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Abstract

In fair division applications, agents may have un-
equal entitlements reflecting their different con-
tributions. Moreover, the contributions of agents
may depend on the allocation itself. Previous fair-
ness notions designed for agents with equal or pre-
determined entitlement fail to characterize fairness
in these collaborative allocation scenarios.

We propose a novel fairness notion of average
envy-freeness (AEF), where the envy of agents is
defined on the average value of items in the bun-
dles. Average envy-freeness provides a reason-
able comparison between agents based on the items
they receive and reflects their entitlements. We
study the complexity of finding AEF and its relax-
ation, average envy-freeness up to one item (AEF-
1). While deciding if an AEF allocation exists is
NP-complete, an AEF-1 allocation is guaranteed to
exist and can be computed in polynomial time. We
also study allocation with quotas, i.e. restrictions
on the sizes of bundles. We prove that finding AEF-
1 allocation satisfying a quota is NP-hard. Nev-
ertheless, in the instances with a fixed number of
agents, we propose polynomial-time algorithms to
find AEF-1 allocation with a quota for binary val-
uation and approximated AEF-1 allocation with a
quota for general valuation.

1 Introduction

Fair division aims to allocate items to a group of agents
that have different preferences for the items and achieve
fairness among the agents. It is a classical yet heating
topic that has wide application in real-world scenarios in-
cluding peer review [Payan and Zick, 2022], cloud comput-
ing [Wang et al., 2015], and healthcare resource distribu-
tion [Roadevin and Hill, 2021]. In fair division application,
it is often the case that agents are asymmetric, i.e. having un-
equal entitlements. For example, in a food bank allocation,
a family with more population requires more food to feed
themselves. Asymmetric agents characterize a wide range
of scenarios where agents have different contributions in a
collaboration or agents represent groups with different popu-
lations.

Extending fairness notions to agents with different enti-
tlements, Chakraborty et al. [2021a] proposes weighted envy-
freeness (WEF), where the entitlements of agents are charac-
terized by predetermined weights, and envy is defined on the
weighted margin. Its relaxation, weighted envy-freeness up to
one item (WEF-1), is guaranteed to exist and has been applied
to paper-reviewer matching mechanisms [Payan and Zick,
2022]. However, in many scenarios, especially the collabo-
ration between nations, groups, and individuals on produc-
tive activities, the entitlement and the contribution of agents
depend on the allocation of resources.

Example 1. Multiple research labs decide to start an inter-
disciplinary research collaboration. They need to allocate the
research resources (e.g. funding, computing resources, assis-
tants) and assign tasks to each lab. The contribution (task) of
a lab depends on the resource it gets, so both plans should be
determined simultaneously. Different labs have expertise in
different areas and have different preferences for resources.
A computer science group would prefer more computing re-
sources while a biological group would prefer more research
assistants. Furthermore, labs want the resources allocated
fairly based on their expected contributions. How should they
fairly allocate the resources?

There are two challenges in characterizing fairness in
collaboration scenarios. Firstly, with heterogeneous back-
grounds, it is likely agents have unequal entitlements due to
their different contributions. Secondly, the allocation and the
entitlements are decided simultaneously, and the entitlements
of agents depend on the allocation. For example, we would
expect a lab with more computing resources to make more
contributions to the computational results. Under these chal-
lenges, neither EF nor WEF is able to characterize fairness
in the collaboration scenarios. EF designed for equal entitle-
ment cannot directly extend to different entitlements. WEF
requires a predetermined weight for each agent. When the
entitlements change with the allocation, a fixed weight is un-
able to represent them.

Based on the challenges, the following question remains
unanswered: what is a proper fairness notion for fair divi-
sion under collaborations?

1.1 Average Envy-freeness

We propose the notion of average envy-freeness (AEF),
where envy between agents is defined on the average value

http://arxiv.org/abs/2301.12653v1


of the items in the bundles.

Definition 1 (Average envy-freeness (AEF)). An allocation
A is said to be average envy-free if for any pair of agents

i, h ∈ N ,
vi(Ai)
|Ai|

≥ vi(Ah)
|Ah|

.

In average envy-freeness, the entitlement of each agent is
the number of items they received. For example, in the pa-
per review scenario, the contribution of a reviewer is evalu-
ated by the number of papers they review. The reviewer with
more papers has a larger contribution to the community and
deserves a larger entitlement when allocating the papers.

The major difference between WEF and AEF is the model-
ing of the entitlements. In WEF, the entitlement of each agent
is is their weight, which is pre-determined and independent
of the allocation. In AEF, on the other hand, the entitlement
or contribution of an agent is reflected by the size of their
bundle. In a collaboration scenario where the allocation and
the entitlements are decided simultaneously, predetermined
weights cannot characterize entitlements that depend on the
allocation. On the other hand, when there is no large dif-
ference between entitlements brought by different items, the
size of each bundle serves as a natural estimation of the enti-
tlements of each agent.

We believe that average envy-freeness is a proper fair-
ness notion for the collaboration scenarios because it pro-
vides a reasonable comparison between agents based on the
resources they received. In an AEF allocation, every agent
believes that they get a fair share of resources based on their
(expected) contribution to the resource.

1.2 Our contribution

We study the existence and the complexity of average envy-
freeness and average envy-freeness up to one item (AEF-1).
We also consider scenarios with quotas, i.e. restrictions on
the size of the bundles. The quota reflects the requirements
and capability of each agent in the allocation. For example,
a research lab needs a minimum amount of funding to run
experiments and can digest at most a maximum amount of
funding.

