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ABSTRACT
Design patterns (DPs) provide reusable and general solutions for
frequently encountered problems. Patterns are important to main-
tain the structure and quality of software products, in particular
in large and distributed systems like automotive software. Modern
language models (like Code2Vec or Word2Vec) indicate a deep un-
derstanding of programs, which has been shown to help in such
tasks as program repair or program comprehension, and there-
fore show promise for DPR in industrial contexts. The models are
trained in a self-supervised manner, using a large unlabelled code
base, which allows them to quantify such abstract concepts as
programming styles, coding guidelines, and, to some extent, the
semantics of programs. This study demonstrates how two language
models—Code2Vec and Word2Vec, trained on two public automo-
tive repositories, can show the separation of programs containing
specific DPs. The results show that the Code2Vec and Word2Vec
produce average F1-scores of 0.781 and 0.690 on open-source Java
programs, showing promise for DPR in practice.

CCS CONCEPTS
• Software and its engineering→ Software implementation
planning.
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1 INTRODUCTION
Design patterns (DPs) are typically defined as descriptions of com-
municating classes that collectively provide a standardized solution
to a recurring design issue [6]. DPs were introduced to enhance
reusability and maintainability; however, if appropriately selected
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and implemented they can also boost other software quality char-
acteristics [2], for instance, testability, and scalability. Over time,
DPs evolved from generic solutions to be used in standards for
large software development. AUTOSAR is one of the examples of
such a standard [12]; it is a standardized framework for automo-
tive software development, improving the efficiency, safety, and
interoperability of electronic control units.

One of the challenges when recognizing DPs in source code is the
fact that they can be implemented differently and can be adapted to
fit specific contexts. Manual inspection can be used to identify code
fragments that match known design patterns; however, manual
recognition is time-consuming and error-prone. As an alternative,
automated pattern detection tools have been developed to help
detect design patterns in source code. These tools typically use a
library of known design patterns and compare the code to identify
possible matches. Some popular tools include Java Design Patterns
Detector (JDPD), Design Pattern Detector (DPD), and SourcererCC
[20, 22]. Recently, researchers have explored the use of machine
learning-based approaches for DP recognition (DPR) [23].

In the context of automotive software, using appropriate design
patterns becomes essential due to the unique characteristics of the
domain, including strict safety requirements and the need for real-
time responsiveness. Incorrectly identifying or implementing these
design patterns could impact the vehicle’s functionality and safety.
It is important to recognize specific design patterns that align with
safety and real-time performance criteria, as they play a critical
role in ensuring the dependable operation of automotive systems.
However, several challenges are associated with DPR techniques
in automotive software. In this study, working with our industry
partner, we found two challenges associated with existing tools
and methods for DPR: 1) methods based on machine learning (ML)
[8, 23] require a significant amount of labelled training data, and
2) existing methods [20, 22] mainly focus on classical Gang of
Four (GoF) Object-Oriented (OO) DPs and programming language
dependent, excluding domain-specific patterns.

One way to address these limitations may be to use program-
ming language models (PLMs) for DPR. PLM-based approaches
can be capable of capturing the semantic and contextual informa-
tion inherent in code, as highlighted by Compton et al. [4] and
Parthasarathy et al. [16]. By training a language model on a large
dataset of unlabelled automotive code examples, we hypothesize
that the model can learn to recognize patterns in automotive code.
Such a model can be used for DPR across different software compo-
nents and could detect patterns specific to a particular system or
component.
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In this article, we conducted an empirical study to evaluate PLMs
as part of an effective DPR tool. We pre-train two existing bench-
mark PLMs using two automotive codebases. Although we are
interested in the long-term in evaluating non-standard DPs, we
start by evaluating three standard GoF DPs from publicly available
Java-implemented programs. We found that PLMs can help make
effective DPR tools. We are addressing the following research ques-
tion: RQ-1: To what extent can these PLMs recognize design patterns
in Java after pre-training? Section 2 will discuss the related work,
and section 3 will present our suggested approach. Section 4 will
analyze results and discussion, and section 5 will refer to the threats
to validity. Finally, we will conclude our work in section 6.

