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Abstract

The main goal of dynamic memory allocators is to minimize
memory fragmentation. Fragmentation stems from the in-
teraction between workload behavior and allocator policy.
There are, however, no works systematically capturing said
interaction. We view this gap as responsible for the absence
of a standardized, quantitative fragmentation metric, the
lack of workload dynamic memory behavior characterization
techniques, and the absence of a standardized benchmark
suite targeting dynamic memory allocation. Such shortcom-
ings are profoundly asymmetric to the operation’s ubiquity.

This paper presents a trace-based simulation methodology
for constructing representations of workload-allocator in-
teraction. We use two-dimensional rectangular bin packing
(2DBP) as our foundation. 2DBP algorithms minimize their
products’ makespan, but virtual memory systems employing
demand paging deem such a criterion inappropriate. We see
an allocator’s placement decisions as a solution to a 2DBP
instance, optimizing some unknown criterion particular to
that allocator’s policy. Our end product is a data structure
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by design concerned with events residing entirely in virtual
memory; no information onmemory accesses, indexing costs
or any other factor is kept.
We bootstrap our contribution’s utility by exploring its

relationship to maximum resident set size (RSS). Our baseline
is the assumption that less fragmentation amounts to smaller
peak RSS. We thus de�ne a fragmentation metric in the
2DBP substrate and compute it for both single- and multi-
threaded workloads linked to 7 modern allocators. We also
measure peak RSS for the resulting pairs. Our metric exhibits
a monotonic relationship with memory footprint 94% of the
time, as inferred via two-tailed statistical hypothesis testing
with at least 99% con�dence.
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1 Introduction

In their 1995 survey, Wilson et al. contributed a compre-
hensive taxonomy and a grounded critique of dynamic stor-
age1 allocation (DSA) [24], noting the inherent di�culty in
de�ning fragmentation, the inadequacy of basing designs on
synthetic workloads, and the lack of novelty in new alloca-
tor policies. To this day, we have not converged to a single,
measurable de�nition of fragmentation [20], neither do we
possess a method for workload characterization–despite the
fact that program behavior partly controls fragmentation.

Most noticeably, there is no standardized memory alloca-
tion benchmark suite. Motivation sections often adopt syn-
thetic test cases [17] even though we know such practices to
be inadequate. Applications used for evaluation are selected
on intuitive grounds of being “dynamic enough”. Certain
classes, such as database and web browsing workloads, are
preferred over others with no proper justi�cation. Worse,
“internal” workloads are at times used [18], obstructing trans-
parency and reproducibility.We claim that hidden costs, such
as scarce physical memory contiguity [26], are imposed to
systems from the aforementioned gaps, and ampli�ed by the
ubiquitous nature of DSA.
This paper introduces a systematic methodology for rep-

resenting workload-allocator interaction as instances of two-
dimensional rectangular bin packing (2DBP) [7, 8]. To con-
clude whether any information of practical value is captured,
we explore our product’s relationship to maximum resident
set size (RSS). We de�ne fragmentation as the ratio between
gaps and used memory in the 2DBP space, and measure it for
34 real workloads linked to 7 modern allocators. 94% of the
time, 2DBP-based fragmentation and maximum RSS exhibit
a monotonic relationship–as found by conducting statistical
hypothesis tests with a signi�cance value of at least 99%. Our
contributions can thus be summarized as:

• a novel perspective emphasizing the need for a princi-
pled study of workload-allocator interaction

• a methodology for constructing 2DBP representations
of arbitrary workloads and non-moving allocators

• a �rst empirical study of 2DBP’s informational content
• a novel de�nition of memory fragmentation
• a discussion on our results’ implications for DSA, mo-
tivating future research

Section 2 elaborates on our representation and 2DBP-
based fragmentation. Section 3 describes the mechanisms
implemented to actualize our methodology. We present our
results in Section 4 and discuss their implications in Section
5. Related work is presented in Section 6, and Section 7 closes
the main text with an overview of our conclusions.

1We use “storage” instead of “memory” as a tribute to Paul R. Wilson et
al. [24] The matter at hand is non-moving virtual memory allocation.

2 Background

Allocators receive a series of requests from the programs
they are linked to. Two main request types exist: allocation of
= bytes and deallocation of a previously allocated object. The
requests’ creator may range from application developers,
as happens in C, to garbage-collected language runtimes
(CPython), to compiler-injected directives (Rust).

