
Log Summarisation for Defect Evolution Analysis
Rares Dolga
JPMorgan Chase

UK
rares.dolga@jpmchase.com

Ran Zmigrod
JPMorgan Chase

UK
ran.zmigrod@jpmorgan.com

Rui Silva
JPMorgan Chase

UK
rui.silva@jpmorgan.com

Salwa Alamir
JPMorgan Chase

UK
salwa.alamir@jpmchase.com

Sameena Shah
JPMorgan Chase

UK
sameena.shah@jpmchase.com

ABSTRACT
Log analysis and monitoring are essential aspects in software main-
tenance and identifying defects. In particular, the temporal nature
and vast size of log data leads to an interesting and important re-
search question: How can logs be summarised and monitored over
time? While this has been a fundamental topic of research in the
software engineering community, work has typically focused on
heuristic-, syntax-, or static-based methods. In this work, we sug-
gest an online semantic-based clustering approach to error logs
that dynamically updates the log clusters to enable monitoring code
error life-cycles. We also introduce a novel metric to evaluate the
performance of temporal log clusters. We test our system and eval-
uation metric with an industrial dataset and find that our solution
outperforms similar systems. We hope that our work encourages
further temporal exploration in defect datasets.

CCS CONCEPTS
• Theory of computation → Unsupervised learning and clus-
tering; • Software and its engineering→ Software defect anal-
ysis.

KEYWORDS
Defect Detection, Log Analysis, Clustering, NLP

ACM Reference Format:
Rares Dolga, Ran Zmigrod, Rui Silva, Salwa Alamir, and Sameena Shah.
2023. Log Summarisation for Defect Evolution Analysis. In Proceedings
of the 1st International Workshop on Software Defect Datasets (SDD ’23),
December 8, 2023, San Francisco, CA, USA.ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3617572.3617881

1 INTRODUCTION
Log data is crucial in the analysis, maintenance, and fixing of er-
rors in software systems [1, 4]. Logs are verbose documents that
detail a system’s state throughout its execution lifecycle and as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SDD ’23, December 8, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0377-5/23/12
https://doi.org/10.1145/3617572.3617881

such, lead to vast amounts of data that make manual analysis in-
tractable in practice [18]. Consequently, both research and industry
communities have focused on automatic log analysis tasks such as
failure diagnosis and prediction [32], anomaly detection [7], log
comprehension [17], inter alia.

Log data for a system is temporal, i.e., logs stream sequentially
as a system is developed and tested. Therefore, one can monitor
the existence and persistence of code defects by monitoring their
existence in logs [22]. To do this, past research has focused on
focused log comprehension [19, 25] and log evolution tracking.
The latter task has mainly been approached with heuristic-based
systems [15, 28] and unsupervised syntax-based systems [10–12,
20]. These systems work well for small domains where data is
structured, however, the unstructured and large nature of modern
log data limit the success of these techniques for real world data.

Another approach to capture log evolution is to consider the se-
mantic representations of logs. Using semantic rather than syntactic
meaning for logs makes sense as they may vary across applications
and developers (i.e., have different free-form text). Semantic repre-
sentations for logs have been previously used for anomaly detection
and defect prediction due to the free-text nature of logs [23, 25].
Moreover, past work has also focused on static semantic log cluster-
ing using common approaches (e.g., K-Means or Gaussian Mixture
Models) [9]. While dynamic clustering techniques exist [2], they
lead to overly erratic log evolution. Therefore, a gap exists in the
software defect tracking literature that we aim to explore.

In this paper, we introduce a novel online algorithm for cluster-
ing and monitoring logs based on their semantic representation.
Through collaboration with a team of 61 Software Reliability Engi-
neers (SREs), who are responsible for almost 500 applications that
jointly produce roughly 100,000 logs per day, we extracted three
key criteria for successful monitoring of log evolution: identifying
errors, providing meaningful representative messages, and minimis-
ing disruption of log clusters. These criteria were used to construct
a novel evaluation metric that captures real world performance
for temporal log clustering. Experiments using a private industrial
dataset demonstrate that our online clustering method outperforms
existing static and dynamic clustering methods. Additionally, we
demonstrate that using a richer semantic representation further
improves performance. We note that our work could be used in
generating more high level error log topics in both temporal and
non-temporal datasets. The contribution of this works are:
(1) We introduce a novel online semantic-based clustering algo-

rithm for classifying errors and monitoring defect evolution.

ar
X

iv
:2

40
3.