2 RELATEDWORK
This section provides an overview of the applications of PLMs in
software engineering and an overview of the current state of DPR
methods. Several recent studies have explored and demonstrated
the potential of using PLMs in software engineering tasks. For ex-
ample, Movshovitz et al. [13] investigated the use of PLM to predict
programmer comments from Java source files. Roziere et al. [18] pro-
posed an unsupervised programming language function translation
model capable of translating functions across three programming
languages and achieved high accuracy. Jung et al. [9] developed a
model to automatically generate commit messages using a dataset
of 345K code modifications, which showed promise in improving
software development collaboration and efficiency. GraLan [14]
presented a graph-based statistical language model that suggests
code from a source code corpus. The results showed that the API
suggestion engine outperformed state-of-the-art approaches.

Several methodologies have been proposed for DPR in source
code. Tsantalis et al. [20] proposed a similarity scoring system based
on graph vertices that do not rely on pattern-specific heuristics,
making extending to novel design structures easier. Xiong et al.
[22] incorporated static analysis and inference techniques to im-
prove the accuracy of DPR, achieving higher precision and recall
than three other detection approaches, but without considering
semantic information. Zanoni et al. [23] combined graph matching
and ML-based approaches to propose a DPR model called MARPLE-
DPD, which was tested on ten open-source software systems, the
approach achieved f-score of 0.85, 0.77, 0.56 for Singleton/Adapter,
Decorated, and Composite DPs, respectively. Antoniol et al. [3]
proposed a DPR method called DeMIMA, achieving perfect re-
call and 34% precision when tested on five open-source projects.
Parthasarathy et al. [16] utilized TransCoder PLM to detect design
patterns across two files, focusing on controller handler industry
patterns, achieving the best results after pre-training the model on
an industrial codebase. In this work, we evaluate a larger set of
patterns using differing PLMs.

3 APPROACH
Our approach includes training two language models—Code2Vec
and Word2Vec—on two large automotive software codebases – An-
droidAuto andGENIVI. These two PLMs arewidely used in different
SE applications [4, 13]. The codebases are from the infotainment
domain, and both are used in contemporary commercial vehicles. In
order to evaluate the DPR ability of these models, we use Singleton,
Builder, and Prototype DPs. We fed the extracted embeddings to
k-means clustering for prediction of implemented DPs. The replica-
tion packages of this study is available here1.

1https://github.com/sivajeet/DPR-using-code2vec-and-word2vec

Figure 1: Pre-training with Word2Vec and Code2Vec on
Genevi and Android Auto codebases.

3.1 Data Acquisition and Integration
The project’s unlabelled training data came from two open-source
repositories: Genivi2[7, 15] and AndroidAuto 3, primarily utilized
in vehicles’ infotainment systems. These repositories contain a vast
amount of Java code that was utilized to train and test the project’s
models (over 24 million LOC). Genivi [7, 15] is an open-source
platform for automotive infotainment systems that provides a stan-
dardized software development framework and APIs for building
connected car applications. This codebase includes a variety of li-
braries and components that can be used to build various software
modules for automotive use cases. By using the Genivi codebase for
training, the project can benefit from the existing implementations
of various software modules for automotive use cases. Additionally,
the Genivi codebase has been widely used and tested in production
environments, which can provide a level of assurance and reliability
to the project’s models. More recently, this codebase has been uti-
lized in various applications within autonomous software systems,
as demonstrated in [7, 15].