Real allocation requests come in several variations. A pro-
gram may need speci�cally aligned objects, or objects ini-
tialized as a zero-valued array. It may even ask for an object
to be resized. Upon successful allocation, a pointer to the
newly acquired memory is returned. Deallocation requests
are straightforward. The program informs the allocator via
a previously obtained memory pointer that it does not need
the corresponding object any more.
An allocator’s decisions on object placement and free

memory management form its policy. On the program’s side,
the distribution of allocation sizes requested as well as the
particular sequence of requests jointly form its behavior. The
goal of a good policy is to minimize fragmentation2, which
means to waste minimal amounts of extra memory beyond
what the program requested. Two types of fragmentation
exist: internal fragmentation treats wasted memory within
objects (i.e., returning more bytes than requested); external
fragmentation focuses between objects (e.g., putting objects
that die together in non-consecutive places). Both types are
functions of the interaction between allocator policy and pro-
gram behavior [24]. Several de�nitions have been proposed
over the years [5, 12, 20].

A 2DBP instance comprises a series of unplaced objects in
the form of (BC0AC, 4=3, ℎ486ℎC) tuples. An acceptable solution
to 2DBP is a placement with no overlapping objects. For the
purposes of our paper there is no need to distinguish between
placed and unplaced objects, so with the term “2DBP” we
refer both to the requests and the allocator’s responses to
each request (all objects are already placed by the time we
depict them). The concepts involved are best described by
example. Let us consider the below requests sequence:

1. A = malloc(1)

2. B = malloc(2)

3. free(A)
4. C = malloc(2)

5. free(B)
6. free(C)

Figure 1 combines these requests with an imaginary allo-
cator’s responses, placing object A at virtual address 0x01,
object B at 0x03 and object C at 0x00. The �gure’s horizon-
tal axis measures time in allocated bytes. Time progresses

2We remain aware of the complex memory/performance tradeo�s faced by
allocator designers. We focus on memory explicitly because (i) viewing DSA
from �rst principles automatically makes memory a �rst-class citizen and
(ii) most research over the past decades targets performance already [16].
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Figure 1.A simple 2DBP example. External fragmentation is
marked in red; internal in magenta (assume that the allocator
decided to put object C in the 3-byte size class, despite the
program requesting only 2 bytes).

forward after each allocation request, and remains unaltered
after each deallocation request.

Normally 2DBP algorithms optimize a placement’s make-
span, meaning the total address range used (in Figure 1 the
makespan equals to 5). We have already emphasized that in
the scope of this paper, the allocators are the ones producing
the placements; we are merely recording their decisions
as if they were solving a 2DBP problem. We cannot know
the precise criterion that each allocator optimizes, but it
is probably not makespan; disjoint virtual pages may be
mapped to contiguous physical ones and vice versa.
There is thus no point in restricting the range of virtual

addresses used. There is quite a point, however, in restrict-
ing overall memory usage–or to minimize physical memory
fragmentation. So the question is, in the context of the rep-
resentation we are constructing, what could fragmentation
look like? Our proposed answer is indicated by the three
shaded rectangles in Figure 1. Recall that one description of
fragmentation is “memory wastage"; the shaded areas are
like gaps in a Tetris game. They represent segments which
the allocator left unused, thus reserving higher addresses in
order to handle all requests.
One might judge our formulation as too strict, since a

non-moving allocator could not break object B in two and
slide the left part down to cover the top fragmented area.
Two points must be raised here: fragmentation is partly de-
�ned by the program’s behavior, and it thus makes sense for
portions of it to be inevitable. Moreover, what matters most
is 2DBP itself. Computations performed on it, fragmenta-
tion included, are secondary. This statement does not mean
to devalue fragmentation as a phenomenon–such a stance

Linux 
binary

malloc 
library

TRACER

SIMULATOR 2DBP

2DBP 
instance

FRAGMENTATION

"62% extra 
memory wasted"

Figure 2. An overview of our method to produce 2DBP
representations and to compute their fragmentation. Bold
arrows are inputs and dotted arrows are outputs.

would go against our own motivation. It just stresses the
importance of �rst establishing a useful substrate. In our
paper, fragmentation plays the crucial role of bootstrapping
2DBP in the sense of a 2DBP-derived signal correlating with
the real world. But again, nothing else must be considered
more primary than the representation itself.

3 Proposed Method

Our goal is to represent arbitrary pairs of Linux binaries and
malloc implementations as 2DBP instances. An overview of
our method is shown at Figure 2. Inspired by [24] and [12]
we aimed for trace-based simulation.