08
35

8v
1

 [
cs

.S
E

]
 1

3
M

ar
 2

02
4

https://orcid.org/0000-0002-1800-411X
https://orcid.org/0009-0001-0169-1670
https://orcid.org/0009-0003-6016-6432
https://orcid.org/0009-0006-6650-7041
https://orcid.org/0009-0000-5960-5811
https://doi.org/10.1145/3617572.3617881
https://doi.org/10.1145/3617572.3617881

SDD ’23, December 8, 2023, San Francisco, CA, USA Rares Dolga, Ran Zmigrod, Rui Silva, Salwa Alamir, and Sameena Shah

(2) We construct a performance metric for log evolution based on
the experience of real SREs.

(3) We demonstrate that our algorithm improves upon past clus-
tering techniques on a private dataset and provide baseline
metrics on public log datasets.

2 RELATEDWORK
Log mining in the context of software defects is a well-researched
topic [19] which mainly focuses on failure diagnosis [32], anomaly
detection [7] and log comprehension [17]. Older research focuses
on tracking log patterns over time through heuristics like frequency,
sentence length or n-grams to group logs together [3, 15, 28]. More
recently, the FLAP system was introduced as an end-to-end frame-
work for log analysis [22] based on syntactic log properties and
an iterative clustering process [24]. Other work exists that utilises
syntactic features to group logs [8, 11, 29, 30] and track formed
clusters [5, 12]. The techniques presented in these works all fail
to extract a representative log for clustering which is a desirable
quality in terms of the explainability of the log error types. Similar
work has shown that it is possible to achieve syntactic representa-
tives [10, 14, 20]. Furthermore, past work has also utilised genetic
algorithms to extract log templates [26].

Semantic representations of logs have been explored in anomaly
detection and defect prediction [6, 23, 25, 33]. Research also exists
that examines log comprehension and clustering using semantic
representations (e.g., Word2Vec) [9]. This work differs from the
system proposed in this paper in two fundamental ways. Firstly, it
treats logs using a bag-of-words (BoW) approach and so does not
consider word order nor frequency. Therefore, it discards important
information that exists in more complex representations such as
the sentence embeddings of SBERT [27]. Secondly, it applies the
DBSCAN clustering algorithm which is a static algorithm and so it
is impossible to track log clusters over time. There are streaming
clustering techniques such as DenStream [2] which work with
vector representations, however, they do not provide representative
extraction and can have an erratic convergence.

3 TRACKING ERROR LOG EVOLUTION
This paper concerns the monitoring of error logs which are de-
scriptive of various defects encountered in a system’s execution.
We consider a log to be an individual message sent by the system
during its execution (logs sent from the same execution are related
by an execution ID). In order to motivate and devise an effective
solution to our task, we introduce three key criteria for successful
monitoring of log evolution that were reached in collaboration with
over 60 SREs. We further motivate our criteria by a visual example
in Figure 1.

Identifying Errors over Time. We wish to correctly discover
patterns that represent a common defect or error expressed by logs.
We expect the types of errors to change over time and be correctly
captured by the algorithm. As can be seen in Figure 1, over time,
we no longer witness “User Interface Error“ defects while we begin
to witness “Connection Timeout“ defects.

Capturing Meaningful Representatives. It is important that we
are able to describe each cluster by its common defect. As such, a

successful algorithm should provide a meaningful representative to
each cluster that an end-user is able to understand. A meaningful
representative is visually depicted to be near the centre of each
cluster in Figure 1. Additionally, each cluster has an understandable
and succinct representative error that aligns with common code
defects as seen in the tables of Figure 1.