The summary of our result is shown in Table 1. We first
consider the existence of AEF and AEF-1 without quota.
Deciding whether an AEF allocation exists is NP-complete,
while an AEF-1 allocation always exists and can be com-
puted in polynomial time. However, the problem becomes
much more difficult when quotas are considered, as deciding
whether there exists an AEF-1 allocation satisfying the quota
is NP-complete. Therefore, we consider the instances with
a fixed number of agents. When the value of each item is
either zero or one, we propose a polynomial-time dynamic
programming algorithm to decide the existence of an AEF-1
allocation satisfying the quota and find the allocation if it ex-
ists. On the other hand, deciding the existence of an AEF-1
allocation satisfying the quota in general valuation is still NP-
complete. For the general valuation case, we give an approx-
imation algorithm that finds an (1 − 4

mn
)-AEF-1 allocation,

in which agents value their bundles at least (1 − 4
mn

) times
of other agent’s bundles on the average value after removing
one item.

Criterion n Valuation Result

AEF
2

General
Identical
General

NP-complete

AEF-1 General General Always Exists

AEF-1
with quota

General
Binary
General

NP-complete

Constant, ≥ 3
Binary In P

General
NP-complete

(1− 4
mn

)-approx

Table 1: Result Summary of AEF and AEF-1. n and m are the
number of agents and the number of items respectively.

2 Related Works

There is a large literature on the fair division problem with
asymmetric agents, i.e. individuals or groups with hetero-
geneous entitlements. Chakraborty et al. [2021a] proposes
the notion of weighted envy-freeness up to one item (WEF-
1), where predetermined weights of each agent represent
their entitlements, and shows that a WEF-1 allocation al-
ways exists. Payan and Zick [2022] and Chakraborty et al.
[2021b] focus on maximizing social welfare of WEF-1 allo-
cations by select the correct picking sequence in a Round-
Robin-like mechanism. Chakraborty et al. [2022] proposes
a parameterized family of weighted envy-freeness, where
agents with large or small weights are favored by set-
ting different parameters. Other fairness notions on asym-
metric agents include weighted MMS [Farhadi et al., 2019;
Babaioff et al., 2021; Aziz et al., 2020], weighted propor-
tionality [Aziz et al., 2020; Li et al., 2022], and maximizing
weighted Nash social welfare [Suksompong and Teh, 2022].

Another related line of work is fair division with cardi-
nality constraints. Biswas and Barman [2018] considers a
scenario where items are categorized into multiple groups,
and each group has a capacity of contributing to each agent.
They show that an EF-1 allocation and a constant-factor ap-
proximation of MMS allocation always exist in such a sce-
nario. They also extend this type of constraint to be repre-
sented by a matroid. Biswas and Barman [2019] designs a
polynomial time algorithm to find an EF-1 allocation satis-
fying the matroid constraint. Dror et al. [2021] studies sce-
narios where agents have heterogeneous matroid constraints,
and provides an algorithm to find EF-1 allocations in certain
circumstances. Gan et al. [2021] and Babaioff et al. [2019]
study fair division problem where agents have budget con-
straints on the items. Aziz et al. [2019] propose a mechanism
that turns a welfare-efficient allocation into a fair allocation
while preserving the efficiency constraint.

3 Preliminaries

Problem Instance An instance of fair division problem
I = 〈N,M, V 〉 is defined by a set of n agents N = [n], a set
of m items M , and a valuation profile V = {v1, v2, · · · , vn}.
We use i to denote a generic agent in N and g to denote a
generic item in M .



Valuation and Average Value Valuation functions repre-
sent the preferences of agents among the items. For each
agent i, vi a mapping to a subset of M to a non-negative
value vi : 2M → R≥0. We follow the convention to as-
sume additive valuation, i.e for any i ∈ N and M ′ ⊆ M ,
vi(M

′) =
∑

g∈M ′ vi(g). We say that an instance has binary

valuation if for any i ∈ N and g ∈ M , vi(g) ∈ {0, 1}, and
an instance has identical valuation if v1 = v2 = · · · = vn.
We also define the average value of a subset of item M ′ as

ui(M
′) = vi(M

′)
|M ′| , i.e. the average value of the items in the

subset. Specifically, ui(∅) = 0.

Allocation An allocation A = (A1, A2, · · · , An) is a n-
partition of the set of items M , where Ai ⊆ M is the bundle
allocated to agent i. We sometimes abuse the notation and
use A to denote a partial allocation, where there are items
unallocated to any agent.

Quota A quota Q is a constraint on allocations. For each
agent i, Q imposes an upper bound and a lower bound for the
size of the bundle Ai. An allocation A satisfies a quota Q if
all agents satisfy the constraint. A quota is said to be exact
if the upper bound equals to the lower bound for every agent.
An exact quota regulates the exact number of items in each
bundle.

Definition 1 (Average envy-freeness (AEF)). An allocation
A is said to be average envy-free if for any pair of agents
i, h ∈ N , ui(Ai) ≥ ui(Ah).

Definition 2 (Average envy-freeness up to one item (AEF-1)).
An allocation A is said to be average envy-free up to one
item if for any pair of agents i, h ∈ N , there exists an item
g ∈ Ai ∪ Ah such that ui(Ai \ {g}) ≥ ui(Ah \ {g}).

By the definition of AEF-1, agents can remove an item
from either bundle under comparison. This is because agents
can increase the average value of their own bundle by re-
moving the least preferred item (if it’s not the only item). It
follows from the definition that an AEF allocation is always
AEF-1.

We introduce the computational problems related to AEF
and AEF-1.

Definition 3 (AEF-EXISTENCE). Given an instance I, does
there exist an allocation A such that A is an AEF allocation?

Definition 4 (AEF-1-EXISTENCE). Given an instance I,
does there exist an allocation A such that A is an AEF-1 al-
location?

Definition 5 (AEF-EXISTENCE with a quota). Given an in-
stance I and a quota Q, does there exist an allocation A such
that A is an AEF allocation and satisfies Q?

Definition 6 (AEF-1-EXISTENCE with a quota). Given an
instance I and a quota Q, does there exist an allocation A
such that A is an AEF-1 allocation and satisfies Q?

