
UMLegend: A Gamified Learning Tool for Conceptual Modeling
with UML Class Diagrams

Christian Cagnazzo
Politecnico di Torino

Turin, Italy
s304045@studenti.polito.it

Giacomo Garaccione
Politecnico di Torino

Turin, Italy
giacomo.garaccione@polito.it

Riccardo Coppola
Politecnico di Torino

Turin, Italy
riccardo.coppola@polito.it

Luca Ardito
Politecnico di Torino

Turin, Italy
luca.ardito@polito.it

Marco Torchiano
Politecnico di Torino

Turin, Italy
marco.torchiano@polito.it

ABSTRACT

Conceptual modeling is a fundamental skill for analysts and soft-
ware engineers, as it is necessary for abstracting concepts and
expressing them in a meaningful way that can then be translated
into e�ective software design. Conceptual modeling is taught in
di�erent Software Engineering university curricula, with Uni�ed
Modeling Language (UML) class diagram being one of the most
commonly used notations for this purpose. This paper presents a
proposal for the Gami�cation of conceptual modeling education
in a university environment. We describe a tool prototype with
common gami�ed mechanics such as experience points, levels, and
customizable avatars, together with an underlying evaluation sys-
tem for assessing the correctness of the diagrams modeled by the
students. A preliminary assessment on existing lab assignments
was performed to gauge the ability of detecting errors. We discuss
the tool capability and the potential bene�ts that such a tool could
bring, as well as envision future plans for an empirical evaluation
of those bene�ts.

CCS CONCEPTS

• Applied computing→ Computer-assisted instruction; In-
teractive learning environments.

KEYWORDS

Education, Conceptual Modeling, Gami�cation, UML Class Dia-
grams, Software Engineering

ACM Reference Format:

Christian Cagnazzo, Giacomo Garaccione, Riccardo Coppola, Luca Ardito,
and Marco Torchiano. 2023. UMLegend: A Gami�ed Learning Tool for
Conceptual Modeling with UML Class Diagrams. In Proceedings of the 2nd

InternationalWorkshop on Gami�cation in Software Development, Veri�cation,

and Validation (Gamify ’23), December 4, 2023, San Francisco, CA, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3617553.3617883

Gamify ’23, December 4, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0373-7/23/12.
https://doi.org/10.1145/3617553.3617883

1 INTRODUCTION

Conceptual modeling is an essential skill for analysts as well as for
software engineers, as it is necessary for abstracting concepts from
the problem domain and expressing them in an e�ective way that
can be later translated into software design.

Conceptual modeling is a necessary step in the design phase of
a new software system since it o�ers a way to clearly de�ne the
di�erent views and requirements of the system, detailing all the
most important concepts involved.

One of the most commonly used speci�cations for conceptual
modeling is the Uni�ed Modeling Language (UML) Class Diagram
[7]: a graphical notation that uses classes to express the various
concepts that make up a system; those concepts may be physical
entities, roles, events, geographical entities, time records, and gen-
erally all the necessary concepts needed to describe the various
elements involved in a system.

UML class diagrams are commonly taught in software engineer-
ing courses as an introductory topic typically used for the require-
ments de�nition phase. Examples of common errors [1] performed
by students when learning conceptual modeling include multiplic-
ity errors, missing classes, attributes, or associations, using wrong
names for classes, and including concepts that should not be present
such as events in a diagram.

Teacher assistance during classroom exercises can help students
understand the reasoning behind their errors and guide them to-
ward correct modeling practices, but providing precise feedback
becomes unfeasible when the number of students becomes too large
for teachers to manage.

Gami�cation, the practice of using elements, strategies, and me-
chanics that are typically found in games in non-recreational con-
texts [4], has been widely adopted in software engineering over
recent years. The bene�ts of using gami�cation include increased
interest in unappealing topics, higher participation in activities, and
increases in motivation thanks to competition and collaboration
mechanisms.