Minimising Disruption. In order to effectively monitor the life-
cycle of an error or defect, clusters must remain active until their
associated errors are fully resolved. As such, we require clusters
to evolve smoothly over time while maintaining high quality clus-
ters. There is minimal disruption illustrated in Figure 1 as cluster
1 expands and eventually breaks off into cluster 4 (perhaps along
with cluster 2). The smooth evolution over time is needed to not
introduce or remove a defect cluster too quickly or erratically.

3.1 A Novel Online Clustering Algorithm
One of the contributions of this work is a novel online clustering
algorithm for error logs that is motivated by the above criteria. We
draw some inspiration from DenStream [2] who create dynamically
changing clusters. In particular, we adopt the same distance metric
between logs and cluster centroids. The intuition of our online
clustering algorithm is straight-forward: When new data points
are received, we treat points either one by one or in batches and
merge them into the cluster with the smallest cosine distance to
the centroid of that cluster. We formulate our algorithm in Alg. 1
using three hyperparameters:

𝜃 : The acceptance threshold of a log to a cluster. If the distance
between a log and all cluster centroids is less than 𝜃 , a new cluster
is created.
𝛼 : The rate of cluster centroid evolution. We update cluster cen-
troids as a rolling average based on new logs that are merged
into a cluster. Consequently, cluster centroids naturally change
over time. To prevent this from occurring too quickly (and thus
minimise disruption), we use 𝛼 to slow change.
𝛾 : The minimum cluster size before a centroid of a cluster may
change. We use this hyperparameter to ensure outliers do not
heavily impact smaller clusters that are more liable to centroid
changes.

For an end user to clearly interpret the clustering results, we
extract an error message from each cluster. For each cluster, we use
cosine similarity to select the sample which is closest to the centroid
and use its log as the cluster’s representative defect. Alternatively,
the Levenshtein score can be used to get the average message [21].
While this method may give a better message as it is more specific
to the log text, it is more computationally expensive and so we stick
to the cosine similarity approach.1

3.2 Performance Metrics
We next introduce a novel metric that formalises the three key
criteria identified at the start of this section. Our metric is devised of
three scores: Silhouette score (𝑆), Representative Similarity (𝑅) and

1Let each cluster have𝑚 logs, the average log length is𝑛, and the semantic representa-
tion dimensionality is 𝑑 where 𝑑 << 𝑛. Computing the Levenshtein score has a time
complexity of𝑂 (𝑚2𝑛2) as opposed to𝑂 (𝑚𝑑) for the cosine similarity approach.

Log Summarisation for Defect Evolution Analysis SDD ’23, December 8, 2023, San Francisco, CA, USA

Cluster Representative Error Count
1 Database Error 150
2 User Interface Error 75
3 Runtime Error 50

t
1

2

3

Centroid

Error Message

Representative

New Error Message

Time 𝑡

Cluster Representative Error Count
1 Database Error 170
2 User Interface Error 40
3 Runtime Error 80

t + 1
1

2

3

Time 𝑡 + 1

Cluster Representative Error Count
1 Database Error 170
3 Runtime Error 120
4 Connection Timeout 20

t + 2
1

4

3

Time 𝑡 + 2

Figure 1: Example of Error Log Evolution. The top row provides a visual aid of the clusters while the bottom row details the
specific defects found at each point in time.

Data: List of batches
Hyperparameters: 𝜃 ; 𝛼 ; 𝛾
clusters = [];
for batch in data do

for p in batch do
min_dist = inf; c = null;
for clust in clusters do

dist = 1 - cosine_sim(clust.cen, p);
if dist < min_dist then

min_dist = dist;
c = clust;

end
end
if min_dist ≤ 𝜃 then

if c.len ≥ 𝛾 then
c.cen = (1-𝛼) · c.cen + 𝛼𝑝;

else
c.cen = 𝑐.𝑙𝑒𝑛

𝑐.𝑙𝑒𝑛+1 · 𝑐.𝑐𝑒𝑛 + 1
𝑐.𝑙𝑒𝑛+1𝑝;

end
c.len += 1

else
clust = new Clust(cen=p, len=1);
clusters.add(clust);

end
end

end
Algorithm 1: Our online clustering algorithm, with updates
coming as individual points. Batched updates are more efficient.