4 Average Envy-freeness without quotas

This section focuses on finding AEF and AEF-1 allocations
without a quota constraint. We show that deciding the exis-
tence of an AEF allocation is NP-complete, while an AEF-1
allocation always exists and can be found in polynomial time.

Theorem 1. AEF-EXISTENCE is NP-complete even for two
agents with identical valuations.

Proof Sketch. We construct a reduction from PARTITION,
which is known to be NP-complete [Garey and Johnson,
1979]. An instance of PARTITION consists of a multiset
X = {x1, x2, · · · , xk} where xi ∈ N. The goal is to de-
termine whether X can be partitioned into two subsets Y and
X \ Y with equal sum T .

Given an instance of PARTITION X , we construct an
AEF-EXISTENCE instance with two agents and m = 2k
items. Two agents share the same value function v, and u
is the average valuation function. For each xi, there ex-
ists two items gsi and gli such that v(gsi ) = (T 2k2)i, and

v(gli) = (T 2k2)i + xi.
(⇒) Given Y and X\Y being an equal-sum partition of X ,

we construct an allocation A. For each i, A1 gets gli if xi ∈ Y
or gsi if xi ∈ X\Y . A2 gets the rest of the items. It is not hard
to verify that both agents get k items, and v(A1) = v(A2).
Therefore, u(A1) = u(A2), and A is an AEF allocation.
(⇐) If there exists an AEF allocation A, we show that A

induces an equal-sum partition of X in four steps.
First, each agent gets exactly one of the largest items gsk

and glk. Otherwise, the exponential term (T 2k2)i guarantees
that the agent without the two items envies the other agent.

Second, each agent gets exactly k items. gsk and glk guaran-
tee that the additive value of bundles is at the same level, and
the agent with more items envies the agent with fewer items.

Third, for each i = 1, 2, · · · , k, each agent get exactly one
of gsi and gli, following the similar reasoning of the first step.

Finally, the allocation induces an equal-sum partition of X .
Let Y = {xi|gli ∈ A1}, and Y and X \ Y is an equal-sum
partition of X . Given that each agent get exactly one of gsi
and gli, the difference between two bundles just come from xi

from each i. Therefore, the sum of xi in A1 must equal to the
sum of xi in A2, which implies Y and X \Y be an equal-sum
partition of X . The full proof is in Appendix A.1.

The fact that AEF-EXISTENCE is already NP-complete
without quota directly implies that AEF-EXISTENCE with
quotas is NP-complete.

Corollary 1. AEF-EXISTENCE with a quota is NP-complete
even for two agents with identical valuations.

Despite that AEF allocation is hard to find, we show that
AEF-1 allocation always exists just like EF-1.

Proposition 1. For any instance I, an AEF-1 allocation al-
ways exists and can be found in polynomial time.

Proof. Consider the following allocation scheme:

• If m ≤ n, agents 1, 2, · · · ,m get their favorite item
among the unallocated items in turns. The rest agents
get nothing.

• If m > n, 1, 2, · · · , n− 1 get their favorite item among
the unallocated items in turns, and agent n gets the rest
of the items.

We show that allocation induced by this scheme is AEF-1.
Consider two agents i and h. We show that i does not envy h
up to one item.



m ≤ n. If i ≤ m, then i does not envy any h > i because
h gets either no item or an item inferior to i’s item under i’s
valuation. If h < i, then i and does not envy h by removing
h’s only item. If i > m, then i does not envy any other h after
removing h’s item (if exists).

m > n. If h 6= n, i does not envy h after removing h’s only
item. If h = n, note that i picks their favorite item among all
the rest of the items, including all h’s items. Therefore, for
any g ∈ Ah, vi(Ai) ≥ vi(g). Therefore, ui(Ai) ≥ ui(Ah),
and i does not envy h.

5 AEF-1 with a quota

In this section, we focus on the complexity of AEF-1-
EXISTENCE with quota. Although an AEF-1 allocation al-
ways exists, it is not likely in real-world applications that all
but one agent get exactly one item, and the rest agent gets all
the rest items. Quotas restrict the size of each bundle in rea-
sonable ranges and lead to allocations reflecting real-world
scenarios. Unfortunately, our first result shows that AEF-1-
EXISTENCE with a quota is NP-complete even for binary val-
uations.

Theorem 2. AEF-1-EXISTENCE with a quota is NP-com-
plete even for binary valuations.

Proof. We show a reduction from EF-EXISTENCE for binary
valuations, which is known to be NP-complete [Aziz et al.,
2015; Hosseini et al., 2020].

An EF-EXISTENCE with binary value instance consists of
a set of agents, N = [n], a set of items M (|M | = m), and a
binary additive valuation profile V . The goal is to determine
whether there is an envy-free allocation.

We construct a AEF-1-EXISTENCE with a quota instance
as follows: N ′ = N , M ′ = M ∪ D, where D is a set of
(n − 1)m items which have no value to any agent. Additive
valuation profile V ′ is defined as follows: for each agent i,
and item g, if g ∈ M , v′i(g) = vi(g); otherwise, v′i(g) = 0.
v′i(∅) = 0. u′ is the average value function of v′. The quota
Q requires every agent to receive exactly m items.
(⇒) Suppose EF-EXISTENCE is a YES instance, and

A∗ is an envy-free allocation under V . We show that
AEF-1-EXISTENCE with a quota is a YES instance. Let A′

be an allocation in the AEF-1-EXISTENCE with a quota in-
stance where each agent i gets all the items in A∗

i and fills up
the quota with items in D. It follows from the definition that
A′ satisfies Q. Now we show that A′ is AEF-1. Note that for
any agents i, h, u′

i(A
′
h) =

1
m
vi(A

∗
h). Since A∗ is envy-free,

vi(A
∗
i ) ≥ vi(A

∗
h). Therefore, u′

i(A
′
i) ≥ u′

i(A
′
h), and A′ is an

AEF (thus AEF-1) allocation.
(⇐) Suppose AEF-1-EXISTENCE with a quota is a YES

instance, and A′ is an AEF-1 allocation satisfying Q. We
first show that A must also be an AEF allocation. Suppose
this is not the case, and agent i envies agent h. We show i en-
vies h even after removing one item. From binary valuation,
we have v′i(A