We posit that using gami�cation could facilitate the learning
process of conceptual modeling by increasing students’ interest in
the topic through game mechanics that would make the activity
more appealing; moreover, using a dedicated learning tool with de-
tailed feedback mechanisms inserted in a game environment could
be more e�ective in reaching students in comparison to human
feedback given by teachers.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

2

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3617553.3617883
https://doi.org/10.1145/3617553.3617883
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617553.3617883&domain=pdf&date_stamp=2023-12-04


Gamify ’23, December 4, 2023, San Francisco, CA, USA Cagnazzo et al.

The remainder of the paper is structured in the following way:
Section 2 introduces relevant background information and related
work, and Section 3 describes the tool. In Section 4 we present the
theorized impact of our tool, while Section 5 details the conclusions
we draw as well as the plans for future usage of the tool.

2 BACKGROUND AND RELATED WORK

Gami�cation has become more commonly used in recent years in
educational contexts, as an e�ective strategy to increase students’
motivation and participation [5, 6].

Elements commonly seen in gami�ed systems depend on con-
cepts such as rewarding players for their actions, increasing moti-
vation with unknown and unexpected events, competition mecha-
nisms with other participants, and in general, features that enrich
the experience by making it more fun.

One of the most commonly used frameworks for assessing how
well gami�cation is implemented in a gami�ed system is called Oc-
talysis [3]: the framework de�nes eight Core Drives that represent
di�erent facets of human behavior stimulated by gami�cation such
as accomplishment, ownership, scarcity, social in�uence, avoid-
ance, empowerment, unpredictability, and giving meaning to one’s
actions.

The eight Core Drives are divided into drives that motivate
users by making them feel powerful, in control of their actions,
and satis�ed with themselves (White Hat Drives), and drives that
exploit negative feelings by making users feel anxious, addicted,
obsessed, and generally worried in order to motivate them in taking
part in a gami�ed system (Black Hat Drives).

A second division of the core drives is in right-brained ones,
related to creativity, social interactions, and self-expression, and left-
brained ones, associated with logic, ownership, and calculations.

The horizontal division between left-brained and right-brained
drives comes together with the vertical division between White
Hat and Black Hat drives in the form of an octagon, which can be
used to assess the distribution of the game elements in a system by
increasing the size of each side of the �gure depending on howmany
elements of the corresponding drive are present in the system. A
balanced octalysis graph is interpreted as an evidence of a balanced
gami�ed system.

In the �eld of software engineering, examples of gami�ed tools
have recently been applied to the various activities that are part
of the discipline, such as mutation testing [6], refactoring [5], and
requirements de�nition [10]. The following works, instead, focus
on the gami�cation of conceptual modeling languages.

We identify three main examples in literature that applied gami-
�cation to software modeling. Papygame [2] is a plugin developed
for Papyrus 1, a modeling tool that supports UML class diagrams
and other modeling languages derived from UML. Students can
solve assignments composed of di�erent exercises, each associated
with a level; these exercises can either be played with a Hangman

game, where a new piece of the hanged man is drawn for every
mistake made, or without any kind of game element. Completing
an exercise without drawing the full hangman picture unlocks new
exercises and rewards, with failure (with no new unlocked exercises

1https://www.eclipse.org/papyrus/, last accessed on: 10/07/2023

as a consequence) being represented by the full picture being ob-
tained. A preliminary evaluation conducted with students focusing
on the plugin’s usability and user experience yielded promising
results, and the authors mention room for improvement and plans
for future tool usage.

Jurgelaitis et al. [8] describe the gami�cation of a UML university
course with a level-based structure where new topics can only be
obtained by increasing one’s level. In the course structure, class
diagrams are considered a necessary prerequisite, as they consist
of the topic of the �rst level of the entire course. The course used
elements commonly seen in gami�cation theory such as Rewards
(in the form of experience points, badges, and currencies that can
be spent for purchasing course resources), Tasks connected to the
various exercises, and Leaderboards where students are ranked
based on their experience points. A comparison between the av-
erage student grade for the gami�ed edition of the course and a
non-gami�ed edition showed that gami�cation led to an increase
in the average assessment score.