Number of Clusters Similarity (𝐶). Each of these scores is computed
over batches and is in the range [0, 1].

The Silhouette score is a standard metric used for assessing
unlabelled clustering. It provides a measure of the similarity of each
log to its own cluster versus other clusters. Traditionally, the score
is given in the range [−1, 1], but we scale it so that it is comparable
with our other scores.

𝑆 =
1
𝐵

𝐵∑︁
𝑏=1

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑏 + 1
2

(1)

where 𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒𝑏 is the Silhouette score for bath 𝑏.
The representative similarity score compares the representatives

of each cluster 𝑐 for batches 𝑏 and 𝑏 + 1 coming in at times 𝑡 and
𝑡 + 1 respectively. We use this score to evaluate the evolution of the
representative logs for each cluster. We use the cosine similarity as
our distance metric.

𝑅 =
1
𝐵

𝐵∑︁
𝑏=1

𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚(𝑟𝑒𝑝𝑟𝑒𝑠𝑏 , 𝑟𝑒𝑝𝑟𝑒𝑠𝑏+1) (2)

where 𝑟𝑒𝑝𝑟𝑒𝑠𝑏 is the semantic representations for batch 𝑏.
Lastly, the number of clusters similarity score measures how

smoothly the number of clusters evolves over time.

𝐶 = 1 − 1
𝐵

𝐵∑︁
𝑏=1

|𝑛𝑟_𝑐𝑙𝑢𝑠𝑡𝑏 − 𝑛𝑟_𝑐𝑙𝑢𝑠𝑡𝑏−1 |
𝑚𝑎𝑥 (𝑛𝑟_𝑐𝑙𝑢𝑠𝑡𝑏 , 𝑛𝑟_𝑐𝑙𝑢𝑠𝑡𝑏−1)

(3)

where 𝑛𝑟_𝑐𝑙𝑢𝑠𝑡𝑏 is the number of clusters in batch 𝑏.
Our log cluster evolution metric (𝐿𝐶𝐸) is then comprised of a

linear combination of the three scores above, where all scores are
scaled to be in the range [0, 1] and𝑤𝑆 +𝑤𝑅 +𝑤𝐶 = 1

𝐿𝐶𝐸 = 𝑤𝑆𝑆 +𝑤𝑅𝑅 +𝑤𝐶𝐶 (4)

SDD ’23, December 8, 2023, San Francisco, CA, USA Rares Dolga, Ran Zmigrod, Rui Silva, Salwa Alamir, and Sameena Shah

4 EXPERIMENTS
In this section, wemeasure the performance of our online clustering
algorithm using different semantic representations.

4.1 Data
We primarily conduct experiments on a private industrial dataset
from the SREs we worked with. To do this, we collected log data
from a database containing all monitored applications. We then
eliminated variability by removing timestamps and URLs. The mon-
itored applications generate around 100,000 logs per day, of which,
about 1.5% are related to errors and defects. We extracted two
months’ worth of data, resulting in a total of 57,000 error logs. Each
log is comprised of structured fields (e.g., system id, date, log level)
as well as unstructured, free-form text.

Since our dataset is private and cannot be shared, we also evalu-
ate our method on similar public datasets. We use Loghub [13], a
collection of logs from different systems which have a date element,
a log level and free-form text representing the meaning of the log.
We note that this dataset is significantly simpler than the private in-
dustry dataset due to generally shorter and less varied log texts. We
use a sample of 2,000 logs for each of the Loghub systems: HDFS_2,
Linux, Zookeeper and OpenStack. Note that each dataset is much
smaller than the private dataset and examines a single framework
rather than many applications. Throughout both the public and
private datasets, we consider a log to be stale after one month since
its creation.

