
Do Developers Fix Continuous Integration Smells?

Ayberk Yaşa∗

ayberkyasa@gmail.com
Bilkent University
Ankara, Turkey

Ege Ergül∗

egeergull2001@gmail.com
Bilkent University
Ankara, Turkey

Hakan Erdogmus
hakane@andrew.cmu.edu
Carnegie Mellon University

USA

Eray Tüzün
eraytuzun@cs.bilkent.edu.tr

Bilkent University
Ankara, Turkey

ABSTRACT

Continuous Integration (CI) is a common software engineering

practice in which the code changes are frequently merged into a

software project repository after automated builds and tests have

been successfully run. CI enables developers to quickly detect bugs,

enhance the quality of the code, and shorten review times. How-

ever, developers may encounter some obstacles in following the CI

principles. They may be unaware of them, they may follow the prin-

ciples partially or they may even act against them. These behaviors

result in CI smells. CI smells may in turn lessen the bene�ts of CI.

Addressing CI smells rapidly allows software projects to fully reap

the bene�ts of CI and increase its e�ectiveness. The main objective

of this study is to investigate how frequently developers address CI

smells. To achieve this objective, we �rst selected seven smells, then

implemented scripts for detecting these smells automatically, and

then ran the scripts in eight open-source software projects using

GitHub Actions. To assess the resolution extent of CI smells by

practitioners, we calculated the occurrences and time-to-resolution

(TTR) of each smell. Our results suggest that Skipped Job smell has

been �xed slightly more than other CI smells. The most frequently

observed smell was Long Build, which was detected in an average

of 19.03% of all CI builds. Fake Success smell does not get resolved

in projects where it exists. Our study reveals that practitioners do

not �x CI smells in practice. Further studies are needed to explore

the underlying reasons behind this, in order to recommend more

e�ective strategies for addressing these smells.

CCS CONCEPTS

• Software and its engineering → Agile software develop-

ment; Software maintenance tools; Software testing and debugging;

Software libraries and repositories.

∗Both authors contributed equally to this research.

PROMISE ’23, December 8, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0375-1/23/12.
https://doi.org/10.1145/3617555.3617870

KEYWORDS

Continuous Integration, Continuous Integration Smells, CI-Smell,

Anti-Patterns, Smell Detection, Process Smells

ACM Reference Format:

Ayberk Yaşa, Ege Ergül, Hakan Erdogmus, and Eray Tüzün. 2023. Do De-

velopers Fix Continuous Integration Smells?. In Proceedings of the 19th

International Conference on Predictive Models and Data Analytics in Software

Engineering (PROMISE ’23), December 8, 2023, San Francisco, CA, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3617555.3617870

1 INTRODUCTION

Continuous Integration (CI) is a software engineering practice for

having automated builds and applying automated tests to the code

changes to be merged. Team members routinely integrate their

work, often at least once per day [6]. To �nd integration errors as

early as possible, each integration is validated by an automated

build (including tests).

The term CI was coined in 1994 by Grady Booch [9]. Martin

Fowler, who is one of the founding members of the Agile Alliance1,

also advocated for CI. Fowler [6] described the practices that make

up an e�ective CI process in 2006. Fowler also discussed the bene�ts

of CI, which can be reaped if these practices are strictly followed.

The adoption of CI practices has increased over the years as

developers have introduced CI into their projects. There are advan-

tages to strictly following CI principles and practices. As Fowler

[6] discussed, CI allows developers to detect bugs earlier and easier,

increases the quality of the code, shortens review times, and lets

developers have a better understanding of what works and does

not work in the project and get more rapid feedback on new fea-

tures. To achieve these bene�ts, which support the quality of the

software development process, a set of sub-practices were de�ned

[4, 6, 11]. These include frequently committing code changes, build-

ing the software frequently, and performing the tests automatically.

However, when these practices are not followed as prescribed, or

shortcuts are taken, software projects can be negatively a�ected.

These poor practices are called CI smells.

Previous works categorized CI smells, building on what was orig-

inally suggested by Fowler [6], and proposed di�erent taxonomies

of these smells [5, 19]. Some researchers developed CI-support tools

to examine the CI process from di�erent perspectives and to detect

anti-patterns [14, 15, 20]. The impact of CI smells on productivity

and quality of projects, development practices, and code reviews

1https://www.agilealliance.org/

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

12

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3617555.3617870
https://doi.org/10.1145/3617555.3617870
https://www.agilealliance.org/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617555.3617870&domain=pdf&date_stamp=2023-12-08


PROMISE ’23, December 8, 2023, San Francisco, CA, USA Ayberk Yaşa, Ege Ergül, Hakan Erdogmus, and Eray Tüzün

was also investigated [1, 8, 21]. Zampetti et al. [18] proposed a

categorization of actions for restructuring CI pipelines to avoid and

remove CI smells.

Although categorizations of actions to �x smells exist, to what

extent developers �x CI smells has not been investigated to the best

of our knowledge. Knowing how developers follow the best prac-

tices is valuable since these CI practices o�er several advantages,

as examined by Fowler [6]. Being aware of the most commonly

seen and resolved smells would allow us to devise automated tools

and solutions to avoid these smells in the �rst place. Therefore, the

main goal of this study is to determine how frequently smells are

addressed by the developers. In this study, we mined a sample of

open-source repositories to obtain this information, focusing on

the following research question.

RQ - To what extent do developers �x CI smells?

To answer this research question, we �rst selected seven smells,

then implemented the detection strategy for each smell, and ran

these strategies in eight open-source software projects that use

GitHub Actions. Finally, we measured each smell’s occurrences and

average time-to-resolution (TTR) in every project.

The paper is organized as follows. The next section explains the

research methodology. Section 3 provides the results, and Section

4 discusses and interprets the �ndings. Section 5 addresses the

validity threats of our investigation. Section 6 discusses the related

work. Finally, Section 7 provides the conclusions and discusses

future work.

2 METHODOLOGY

Following the snowballing approach suggested by Wohlin [16], we

initiated our literature review with three studies [5, 6, 19], which

ultimately yielded 18 academic papers. To establish a strong foun-

dation for this study, we deliberately selected these three studies

authored by recognized pioneers in the �eld. These papers provide

essential information that serves as a basis for our research focus,

as highlighted in Section 1. Next, we identi�ed the most feasible

ways to measure how much practitioners �x CI smells, selected a

subset of smells, and devised a detection strategy for each smell.

Then, we selected open-source projects that are hosted on GitHub

and use GitHub Actions on which to run our CI smell detection

strategies. Figure 1 gives an overview of our methodology.