′
i) ≤ v′i(A

′
h) − 1. If agent i removes one item

from Ah, the average value of A′
h is not smaller than A′

i, and
A′

h has fewer items than A′
i. Therefore, A′

h still has a higher
average value than A′

i, and i envies h. If agent i removes
one item from A′

i, the average value will be no more than

v′

i(A
′

h)−1
m−1 . This value is strictly less than ui(A

′
h) =

v′

i(A
′

h)
m

for v′i(A
′
h) < m. If v′i(A

′
h) = m, then v′i(A

′
i) = 0 since

M ′ contains at most m valuable items for i. Therefore, i still
envies h after removing any item. This is a contradiction.
Therefore, A′ must also be AEF allocation.

Now we show that EF-EXISTENCE with binary value
is also a YES instance. Let A∗ be a allocation in EF-
EXISTENCE instance such thatA∗

i = A′
i∩M for every i ∈ N .

Similarly, with relationship u′
i(A

′
h) = 1

m
vi(A

∗
h), the AEF-

ness of A′ implies the envy-freeness of A∗.

Due to the hardness of the problem, we turn to consider
AEF-1 allocation with a fixed number of agents n. We show
that, for binary valuations, AEF-1-EXISTENCE with a quota
for a fixed number of agents is in P , in contrast with the hard-
ness in the general n case.

Theorem 3. There exists a polynomial-time algorithm that,
given any instance of AEF-1-EXISTENCE with a quota for a
fixed number of agents and binary valuations, decides if there
exists an AEF-1 allocation satisfying the quota, and outputs
an allocation if there exists.

[Aziz et al., 2022] proposes a pseudo-polynomial time
dynamic programming algorithm to find an EF-1 allocation
maximizing social welfare given a constant number of agents.
We apply their technique and propose Algorithm 1 to com-
pute AEF-1-EXISTENCE with a quota for binary valuations.

State A state in Algorithm 1 is a triplet (W,H, k). Sup-
pose A is a partial allocation of M = {g1, g2, · · · , gm}
where g1, g2, · · · , gk has been allocated. W is a n-vector
that records the number of items each agent is allocated, i.e.
Wi = |Ai| for each i. H is a n × n-matrix that records
the additive value of each agent toward each bundle, i.e.
H(i, h) = vi(Ah). W and H together record each agent’s
average value on each bundle. For any pair of agents i, h,

ui(Ah) = H(i,h)
Wh

. k = 0, 1, 2 · · · ,m indicates that item

g1, g2, · · · , gk has been allocated while other items are not.
k = 0 means no item has been allocated yet. For each
state, we maintain two values. V ld(W,H, k) ∈ {0, 1} in-
dicates whether this state is reached, which stands for there
exists a partial allocation of whom the state is (W,H, k).
Prev(W,H, k) ∈ N records the agent that item gk is allo-
cated to reach the current state. For any allocation, it is suf-
ficient to judge whether it is AEF-1 and satisfies Q from its
corresponding state.

State Transition For a given state (W,H, k) with k < m
and V ld(W,H, k) = 1, we enumerate the agent to whom
item gk+1 is allocated. For each agent i, we find the up-
dated state (W ′, H ′, k + 1) after gk+1 is allocated to i
and set V ld(W ′, H ′, k + 1) = 1 and Prev(W ′, H ′, k +
1) = i. The algorithm start from (0n,0n×n, 0) and iter-
ated for k = 0, 1, · · · ,m − 1. The search space of W
is W = {0, 1, · · · ,m}n, and the search space H is H =
{0, 1, · · · ,m}n×n. Finally, the algorithm finds if there is a
state V ld(W,H,m) = 1 that is AEF-1 and satisfies Q. If
so, the algorithm outputs YES and constructs the allocation
backward with Prev. Otherwise, the algorithm outputs NO.



Algorithm 1 DP for AEF-1 with quota with binary valuation

Require: Agent set N , Item set M , binary valuation profile
V , and quota Q.

Ensure: An AEF-1 allocation satisfying Q if it exists.
1: Initialization: V ld(0n,0n×n, 0)← 1.
2: for k = 0, 1, · · · ,m do
3: for W ∈ W and H ∈ H such that V ld(W,H, k) = 1

do
4: for i = 1, 2, · · ·n do
5: Update W ′, H ′ after assigning gk+1 to i.
6: V ld(W ′, H ′, k + 1)← 1.
7: Prev(W,H ′, k + 1)← i.
8: for W ∈ W , H ∈ H such that V ld(W,H,m) = 1 do
9: if (W,H,m) is AEF-1 and satisfies Q then

10: Construct the allocation from Prev backward
11: return the allocation.
12: return NO

The technique of enumerating all possible values in Algo-
rithm 1 can be extended to valuations where a bundle has at
most Poly(m) different values. However, for general valua-
tion, a bundle can have exponentially many values. In fact, we
show that AEF-1-EXISTENCE with a quota with fixed n ≥ 3
is NP-complete.

Theorem 4. AEF-1-EXISTENCE with a quota with fixed n ≥
3 is NP-complete.

Proof Sketch. We propose a reduction from the computation
problem of EQUAL-CARDINALITY PARTITION, a variation
of PARTITION that requires equal size between two subsets
and is also NP-complete [Garey and Johnson, 1979]. An in-
stance of EQUAL-CARDINALITY PARTITION consists of a
multiset X = {x1, x2, · · · , x2k} where xi ∈ N. The goal
is to determine whether X can be partitioned into two subsets
Y and X \ Y with equal size k and equal sum T .