AndroidAuto is a mobile application developed by Google that
seamlessly integrates a smartphone’s features with a car’s dash-
board screen and entertainment systems. This codebase has also
been employed in various app developments [17] and autonomous
software for modern vehicles [5]. As a relatively new software
codebase, AndroidAuto has gained significant traction in the auto-
motive industry and is often used as a replacement for the Genivi
software. We employed this codebase because it contains the lat-
est, high-quality source for automatic software systems. Therefore,
investigating the differences in design patterns used by newer soft-
ware in the same domain is particularly interesting. By training
the model on the AndroidAuto codebase, the project can learn and
recognize the DPs used in AndroidAuto, which can help identify
potential differences in DPs. This can provide valuable insights
into the DPs used in different software platforms in the automotive
industry and help improve the design of future automotive soft-
ware systems. This codebase has also been employed in various app
developments [17] and autonomous software for modern vehicles
[5].
3.2 Data Preprocessing
To pre-train the PLMmodels, the input data should be pre-processed
to a model-understandable form. As our models are to be trained
to understand Java code, only files with the “.java” extension have
been extracted.Word2vec is a pre-trainedmodel that creates vectors
of words. It takes “.txt” extension files as input, so all the “.java”
files have been converted to “.txt” files to suit the model. Whereas,
Code2vec is a pre-trained model that takes Java files as input. For
pre-training Code2Vec, and Word2Vec, 6,250 example java/txt have
been put into the test set, 14,323 examples have been put into the
validation set, and 23,364 examples have been used to train the
model.
2https://github.com/GENIVI/
3https://android.googlesource.com/platform/packages/services/Car/
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Table 1: Training performance metrics for pre-training PLMs
using two codebases.
Model Accuracy Precision Recall F1-score
Word2Vec 91% 82.87% 82.20% 82.53%
Code2Vec 90% 80.47% 79.70% 80.08%

3.3 Pre-training of Programming Language
Models

In the pre-training phase, the two codebases, Genevi and Android
Auto, were fed into Code2Vec andWord2Vec models, represented as
step 1 and 2 in Fig. 1. The training was stopped after 50 epochs (step
3), as the loss versus epoch plot was stable. Next, the models after
pre-training were tested by providing Java programs of selected
DPs to extract embeddings from the encoder block. The models’
behavior over DP in the source code was visualized, as shown in
step 4 of Fig. 1.

3.3.1 Word2Vec. Word2Vec is widely adopted for acquiring word
embeddings via neural networks. These embeddings constitute vec-
torized depictions of words that appear in natural language. The
Word2Vec technique generates a vector of a particular word by in-
corporating the neighboringwords within its vicinity. These vectors
encapsulate vital details about the relationships between a given
word and other words that co-occur within the corpus. In our case,
we have leveraged the skip-gram model [11] of Word2Vec, which
takes the target word as the input and forecasts the surrounding
context words.

In our current implementation, we require embedding a .txt file
(which was produced after preprocessing java files). To achieve
this, we have treated each source code word as if it were a nat-
ural language word and analyzed the neighboring words to gen-
erate a vector representation for each word. The resultant vec-
tors for each word in the particular .txt file were then averaged
to obtain a global vector representation. For instance, consider a
code file with the words “Print (Hello World)” where the 3-
dimensional vector for “Print” is [0.256411, 0.652133, 0.432324],
“Hello” is [0.545321, 0.654456, 0.345235], and “World” is [0.432966,
0.972121, 0.657321]. In this scenario, the average vector for the code
file is calculated as [(0.256411 + 0.545321 + 0.432966)/3, (0.652133 +
0.654456 + 0.972121)/3, (0.432324 + 0.345235 + 0.657321)/3]. These
averaged vectors are employed as the vector representations for
each text file in the dataset.

The model was trained using 50 epochs with a 23,364 source
code files corpus. After careful evaluation, the model at epoch
39 was selected as the final model. The hyperparameters were
tuned such that the learning rate was set to 0.25, and the vector
size was fixed at 300. We evaluate the pre-training performance
by predicting mask tokens, which involves guessing the missing
words or tokens in a sentence. It is worth noting that the model
exhibited exceptional training performance while predicting the
next masked token during pre-training, with an accuracy score of
91%, precision score of 82.87%, recall score of 82.20%, and F1-score
of 82.53%, as illustrated in Table 1.