2.1 Metrics for Measuring the Extent of Fixing

CI Smells

Based on our review, we found three ways to investigate to what

extent practitioners resolve CI smells. The �rst way is to survey

experienced developers who are actively responsible for the CI

process in their company to get their perceived importance [7, 10].

Secondly, we can take advantage of the folder where the GitHub

Actions CI pipelines are stored. The full path of this folder is

"/.github/work�ows" from the repository’s root. Each YAML �le

in this folder contains repository-speci�c pipelines serving a dif-

ferent purpose2. We obtain the change history of each YAML �le

using the GitHub REST API. We run our smell detection strategies

for each change in the history of each �le. For the smells that are

2Note that in a YAML �le, the �ow of scripted instructions is called a work�ow. Thus,
the term work�ow will be used interchangeably with the YAML �le de�ning it.

Figure 1: Methodology overview

not present in the =Cℎ �le change, but exist since the (= − :)Cℎ �le

change (where : > 0), we record the time between these two �le

changes as the TTR of that smell in days. In this way, we measure

the average TTR of each smell in days, as a proxy for the urgency

of �xing CI smells (See Figure 2 for an example).

Thirdly, the GitHub API provides log data about the repository

and CI pipelines. The entire commit history of a repository can be

obtained, as well as data about each CI pipeline run. We can detect

smells using this log data as well. In this way, we build a timeline

that depicts the change in the frequency of smells over time.

The �rst method can be applied to all kinds of smells. The second

method can be applied to the smells whose detection strategies

include YAML �le mining, and the third one can be applied to

smells detected with the log data. In this study, we will be focusing

on the second and third strategies, and we are planning to apply

the �rst method in our future work.

Figure 2: An example of TTR calculation of Manual Execu-

tion smell

13



Do Developers Fix Continuous Integration Smells? PROMISE ’23, December 8, 2023, San Francisco, CA, USA

2.2 Smell Selection

Zampetti et al. [19] and Duvall [5] proposed 79 CI smells grouped

into seven categories and 50 smells grouped into 10 categories,

respectively. While some of the smells in these two studies are the

same, others are di�erent. Automatically detecting some of them

is not practicable since they are based on infrastructure choices,

quality assurance processes, delivery processes, or company culture.

Initially, we created a combined list of the smells introduced by

Duvall and Zampetti et al. [5, 19]. Then, we classi�ed the smells as

feasible or not by inspecting the GitHub Actions pipeline con�gura-

tion �les. That is, we determined whether each smell is measurable

and detectable. This was a required step as most of the smells were

relatively subjective (e.g. “Generated artifacts are versioned, while

they should not” is a decision that may vary from organization to

organization), hence immeasurable. Most of the remaining smells

were not automatically detectable (e.g. “Build scripts are highly

dependent upon the IDE” is a smell that cannot be automatically

detected). After this independent classi�cation of the smells by the

�rst two authors, in 91.5% of the cases, there was an agreement

on whether a smell was feasible to detect or not. To ensure the

agreement was not by chance, we computed Cohen’s ^ [2] as 0.79

(moderate). For the cases where authors disagreed on whether a

smell is feasible to detect or not, the author who claimed the smell

to be detectable wrote detection scripts to prove that the smell

is detectable. In this way, it was proven to the other author that

these smells could be detected. Then, we �nalized the list of smells.

This step yielded 7 measurable and automatically detectable smells,

whereas the rest of the smells were either immeasurable, not auto-

matically detectable, or both. The summary of the selected smells

is given in Table 1. To understand how each smell was searched in

YAML �les, �rst, the smells need to be explained in more detail.

Pipeline steps/stages are skipped arbitrarily: Zampetti et al.

[19] classify this smell under the category of Build Process Organi-

zation. This smell is seen when developers force-skip the execution

of the work�ows. An example would be a developer directly com-

mitting local changes to the project by skipping the automated tests.

In the rest of the paper, this smell will be referred to as Skipped

Job.

Some pipeline tasks are started manually: This smell was

�rst introduced by Duvall [5]. Zampetti et al. [19] also acknowl-

edged this smell in their work and categorized it under Build Process

Organization. This smell is seen when a work�ow is executed man-

ually, whereas it should have been executed automatically after

each time a triggering event occurred. For example, if the script

that initiates the project build needs manual triggering instead of

being triggered every time a new commit arrives, this is considered

an instance of this smell. In the rest of the paper, this smell will be

referred to asManual Execution.

Use of nightly builds: This smell was �rst introduced by Duvall

[5], and then classi�ed by Zampetti et al. [19] under the category

Build Process Organization. This smell is seen when a work�ow

is executed at predetermined times, whereas it should have been

executed automatically after each time a triggering event occurred.

For example, if a project is built nightly instead of being built every

time a new commit arrives, this is considered as a smell. This speci�c

case is called a nightly build. In the rest of the paper, this smell will

be referred to as Timed Build.

A build succeeds even when a task is failed, or an error is

thrown: This smell is �rst introduced by Duvall [5]. Then Zampetti

et al. [19] also acknowledged it under the category Build Process

Organization. As the name suggests, the smell is observed when a

work�ow completes successfully despite a failed job or a thrown

error. In the rest of the paper, this smell will be referred to as Fake

Success.

Environment variables are not used at all: This smell was

�rst introduced by Duvall [5]. Later on, Zampetti et al. [19] cat-

egorized it under Build Maintainability. Although environment

variables are needed, when they are not used, this is considered

as a smell. In the rest of the paper, this smell will be referred to as

Missing Environment Variables.

Failed tests are re-executed in the same build: Zampetti et

al. [19] classify this smell under the Quality category. The smell is

observed when tests are re-executed without any changes to the

code or the CI pipeline, even though the tests have already failed

before. In the rest of the paper, this smell will be referred to as

Retry Failure.

Build time for the commit stage takes longer than 10 min-

utes: This smell was �rst introduced by Duvall [5], and then Zam-

petti et al. [19] categorized it under Build Process Organization.

The smell is observed when the build of the entire project takes

longer than 10 minutes when the pipeline is triggered. In the rest

of the paper, this smell will be referred to as Long Build.