3.1 2DBP construction

We log all of a program’s calls to allocation functions. The
resulting trace, along with the malloc implementation of
interest, feeds our simulation module. The 2DBP compo-
nent produces the �nal representation. Our architecture is
modular to enable optimizations in each stage, since it must
eventually handle realistic workload sizes.

3.1.1 Requests tracing. A reasonable question is why did
we not leverage existing solutions such as mtrace3, heap-
track4, or tracing capabilities built in malloc implementa-
tions. Our decision was driven by the below points:

• mtrace demands that the program be modi�ed so as
to initialize the tool, while access to the application
source code may not be feasible in practice.

• heaptrack and similar alternatives are extra depen-
dencies which the user may want to avoid.

• existing tracers impose larger overheads to store addi-
tional data, e.g., stack traces and call site addresses

Our tracer is required to be complete, catching allocations
and deallocations all across the program’s call stack. It must
also be non-intrusive, that is to imply zero actions regarding
code instrumentation and compilation. It �nally needs to be
correct: logged calls should belong to the traced program only,

3https://linux.die.net/man/3/mtrace
4https://github.com/KDE/heaptrack
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Table 1. Rules for unpacking request traces to malloc and
free operations. s stands for “size”, p for “pointer”, n for
“number”, a for “alignment”.

Original Operation Transform

malloc(s) malloc(s)

free(p) free(p)

calloc(s,n) malloc(n∗s)

realloc(p,s) free(p); malloc(s)

posix_memalign(p,a,s) malloc(s)

aligned_alloc(a,s) malloc(s)

valloc(s) malloc(s)

memalign(a,s) malloc(s)

pvalloc(s) malloc(s)

and not be polluted by dynamic memory operations of the
tracer itself. To satisfy these requirements we target typical
Linux processes forking no children. We also make use of
several Linux and GNU utilities reported in the following
paragraphs. Our mechanism is general enough to operate
on any program in this context, from command line tools to
application virtual machines.
The tracer is a shared library employing dlsym5 to inter-

pose calls to malloc, free, calloc, realloc, posix_memalign,
memalign, aligned_alloc, pvalloc and valloc. Thesewere
selected according to GNU’s guidelines on replacing malloc6.
Beyond interposing the allocation interface, our tracer spawns
a new process which writes the actual logs to a CSV �le. The
structure of the stored tracing data is shown at Table 2.

3.1.2 Placement simulation. 2DBP perceives only two
kinds of requests, namely allocation of = bytes and dealloca-
tion of occupied memory. But a real trace �le may include
operations with more complex semantics, such as calloc.
We thus unpack all calls to combinations of the two elemen-
tary operations, malloc and free. The counterargument to
address is the proposed unpacking’s e�ect on original pro-
gram behavior. A short yet concise answer is that if along
our course we distorted program behavior more than we
should, no connection with RSS would have been uncovered.
The unpacking scheme is described in Table 1.

Policy simulation does not reproduce the original pro-
gram’s RSS waveform, since no memory access information
is stored during the tracing stage. 2DBP lives entirely in vir-
tual, not physical, memory. This works to our advantage,
since it enables us to examine the extent to which events in
virtual memory a�ect real-world performance.

To record block sizeswe use the values returned by malloc-
_usable_size7. If the simulated allocator includes metadata
in its block layout (like the GNU implementation does), this

5https://man7.org/linux/man-pages/man3/dlsym.3.html
6https://www.gnu.org/software/libc/manual/html_node/Replacing-
malloc.html.
7https://man7.org/linux/man-pages/man3/malloc_usable_size.3.html

Table 2. Trace �le structure. The els_num �eld is used for
tracing calloc, which returns a number of elements, each
element of a certain size. To facilitate the study of multi-
threaded programs, we record the caller thread’s ID in the
call_tid �eld.

CSV Field Request 1 Request 2 Request 3

req_type malloc free calloc

in_address (nil) 0x55A (nil)

out_address 0x55A (nil) 0x63B

el_size 12 (nil) 128

els_num 1 (nil) 1000

call_tid 26 36 31

is also taken into account. Memory mappings are consulted
via the process-speci�c /proc/[PID]/maps8 �le. A good dis-
cussion of why modern allocators spawn memory mappings
under the hood may be found on StackOver�ow [4]. Thus
our simulator must keep track of object tra�c within said
mappings if we want it to capture the complete picture.
Time is updated whenever a malloc request has been

scanned. The �nal placement data is also structured as CSV.