3.3.2 Code2Vec. Code2Vec capitalizes on the concept of Abstract
Syntax Tree (AST) paths to deconstruct a program. In particular,
AST paths leverage the program’s syntax to comprehend its seman-
tic structure. More information of Code2Vec can be found in given
work [1]. In our data split, the training set programs have an aver-
age of 211.39 context paths, while the validation set has 195.37 and
the test set has 196.69. The Code2Vec approach used 50 epochs and
a vector size 300, aligned with Word2Vec. It was noticed that after
30 epochs, there was no significant improvement in pre-training
predicting masked tokens in all four performance measures (ac-
curacy, F1, recall, and precision). The model that emerged as the

(a) t-SNE of Code2Vec. (b) t-SNE of Word2Vec.

(c) k-mean clusters of
Code2Vec.

(d) k-mean clusters of
Word2Vec.

Figure 2: t-SNE and k-mean Clustering Visualizations of dif-
ferent Design Patterns after pre-training PLMS.

best-performing was generated at iteration 32, employed as the
final model. The model recorded a pre-training accuracy score of
90% in detecting masked tokens, a precision score of 80.47%, recall
score of 79.70%, and F1-score of 80.08%, as shown in Table 1.

3.4 Design Patterns Code Input
We utilized the classical GoF DPs, which have been extensively
employed for DPR in related literature [19, 20, 22]. Specifically, we
employed the Singleton, Prototype, and Builder patterns in our
study. For this preliminary study, we selected 10, 10, and 7 publicly
available Java programs implementing the Singleton, Prototype,
and Builder DPs, respectively, as shown in the second column
of Table 2. These programs are of different sizes: Builder exam-
ples range from 41 to 105 LOC, Prototype examples from 26 to
67 LOC, and Singleton examples from 18 to 81 LOC. They have
285, 206, and 94 unique words in Builder, Prototype, and Single-
ton DP programs, respectively. Obtaining automotive source code
from repositories that implement GoF DPs is challenging due to the
prevalence of copyrighted content. Instead, more generic programs
which were identified as containing the DP of interest were sourced
from GitHub and Stack Overflow. This labelled dataset was used to
calculate precision and recall in Section 4.

3.5 k-means Clustering
We extracted the embeddings of each Java program holding a DP
example after pretraining of PLMs and fed them into a k-means
clustering algorithm as shown in step 5 of Fig. 1. We employed this
technique to predict the DP classes of 27 Java programs. Then we
compared the predicted classes to the actual DP classes of given
programs to get the performance measures. More explanation is
given in the result section 4.
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4 RESULTS AND DISCUSSION
We summarize our results for RQ-1: To what extent can these PLMs
recognize design patterns in Java after pre-training? After the pre-
training phase, we used our 27 Java programs, which are labelled
with different DPs, as input to these models, then applied k-means
clustering to the output embeddings produced by themodel. Figures
2a and 2b depict t-SNE visualizations of the extracted embedding
vectors of 27 unique Java programs, pre-trained using PLMs. These
Java programs contained three distinct DPs, as depicted in Figures
2a and 2b. The presented figures indicate that programs implement-
ing different DPs form easily identifiable clusters, characterized by
the green, red, and blue circles.

The embedding vectors generated by the PLMs were subjected
to the k-means clustering algorithm to predict the implemented
DPs. The results of this clustering process are presented in Figures
2c and 2d, which demonstrate the clusters formed by the Code2Vec
and Word2Vec models, respectively. The centroid of each k-means
cluster is denoted by a large black dot in the figures. These clus-
tering results are largely consistent with the t-SNE visualizations
discussed earlier. To determine the optimal number of clusters for
each PLM, we employed the Elbow technique [10]. The results
suggest that the ideal number of clusters would be in the range
of four to five. Given that our study used three distinct classes of
DPs, this may mean that there are some Java programs that are not
correctly classified by the PLMs. This may also indicate different
sub-types of some DPs, future work should investigate this possi-
bility further. The average DP prediction performance for our 27
Table 2: Design patterns & files and Performance measure of
PLMs after pre-training on detecting DPs.