2.3 Detection Strategy for Selected Smells

We �rst conducted a review of the GitHub Actions documentation

to have a better understanding of how this CI tool works and how

we can detect the smells mentioned in Table 1. We checked to see if

there is a prede�ned keyword or con�gurable parameter which can

be added to the pipeline that would cause the practitioners to follow

poor practices. If there is a prede�ned keyword or con�gurable

parameter that can be used directly in GitHub Actions pipeline

con�guration �les (YAML �les) to detect the smell, we determined

the presence of the keyword or the value of the parameter. Note

that since there may be multiple CI-related YAML �les in a project,

the project is considered to have that smell as long as the smell

is seen at least in one of these YAML �les. The reasoning behind

this decision is that in GitHub Actions, even though there may be

several YAML �les and many work�ows, the CI concept as a whole

is the combination of these separate work�ows. Consequently, it

is safe to decide that a project has a CI smell when the smell is

observed in at least one of the YAML �les.

If neither a relevant keyword nor a parameter exists, it is impos-

sible to detect the smell from YAML �les. In such a case, we used the

log data of the repository and its CI pipelines through the GitHub

REST API to detect the smell. To ensure the repeatability of this

project, more detailed information on how to detect the selected

smells is provided below according to the smell category.

Skipped Job: In GitHub Actions, a work�ow can be skipped if

the commit message includes one of the following3: [skip ci],

3https://docs.github.com/en/actions/managing-work�ow-runs/skipping-work�ow-
runs

14

https://docs.github.com/en/actions/managing-workflow-runs/skipping-workflow-runs
https://docs.github.com/en/actions/managing-workflow-runs/skipping-workflow-runs


PROMISE ’23, December 8, 2023, San Francisco, CA, USA Ayberk Yaşa, Ege Ergül, Hakan Erdogmus, and Eray Tüzün

Table 1: Summary Table of Selected Continuous Integration Smells

Smell Name Description

Skipped Job Pipeline steps/stages are skipped arbitrarily.

Manual Execution Some pipeline tasks are started manually.

Timed Build Nightly builds are used.

Fake Success A build is succeeded when a task is failed, or an error is thrown.

Missing Environment Variables Environment variables are not used at all.

Retry Failure Failed tests are re-executed in the same build.

Long Build Build time for the commit stage takes longer than 10 minutes.

[ci skip], [no ci], [skip actions], [actions skip]. Alter-

natively, one can end the commit message with two empty lines

followed by skip-checks: true. To detect this smell, each commit

message is searched by a script.

Manual Execution: In GitHub Actions, if a YAML �le contains

the keyword workflow_dispatch then the work�ow contains this

smell4. Thus, to detect this smell, we used a script that iterates

through each YAML �le and searches this keyword. In the presence

of this keyword, the project is labeled as containing this smell.

Timed Build: In GitHub Actions, if a YAML �le contains the

keyword schedule then the work�ow contains this smell5. Thus, to

detect this smell, we used a script that iterates each YAML �le and

search this keyword. In the presence of this keyword, the project is

identi�ed as containing this smell.

Fake Success: In GitHubActions, if a YAML �le contains the key-

word continue-on-error then the work�ow contains this smell6.

Thus, to detect this smell, we used a script that iterated through

each YAML �le and search for this keyword. In the presence of this

keyword, the project is identi�ed as containing this smell.

Missing Environment Variables: To detect this smell, we used

a script that iterates through each YAML �le and searches the

keyword of env7. In the absence of this keyword, the project is

labeled as containing this smell.

Retry Failure: Usually, this smell is introduced due to �aky

tests. Such cases are detected by using the GitHub REST API and

GitHub Actions logs. In the work�ow run histories of each project,

if the value of run_attempt is greater than one for a work�ow, the

Retry Failure exists for that work�ow.

Long Build: This smell is detected by using the log data for

work�ow runs fetched using the GitHub REST API. To detect this

smell, the di�erence between the date value of updated_at and

run_started_at timestamps are calculated. If this di�erence is

greater than 10 minutes, this smell exists for the work�ow.

The summary of the detection strategy for each selected smell is

shown in Table 2.

4https://docs.github.com/en/actions/using-work�ows/events-that-trigger-
work�ows#work�ow_dispatch
5https://docs.github.com/en/actions/using-work�ows/events-that-trigger-
work�ows#schedule
6https://docs.github.com/en/actions/using-work�ows/work�ow-syntax-for-github-
actions#jobsjob_idcontinue-on-error
7https://docs.github.com/en/actions/using-work�ows/work�ow-syntax-for-github-
actions#env

3 RESULTS

In this section, the results that we found by applying the methodol-

ogy we described are provided.

3.1 Open-Source Project Selection

We limited our investigation to projects that use GitHub Actions

as their CI tool. Eight open-source GitHub projects were selected

in the end, subject to the following criteria to investigate to what

extent software practitioners resolve CI smells.

(1) Projects should be open source: It was important that

the selected projects were open-source to make the best use

of the GitHub REST API. For required access, the projects

should be public with no need to obtain access tokens.

(2) Projects should have at least 5,000 stars: This way we

ensured we were investigating popular enough projects. Our

assumption is that popular projects are better maintained,

use more streamlined processes, and they are more worthy

of investigation.

(3) Projects should use GitHub Actions and should have

at least �ve work�ow �les: Our pre-study investigation

of GitHub projects revealed that if a project contained fewer

than �ve work�ow �les, it was unlikely that any of them

were related to CI. Therefore, we looked for projects with at

least �ve work�ow �les.

(4) Projects should have at least 100 contributors: Since we

are investigating software practices, our construct validity

would improve with contributor diversity. If there were a

limited number of contributors, construct validity could be

compromised.

(5) Project should be using GitHub Actions for at least two

years: This way, we ensured that the CI data were available

for a su�ciently long time and the CI tool was used long

enough to reveal underlying patterns.

GitHub Search API was used to �lter projects based on the crite-

ria mentioned above (1, 2, and 4). This initial �ltering resulted in a

set of 2,609 open-source software projects hosted on GitHub. After

this initial �ltering, two authors manually inspected and selected

the �rst eight open-source software projects that also satis�ed the

other two criteria (3 and 5). The details of the open-source projects

selected are given in Table 3.

A replication package8 is available, and includes the data fetched

from the GitHub REST API, the source code, and the study results.