Pre-processing and Semantic Representations. Logs are a chal-
lenging data type for text understanding models because they tend
to contain incomplete words, words with special characters (e.g.,
underscore), and system-specific terms. Consequently, we cleaned
the data using standard natural languages processing techniques,
such as tokenization[31], lemmatization[16], and removal of Eng-
lish stop words given by the SpaCy library2. Given the cleaned logs,
we constructed semantic representations of the logs using average
Word2Vec3 vectors as well as SBERT sentence embeddings [27].

Temporal Splits. For the private dataset, we first split the two
months’ data into a one-month batch and the rest into five-day
batches. The second split considers only one-day batches. The rea-
son for these two separate temporal settings is to show results on
stationary versus dynamic data. In the first split, due to the high
amount of data in the snapshot, the underlying distribution does not
differ from the next timestamps. However, for one-day splits, one
batch is not a meaningful sample of the entire distribution of logs.
We use these datasets to compare our model with other clustering
algorithms. We use one day batches for the public datasets.

4.2 Models and Algorithms
To benchmark our algorithm against the literature we picked two
well-knownmodels which work with vector representations. Gauss-
ian Mixture Model (GMM) is an offline clustering algorithm which
was selected because it allows clusters of any shape to be formed.
We adapt the algorithm to be online by re-initialising each batch

2https://spacy.io/
3https://spacy.io/usage/spacy-101/#vectors-similarity

Table 1: Clustering evolution performance on private dataset.

Model # Clusters 𝑹 𝑺 𝑪 𝑳𝑪𝑬

1 Month snapshot + 5 day batches

GMMWord2Vec 11 0.964 0.768 1 0.9
DenStreamWord2Vec 48 0.92 0.771 0.803 0.83
OursWord2Vec 198 0.999 0.865 0.96 0.94
OursSBERT 27 0.999 0.97 0.96 0.97

1 day batches

GMMWord2Vec 11 0.914 0.727 1 0.88
DenStreamWord2Vec 48 0.92 0.771 0.862 0.85
OursWord2Vec 205 0.999 0.879 0.999 0.95
OursSBERT 28 0.999 0.972 0.998 0.98

Table 2: Clustering evolution performance on private and
public datasets using OursSBERT and one day batches.

Dataset # Clusters 𝑹 𝑺 𝑪 𝑳𝑪𝑬
Private Dataset 28 0.999 0.972 0.998 0.980
HDFS_2 18 0.990 0.990 0.990 0.990
Linux 31 0.990 0.860 0.980 0.940
Zookeper 19 0.990 0.990 0.990 0.990
OpenStack 14 0.990 0.790 0.990 0.920

with the mean and covariance of the model trained on the pre-
vious batch. We choose DenStream [2] as the second algorithm
because it trains in an online fashion and also allows clusters of
varying shapes. The optimal values for the hyper-parameters of
all models were selected based on a grid search conducted over
past data.4 For each algorithm we only use Word2Vec (embedding
dimension of 300) to compare the algorithm’s performance. We fur-
ther use SBERT (embedding dimension of 756) for our algorithm to
show the improvement in using a more complex and rich semantic
representation. Non eof the models were fine-tuned on the data.

4.3 Results
For all results, 𝐿𝐶𝐸 was computed with equal contribution weights.
Table 1 shows the performance results across the different algo-
rithms and semantic representations on the private dataset. We
observe that for both temporal settings, our approach matches or
outperforms both the GMM and DenStream algorithms when using
Word2Vec semantic representations across each individual score
as well as 𝐿𝐶𝐸. We note that GMM, the static clustering algorithm,
performs better when it has the initial one month snapshot whereas
the dynamic approaches perform consistently across both settings.
This is expected as GMM requires the initial mean and variance to
attain better performance.

The biggest improvement between our approach DenStream is
observed in the cluster number similarity score. DenStream ex-
hibits an erratic evolution which we are able to mitigate in our
4For our algorithm, the hyperparameters were 𝜃 = 0.05, 𝛼 = 0.1, and 𝛾 = 100.