Given an EQUAL-CARDINALITY PARTITION instance, we
construct a AEF-1-EXISTENCE with a quota instance with
three agents and 3k + 6 items. (If n > 3, we add agents
that value all items as 0 and are required to receive no items
by the quota.) Agents share the same valuation function v
and average value function u. The quota Q requires ev-
ery agent to be allocated exactly k + 2 items. The item set
M = M1 ∪M2 ∪M3 consists of three parts:

• M1 = {g1, g2, · · · , g2k}, where v(gj) = xj + k2T 2.

Let T ′ = 1
2

∑

g∈M1
v(g) = T + k3T 2.

• M2 contains k + 1 copies of b with v(b) = (k+2)T ′

(k+1)2 .

• M3 contains five copies of 0 with v(0) = 0.

We state that the value of b is smaller than any item in M1.

Lemma 1. For any g ∈M1, v(b) < v(g).

(⇒) If EQUAL-CARDINALITY PARTITION is a YES in-
stance, and Y and (X \ Y ) are a equal-size and equal-sum
partition, we show the following allocation A is AEF-1 and
satisfies Q.

1. A1 = {gj | xj ∈ Y } ∪ {0, 0}.

2. A2 = {gj | xj ∈ (X \ Y )} ∪ {0, 0}.

3. A3 = M2 ∪ {0}.

It’s not hard to verify that each agent gets exactly k+2 items,

u(A1) = u(A2) = T ′

k+2 , and u(A3) = T ′

k+1 . Agent 1 and

2 does not envy each other, and agent 3 does not envy agent
1 and 2. When comparing with agent 3, agent 1 and agent 2
can remove an item 0 in their own bundle, and u(A1 \{0}) =

u(A2 \ {0}) = u(A3) = T ′

k+1 . Therefore, A is AEF-1 and

satisfies Q.
(⇐) If AEF-1-EXISTENCE with a quota is a YES instance,

and A is an AEF-1 allocation satisfying Q. We show that
EQUAL-CARDINALITY PARTITION is a YES instance in
three steps.

First, no agent can have more than two item 0 in their bun-
dles. Otherwise, the agent get at least three 0 envies the agent
get at most one 0 even after removing one item.

Second, the agent with exactly one item 0 (agent 3, with
loss of generality) must have all the item b. Otherwise, since
v(b) < v(g) for any g ∈ M1, the average value of A3 will

exceed T ′

k+1 , and one of A1 and A2 will have average value

strictly less than T ′

k+2 . Then the owner of this bundle will

envy agent 3 even after removing one item.
Finally, agent 1 and agent 2’s bundles must derive a equal-

cardinality partition of X . Otherwise, the average value of the

less-valuable bundle will be strictly less than T ′

k+2 . With the

same reasoning as the second step, the owner of this bundle

will envy agent 3 (with u(A3) = T ′

k+1 ) even after removing

one item. Therefore, EQUAL-CARDINALITY PARTITION is a
YES instance. The full proof is in Appendix A.2

6 Approximation on AEF-1 with a quota

The NP-hardness on AEF-1-EXISTENCE with a quota urges
us to look into approximation results. A natural idea is to
round the value of items so that a bundle can have at most
Poly(m) different values and apply the procedure of Algo-
rithm 1.

For simplicity of calculation, we assume maxi,g vi(g) = 1.
We propose two approximation notions of AEF-1 based on
the additive error and multiplicative ratio respectively.

Definition 7 (ε-error AEF-1). Given ε ≥ 0, an allocation A
is ε-error AEF-1 if for any pairs of agents i, h ∈ N , there
exists an item g ∈ Ai∪Ah such that ui(Ai \ {g}) ≥ ui(Ah \
{g})− ε.

Definition 8 (α-AEF-1). Given 0 < α ≤ 1, an allocation A
is α-AEF-1 if for any pairs of agents i, h ∈ N , there exists an
item g ∈ Ai ∪Ah such that ui(Ai \ {g}) ≥ α ·ui(Ah \ {g}).

Proposition 2. Given the assumption that maxi,g vi(g) = 1,
if an allocation is α-AEF-1, then it is (1− α)-error AEF-1.

Proof. From α-AEF-1 we know that ui(Ai \ {g}) ≥ α ·
ui(Ah \ {g}). Therefore,

ui(Ai \ {g}) ≥ α · ui(Ah \ {g})

= ui(Ah \ {g})− (1− α)ui(Ah \ {g})

≥ ui(Ah \ {g})− (1− α).

The last inequality comes from ui(Ah \ {g}) ≤ 1.



Proposition 2 tells us that α-AEF-1 implies ε-error AEF-1
given bounded valuations. However, ε-error AEF-1 does not
guarantee ε-error AEF-1, as shown in the followings (Exam-
ple 2). Our goal is to find an approximation algorithm that
returns an α-AEF-1 with α close to 1 if possible. We first
introduce our rounding scheme.

Rounding Given the rounding parameter r ∈ N
+ and an

upper bound a > 0, we divide [0, a] into r + 1 intervals

{0}, (0, a
r
], (a

r
, 2a

r
], · · · , ( (r−1)a

r
, a]. For k = 1, 2, · · · r, a

positive value
(k−1)a

r
< x ≤ ka

r
is rounded to ka

r
. 0 is

rounded to 0.
If we apply the same rounding scheme to each vi(g)

and directly apply Algorithm 1, we will be able to find an
2a
r

-error AEF-1 allocation, because an AEF-1 allocation in
the original valuations implies an a

r
-error AEF-1 allocation

in the rounded valuations, and an a
r

-error AEF-1 allocation

in the rounded valuations in turn implies an 2a
r

-error AEF-1
allocation in the original valuations. However, there is no
guarantee on α-AEF-1, because the value of an item can be
rounded from arbitrarily small to a

r
. Example 2 shows a case

where an AEF-1 allocation in the rounded valuation turns out
to be a poor approximation in the original valuation.

