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ABSTRACT
Code revert prediction, a specialized form of software defect de-
tection, aims to forecast or predict the likelihood of code changes
being reverted or rolled back in software development. This task
is very important in practice because by identifying code changes
that are more prone to being reverted, developers and project man-
agers can proactively take measures to prevent issues, improve code
quality, and optimize development processes. However, compared
to code defect detection, code revert prediction has been rarely
studied in previous research. Additionally, many previous meth-
ods for code defect detection relied on independent features but
ignored relationships between code scripts. Moreover, new chal-
lenges are introduced due to constraints in an industry setting such
as company regulation, limited features and large-scale codebase.
To overcome these limitations, this paper presents a systematic
empirical study for code revert prediction that integrates the code
import graph with code features. Different strategies to address
anomalies and data imbalance have been implemented including
graph neural networks with imbalance classification and anomaly
detection. We conduct the experiments on real-world code com-
mit data within J.P. Morgan Chase which is extremely imbalanced
in order to make a comprehensive comparison of these different
approaches for the code revert prediction problem.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• Computing methodologies→ Neural networks.
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1 INTRODUCTION
The area of AI applied to software engineering tasks has been grow-
ing over the years, especially source code analysis, has grown over
the years. Works in vulnerability analysis [10], quality assessment
[22], testing [8], and code maintenance [1] have been completed.
Early defect prediction offers substantial benefits, as it reduces long-
term costs [23]. Predicting potential production issues in code is
especially advantageous in an industry setting.

Software engineering extensively explores defect detection using
machine learning [9, 17, 18, 28]. These approaches utilize various
features, such as code metadata, developer experience, and file-
related information. Just-in-time (JIT) defect detection [30] has
gained significant attention, aiming to predict bugs at the change-
level [15]. The latest JIT methods employ advanced machine learn-
ing and deep learning models, learning code representations from
multiple inputs like code changes and commit messages [12, 13].

In an industrial environment, code defect detection faces dif-
ferent constraints and requirements. When dealing with produc-
tion issues, there are two common resolution methods: fixing for-
ward (adding new code) or rolling back to the last working version.
Rolling back is preferred for severe and time-critical issues, with
fix forward implemented later. This type of commit is termed a
“risky commit”. However, industrial environments pose additional
challenges for defect detection. The large-scale codebases in these
companies make it impractical to analyze code line by line using
previous JIT methods that utilized Abstract Syntax Tree (AST) and
data flow graph (DFG). Moreover, limited access to code attributes
and content hinders the use of some effective features from previous
defect detection methods.

In this paper, we propose a novel problem, code revert predic-
tion, arising from real-world industrial environments. Code revert
prediction is a novel and specialized form of software defect de-
tection. Different from traditional defect detection, it forecasts the
probability of code changes being rolled back during software de-
velopment, carrying significant practical significance as it allows
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Table 1: List of features used in this study.

Feature Importance (IV) Relationships to code reverts
Revert frequency last 30 days 0.570 Reverting within the last 30 days corresponds to an increased likelihood in another revert.
File version 0.326 High file versions correspond to an increased likelihood of reverting.
Commit to push lag days 0.188 Longer lag between commit and push is associated with a higher revert rate.
Total lines of code in push set 0.151 More lines of code leads to a higher revert rate.
Total Cyclomatic complexity 0.100 Higher total complexity corresponds to increased likelihood with reverting.
Number of unique contributors 0.082 A higher number of contributors corresponds to an increased likelihood of reverting.
Number of dependent modules 0.063 A higher number of dependencies is more likely to result in a revert.
Number of files in push set 0.014 Small changes are less likely to revert.

Figure 1: Different strategies to detect code reverts.

proactive measures to prevent issues, improve code quality, and op-
timize development. Early prediction of code reversion effectively
mitigates potential risks, especially in industrial settings where
reverted issues are more critical than typical defects in production.
Additionally, the problem benefits from access to historical data
from code commit logs within the company, eliminating the need
for data annotation or other methods to obtain labels. Despite its
practical importance, research on code revert prediction remains
scarce in software engineering.

Code revert prediction can be formulated as a binary classifi-
cation problem where the predicted labels are if the code script
will be reverted or not. One can follow previous defect detection
methods to construct classifiers to detect reverts. However, many
previous methods that are designed for traditional defect detection
tasks do not incorporate the dependencies between code which
may be an important feature used for prediction. As a result, more
recent works on code representation learning and defect detection
have investigated the use of graphs and Graph Neural Networks
(GNNs) [29] e.g., [2, 27]. Nonetheless, these approaches rely on the
abstract syntax tree of the code (AST) and/or code running logic
(DFG) that are obtained via a dynamic analysis. In an industry set-
ting (particularly a regulated one) we are constrained such that we
are unable to run or even access to millions of lines of production
code in order to construct this tree. Therefore, we must resort to a
static analysis of the codebase in order to obtain a representation
of the dependencies between the code.