Lastly, LearnER [9] implements a gami�ed editor for UML class
diagrams as well as Entity-Relationship diagrams using common
elements such as points awarded for correctly solved exercises,
leaderboards, both regarding general standing and per-exercise,
progress indicators, and hints toward the correct solution expected
for the model. The authors mention that the tool has been used
continuously since 2017, with gami�cation and feedback being
identi�ed as e�ective and bene�cial for the learning process.

3 TOOL IMPLEMENTATION

We describe in this section the main concepts that compose our tool
and the gami�ed mechanics that we have adopted. The tool has
been developed as a React-based web application that implements
the mechanics inside a UML modeling canvas.

3.1 Diagram Evaluation

Our tool was built in order to be used in a classroom environment
to assist students in learning correct modeling practices, so it is
necessary for the tool to o�er a way for students to assess the
correctness of the diagrams they can produce using the tool. As a
side e�ect, automated assessments can also speed up the evaluation
of the diagrams performed by teachers, allowing an increase in the
number of evaluated exercises provided during a software modeling
course.

In order to do so, we implemented a correctness check inside the
tool that analyzes the diagram produced by students and returns a
list of all violations present in the diagram. Following commonly
used speci�cations regarding conceptual modeling [1], we divided
the possible violations into three di�erent categories:

• Syntax Errors. Violations of the syntax rules de�ned for UML
class diagrams. These errors may include: an attribute not
having a type or a type that is not allowed, an association
missing its multiplicities or not having a name, a class having
no name, no attributes, or no associations to other classes.

• Semantic Errors. Violations that are speci�c to the exercise
for which the student is modeling a class diagram. These
errors may include: a speci�c concept not being modeled
with a class, an association between classes not being present

3

https://www.eclipse.org/papyrus/


UMLegend: A Gamified Learning Tool for Conceptual Modeling with UML Class Diagrams Gamify ’23, December 4, 2023, San Francisco, CA, USA

or being present but with incorrect multiplicities, a class
missing important attributes, or the existence of a concept
that is not allowed to be modeled with a class.

• Pragmatic Quality Warnings. Violations that are not consid-
ered errors, but still represent something that can bemodeled
in a more correct way. These warnings can be given for mod-
eling a concept that can be a single attribute as a class, having
unnecessary associations between classes, associations with
the wrong name, or having unnecessary classes.

Students are able to have their diagram evaluated whenever they
wish, and the entire diagram is checked for every possible violation,
with syntax errors being checked �rst.

In case the syntax evaluation �nds missing relevant information
(e.g. a class without attributes, an association without a name, an
attribute without a type) the semantic check is performed with
placeholder values, with the a�ected elements not being considered
in the subsequent evaluation.

3.2 Gami�ed Mechanics

We selected the following mechanics for implementation in the
tool:

(1) Levels. A mechanic that is commonly seen in gami�ed en-
vironments, levels represent a student’s modeling skill in
a numeric and direct way. Students start at level 1 and are
able to earn experience points by completing exercises. Ex-
ercises have an increasing di�culty level and award higher
experience when completed.
Moreover, there is no �xed order for completing exercises,
meaning that students are free to attempt solving higher-
level exercises �rst for higher rewards (experience is mul-
tiplied if the exercise is at a higher level than the student’s
current level), at the cost of facing a harder challenge.
The experience reward for each exercise is also tied to the
checks performed during the exercise: modeling a diagram
that contains syntax or semantic errors will lead to an ex-
perience reduction; similarly, successfully completing an
exercise with a higher number of checks will slightly reduce
the experience obtained.
Following the Core Drives de�ned in the Octalysis frame-
work described above, this mechanic �ts in the Development

and Accomplishment drive: experience points and levels are
a classical example of indicators of the progress a user has
made in a gami�ed system, and new levels (with the corre-
sponding rewards) give a sense of ful�llment. Additionally,
the presence of an experience reduction in case of repeated
failures ties to the Loss and Avoidance drive.