8https://�gshare.com/s/5632179ddf84e6533865

15

https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#workflow_dispatch
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#workflow_dispatch
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#schedule
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#schedule
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idcontinue-on-error
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idcontinue-on-error
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#env
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#env
https://figshare.com/s/5632179ddf84e6533865


Do Developers Fix Continuous Integration Smells? PROMISE ’23, December 8, 2023, San Francisco, CA, USA

Table 2: Summary Table of Detection Strategy for Each Selected Smell

Smell Name Detection Strategy

Skipped Job Log data of repository and CI pipelines

Manual Execution Parameter of workflow_dispatch

Timed Build Parameter of schedule in the parameter of on

Fake Success Parameter of continue-on-error

Missing Environment Variables Keywords in the parameter of env

Retry Failure Log data of repository and CI pipelines

Long Build Log data of repository and CI pipelines

Table 3: The Details of Selected Open-Source Projects

Project Starting Year Number of Contributors Number of Commits Number of Stars Number of Work�ow Files Number of Work�ow Runs

freeCodeCamp 2014 4678 32K 364K 20 144K

Bootstrap 2011 1346 22K 163K 13 108K

React Native 2015 2456 27K 109K 9 86K

Dagger 2021 134 6K 7.9K 11 33K

Next.js 2016 2576 15K 103K 11 103K

Axios 2014 405 1K 99K 7 3K

TypeScript 2014 699 34K 89K 15 41K

Angular 2014 1677 26K 87K 11 43K

3.2 Data Collection and Pre-Processing

Before data collection, the required data were identi�ed, and the

possible ways to access these data were researched. To detect the

Skipped Job smell, the commit histories of projects were needed

since a pipeline can be skipped by writing one of the special key-

words to a commit message. To detect Retry Failure, work�ow run

histories of each project were needed since this smell could be de-

tected if the run_attempt count is greater than one for a work�ow

run. To detect Fake Success,Manual Execution,Missing Environment

Variables and Timed Build smells, the current and older versions

of each YAML �le for each project were needed. All four of these

smells can be detected by searching a speci�c keyword on the YAML

�les (e.g., to detect a Timed Build, the schedule keyword can be

searched in a YAML �le). For the evolution of these smells, the

version histories of the YAML �les were extracted.

There can be more than one YAML �le in a single project, and

not all of these YAML �les have to be related to CI. For example,

in some projects, there was a YAML �le that auto-closed stale pull

requests. Although this YAML �le automates a meaningful and

required task, the task itself cannot be associated with CI. After the

projects that used GitHub Actions were selected, the next step was

to manually �lter out the YAML �les that could not be associated

with CI. The �rst two authors performed this �ltration process.

3.3 Evaluating to What Extent CI Smells are

Addressed

Our research question investigates to what extent developers �x CI

smells. To answer this question, the detection strategies of selected

CI smells are executed on all versions of repository-speci�c pipeline

�les and the log data of the repository and CI pipelines. The results

of four smells (Manual Execution, Missing Environment Variables,

Timed Build, and Fake Success) and the remaining results are given

in di�erent subsections since they are being detected in di�erent

ways, and the results are in di�erent formats.

3.3.1 Smells Detected with Pipeline Files. In Table 4, each smell has

three �elds. The �rst �eld (#Resolved) is the number of resolved

smells that existed in YAML �les: each occurrence means the smell

materialized at some point in the history, and then disappeared (i.e.,

the smell has been �xed). To gather these numbers, we followed the

metric shown in Figure 2. The second �eld (#Unresolved) represents

the number of YAML �les that contain the corresponding smells

in the most recent version of that YAML �le (i.e., the smell is still

persisting). Note that the maximum value of this �eld for a project

is the number of CI-related YAML �les in that project. Finally,

the third �eld (average TTR) represents the average time in days

for the corresponding smell to be �xed. To calculate the average

TTR values, the total TTR of that smell (i.e., the sum of every

resolved instance of the related smell’s TTR) is divided by that

smell’s resolution count (i.e., #Resolved). Note that the average TTR

�eld can be in�nite or N/A. When a non-zero total TTR value

is divided by zero, the average TTR has the value in�nite. This

happens when there are smells existing in the project and none of

them are resolved. If the #Unresolved and #Resolved are both zero,

then the average TTR is recorded as N/A. That is, if the smell never

happened in a project, then the average TTR is not available for

that smell.

As shown in Table 4, Manual Execution smell’s average TTR has

in�nite values in �ve projects and a N/A value in one project. Only

Dagger and Angular have proper average TTR values for the Man-

ual Execution smell, with the values 0.03 days and 19 days, respec-

tively. For the Missing Environment Variables smell, �ve projects’

average TTR values are all in�nite. The average TTR values of

freeCodeCamp, Next.js, and Angular are 246.75, 840.5, and 4 days,

respectively. The Timed Build smell is almost never �xed in the in-

vestigated projects except for freeCodeCamp, which has an average

TTR value of 321 days. Finally, half of the projects never �xed the

Fake Success smell which explains the in�nite values for this smell.

16



PROMISE ’23, December 8, 2023, San Francisco, CA, USA Ayberk Yaşa, Ege Ergül, Hakan Erdogmus, and Eray Tüzün

Table 4: The Results of Four Smells for Each Project

Manual Execution Missing Environment Variables Timed Build Fake Success

#Resolved #Unresolved Average TTR #Resolved #Unresolved Average TTR #Resolved #Unresolved Average TTR #Resolved #Unresolved Average TTR

freeCodeCamp 0 10 in�nite 8 12 246.75 1 10 321 0 1 in�nite

Bootstrap 0 10 in�nite 0 5 in�nite 0 2 in�nite 0 0 N/A

React Native 0 0 N/A 0 7 in�nite 0 1 in�nite 0 1 in�nite

Dagger 1 5 0.03 0 11 in�nite 0 1 in�nite 0 7 in�nite

Next.js 0 4 in�nite 2 8 840.5 0 3 in�nite 0 0 N/A

Axios 0 3 in�nite 0 7 in�nite 0 2 in�nite 0 0 N/A

TypeScript 0 9 in�nite 0 16 in�nite 0 7 in�nite 0 1 in�nite

Angular 1 3 19 1 10 4 0 4 in�nite 0 0 N/A

The remaining four projects never experienced the smell, hence

their average TTR values are N/A.

3.3.2 Smells Detected with Log Data. We applied the third method

explained in Section 2.1 to produce a timeline showing the remain-

ing three smells’ occurrences. These are Skipped Job, Long Build, and

Retry Failure. The results are given in Figures 3, 4, and 5. In Figures

4 and 5, the percentage of smell instances is provided. These values

are calculated by dividing the number of observed smell instances

by the total number of work�ow runs. For example, freeCodeCamp

has in total 144k work�ow runs and 63k Long Build smell instances.

Hence, the percentage of Long Build smell for freeCodeCamp is

43.74%. The average of the percentages of Long Build and Retry

Failure smells are 19.03% and 2.26%, respectively. However, these

percentage values cannot be calculated for the Skipped Job smell.