In this paper, we present a comprehensive empirical investiga-
tion into the prediction of risky code commits that are likely to
be reverted. We construct a code graph using code dependencies,
i.e., code import relationships. Our study specifically focuses on
leveraging GNNs and introduces various strategies to address this
problem. Since the distribution of code commit data is highly im-
balanced, with less than 4% of code commits resulting in reverts,

we also explore two distinct approaches: anomaly detection and
imbalance classification. In summary, our contributions include:

• We propose a novel problem formulation, i.e., code revert
prediction, which is a specialized form of defect detection
and aims to predict the likelihood of code changes being
reverted or rolled back in software development, which is
more practical in industrial settings. To the best of our knowl-
edge, this is the first study on code revert prediction in an
industrial environment.

• We empirically and systematically study code revert predic-
tion problem by incorporating code dependencies, i.e., code
import relationships, and using GNNs from both an anomaly
detection and imbalance classification perspective.

• We discuss in detail promising future directions for this chal-
lenge including imbalance classification and explainability,
which could be of interest to the research community.

2 METHODOLOGY
2.1 Problem Statement
We first formulate the problem of code revert prediction by con-
sidering real-world constraints in industrial settings. It is intuitive
that the relationships between code scripts may play vital role in
identifying code importance and riskiness. Therefore, we propose
to construct a code graph to capture the relationships between code.
Specifically, we make use the import information1. Moreover, we
ignore the direction of import relationship, so the constructed code
graph is undirected. The problem is formally stated as:

Problem 1. Code revert prediction. Consider a code graph 𝐺 =

{𝑉 , 𝐸, 𝑋 }, where 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} is the set of 𝑛 nodes and each
node 𝑣𝑖 represents a code script, 𝐸 = {𝑒𝑖 𝑗 } ⊆ 𝑉 ×𝑉 is the set of edges
and each edge 𝑒𝑖 𝑗 represents the import relationship between code
script 𝑣𝑖 and 𝑣 𝑗 , and 𝑋 ∈ R𝑛×𝑚 is a set of node attributes and 𝑚
represents the number of attributes. Assume each node is assigned to
a label 𝑦𝑖 ∈ 𝐿 = {0, 1} where 𝑦𝑖 = 1 indicates script 𝑛𝑖 is reverted and
𝑦𝑖 = 1 means non-reverted, and we have known the labels of a set
of nodes 𝑉𝐿 . The objective of code revert prediction is to predict the
labels of nodes in 𝑉 \𝑉𝐿 .

Note that in real world, the number of commits that result in
code reverts is much smaller than normal code commits that leads
to the extreme imbalance in the data.

1In this paper, we only study the Python code and details are shown in Section 3.
For other programming languages, similar dependency relations can be extracted to
construct the code graph.
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2.2 Features
To accurately predict code reverts involving both code and devel-
oper information, we utilize a comprehensive set of features. This
set encompasses code-related and developer-related information,
taking into account relationships to code reverts and features from
previous studies [6]. The detailed list of features and their relation-
ships to code reverts can be found in Table 1. We also provide the
importance of features with Information Value (IV). Features with
higher IV values are generally considered to be more important in
predicting the target variable.

2.3 Framework
One major challenge in code revert prediction is the extremely
imbalanced data distribution, where less than 4% of code commits
result in a revert. To address this, we consider treating the problem
as graph imbalanced classification or graph anomaly detection. We
employed three different strategies to solve the problem, as depicted
in Fig. 1. These strategies are outlined in detail below:

• Strategy 1: We construct an import graph from code scripts
through static analysis to address the product running issue.
Then, a GNN learns the representation. Finally, we use im-
balance classification, like upsampling and downsampling
combined with a classifier, to predict code reverts.

• Strategy 2: Same as Strategy 1 to learn code representation,
but we use anomaly detection method to identify code revert.

• Strategy 3: Given the code scripts, we first upsample (the
majority) or downsample (the minority) the data to make it
more balanced, then construct the import graph. Finally we
use GNN to predict the revert.

In this study, we utilize advanced machine learning techniques to
implement all three strategies. For effective representations, we em-
ploy both node2vec [11] and Graph Convolutional Networks (GCN)
[16]. node2vec captures information from the code dependency
graph, while GCN learns representations from both graph struc-
ture and code features. To address imbalanced classes, we explore
the effectiveness of upsampling, downsampling, and SMOTE [5].
Handling graph inputs is another challenge, so we employ graph
imbalance learning and anomaly detection approaches, specifically
designed to handle imbalanced data and identify anomalies in graph
data, respectively.

