model Shared Model
Leadership: Strengths: .
Leadership skills(3); Humble; Motivated; Leadership: .
R . . Leadership training; Leadership:
Leadership; Open-minded; Sociable; .) . .
R . Leadership skills; Leadership experience(4);
1 leadership experiences(2); very focused; Courage; R .. .
. . . . Leadership Qualities(2); leadership(3);
Leadership experience Reflective; Introspection; . . A
; R leadership(2); Leadership role; Leadership skills
with poor relevance; Rational; Confidence; Leadership experience(2)
‘Work Experience Good qualities P exp
Weakness:
Using their weakness to Weakness: Weakness:
their advantages; Weakness that Weakness(6); Weakness: Weakness(4);
is addressed; Weakness(2); slightly impulsive; Weakness(5); personal weaknesses;
2 Discussion on weakness; Indecisive; Shy personality; Candidate’s weakness; ‘Weakness and
Overcoming weakness; Bad qualities; overcoming; Overcoming weakness; overcoming weakness;
Poor example of overcoming Overcoming weakness; Weakness and how you overcome How to overcome weakness;
weakness; Weakness and ways to overcome weaknesses Sharing weaknesses
overcoming weakness
Hiring:
- - Leadership: .
Key qualities for hmng,. . leadership(2); Leadership training; Introduction: Introduc4t ton:
Irrelevant reasons for hiring; X 3 Introduction(3);
R Group-oriented leadership style; Background; .
3 Self-marketing; . . Introduction and Interest;
. . Leadership and teamwork; Introduction(3);
Why candidate should be hired; . . . K Current status;
. leadership experience(4); self-introduction(3) . .
Strengths and reason for hire; N 2 self-introduction
. Leadership skills
Reason to hire
Introduction: Challenges:
. . Challenges faced(3);
Personal introduction; . e
. Introduction: Challenging Situation; Teamwork:
Introduction; . e
4 Education: Introduction(3); challenge; Problem recognition; Teamwork(2);
L . Background Information Team working challenge; Teamwork experience(2)
Introduction of candidate;
Lack of resources;
Interests .
Language barriers
Teamwork: Challenges: Hiring; .) H“ ng:
. B Reasons to Hire Candidate; Hiring Quality;
Tendency to help/accommodate Difficulties; Challenges faced; X) X
reason to hire; perfecting herself; Reasons to hire(2);
5 teammates; examples of challenges
. . Reasons that interviewee lemg decision;
Teamwork(2); working in a team; R
Team experience Teamwork challenges should get hired; Strengths and reason
P & Why should you be hired for hire
lving: lving:
Problem so! ving B Problem solving; Strengths:
Problem solving; Hiring: Overcome challenges(2); Sharine personal strengths:
6 Problem Solving Skills Reasons for hiring; reason to hire; ~ Dealing with the challenge; ring pers sths;
R . L j . . Positive attributes; Strengths;
with poor relevance; reasons for hiring interviewee Problem-solving skills; .
. . . . Competitive advantage
Experienced problem solving skills Problem solving(2)
Interest in role: Interest: Strengths: g:z:}ii“i:sf;ced‘ Challenge;
7 Candidate’s Vague Interest in Role; . Strengths(2); g y 8¢

Candidate has Interest in the Role

Keen in health; interest

Candidate’s strengths;

Challenges and actions taken;
handling challenges

Received 06 April 2022; revised 27 Nov 2022; accepted 27 June 2023

38

	Abstract
	1 Introduction
	2 Related Work
	2.1 Collaborative Qualitative Analysis
	2.2 Approaches for Individual (Semi)Automatic Coding
	2.3 Existing Tools to Support CQA

	3 Formative Interview
	3.1 Methodology
	3.2 Findings
	3.3 Study Limitation
	3.4 Discussion

	4 System Design
	4.1 Design Consideration
	4.2 Interface
	4.3 AI Model
	4.4 Training and Updating Pipeline

	5 User Evaluation Design
	5.1 Task
	5.2 Independent Variables (IVs) and Conditions
	5.3 Participants
	5.4 Procedure
	5.5 Dependent Variables (DVs)
	5.6 Data Analysis

	6 Quantitative Results
	6.1 Coding Time
	6.2 Inter-rater Reliability
	6.3 Code and Subcode Diversity
	6.4 Code and Subcode Coverage

	7 Triangulation with Qualitative Results
	7.1 Lower Initial Coding Time
	7.2 Higher Initial IRR
	7.3 Lower Diversity
	7.4 Effect of Synchrony
	7.5 Positive feedback from Shared Model Conditions
	7.6 Similarity of Codebooks across Conditions

	8 Discussion
	8.1 Trade-off: Coding Efficiency vs. Coding Quality
	8.2 Is AI & Shared Model the best for CQA? Considering Different Application Scenarios

	9 Design Implication
	9.1 Impact of Coding Granularity on Human-AI collaboration
	9.2 Trust and User Expectations

	10 Limitation and Future Work
	11 Conclusion
	References
	A Study Protocol
	A.1 Welcome to AIQA Study!
	A.2 Task Introduction
	A.3 Introduction to Three Phases
	A.4 Post-Study Interview Questions

	B Codes in Codebooks Generated by Participants