Recall that Skipped Job smell is detected by checking the commit

messages, and it is not possible to divide the number of smell in-

stances by the number of work�ow runs. Dividing the number of

smell instances by the number of total commits after the adoption

of CI would not work either because every YAML �le is triggered

by a di�erent con�guration (i.e., not every commit triggers every

YAML �le). For the correct percentage value, the number of Skipped

Job instances should be divided by the number of commits that

triggered the speci�c YAML �le, which was not possible to detect.

Long Build smell is seen in all of the projects. However, in

freeCodeCamp, Next.js, and TypeScript, there are intervals in which

this smell existed almost continuously. Similarly, in React Native

and Dagger, this smell is observed frequently but not as much as

in the other projects. In contrast, in Bootstrap, Axios, and Angular,

Long Build rarely occurs, forming an intermittent timeline. Retry

Failure smell was pervasive in all projects ever since the projects

started using GitHub Actions as their CI tool. Except for Axios,

TypeScript, and Angular, this smell existed almost continuously. In

these three projects, Retry Failure occurred rarely, forming an inter-

mittent timeline. freeCodeCamp, React Native, Next.js, and Axios

have encountered Skipped Job smell several times between 2018 and

2022, whereas Dagger, TypeScript, and Angular have never su�ered

from this smell. Skipped Job smell was a continuous problem for

Bootstrap between 2014 and 2017, whereas Bootstrap dealt with

that smell after 2017.

4 DISCUSSION

In this section, this study’s results and implications are discussed.

4.1 Re�ection on Findings

One of the main �ndings of this study is that many smells are

never resolved or have high-resolution times. For example, this is

the case for the Fake Success smell: All of the average TTR values

that are not N/A are in�nite. Similarly, in 7 out of 8 of the inves-

tigated projects, the Timed Build smell could never be resolved.

Only freeCodeCamp’s average TTR value for this smell is �nite

(321 days). Yet, the oddly high value of this average TTR may indi-

cate that the smell was not deliberately �xed but rather resolved

by chance. Both of the remaining two smells (Manual Execution,

and Missing Environment Variables) have �ve in�nite average TTR

values (62.5% of the projects did not �x these smells). Some of the

remaining average TTR values were surprisingly high (e.g. 840.5,

and 246.75 days), which again may indicate that those smells were

�xed by chance. Therefore, it can be said that these four smells are

not frequently addressed by the investigated projects. This may in-

dicate that developers may have been unaware of these smells, did

not care about them, or these smells were hard to address. However,

in order to draw concrete conclusions, we need further research.

According to the results of smells detected with log data, the

frequency of the existence of Long Build, Retry Failure, and Skipped

Job smells remained stable most of the time. Examining the time-

lines of the Long Build and Retry Failure smells in eight projects,

we see that they are addressed less frequently when compared to

the Skipped Job smell. Skipped Job is rarely encountered compared

to the other two and is solved by the developers as soon as possible.

This may have been because Skipped Job was easier to �x than the

other two smells or because the developers were more aware of it

or deemed it more important. However, this needs further research.

As it can be seen from Figure 5, Retry Failure is a commonly

seen smell. This smell occurs when a pipeline is retried without

addressing the cause of failure and succeeds on the subsequent

attempt. A potential explanation for the prevalence of this smell

might be the existence of �aky tests in the investigated projects,

even if this needs further research. Flaky tests are nondeterministic

and can yield either success or failure results inconsistently. As a

result, when a developer faces a failure in the pipeline caused by a

�aky test, they re-run the pipeline without changing anything on

the codebase in the hope of a subsequently successful build, which

results in a Retry Failure. Identifying and addressing �aky tests can

help prevent this smell while improving the overall reliability of

the software development process.

In Bootstrap, the occurrence of the Skipped Job smell suddenly

stops after July 2017. To understand the possible reasons for this

sudden disappearance, we inspected the history of both the contri-

bution guidelines and documentation of this project, but could not

17



Do Developers Fix Continuous Integration Smells? PROMISE ’23, December 8, 2023, San Francisco, CA, USA

Figure 3: The Occurrences of Skipped Job Smell for Eight Projects

Figure 4: The Occurrences of Long Build Smell for Eight Projects

Figure 5: The Occurrences of Retry Failure Smell for Eight Projects

�nd a rule explaining this disappearance. Therefore, we opened a

discussion item to ask about the possible reasons for this on GitHub

Discussions9. Unfortunately, we have not received useful or de�ni-

tive information about this issue in response to our post at the time

of writing.

The Long Build smell was one of the least addressed smells.

One possible explanation might be this: developers may not agree

that pipeline builds that last longer than 10 minutes should be poor

practice. Considering that pipeline build times depend on numerous

factors such as the size of the project, the number of test cases, and

9https://github.com/twbs/bootstrap/discussions/37693

the size of the CI pipeline, 10 minutes may not be a long time for

a CI build. This may indicate that the 10-minute threshold in the

Long Build smell is arbitrary, and should depend on the context.

4.2 Implications for Software Practitioners

This study has several implications for software practitioners. The

investigated smells except for Skipped Job are not resolved by the

software practitioners. There can be several reasons for this. Firstly,

software practitioners may not be aware of these smells. That is,

they are uninformed about what these smells are. In this case,

software practitioners should be better informed about these smells.

18

https://github.com/twbs/bootstrap/discussions/37693


PROMISE ’23, December 8, 2023, San Francisco, CA, USA Ayberk Yaşa, Ege Ergül, Hakan Erdogmus, and Eray Tüzün

Alternatively, software practitioners may know about these smells,

but they are unaware that those smells exist in their projects. That

is, they are overlooking those smells in their projects. In this case,

software practitioners could be noti�ed, e.g., by automatedmeans of

detection, so that they can be proactive about them. Lastly, software

practitioners may be aware that these smells exist in their projects

but do not mind them. In this case, it could be shown that these

smells are impacting the project negatively. In future work, the

impacts of these CI smells can be investigated and communicated

to software practitioners.

If we could generalize from the small number of projects stud-

ied, developers are not following best CI practices, resulting in the

prevalence of several CI smells in their projects. Automated mech-

anisms can help them be more aware of poor practices, or even

patch the CI pipeline to remove the problematic patterns.

4.3 Implications for Researchers

Our study has several implications for researchers as well. The rea-

son why investigated smells, with the rare exception of the Skipped

Job smell, are not regularly addressed by software practitioners

remains poorly understood. We speculated on the reasons, but

an investigation of the root causes was outside the scope of this

study. Future studies could pursue this line of work with a mix of

qualitative and quantitative methods.