Design Pattern No. of files Precision Recall F1-score
C2V W2V C2V W2V C2V W2V

Builder 7 0.751 0.672 0.601 0.810 0.667 0.740
Prototype 10 0.803 0.600 0.889 0.600 0.842 0.600
Singleton 10 0.833 0.801 0.833 0.689 0.833 0.740
Mean - 0.794 0.690 0.774 0.710 0.781 0.690

input programs is shown in Table 2. Our results demonstrate that
Code2Vec outperformed Word2Vec in recognizing Prototype and
Singleton DPs, achieving mean F1-scores of 0.842 and 0.833, respec-
tively. In addition, Code2Vec exhibited superior mean performance
overall, with the highest precision, recall, and F1-scores of 0.794,
0.774, and 0.781, respectively. However, Word2Vec outperformed
Code2Vec in detecting Builder DPs, achieving the highest F1-score
of 0.74. Code2Vec can identify characteristic sequences of method
calls and variable assignments in DPs like the Builder, whereas
Word2Vec treats each code element independently. Code2Vec’s abil-
ity to capture complex relationships between code elements makes
it superior for DPR compared to Word2Vec.

These results suggest that PLMs can be a valuable tool in devel-
oping DPR systems for automotive applications.

Overall, our results suggest that PLMs have the potential to
be a valuable tool for DPR in the automotive industry. However,
further research is needed to fully understand the capabilities and
limitations of PLMs in this context.

Summary: Our suggested approach for DPR using PLMs achieved high precision,
recall, and F1-score metrics, with Code2Vec outperforming Word2Vec for most
DPs. However, the results may be influenced by several factors and require further
validation on a wider range of Java programs.

5 VALIDITY EVALUATION
In our study, we have adopted the proposed framework by Wohlin
et al. [21] for addressing potential threats to validity. We identified
two risks for construct validity. The use of Builder, Prototype, and
Singleton DPs, relying on a specific programming construct, was
mitigated by implementing varying sizes to reduce the influence of

a single keyword in extensive programs. The correct implementa-
tion of DP is context-dependent. Variations in DP implementations
arise due to programming language constraints, project require-
ments, developer choices, etc.; for instance, with the Singleton DP,
variations can exist in instance creation, thread safety, initialization,
and other design decisions. These implementation variations can
affect our results. We only considered files that implemented a sin-
gle DP, so our findings cannot be applied to classes that implement
multiple DPs.

Considering internal validity, it is important to note that the per-
formance of our approach may depend on several factors, such as
the quality and complexity of the Java source code being analyzed,
the choice of PLM, and the specific implementation of the clus-
tering or classification algorithms. Considering external validity,
our approach was evaluated on a limited number of Java programs
and may not represent all possible scenarios. Future research could
explore the generalizability of our approach to a wider range of Java
programs, which contain a single class with multiple implemented
DPs, including domain-specific DP, and other programming lan-
guages. If more, overlapping DPs are considered, k-means clustering
could become less effective when DPs are less distinctive. If so, fur-
ther means of distinguishing DPs can be considered, for instance,
more advanced clustering methods e.g., Hierarchical Clustering,
Density-based clustering) to better differentiate DPs.

The selection of PLMs from numerous existing models was a
crucial decision in our study. The study is also limited to Java
programs, and we cannot generalize our findings to other program-
ming languages. The second risk relates to the use of the t-SNE
and k-means methods for visualizing and predicting classes using
embedding vectors, which may not be optimal due to their large
size. We evaluated three DPs using two pipelines and pre-training
on two large codebases. This increases the generalizability of our
results, although further studies are needed.

6 CONCLUSION AND FUTUREWORK
In conclusion, PLMs have shown immense potential in software
engineering tasks, and we confirm this potential for DPR specif-
ically as part of this preliminary study. Our pre-training of two
established language models on large automotive codebases and
subsequent visualization of selected Java programs using t-SNE,
and k-means clustering algorithm resulted in high-performance
measures in terms of precision, recall, and F1-score. With these re-
sults, we find further evidence to show that these language models
are capable of storing architecture information of the source code.
This discovery has significant implications for the development of
robust prediction tools for DPR and other software engineering
tasks.

In our future work, we are currently conducting parallel exper-
iments on an industrial codebase and using different PLMs, for
instance, CodeBert, and RoBERTa. We plan to collaborate with our
industrial partners to validate our findings in the real world and
develop an automated tool to identify architectural information in
source code of various programming languages.
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