3.2 Fragmentation

We de�ne fragmentation as the area of unused memory within

occupied virtual pages, divided by the area of allocated mem-

ory. We compute it across all " mappings spawned by a
workload-allocator pair via Equation 1:

�) =

∑
"

8=1 �<8

∑
"

8=1 !<8

(1)

Recall that by design our representation captures virtual
memory across time; that is, one can by traversing it track
virtual pages getting occupied, emptied, or loaded with more
allocated objects. The term �<8 is derived by summing the
spatiotemporal areas of unused memory belonging to occu-

pied virtual pages within each mapping. !<8 stands for total
allocated memory–again, across time.

We illustrate our algorithm in Figure 3: gaps between and
inside objects are shown as lightly and darkly shaded areas.
Our plot is drawn in medias res–lightly shaded areas were
and will be accounted for in previous and future iterations,
while darkly shaded ones are captured by the present iter-
ation. To this we focus. It involves a vertical slice that we
call a lane. Lanes are delimited by object beginnings and
endings. Within them nothing new happens; thus they can
be traversed vertically for new gaps to be found.
Virtual page boundaries are drawn as horizontal dashed

lines. We do not allow gaps to cross those boundaries, since

8https://man7.org/linux/man-pages/man5/proc.5.html
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Figure 3. Gap identi�cation algorithm. Axes are identical to
those of Figure 1. Horizontal dashed lines are page bound-
aries. White rectangles are objects, i.e., allocated memory.
Gaps contributing to external fragmentation aremarkedwith
red, internal with purple.

there is no guarantee of maintained contiguity between vir-
tual and physical memory. Gaps must always have a same-
page object as their ceiling. This puts more pressure on the
allocator’s placement decisions and discounts the e�ect of
limitations it cannot overcome.

4 Evaluation

We have proposed a methodology that captures workload-
allocator interaction. To evaluate our claim, a connection
between our representation and a valuable physical memory-
based measure must be made.We select maximum RSS as our
target and assume that the cost of high fragmentation is most
evident at the moment of highest memory usage [24], i.e.,
at peak RSS. If 2DBP actually captures workload-allocator
interaction, then computing fragmentation on it yields a
good approximation of real9 fragmentation. Consequently,
2DBP-based fragmentation correlates with peak RSS if and
only if 2DBP as a whole is a valid representation.

The correlation we are looking for is monotonically in-
creasing; we expect higher fragmentation to cause higher

9Recall that the hardness and ambiguity of measuring real fragmentation
was this paper’s starting point.

peak RSS. We thus conduct two-tailed statistical hypothe-
sis testing [23], the null hypothesis being that 2DBP-based
fragmentation and peak RSS do not correlate monotonically.
Before proceeding to the results, let us elaborate a little more
on our experiments’ procedure.
First we traced all workloads with the mechanism de-

scribed in Section 3.1.1. The simulator of Section 3.1.2 was
then fed with trace-allocator pairs to collect placement data,
on top of which we measured fragmentation. In parallel, we
executed each workload-allocator pair 10 times and mea-
sured peak RSS; each bar in Figure 4 stems from 70 data
points. That way, we both take non-determinism into ac-
count, and reinforce the validity of the hypothesis testing
procedure. Unlabelled bar pairs correspond to running the
last-labelled application with di�erent inputs/con�gurations,
e.g., x264was runwith 2 inputs, multitracewith 1, system-
libxml2 with 3 and so on. Last but not least, we computed
workload-speci�c Spearman correlation coe�cients for peak
RSS and fragmentation and compared them to corresponding
signi�cance values of at least 99% con�dence [25].

All experiments were run on a commodity x86_64 Ubuntu
20.04 machine with 16 GiB DRAM. All workloads are real ap-
plications from OpenBenchmarking.org10 and include both
single-threaded and multi-threaded programs. The allocators
used were the GNU malloc implementation [3], jemalloc [9],
mimalloc [15], tcmalloc [1], snmalloc [17], rpmalloc [2] and
the Hoard allocator [5].
As can be seen on Figure 4, most of the time there is at

least one type of fragmentation per workload which cor-
relates with memory footprint across the allocators tested.
This paper being a work-in-progress submission, we cannot
elaborate further on the presented results; nevertheless, we
consider them interesting enough to attract future research
interest. In the following section we list some ideas on what
said research could be concerned with.