Another future area of study can be the development of tools that

would prevent CI smells, similar to static analysis, but operating on

the CI work�ow speci�cations rather than code. Developers would

then not need to be informed about or watchful of CI smells in

advance, and instead be guided by the tools when their instances

are detected in the pipelines before pipeline executions.

We mentioned that the existence of Retry Failure may be an

indicator of �aky tests. Again, if automatic analysis of CI results can

reveal this smell, correlate it with test runs, and alert the developers,

developers may be prompted to �x �aky tests.

Finally, researchers can conduct a survey with experienced devel-

opers to learn about the perceived importance of di�erent CI smells.

Perhaps some categorized CI smells are super�uous, do not have

important implications, or even serve a di�erent purpose. This kind

of research could help prioritize CI smells, delisting unhelpful ones,

and guide automated smell detection tools to provide informed

advice.

5 THREATS TO VALIDITY

In this section, we address potential threats to the validity of our

study, outline the limitations within the scope of our research, and

describe the mitigation strategies we employed. Additionally, we

propose further mitigation strategies, when applicable, that can

enhance the study design in future replications.

5.1 Internal Validity Threats

Context Dependence: Each organization has its own set of rules

and best practices to follow. These may vary depending on the

mission, domain, and the problem being solved. We have treated

the selected projects uniformly, as if all CI smells need to be equally

important to all projects. Future studies may take the context into

account and treat the CI smells in proportion to their importance

in the given context. Therefore, the practitioners working in this

organization have to act by all these regulations. Hence, developers

from di�erent projects may �x CI smells on di�erent levels.

Potentially Defective Analysis Scripts: Any bugs in the smell de-

tection and data extraction scripts would cause the results to be

incorrect. To mitigate this threat, we performed code reviews on

the scripts and �xed potential bugs before using them.

Historical Events: Events internal to a project or organization

unbeknown to the authors can a�ect the behavior of the developers.

For example, a long-standing smell may be noticed by the team

lead, and the developers may be warned about it, prompting them

to suddenly �x the smell. Conversely, a rule may be changed in

the contribution guidelines of an open-source project, causing the

contributors to suddenly ignore a smell they cared about. A possible

occurrence of this is the sudden disappearance of the Skipped Job

smell in the Bootstrap project since 2017. To mitigate this threat,

we posted a discussion on GitHub and asked the contributors of the

project for reasons. If events that are known to change developer

behavior are identi�ed, their e�ects can be incorporated in the

analysis, or they can help explain why certain smells are sometimes

persistent and other times transient.

Erroneous Pre-Processing: We categorized the work�ow �les of

each project as CI-related or not. This is because not all the work-

�ow �les were related to the CI process (e.g., there were automated

�ows that detected stale issues and automatically closed them). This

categorization was manually performed by the authors without

con�rming with the developers and could have been wrong in cer-

tain cases. In future work, to eliminate this threat, the decision can

be made by asking the developers or by using automated, more

reliable, and more objective means.

Lack of Independent Validation of Smell Detection: We automated

the smell detection and trusted our detection scripts. However, in

some edge cases, wemay have gotten false positives. Conversely, we

may have missed real occurrences. For example, when our scripts

detected that a commit message included a reserved keyword for

skipping the CI pipeline, we automatically considered this instance

as a smell. However, this behavior might have been intentional for

legitimate reasons (e.g., to preserve CI resources), for example for a

commit that only �xed typos in comments. Conversely, companies

may have internal business reasons for ignoring a certain type of

smell. For example, in addition to executing a build on each commit,

a project may also use additional scheduled nightly builds, which

would falsely trigger a smell instance if this rule is not known.

Future work could try to obtain project- or organization-speci�c

CI practices to be able to incorporate the underlying rules in the

detection process to increase its accuracy.

Ambiguity in Tracking Smell Resolutions across File Changes: The

smell detection strategies utilizing keywords in YAML �les might

result in false negatives in resolution counts. That is, the assumption

that the same instance count indicates no remediation of smells

may not hold true in all cases. For instance, in the Fake Success smell,

where the continue-on-error keyword can appear in multiple

locations within a YAML �le, it is possible that this keyword was

removed from one place and added elsewhere between changes,

but the approach assumes no resolution. To mitigate this threat,

we conducted further investigation by referring to the GitHub

Actions documentation. We discovered that the ambiguity might

19



Do Developers Fix Continuous Integration Smells? PROMISE ’23, December 8, 2023, San Francisco, CA, USA

only be relevant to the Fake Success smell. For other smells detected

through keywords in YAML �les, the possibility of occurrence due

to the same keywords being in di�erent locations within the �le

is ruled out. In these cases, the keywords responsible for these

smells can only exist in one speci�c location within the YAML �le.

This clari�cation provides a more nuanced understanding of the

potential limitations associated with tracking smells and reinforces

the validity of the results for the majority of the investigated smells.

5.2 Construct Validity Threats

GitHub REST API documentation lacks explanations in terms of

query parameters in the endpoints and keywords in the response

body. Some keywords in the response body returned from the

GitHub REST API were not self-explanatory. We opened a test

repository and conducted some experiments to �nd out the purpose

of the keywords we could not infer. This issuemight a�ect construct

validity. Before any replication, posts on public bulletin boards may

try to clarify the mysterious GitHub API behavior.

5.3 External Validity Threats

In our study, we used a small convenience sample, limited by mul-

tiple criteria and research resources. Thus, the results may not

generalize to every project. Our sample was not diverse. To over-

come this threat, in the future, the number of investigated projects

can be increased and selected from di�erent domains.

In our study, all of the projects were open-source projects, and

thus our �ndings are restricted to open-source development. The

behavior of developers who work on proprietary or closed-source

projects may be di�erent than the developers who contribute to

open-source projects.

In our study, we only examined poor practices with GitHub

Actions as the CI tool. We have not included other popular CI tools

such as Travis CI, CircleCI, Jenkins, and GitLab. The choice of the

CI tool may have biased the results. For example, the use of GitHub

Actions may increase the prevalence of certain smells. Duvall [5]

stated that when a pipeline is failed, the entire team should be

noti�ed since �xing the buggy commit should be a top priority;

and if the entire team is not noti�ed, then this is also considered

as a smell. In GitHub Actions, failed work�ows are only noti�ed

to the developer who is responsible for that work�ow run. There

may be other unknown idiosyncrasies of the chosen CI that mask

or amplify certain types of smells. In future work, projects that

use other CI tools can be included in the sample, however, this

requires data extraction and detection techniques and scripts to be

customized to each tool.