Example 2. Given any rounding parameters a, r (assuming
a < r), consider an instance with more than two agents and
more than three items. The table below describes an alloca-
tion where the first two agents 1 and 2 are allocated the first
three items g1, g2, g3.

g1 g2 g3

1 a
r© a

r© εa
r

2 a
r

a
r

εa
r©

Table 2: Allocation A where rounding leads to poor approximation.

For item g3, ε ∈ (0, 1) is an arbitrarily small positive
value. It is not hard to verify that A is not AEF-1, as agent
2 envies agent 1 even after removing an item. Moreover, the
allocation is no better than ε-AEF-1. However, after round-
ing, the value of g1 and g2 is unchanged while the value of g3
is rounded to a

r
. Then A is AEF-1 in the rounded valuation.

Therefore, if Algorithm 1 finds (the state of) A, it returns an
ε-AEF-1 allocation where ε can be arbitrarily small.

Although the instance has an AEF-1 allocation A′ where
agent 1 gets g1 and g3 and agent 2 gets g2, the algorithm may
not find A′. Note that after rounding g2 and g3 both have
value of a

r
. This means that A and A′ share the same state in

Algorithm 1. Which allocation is constructed depends on the
Prev record. By carefully manipulating the order of items,
we can let the algorithm returns A rather than A′.

Therefore, we need a more refined rounding and search-
ing scheme that can distinguish between A and A′ to en-
sure a closer approximation ratio between the original and
the rounded valuation. The rounding of each agent should
be proportional to their valuations so that the rounding er-
ror is not too large compared with the value of their own

bundles. Bu et al. [2022] proposes a bi-criteria approxima-
tion algorithm to maximize EF-1 ratio and social welfare si-
multaneously. We follow their techniques to enumerate all
items being removed in the envy comparisons, i.e. the “1” in
“AEF-1”.

Removing matrix A removing matrix R is a matrix record-
ing the items to remove when agents compare bundles with
each other. For every pair of agents i, h, R(i, h) = (g, l) ∈
(M ∪ {∅}) × {i, h}. The first value g is the item to remove
when agent i compares their bundle with h’s bundle, and the
second value l indicates whether g belongs to i or h. g = ∅
means i does not remove any item when comparing with h. In
this case, l makes no difference. Specifically, R(i, i) = (∅, i)
for each agent i. A removing matrix is valid if it derives a par-
tial allocation of M . That is, it does not contain two entries
(g, l1) and (g, l2) such that l1 6= l2.

Our algorithm runs in four steps. We enumerate on all valid
removing matrix R. For each R, we first allocate the items
that have been pre-allocated by R. Next, we round the val-
ues of the unallocated items based on each agent’s valuation.
Then, we run the dynamic programming search on the unal-
located items under the rounded valuation to validate all pos-
sible states. Finally, we search states where an agent will not
envy another agent by their rounding error under the rounded
valuation after removing one item. If such a state exists, the
algorithm returns the corresponding allocation. Otherwise,
the algorithm returns NO. A detailed description of the algo-
rithm is in Appendix B.

Step 1: pre-allocation Given an removing matrix R, let
MR be the set of item g such there there exists an entry
(g, i) ∈ R. We allocate items in MR according to R. Let
WR

0 and HR
0 be the vector of bundle sizes and the valuation

matrix after MR has been allocated.

Step 2: rounding For each agent i, let MR
i be the set of i’s

removing items, and Let M ′
i = M \ MR

i . For each agent
i, we set the rounding upper-bound a = maxg∈M ′

i
vi(g).

r = m2n2 is the same for all agents. We create the rounded
valuation vRi by rounding the values for all items in M ′

i . That

is, for any agent i, vRi (g) = vi(g) if g ∈ MR
i , and vRi (g) is

rounded to the closest larger kai

r
if g ∈ M ′

i . Let uR
i be the

average value function of vRi . Given a fixed MR
i , each bun-

dle will have at most Poly(m) possible values. Precisely, vRi
takes value from {0, ai

r
, 2ai

r
, · · · , |M ′

i | · ai}.

Step 3: dynamic programming The dynamic program-
ming follows the same procedure of Algorithm 1 that enumer-
ates and iteratively validates states. The difference is that we
run the dynamic programming only on M ′ = M \MR, i.e.
the unallocated items in step 1. The start state is (WR

0 , HR
0 , 0)

which represent the state where all items in MR and no items
in M ′ has been allocated.

Step 4: searching Finally, we search if there is a state that
satisfies two conditions. (1) The state satisfies the quota Q.
(2) For any agent i and h, i does not envy h by more than ai

r

under the rounded valuation uR
i , after removing one item, i.e.

u(Ai \ {g}) ≥ u(Ai \ {g})−
ai

r
for some g. If such a state

exists, the algorithm constructs the allocation backward and



returns it. If such allocation does not exist for any state and
any R, the algorithm returns NO. The reason for searching a
bounded envy allocation rather than an AEF-1 allocation is
to guarantee that the algorithm will always return NO if there
does not exist an AEF-1 allocation (Theorem 5).

The following lemma shows that, by rounding the value
function of each agent based on the most valuable item in
M ′

i , the average value of an agent’s bundle is lower bound by
the average value of M ′

i .

Lemma 2. Given any removing matrix R and allocation A,
and for any agent i, if i does not envy any other agent by more
than ε > 0 under R and uR, then uR

i (Ai) ≥
1
n
uR
i (M

′
i) − ε,

where M ′
i is the set of i’s removing items.

Proof Sketch. Suppose this is not true, and agent i has a bun-
dle Ai with average value less than 1

n
uR
i (M

′
i) − ε. We con-

sider the agent h that takes the share of M ′
i with the largest

average value under i’s valuation. Then i envies h by more
than ε even after removing one item, which is a contradiction.
The full proof is in Appendix A.3.