Log Summarisation for Defect Evolution Analysis SDD ’23, December 8, 2023, San Francisco, CA, USA

approach using our evolution rate (𝛼) and minimum cluster size
hyperparameters (𝛾). The strong and consistent performance of our
approach across both temporal settings suggests that our algorithm
adapts easily to both stationary and non-stationary streams. The
robustness of our algorithm is further shown in Table 2 where we
achieve good results across public log datasets.5

5 THREATS TO VALIDITY
We note a few threats to validity in this work. Firstly, we must
be cautious of overfitting to our data which would retract from
the generalisibility of the model. As clustering is an unsupervised
problem (i.e., no labelled data), we cannot use metrics such as ARI
to evaluate our predictions. While the Silhouette score and manual
qualitative analysis can be done to demonstrated good clusters,
having access to a small labelled dataset would allow for more
robust evaluation. This is currently a gap in log-based software
defect datasets that we hope is addressed in future work. Indeed,
one could use a model as presented in this work to generate data.

6 CONCLUSION
In this paper, we introduced a novel online semantic-based clus-
tering algorithm for error logs. Our algorithm is able to cluster
log message streams, track the reduction and emergence of defects
that arise in code, and provide a representative defect message for
each cluster. The algorithm has configurable cluster granularity
and cluster evolution rate through hyperparameters. Furthermore,
we introduced a novel metric named 𝐿𝐶𝐸 that can evaluate de-
fect tracking performance based on industry specified criteria. We
demonstrated that our algorithm outperforms existing log cluster-
ing approaches using a private dataset and showed strong perfor-
mance across public datasets. We hope that this work encourages
more work in defect detection to examine the temporal properties
of logs and incorporate it into modern systems.

DISCLAIMER
This paper was prepared for informational purposes by the Arti-
ficial Intelligence Research group of JPMorgan Chase & Co and
its affiliates (“JP Morgan”), and is not a product of the Research
Department of JP Morgan. JP Morgan makes no representation and
warranty whatsoever and disclaims all liability, for the complete-
ness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase
or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of par-
ticipating in any transaction, and shall not constitute a solicitation
under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.

REFERENCES
[1] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site

Reliability Engineering: How Google Runs Production Systems. http://landing.
google.com/sre/book.html

5We further conducted a brief qualitative analysis with the SREs we worked with.
They provided positive feedback with regards to the cluster evolution over time and
pointed out certain clusters matched specific errors they were aware of.

[2] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou. 2006. Density-Based
Clustering over an Evolving Data Stream with Noise. In SDM.

[3] Hetong Dai, Heng Li, Che-Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2022.
Logram: Efficient Log Parsing Using 𝑛n-Gram Dictionaries. IEEE Transactions
on Software Engineering 48, 3 (2022), 879–892. https://doi.org/10.1109/TSE.2020.
3007554

[4] Steven Davies and Marc Roper. 2013. Bug localisation through diverse sources
of information. In 2013 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). 126–131. https://doi.org/10.1109/ISSREW.2013.
6688891

[5] Min Du and Feifei Li. 2019. Spell: Online Streaming Parsing of Large Unstructured
System Logs. IEEE Transactions on Knowledge and Data Engineering 31, 11 (2019),
2213–2227. https://doi.org/10.1109/TKDE.2018.2875442

[6] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection andDiagnosis from System Logs throughDeep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,
NY, USA, 1285–1298. https://doi.org/10.1145/3133956.3134015

[7] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution Anomaly
Detection in Distributed Systems through Unstructured Log Analysis. In 2009
Ninth IEEE International Conference on Data Mining. 149–158. https://doi.org/10.
1109/ICDM.2009.60

[8] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution Anomaly
Detection in Distributed Systems through Unstructured Log Analysis. 2009 Ninth
IEEE International Conference on Data Mining (2009), 149–158.