In our study, we investigated projects which satis�ed certain size,

importance, and popularity-related criteria (e.g., projects should

have at least 5,000 stars). Hence, our �ndings are biased toward

larger, popular projects. The behavior of developers who work on

smaller, less popular projects may very well be di�erent. In the

future, smaller and less popular projects can be included in the

sample.

Finally, the number of smells we investigated in our study was

limited to seven, which prevents this study from being generalized

to all kinds of CI smells.

6 RELATED WORK

Previous researchers have investigated CI smells, which are poor

practices in CI pipelines. Duvall [5] classi�ed CI patterns and corre-

sponding anti-patterns, with 50 smells grouped into ten categories.

Zampetti et al. [19] empirically classi�ed poor practices in CI, in-

cluding those shared with Duvall [5]. Zampetti et al. [19] charac-

terized 79 smells grouped into seven categories while investigating

the perceived importance of the bad smells through a survey with

developers. Note that the terms anti-pattern and smell will be used

interchangeably. Our investigated CI smells are selected among the

smells Duvall[5] and Zampetti[19] introduced.

Vasallo [15] proposed a linter for automatically identifying four

di�erent smells in pipeline con�guration �les by building on other

studies. Vassalo et al. [14] built a reporting tool detecting four dif-

ferent anti-patterns by utilizing log data and repository data. Zhang

et al. [20] proposed an automated tool detecting and repairing CI

smells a�ecting the build performance. This tool resulted in a build

performance improvement of 12.4% on average. These works in-

formed us about the possible ways of automatically detecting CI

smells. However, we investigated a di�erent subset of CI smells

than they did, and unlike them, we automatically detected CI smells

on GitHub Actions.

Santos et al. [8] evaluated the impact of �ve CI sub-practices on

the productivity and quality of open-source software projects. They

revealed some correlations among sub-practices, productivity, and

quality. Moreover, their analysis showed that projects attaching the

most importance to CI sub-practices faced fewer problems related to

CI. Zhao et al. [21] evaluated the impact of introducing CI in projects

on other development practices. They used the number of merge

commits, changed lines of code in a commit, the number of closed

issues, the number of automated tests, and the number of closed pull

requests as metrics to measure how the introduction of CI a�ects

the software projects, all of which were in fact impacted after the

introduction of CI. Cassee et al. [1] studied the impact of CI on

socio-technical aspects of the software development process. This

study’s aim was to focus on code reviews. Their analysis revealed

that CI impacts the complexity of pull requests by reducing review

comments.

Vassallo [13] considered the barriers while adopting CI principles.

This study provided developers with ways to instill a CI culture

and improve the CI process.

Decan et al. [3] studied the use of GitHub Actions by inspecting

68K repositories on GitHub. They analyzed the types of work�ows

to be automated and the frequency of actions to be used in the

work�ows. This study showed that most of the work�ows are

used for development purposes and half of all steps in jobs are

constructed by reusable actions provided by GitHub. This study

enabled us to have a better understanding of the scope of GitHub

Actions and helped us to decide whether we could investigate

projects that use GitHub Actions or not.

Zampetti et al. [18] determined ways to restructure CI pipelines

and track their evolution. This study categorized the actions to

restructure CI pipelines. Some of these categories consist of actions

to prevent and remove CI smells. Although the automatic detection

methods of these actions are not investigated, it is a guide for us to

20



PROMISE ’23, December 8, 2023, San Francisco, CA, USA Ayberk Yaşa, Ege Ergül, Hakan Erdogmus, and Eray Tüzün

decide what can be the possible metrics to investigate how much

developers �x those smells.

To the best of our knowledge, our study is the �rst in terms

of investigating the extent of resolving CI smells by practition-

ers. Yet, to what extent code smells are perceived as important

was investigated before by Taibi et al. [12] and Aiko et al. These

works played an important role in the formation of our research

question. [17]. Taibi et al. [12] explored the perceived criticality of

code smells among highly experienced coders. The investigation

included presenting descriptions of code smells, infected code parts,

and assessing the ability to recognize code smells. The �ndings re-

vealed that, whereas developers regard code smells as hazardous in

principle, they might not consider them to be signi�cant in reality.

Aiko et al. [17] also conducted a survey to investigate the knowl-

edge about and interest in code smells, as well as their perceived

criticality among professional software developers. They found that

a signi�cant proportion of respondents did not know about code

smells, and those who were not concerned about code smells also

lacked knowledge about them.

7 CONCLUSION

In this study, we used two methods to investigate to what extent

developers �x CI smells. The �rst method uses the TTR of smells

and the other uses the frequency of smell occurrences. We selected

seven smells from a larger set of CI smells proposed in the literature.

We conducted a quantitative analysis by �rst mining all versions of

CI pipeline artifacts from selected open-source repositories using

GitHub Actions. These artifacts included the work�ow runs and

commits. The selected projects were freeCodeCamp, Bootstrap,

React Native, Dagger, Next.js, Axios, TypeScript, and Angular. We

found that the developers do not tend to �x most types of smells,

including Manual Execution, Missing Environment Variables, Timed

Build, and Fake Success. We also found that certain types of smells

are resolved more consistently than others, for example, the Skipped

Job smell is resolved relatively more often than Long Build and Retry

Failure smells.

For future work, we are planning to conduct a survey with expe-

rienced developers to ask them about their perceived importance of

CI smells. This would help us triangulate our �ndings. We are also

planning to expand our study’s scope by increasing the number

of open-source projects, including closed-source software projects

and more CI tools in the sample, as well as expanding the set of CI

smells with additional types. Moreover, we are planning to examine

CI smells from an impact perspective: how do CI smells a�ect prod-

uct quality, productivity, and the other software practices used?

Finally, our ultimate goal is to build automated tools that prevent

and automatically patch CI smells in a contextual way, focusing on

the situations where they have the least desirable impacts in the

context of the project and the organization.

REFERENCES
[1] Nathan Cassee, Bogdan Vasilescu, and Alexander Serebrenik. 2020. The Silent

Helper: The Impact of Continuous Integration on Code Reviews. In Proceedings
of the IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 423–434. https://ieeexplore.ieee.org/document/9054818

[2] Jacob Cohen. 1960. A Coe�cient of Agreement for Nominal Scales. Educational
And Psychological Measurement 20 (4 1960), 37–46. https://doi.org/10.1177/
001316446002000104

[3] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh.
2022. On the Use of GitHub Actions in Software Development Repositories. In
Proceedings of the IEEE 38th International Conference on Software Maintenance
and Evolution. IEEE.