Lemma 2 guarantees that the rounding error is small com-
pared with the bundle’s average value. Note that M ′

i contains
at most m items, and the largest item has a value of ai. There-
fore, (in i’s valuation,) the average value of M ′

i is at least ai

m
,

and the average value of Ai is at least ai

mn
− ε. On the other

hand, the rounding error is ai

r
= ai

m2n2 . With a lower bound
of average value and a bounded error, a reasonably good ap-
proximation ratio can be guaranteed, as shown in Theorem 5.

Theorem 5. Given any instance of AEF-1-EXISTENCE with
quota (I, Q),

1. if the algorithm returns NO, then (I, Q) does not have
an AEF-1 allocation satisfying Q.

2. if the algorithm returns YES, it gives a (1− 4
mn

)-AEF-1
allocation satisfying Q.

Proof Sketch. (NO case) We turn to prove the equivalent
statement that if (I, Q) exists an AEF-1 allocation satisfy-
ing Q, then the algorithm always returns YES. Suppose A is
an AEF-1 allocation satisfying Q, and R is a removing ma-
trix of A that achieves AEF-1. We show that any agent i will
not envy another agent h by more than ai

r
under uR, after

removing one item. For the original valuation u, we have
ui(Ai \ {g}) ≥ ui(Ah \ {g}) for any i, h and some g. For
the rounded valuation, we have vi(g) ≤ vRi (g) ≤ vi(g) +

ai

r
.

Therefore, the average value of any bundle will neither de-
crease nor increase more than a

r
in the rounded valuation.

Therefore, uR
i (Ai \ {g})− uR

i (Ah \ {g}) ≥ −
ai

r
, and agent

i does not envy agent h by more than ai

r
. In the process of

the algorithm, the state of A will be validated in Step 3 and
found in Step 4, and the algorithm will return YES.

(YES case) We show that if an allocation A satisfies that
any agent i will not envy another agent h by more than ai

r

under uR after removing one item, then A will be (1 −
4

mn
)-AEF-1 under u. Consider any pair of agent i and h

and suppose i still envies h even after removing one item
under the original valuation u. (If such a pair does not ex-
ist, then A is an AEF-1 allocation, and the statement holds.)

For simplicity, let A′
i and A′

h be the bundles after agent i re-
moving item g. Since envy is bounded by ai

r
in the rounded

valuation uR, it is also bounded in the original valuation:
ui(A

′
i) ≥ ui(A

′
h)−

2ai

r
. On the other hand, since i envies h,

ui(A
′
h) > ui(A

′
i). Consider two subcases.

1. ui(A
′
i) ≥ ui(Ai). In this case agent i either remove an

item in Ah or an item with a value lower than average
in Ai. In this case, we have ui(A

′
h) > ui(Ai). With

the rounding, we know ui(Ai) ≥ uR
i (Ai) −

ai

r
. And

from Lemma 2, uR
i (Ai) ≥

1
n
uR
i (M

′
i)−

ai

r
≥ ai

mn
− ai

r
.

Aggregating all these inequalities, we get

ui(A
′
i) ≥ui(A

′
h)−

2ai
r

=(1−
1

4mn
)ui(A

′
h) +

1

4mn
ui(A

′
h)−

2ai
r

≥(1−
1

4mn
)ui(A

′
h) +

1

4mn
·
ai

mn
−

4ai
r

=(1−
1

4mn
)ui(A

′
h).

2. ui(A
′
i) < ui(Ai). In this case, i removes an item in Ai

with a value higher than average. With a similar reason-
ing, we turn to show that ui(Ai) ≥ (1− 1

4mn
)ui(Ah).

Therefore, A is an (1 − 4
mn

)-AEF-1 allocation under the
original valuation u.

7 Conclusion and Future Work

In this paper, we propose average envy-freeness where envy
is defined by the average value of a bundle. AEF provides
a fairness criterion for allocation problems in collaboration
scenarios, where agents have different entitlements, and the
entitlements depend on the allocation itself. We study the
existence and complexity of AEF and AEF-1. While decid-
ing the existence of an AEF allocation is NP-hard, an AEF-1
allocation always exists and can be computed in polynomial
time. We also study the complexity of AEF-1 with quota.
While AEF-1 with quota is NP-complete to decide, we pro-
vide polynomial-time algorithms for instances with a constant
number of agents to find AEF-1 allocation under binary valu-
ation and approximated AEF-1 allocation under general val-
uation.

The notion of average envy-freeness can be extended in
multiple aspects. One extension is scenarios with multiple
copies. For example, in a paper review scenario, a paper
should be reviewed by multiple papers, but a reviewer can-
not review a paper multiple times. Another extension is sce-
narios where items bring different entitlements to agents. We
expect the entitlement of agents to be the sum of entitlements
of items in their bundles, and envy is defined on the sum
of values divided by the entitlement of the agent. It is also
an intriguing direction to find relaxations of AEF other than
AEF-1. An interesting observation is that “AEF-X” is an even
stronger notion than AEF since agents should not envy each
other even if their bundle’s average value is decreased by re-
moving the most valuation item.
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A Full Proofs

A.1 Theorem 1

Theorem 1. AEF-EXISTENCE is NP-complete even for two agents and under identical valuation.

Proof. We construct a reduction from PARTITION, which is known to be NP-complete [Garey and Johnson, 1979]. An instance
of PARTITION consists of a multiset X = {x1, x2, · · · , xk} where xi ∈ N. The goal is to determine whether there exists a
subset Y ⊂ X such that

∑

xi∈Y xi =
∑

xi∈X\Y xi = T , where T = 1
2

∑

xi∈X xi. Without the loss of generality, we assume

that k ≥ 4 and T ≥ 4.
Given an instance of PARTITION, we construct an AEF-EXISTENCE instance as follows. There are n = 2 agents and m = 2k

items. M = {gsi , g
l
i}i=1,2,··· ,k. Two agents share the same valuation function v. u is the average value function on v. For each

i, v(gsi ) = (T 2k2)i, and v(gli) = (T 2k2)i + xi.
Suppose PARTITION is a YES instance, and Y ⊂ X and X \ Y is an equal-sum partition of X . Consider the following

allocation A: A1 = {gli | xi ∈ Y } ∪ {gsi | xi ∈ X \ Y }, and A2 = M \ A1. It’s not hard to verify that u(A1) = u(A2) =
T+

∑k
i=1

(T 2k2)i

k
, which indicates AEF.