[9] Maria Grigorieva and Dmitry Grin. 2021. Clustering error messages produced
by distributed computing infrastructure during the processing of high energy
physics data. International Journal of Modern Physics A 36 (04 2021), 2150070.
https://doi.org/10.1142/S0217751X21500706

[10] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and
James Browne. 2015. Towards Detecting Patterns in Failure Logs of Large-Scale
Distributed Systems. In 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop. 1052–1061. https://doi.org/10.1109/IPDPSW.2015.109

[11] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. LogMine: Fast Pattern Recognition for Log Analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management (Indianapolis, Indiana, USA) (CIKM ’16). Association for
Computing Machinery, New York, NY, USA, 1573–1582. https://doi.org/10.1145/
2983323.2983358

[12] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An
Online Log Parsing Approach with Fixed Depth Tree. In 2017 IEEE International
Conference on Web Services (ICWS). 33–40. https://doi.org/10.1109/ICWS.2017.13

[13] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. 2020. Loghub: A Large
Collection of System Log Datasets towards Automated Log Analytics. https:
//doi.org/10.48550/ARXIV.2008.06448

[14] P.W.D.C. Jayathilake, N. R. Weeraddana, and H. K. E. P. Hettiarachchi. 2017. Auto-
matic detection of multi-line templates in software log files. In 2017 Seventeenth
International Conference on Advances in ICT for Emerging Regions (ICTer). 1–8.
https://doi.org/10.1109/ICTER.2017.8257824

[15] Yexi Jiang, Chang-Shing Perng, and Tao Li. 2011. Natural Event Summarization.
In Proceedings of the 20th ACM International Conference on Information and
Knowledge Management (Glasgow, Scotland, UK) (CIKM ’11). Association for
Computing Machinery, New York, NY, USA, 765–774. https://doi.org/10.1145/
2063576.2063688

[16] Divya Khyani and Siddhartha B S. 2021. An Interpretation of Lemmatization
and Stemming in Natural Language Processing. Shanghai Ligong Daxue Xue-
bao/Journal of University of Shanghai for Science and Technology 22 (01 2021),
350–357.

[17] Jerry Kiernan and Evimaria Terzi. 2009. Constructing Comprehensive Summaries
of Large Event Sequences. ACM Trans. Knowl. Discov. Data 3, 4, Article 21 (dec
2009), 31 pages. https://doi.org/10.1145/1631162.1631169

[18] Max Landauer, Florian Skopik, Markus Wurzenberger, and Andreas Rauber.
2020. System log clustering approaches for cyber security applications: A survey.
Computers Security 92 (2020), 101739. https://doi.org/10.1016/j.cose.2020.101739

[19] Max Landauer, Florian Skopik, Markus Wurzenberger, and Andreas Rauber.
2020. System log clustering approaches for cyber security applications: A survey.
Computers and Security 92 (2020), 101739. https://doi.org/10.1016/j.cose.2020.
101739

[20] Laetitia Leichtnam, Eric Totel, Nicolas Prigent, and LudovicMe. 2017. STARLORD:
Linked security data exploration in a 3D graph. In 2017 IEEE Symposium on
Visualization for Cyber Security (VizSec). 1–4. https://doi.org/10.1109/VIZSEC.
2017.8062203

[21] Vladimir I. Levenshtein. 1965. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet physics. Doklady 10 (1965), 707–710.

[22] Tao Li, Yexi Jiang, Chunqiu Zeng, Bin Xia, Zheng Liu, Wubai Zhou, Xiaolong Zhu,
WentaoWang, Liang Zhang, JunWu, Li Xue, and Dewei Bao. 2017. FLAP: An End-
to-End Event Log Analysis Platform for System Management. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

http://landing.google.com/sre/book.html
http://landing.google.com/sre/book.html
https://doi.org/10.1109/TSE.2020.3007554
https://doi.org/10.1109/TSE.2020.3007554
https://doi.org/10.1109/ISSREW.2013.6688891
https://doi.org/10.1109/ISSREW.2013.6688891
https://doi.org/10.1109/TKDE.2018.2875442
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1142/S0217751X21500706
https://doi.org/10.1109/IPDPSW.2015.109
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1145/2983323.2983358
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.48550/ARXIV.2008.06448
https://doi.org/10.48550/ARXIV.2008.06448
https://doi.org/10.1109/ICTER.2017.8257824
https://doi.org/10.1145/2063576.2063688
https://doi.org/10.1145/2063576.2063688
https://doi.org/10.1145/1631162.1631169
https://doi.org/10.1016/j.cose.2020.101739
https://doi.org/10.1016/j.cose.2020.101739
https://doi.org/10.1016/j.cose.2020.101739
https://doi.org/10.1109/VIZSEC.2017.8062203
https://doi.org/10.1109/VIZSEC.2017.8062203