3 EXPERIMENTS
3.1 Experimental Setup
We conduct experiments on real-world code commit data within J.P.
Morgan Chase. We target the largest codebase: a Python codebase
containing more than 10 million lines of code with over 3,000 code
committers. We collect code commits for one month and filter
out initialized and non-Python scripts. This results in about 30k
commits among which less than 4% commits were reverted.

In Section 2, we conduct experiments covering three strategies:
(1) regular classification using LR, SVM, and RF; (2) anomaly detec-
tion methods including LOF, IF, and OCSVM; and (3) imbalanced
classification using Up, Down, and SMOTE. Code representations
from code dependencies are learned using node2vec (n2v) [11] and
graph auto-encoder (replacing the supervised loss in GCN [16]

with the reconstruction loss). Additionally, we compare specially
designed GNNs for anomaly detection and imbalance classification,
i.e., Dominant [7] and GraphSMOTE [31].

We use macro F1 and AUC-ROC score as the evaluation metrics
to verify the performance since these are standard metrics in lit-
erature for JIT defect detection [12, 20, 21]. For these supervised
methods, the split ration for training and test set is 80:20. To make
a fair comparison, for these unsupervised methods, i.e., anomaly
detection models, we only conduct experiments on the test set.

3.2 Experimental Results
Experimental results for Strategy 1 and 2 introduced in Section 2 are
shown in Table 2 and 3, Note that for the imbalanced classification,
we use LR as the classifier since it achieves the best performance
compared to other traditional classifiers. From these results, some
observations can be made as follows:

• It becomes evident that detecting code riskiness poses a
significant challenge, as indicated by the overall relatively
low F1 and AUC-ROC scores across all methods. However, by
combining attributes and structures, better performance can
be achieved. For example, node2vec+raw features achieves
the best performance.

• Traditional classifiers struggle to handle the imbalanced
nature of the learning task. These models fail to identify
any code reverts, highlighting their limitations in this con-
text. Surprisingly, even complex models like random forest
demonstrate poorer performance compared to simpler ap-
proaches such as logistic regression.

• Imbalanced learning methods outperform anomaly detection
techniques. This finding suggests that defining anomalies
specifically in the context of code riskiness proves to be a
more intricate task. General concepts of outliers or anomalies
may not effectively capture the nuanced characteristics of
risky code instances.

We implement Strategy 3 and compare the results. Additionally,
we explore the problem from the perspectives of graph anomaly
detection and imbalance classification, comparing state-of-the-art
GNNs for anomaly detection (Dominant [7]) and imbalance classi-
fication (GraphSMOTE [31]). Table 4 shows the results (including
the best performances from Strategies 1 and 2).From these results,
it can be observed that:

• The best performance comes from combining downsampling
and GCN, indicating the dataset’s imbalance significantly
impacts prediction. Downsampling + GCN consistently out-
performs all other methods in both metrics, even compared
to the best performers from Strategies 1 and 2.

• Specific GNNs for anomaly detection (Dominant) and imbal-
ance classification (GraphSMOTE) improve performance but
are still unsatisfactory and perform worse than Downsam-
pling + GCN.

The results emphasize the need for tailored approaches to address
code revert prediction challenges. Despite additional challenges
compared to JIT defect detection [20], our performance is satisfac-
tory. Utilizing attributes, structures, downsampling techniques, and
specialized imbalance learning methods can improve code revert
identification. It also calls for the development of novel techniques
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Table 2: Code revert detection results using Strategy 1 and 2 w.r.t AUC-ROC score.

Attributes Structure Attributes + Structure
Model raw features node2vec node2vec + raw features Graph Auto-Encoder (GAE) GAE + raw features

Regular
Classification

LR 0.5120 0.5000 0.5239 0.5000 0.5181
SVM 0.5000 0.5000 0.5000 0.5000 0.5000
RF 0.5000 0.5000 0.5000 0.5000 0.4964

Anomaly
Detection

LOF 0.5780 0.4713 0.4723 0.4696 0.5079
IF 0.6063 0.4631 0.4980 0.4905 0.4928

OCSVM 0.5370 0.4775 0.5726 0.4951 0.5376

Imbalanced
Classification

Up 0.6969 0.7038 0.7158 0.4924 0.6941
Down 0.6809 0.6694 0.7052 0.4871 0.6808
SMOTE 0.5156 0.7080 0.7228 0.4731 0.6799

Table 3: Code revert detection results using Strategy 1 and 2 w.r.t Macro F1.