(2) Avatars. Avatars o�er a way for students to customize their
experience and express their own individuality inside the
tool. We implemented avatars in our tool with a web-based
implementation of the Avataaars Sketch library 2: the library
allows for the customization of a human avatar by changing
di�erent components such as its clothes, its hairstyle and
hair color, presence of facial hair, and accessories.
In our tool, students begin with a few unlocked props for
their avatars and are able to unlock new ones by completing

2http://avataaars.com, last accessed on: 07/07/2023

Figure 1: Tool section dedicated to the avatar’s customization

Figure 2: Exercise page with colored feedback on the diagram

exercises and leveling up: a dedicated tool section o�ers the
chance to customize the avatar by changing every single
prop in detail; the section also shows the props that are yet
to be unlocked, together with the needed level. An example
of the avatar customization page is shown in Figure 1.
Using customizable avatars refers to Octalysis’s concept of
Ownership: students are more motivated in using the tool if
they feel a close connection with something personal that
lets them express their individuality

(3) Feedback. As a way to enhance the learning activity per-
formed by the students, feedback is given after every correct-
ness check made by the students. All the violations found in
a diagram lead to the diagram part that contains an error to
be colored di�erently, directly highlighting where students
need to turn their focus to improve the model. The coloring
used also re�ects the type of error: syntax errors are orange-
colored, elements that cause a semantic error are red, while
pragmatic quality warnings are identi�ed by a blue color.
Additionally, a list of all the violations found is available
for consultation after a check, so that students are able to
directly assess and correct the errors. Figure 2 presents an
example of a diagram that contains violations for every type
of error as well as a list detailing the semantic errors found.
An additional feedback mechanism, directly tied to the stu-
dent’s Avatar, consists of a visual change of the avatar itself
after too many errors have been performed: the student’s

4

http://avataaars.com


Gamify ’23, December 4, 2023, San Francisco, CA, USA Cagnazzo et al.

Figure 3: Percentages of syntax errors, semantic errors, and

pragmatic quality warnings correctly identi�ed by the tool

avatar will change its facial expression, changing from a
happy emotion to a progressively sadder one the more mis-
takes the student makes. This kind of negative feedback
is used to motivate the student in thinking carefully and
avoiding making mistakes.
The feedback in the form of error messages and coloring
parts of the diagram can be connected to Octalysis’s Em-

powerment of Creativity and Feedback Core Drive: students
are able to directly see which parts of their diagrams are
incorrect and the reason behind the errors and are in turn
motivated to perform new actions (in this case changing the
model and checking again) to overcome the error.
Additionally, the visual e�ects on the student’s avatar can
be thought of as an example of Loss and Aversion drive: stu-
dents who see the change in the avatar’s status will be more
motivated in future modeling tasks, in order to spare the
avatar further "su�ering".

4 POTENTIAL IMPACT

We performed a preliminary evaluation by inserting solutions from
a laboratory exercise performed by students of the previous edition
of the course and had the tool evaluate those solutions based on an
example of a correct diagram.

A total of 30 solutions have been analyzed by the tool, which
resulted in a list of errors and warnings for each solution; each list
has then been reviewed by a human evaluator in order to assess
how many errors and warnings the tool was able to identify cor-
rectly. The distribution of errors and warnings identi�ed correctly
is presented in Figure 3.

As can be seen in the Figure, the tool is able to identify errors
in a way that can be comparable to a human evaluator, although
there is a margin for improvement that has emerged during the
assessment process.

We expect our tool to assist students in learning correct modeling
practices by providing detailed feedback directly on the diagrams
produced by the students themselves: the tool is planned to be
used in a laboratory environment where students are encouraged
to solve modeling exercises on their own, with the presence of a
teaching assistant to answer their doubts and provide support.

Additionally, the presence of in-game rewards for solving ex-
ercises in a correct way is something that we assume will act as
an e�ective motivator for students: previous editions of the course
o�ered no incentive for students to attempt solving the exercise
other than learning conceptual modeling, and we expect that the
tool will change this trend.