[4] Paul Duvall, StephenM.Matyas, andAndrewGlover. 2007. Continuous Integration:
Improving software quality and reducing risk. Addison-Wesley Professional.

[5] Paul M. Duvall. 2011. Continuous Delivery: Patterns and Antipatterns in the
Software Lifecycle. https://dzone.com/refcardz/continuous-delivery-patterns.

[6] Martin Fowler. 2006. Continuous Integration. https://www.martinfowler.com/
articles/continuousIntegration.html.

[7] Vittoria Nardone, Biruk Asmare Muse, Mouna Abidi, Foutse Khomh, and Mas-
similiano Di Penta. 2022. Video Game Bad Smells: What They Are and How
Developers Perceive Them. ACM Transactions on Software Engineering and
Methodology 1 (9 2022), 1–34. https://dl.acm.org/doi/10.1145/3563214

[8] Jadson Santos, Daniel Alencar da Costa, and Uirá Kulesza. 2022. Investigating the
Impact of Continuous Integration Practices on the Productivity and Quality of
Open-Source Projects. In Proceedings of the 16th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement. Association for Com-
puting Machinery, 137–147. https://dl.acm.org/doi/abs/10.1145/3544902.3546244

[9] Alek Sharma. 2018. A Brief History of DevOps, Part III: Automated Testing
and Continuous Integration. https://circleci.com/blog/a-brief-history-of-devops-
part-iii-automated-testing-and-continuous-integration/.

[10] Davide Spadini, Martin Schvarcbacher, Ana-Maria Oprescu, Magiel Bruntink,
and Alberto Bacchelli. 2020. Investigating Severity Thresholds for Test Smells. In
Proceedings of the 17th International Conference on Mining Software Repositories.
Association for Computing Machinery, 311–321. https://doi.org/10.1145/3379597.
3387453

[11] Daniel Stahla and Jan Boschb. 2014. Modeling Continuous Integration practice
di�erences in industry software development. Journal of Systems and Software
87 (1 2014), 48–59. https://doi.org/10.1016/j.jss.2013.08.032

[12] Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. 2017. How developers
perceive smells in source code: A replicated study. Information and Software
Technology 92 (9 2017), 223–235. https://www.sciencedirect.com/science/article/
pii/S0950584916304128

[13] Carmine Vassallo. 2019. Enabling Continuous Improvement of a Continuous
Integration Process. In Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering. IEEE, 1246–1249. https://ieeexplore.ieee.
org/document/8952505

[14] Carmine Vassallo, Sebastian Proksch, Harald C. Gall, and Massimiliano Di Penta.
2019. Automated Reporting of Anti-Patterns and Decay in Continuous Integra-
tion. In Proceedings of the IEEE/ACM 41st International Conference on Software
Engineering. IEEE, 105–115. https://ieeexplore.ieee.org/document/8811921

[15] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Harald C. Gall, and Massimil-
iano Di Penta. 2020. Con�guration Smells in Continuous Delivery Pipelines: A
Linter and a Six-Month Study on GitLab. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. Association for Computing Machinery, 327–337.
https://dl.acm.org/doi/abs/10.1145/3368089.3409709

[16] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering. Association
for Computing Machinery, 1–10. https://dl.acm.org/doi/abs/10.1145/2601248.
2601268

[17] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. In Proceedings of the 20th Working Conference on Reverse
Engineering. IEEE, 242–251. https://ieeexplore.ieee.org/document/6671299

[18] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, and Massimiliano Di
Penta. 2021. CI/CD Pipelines Evolution and Restructuring: A Qualitative and
Quantitative Study. In Proceedings of the IEEE International Conference on Software
Maintenance and Evolution. IEEE, 471–482. https://ieeexplore.ieee.org/document/
9609201

[19] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora,
Harald C. Gall, and Massimiliano Di Penta. 2020. An empirical characterization
of bad practices in continuous integration. Empirical Software Engineering 25 (1
2020), 1095–1135. https://link.springer.com/article/10.1007/s10664-019-09785-8

[20] Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao. 2022. Build-
Sonic: Detecting and Repairing Performance-Related Con�guration Smells for
Continuous Integration Builds. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. IEEE.

[21] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The Impact of Continuous Integration on Other Software
Development Practices: A Large-Scale Empirical Study. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE,
60–71. https://ieeexplore.ieee.org/document/8115619

Received 2023-07-07; accepted 2023-07-28

21

https://ieeexplore.ieee.org/document/9054818
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
https://dzone.com/refcardz/continuous-delivery-patterns
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://dl.acm.org/doi/10.1145/3563214
https://dl.acm.org/doi/abs/10.1145/3544902.3546244
https://circleci.com/blog/a-brief-history-of-devops-part-iii-automated-testing-and-continuous-integration/
https://circleci.com/blog/a-brief-history-of-devops-part-iii-automated-testing-and-continuous-integration/
https://doi.org/10.1145/3379597.3387453
https://doi.org/10.1145/3379597.3387453
https://doi.org/10.1016/j.jss.2013.08.032
https://www.sciencedirect.com/science/article/pii/S0950584916304128
https://www.sciencedirect.com/science/article/pii/S0950584916304128
https://ieeexplore.ieee.org/document/8952505
https://ieeexplore.ieee.org/document/8952505
https://ieeexplore.ieee.org/document/8811921
https://dl.acm.org/doi/abs/10.1145/3368089.3409709
https://dl.acm.org/doi/abs/10.1145/2601248.2601268
https://dl.acm.org/doi/abs/10.1145/2601248.2601268
https://ieeexplore.ieee.org/document/6671299
https://ieeexplore.ieee.org/document/9609201
https://ieeexplore.ieee.org/document/9609201
https://link.springer.com/article/10.1007/s10664-019-09785-8
https://ieeexplore.ieee.org/document/8115619

	Abstract
	1 Introduction
	2 Methodology
	2.1 Metrics for Measuring the Extent of Fixing CI Smells
	2.2 Smell Selection
	2.3 Detection Strategy for Selected Smells

	3 Results
	3.1 Open-Source Project Selection
	3.2 Data Collection and Pre-Processing
	3.3 Evaluating to What Extent CI Smells are Addressed

	4 Discussion
	4.1 Reflection on Findings
	4.2 Implications for Software Practitioners
	4.3 Implications for Researchers

	5 Threats to Validity
	5.1 Internal Validity Threats
	5.2 Construct Validity Threats
	5.3 External Validity Threats

	6 Related Work
	7 Conclusion
	References