5 Discussion

Assume that we know 2DBP to capture workload-allocator
interaction. How does one capitalize on this knowledge? A
�rst application would be identifying workloads that are
provably sensitive to allocator policy–that is, workloads
where signi�cant savings in physical memory are expected
if better placements are found. Such workloads would be
perfect candidates for a benchmark suite evaluating place-
ment policies. Next, assume a sensitive workload that is to
be executed on a memory-constrained machine. It is criti-
cal to ensure that when deployed, the workload’s peak RSS
(or some other metric) is the minimum possible. A sandbox
could be set up where di�erent policies are iteratively tried
on the workload’s request trace, until the best one is found.
The whole process would run o�ine, and not even access to

10https://openbenchmarking.org/
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Figure 4. Hypothesis testing results. We studied 34 workloads in total. We associate 2 bars to each workload, i.e., Spearman
correlation of external (left) and internal (right) fragmentation with peak RSS. Bar heights signify correlation strength, while
colors signify con�dence: 99.95% (green), 99.9% (cyan), 99.75% (orange), 99.5% (yellow), 99% (brown). Red bars validate the null
hypothesis of no existing correlation. Purple bars are counterintuitive cases of negative monotonicity. 32 out of 34 workloads
exhibit correlation between peak RSS and at least one type of fragmentation, with at least 99% probability that said correlation
was not a matter of chance.

the executable itself would be needed. Its request trace and
a modi�able allocator would be the only required elements.
The generation of (approximately) optimal placements

with respect to some more relevant criterion than the clas-
sical makespan could also be studied. Lower bounds would
then be assigned to sensitive workloads’ achievable frag-
mentation. If the distance between said bounds and the top
performing allocator were small, exploring custom policies
for a particular workload would not be worth the e�ort. In
the opposite case sandbox approaches like the onementioned
above could be explored.
Most importantly, 2DBP could yield more complex prod-

ucts: it could assist in performing feature extraction ofworkload-
allocator pairs, for use in relevant machine learning tasks.
Wewonder what such tasks would look like; can, for instance,
an allocator’s policy be “learned”? Can similarity measures
for allocators or workloads be established? We �nd great
value in exploring such questions.

6 Related Work

Wilson et al. have written the seminal treatment on DSA and
the central role of fragmentation [24]. Johnstone and Wilson
conduct the �rst study of RSS-based fragmentation de�ni-
tions [12]. Berger et al. show that modern allocators perform
acceptably well with respect to RSS-based fragmentation [6].
Maas et al. propose a novel fragmentation de�nition incor-
porating chances of immediate memory reuse [20]. Powers
et al. and Maas et al. contribute notably unorthodox ways to
deal with fragmentation [18, 21].
On the theoretical side Robson has computed worst case

fragmentation bounds for the best �t and �rst �t placement
policies [22]. Optimal placement is reported as NP-hard by
Garey and Johnson [10]. Chrobak and Ślusarek formulate it

as a 2DBP instance [8]. Buchsbaum et al. develop the state-
of-the-art n-optimal algorithm for solving the general case
with minimal makespan [7]. Given our focus on 2DBP, we do
not mention other formulations such as graph coloring [13].
Tracing workload dynamic memory behavior correctly

and e�ciently has been tackled in the context of garbage col-
lection research [11]. The closest real-world example of cap-
turing workload-allocator interaction as bin packing comes
from Maas et al [19]. 2DBP is there viewed as a useful tool
for the speci�c case of ML compilers, where all dynamic
memory requests are known in advance. With this paper we
hope to convince the reader that the general case of DSA has
much to bene�t from 2DBP as well. The logical conclusion
of using 2DBP has been explored by Lamprakos et al. [14]

7 Conclusion

This paper forms a connection between theoretical dynamic
memory allocation and its real-world counterpart. It is mo-
tivated by a profound asymmetry between dynamic mem-
ory allocation’s omnipresence and the scarcity of principled
methods for understanding workload-allocator interaction.
It describes a mechanism for extracting representations of
workload-allocator pairs in the form of two-dimensional
bin packing, and then proposes a novel fragmentation def-
inition built on top. Despite operating on entirely virtual,
simulation-generated data, our measure correlates with the
memory footprint of a variety of workloads. Our study serves
as a �rst piece of empirical evidence towards adopting bin
packing-based methods for dynamic memory allocation.
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