SDD ’23, December 8, 2023, San Francisco, CA, USA Rares Dolga, Ran Zmigrod, Rui Silva, Salwa Alamir, and Sameena Shah

Mining (Halifax, NS, Canada) (KDD ’17). Association for Computing Machinery,
New York, NY, USA, 1547–1556. https://doi.org/10.1145/3097983.3098022

[23] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He, and Guangba Yu. 2020. Swiss-
Log: Robust and Unified Deep Learning Based Log Anomaly Detection for Diverse
Faults. In 2020 IEEE 31st International Symposium on Software Reliability Engi-
neering (ISSRE). 92–103. https://doi.org/10.1109/ISSRE5003.2020.00018

[24] Adetokunbo Makanju, Ayse Nur Zincir-Heywood, and Evangelos E. Milios. 2009.
Clustering event logs using iterative partitioning. In Knowledge Discovery and
Data Mining.

[25] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, and Rong Zhou. 2019. LogAnomaly:
Unsupervised Detection of Sequential and Quantitative Anomalies in Unstruc-
tured Logs. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 4739–4745. https://doi.org/10.24963/ijcai.2019/658

[26] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A Search-Based Approach for Accurate Identifica-
tion of Log Message Formats. In 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC). 167–16710.

[27] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. https://doi.org/10.48550/ARXIV.1908.10084

[28] Keiichi Shima. 2016. Length Matters: Clustering System Log Messages using
Length of Words. https://doi.org/10.48550/ARXIV.1611.03213

[29] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating System
Events from Raw Textual Logs. In Proceedings of the 20th ACM International

Conference on Information and Knowledge Management (Glasgow, Scotland, UK)
(CIKM ’11). Association for Computing Machinery, New York, NY, USA, 785–794.
https://doi.org/10.1145/2063576.2063690

[30] Risto Vaarandi and Mauno Pihelgas. 2015. LogCluster - A data clustering and
pattern mining algorithm for event logs. In 2015 11th International Conference on
Network and Service Management (CNSM). 1–7. https://doi.org/10.1109/CNSM.
2015.7367331

[31] Jonathan Webster and Chunyu Kit. 1992. Tokenization as the initial phase in
NLP. 1106–1110. https://doi.org/10.3115/992424.992434

[32] Shenglin Zhang, Ying Liu,WeibinMeng, Zhiling Luo, Jiahao Bu, Sen Yang, Peixian
Liang, Dan Pei, Jun Xu, Yuzhi Zhang, Yu Chen, Hui Dong, Xianping Qu, and Lei
Song. 2018. PreFix: Switch Failure Prediction in Datacenter Networks. Abstracts of
the 2018 ACM International Conference on Measurement and Modeling of Computer
Systems (2018).

[33] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He, Ran-
dolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dongmei Zhang.
2019. Robust Log-Based Anomaly Detection on Unstable Log Data. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
807–817. https://doi.org/10.1145/3338906.3338931

Received 2023-07-31; accepted 2023-08-21

https://doi.org/10.1145/3097983.3098022
https://doi.org/10.1109/ISSRE5003.2020.00018
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.48550/ARXIV.1611.03213
https://doi.org/10.1145/2063576.2063690
https://doi.org/10.1109/CNSM.2015.7367331
https://doi.org/10.1109/CNSM.2015.7367331
https://doi.org/10.3115/992424.992434
https://doi.org/10.1145/3338906.3338931

	Abstract
	1 Introduction
	2 Related Work
	3 Tracking Error Log Evolution
	3.1 A Novel Online Clustering Algorithm
	3.2 Performance Metrics

	4 Experiments
	4.1 Data
	4.2 Models and Algorithms
	4.3 Results

	5 Threats to Validity
	6 Conclusion
	References