5 CONCLUSION AND FUTUREWORK

In this paper, we described a prototypical tool for the gami�cation
of learning conceptual modeling using UML class diagrams. The
web tool, which also includes an evaluation engine that assesses
the correctness of the produced diagrams, is intended to be used by
students to facilitate their learning of correct modeling practices.

Our future plans for the tool include its usage in an academic
environment with a longitudinal experiment, where we plan to
track students’ progress during the course.

We also plan to expand the tool’s features with gami�ed mechan-
ics that are suited for long-term usage: competition mechanisms
such as leaderboards are planned, together with the creation of a
quest-line mechanic based around the exercises, in order to assess
whether continuous usage of a gami�ed tool can improve students’
modeling practices.

REFERENCES
[1] Narasimha Bolloju and Felix SK Leung. 2006. Assisting novice analysts in de-

veloping quality conceptual models with UML. Commun. ACM 49, 7 (2006),
108–112.

[2] A. Bucchiarone, M. Savary-Leblanc, X. Le Pallec, J. M. Bruel, A. Cicchetti, J. Cabot,
and S. Gérard. 2023. Gamifying model-based engineering: The PapyGame tool.
Science of Computer Programming 230 (2023), 102974. https://doi.org/10.1016/j.
scico.2023.102974

[3] Y.k. Chou. 2015. Actionable Gami�cation: Beyond Points, Badges, and Leaderboards.
Createspace Independent Publishing Platform. https://books.google.it/books?
id=jFWQrgEACAAJ

[4] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. 2011. From game design elements
to gamefulness: de�ning" gami�cation". In Proceedings of the 15th international
academic MindTrek conference: Envisioning future media environments. 9–15.

[5] H. M. dos Santos, V. H. S. Durelli, M. Souza, E. Figueiredo, L. T. da Silva, and
R. S. Durelli. 2019. CleanGame: Gamifying the Identi�cation of Code Smells. In
Proceedings of the XXXIII Brazilian Symposium on Software Engineering (Salvador,
Brazil) (SBES 2019). Association for Computing Machinery, New York, NY, USA,
437–446. https://doi.org/10.1145/3350768.3352490

[6] G. Fraser, A. Gambi, M. Kreis, and J. Rojas. 2019. Gamifying a Software Testing
Course with Code Defenders. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). Association
for Computing Machinery, New York, NY, USA, 571–577. https://doi.org/10.
1145/3287324.3287471

[7] Object Management Group. 2017. OMG, Uni�ed Modeling Language (UML) 2.5.1
Superstructure Speci�cation.

[8] M. Jurgelaitis, L. Čeponienė, J. Čeponis, and V. Drungilas. 2019. Implementing
gami�cation in a university-level UML modeling course: A case study. Computer
Applications in Engineering Education 27, 2 (2019), 332–343. https://doi.org/10.
1002/cae.22077

[9] Olav O. Dæhli, B. Kristo�ersen, P. Lauvås Jr, and T. Sandnes. 2021. Exploring
Feedback and Gami�cation in a Data Modeling Learning Tool. Electronic Journal
of e-Learning 19, 6 (2021), 559–574.

[10] W. Prasetya, C. Leek, O. Melkonian, J. ten Tusscher, J. van Bergen, J. Everinkr, T.
van der Klis, R. Meijerink, R. Oosenbrug, J. Oostveen, et al. 2019. Having fun in
learning formal speci�cations. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET).
IEEE, 192–196.

Received 2023-08-03; accepted 2023-08-17

5

https://doi.org/10.1016/j.scico.2023.102974
https://doi.org/10.1016/j.scico.2023.102974
https://books.google.it/books?id=jFWQrgEACAAJ
https://books.google.it/books?id=jFWQrgEACAAJ
https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1145/3287324.3287471
https://doi.org/10.1145/3287324.3287471
https://doi.org/10.1002/cae.22077
https://doi.org/10.1002/cae.22077

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Tool Implementation
	3.1 Diagram Evaluation
	3.2 Gamified Mechanics

	4 Potential Impact
	5 Conclusion and Future Work
	References