Attributes Structure Attributes + Structure
Model raw features node2vec node2vec + raw features Graph Auto-Encoder (GAE) GAE + raw features

Regular
Classification

LR 0.5200 0.4964 0.5414 0.4964 0.5181
SVM 0.4964 0.4964 0.4964 0.4964 0.4964
RF 0.4964 0.4964 0.4964 0.4964 0.4964

Anomaly
Detection

LOF 0.4850 0.4769 0.4699 0.4311 0.4287
IF 0.4531 0.4757 0.4981 0.4916 0.4928

OCSVM 0.5128 0.4842 0.5252 0.4912 0.5137

Imbalanced
Classification

Up 0.4350 0.4363 0.4565 0.3905 0.4373
Down 0.4257 0.4059 0.4279 0.3861 0.4255
SMOTE 0.5047 0.4352 0.4580 0.3544 0.4343

Table 4: Performance comparison with Strategy 3 and GNNs.

Model AUC-ROC Macro F1
SMOTE (Strategy 1) 0.7228 0.4580
OCSVM (Strategy 2) 0.5726 0.5252
GCN 0.4964 0.5000
Downsampling + GCN (Strategy 3) 0.7269 0.5695
GraphSMOTE [31] 0.6423 0.5176
Dominant [7] 0.5557 0.5255

considering the unique nature of code reverts beyond conventional
anomaly detection.

4 THREATS TO VALIDITY
The orientation of the solution towards production impose certain
limitations on our research. We would like to highlight following
important threats to validity.

Graph Construction. There are more fine-grained graph con-
struction methods. Code import is unidirectional, such direction
may contain important information. Moreover, other relationships
such as push sets could be informative in detecting riskiness. Cap-
turing these relationships may further improve the performance.

Imbalance. The extremely imbalanced distribution is the main
challenge. As shown in the experiments, general graph imbalance
classification and anomaly detection approaches cannot achieve
promising results. Therefore, how to better handle the imbalance
issue in code revert prediction in order to ultimately enhance the
prediction performance, is worth to explore in the future.

Explainability. Apart from achieving good performance, ex-
plaining results is crucial, especially when using black-box models
like neural networks. Enhancing the interpretability for code revert

prediction can provide valuable insights and foster confidence in
their predictions, promoting their adoption in real-world scenarios.

Noisy Labels. One commit can consist of multiple code scripts.
Currently, if one of the scripts has issues and is reverted, all the
committed scripts will be labeled as reverts. Such labels may bring
noise to the data. Thus, finer-grained revert labels will be beneficial
for this problem.

Although it is important to mention these threats, we believe
that they do not invalidate the usefulness of this study and the
empirical results.

5 RELATEDWORK
Defect detection in software engineering has been extensively stud-
ied, using early methods like functional and structural testing [14].
Later approaches employ traditional machine learning techniques
such as PCA [4] and SVM [19] with features like change message
terms and added and deleted line changes. An empirical comparison
of these methods is presented in [24]. Deep learning has also shown
promise in code defect detection [25, 26].

Just-in-time (JIT) defect detection, a special case of defect de-
tection, has gained attention [30]. JIT aims to identify defects at
the change-level [15], enabling detection and fixing during devel-
opment. Machine learning, particularly deep learning methods,
have been applied to this problem [12, 20, 21]. DeepJIT uses two
CNNs to detect defects in code changes and commit messages
[12]. DeepLineDP learns semantic properties of tokens and lines to
identify defective files and lines [21]. JITLine integrates traditional
machine learning techniques with comparable performance [20].
Recently, to enhance code representation learning, methods have
explored code relationships using AST and data flow graphs (DFG).
For instance, Gated Graph Neural Networks have been applied on
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AST to learn program representations [3]. Devign [32] combines
Gated Graph Recurrent and convolution layers on AST and DFGs
for vulnerability identification. GINN [27] generalizes graph neural
networks on AST to learn semantic embeddings of source code.

Different from previous studies on code defect detection, in this
paper, we explore a new task named code revert prediction and
focus on a different type of code graph because of real-world con-
strains in industrial settings.

6 CONCLUSION
We have conducted a systematic empirical study for code riski-
ness prediction. Both independent code features and code import
dependencies have been incorporated for the experimental stud-
ies. Graph neural networks as well as imbalance classification and
anomaly detection have been compared. The experimental studies
are conducted on a labeled dataset of code commit records from real-
world projects within J.P. Morgan Chase . We also discussed several
promising future directions to further improve the performance.
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