Suppose AEF-EXISTENCE is a YES instance, and A is an AEF allocation. We show that A induces a partition of X in the
following four steps.

First, gsk and glk must be allocated to different agents in A. Suppose this is not the case and agent 1 gets both gsk and glk. We

show that agent 2 will envy agent 1. Note that v(A1) ≥ 2(T 2k2)k + xk . Therefore, u(A1) ≥
v(A1)
2k ≥ T 2kk2k−1. On the

other hand, u(A2) cannot exceed the value of the most valuable item left, i.e. u(A2) ≤ v(glk−1) ≤ (T 2k2)k−1 + T . Therefore,

u(A1) > u(A2), and which is a contradiction.
Second, A1 and A2 both contain exactly k items. Suppose this is not the case, and |A1| < |A2|. Then we have |A1| ≤ k − 1

and |A2| ≥ k+1. We show that agent 2 must envy agent 1. Since A1 contains either gsk or glk, v(A1) ≥ (T 2k2)k, and u(A1) ≥
(T 2k2)k

k−1 . A2, on the other hand, can have at most all items expect for gsk. Therefore, v(A2) ≤ 2T +
∑k

i=1(T
2k2)i − (T 2k2)k,

and u(A2) ≤
v(A2)
k+1 . It’s not hard to verify that u(A1) > u(A2), which is a contradiction. As A is an AEF allocation,

|A1| = |A2| implies that v(A1) = v(A2).
Third, for any i = 1, 2 · · · , k, A1 (and A2, respectively) contains exactly one of gsi and gli. Suppose this is not the case,

and i is the largest index such that gsi and gli are allocated to the same agent (suppose agent 1). We show that agent 2 will

envy agent 1. A1 contains one of gsj and glj for each j = i + 1, i + 2, · · · k, and both gsi and gli. Therefore, v(A1) ≥
∑k

j=i+1(T
2k2)j + 2(T 2k2)i. On the other hand v(A2) will not exceed the sum of the rest value. Therefore, v(A2) ≤

∑k

j=i+1(T
2k2)j + (k − i + 1)(T 2k2)i−1 + 2T . We can verify that v(A1) > v(A2), Since both bundles contains k items,

u(A1)− u(A2) =
1
k
(v(A1)− v(A2)) > 0, which is a contradiction.

Finally, we show that A1 and A2 induce a partition on X . Let Y = {xi | gli ∈ A1}, we show that Y and X \ Y is a partition

of X . Note that v(A1) =
∑k

i=1(T
2k2)i +

∑

xi∈Y xi, and v(A2) =
∑k

i=1(T
2k2)i +

∑

xi∈(X\Y ) xi. To achieve AEF, we have

v(A1) = v(A2), which implies
∑

xi∈Y xi =
∑

xi∈(X\Y ) xi. Therefore, Y and X \ Y is a partition of X , and PARTITION is a

YES instance.

A.2 Theorem 4

Theorem 4. AEF-1-EXISTENCE with a quota with fixed n ≥ 3 is NP-complete.

Proof. We show a reduction from EQUAL-CARDINALITY PARTITION, a variation of PARTITION that requires equal size be-
tween two subsets and is also NP-complete [Garey and Johnson, 1979]. An instance of EQUAL-CARDINALITY PARTITION

consists of a multiset X = {x1, x2, · · · , x2k} where xi ∈ N. The goal is to determine whether there exists a subset Y ⊂ X of
size k such that

∑

xi∈Y xi =
∑

xi∈X\Y xi = T , where T = 1
2

∑

xi∈X xi. With the loss of generality, we assume that k ≥ 4

and T ≥ 4.
Given an EQUAL-CARDINALITY PARTITION instance, we construct a AEF-1-EXISTENCE with a quota instance with three

agents and 3k + 6 items. If n > 3, we add agents that value all items as 0 and are required to receive no items by the quota.
Agents share the same valuation function v, and the quota Q requires every agent to have exactly k + 2 items. The item set

M = M1 ∪M2 ∪M3 consists of three parts:

• M1 = {g1, g2, · · · , g2k}, where v(gj) = xj + k2T 2.

Let T ′ = 1
2

∑

g∈M1
v(g) = T + k3T 2.

• M2 contains k + 1 copies of b with v(b) = (k+2)T ′

(k+1)2 .

• M3 contains five copies of 0 with v(0) = 0.



We state that the value of b is smaller than any item in M1. The proof of the lemma is at the end of this proof.

Lemma 1. For any g ∈M1, v(b) < v(g).

If EQUAL-CARDINALITY PARTITION is a YES instance, and Y and X \ Y are a solution, we show the following allocation
A is AEF-1 and satisfies Q.

1. A1 = {gj | xj ∈ Y } ∪ {0, 0}.

2. A2 = {gj | xj ∈ (X \ Y )} ∪ {0, 0}.

3. A3 = M2 ∪ {0}.

It’s not hard to verify that each agent gets exactly k + 2 items, u(A1) = u(A2) =
T ′

k+2 , and u(A3) =
T ′

k+1 . Agent 1 and 2 does

not envy each other, and agent 3 does not envy agent 1 and 2. When comparing with agent 3, agent 1 and agent 2 can remove a

0 in their own bundle, and u(A1 \ {0}) = u(A2 \ {0}) = u(A3) =
T ′

k+1 . Therefore, such allocation is AEF-1 and satisfies Q.

If AEF-1-EXISTENCE with a quota is a YES instance, and A is an AEF-1 allocation satisfying Q. We show that EQUAL-
CARDINALITY PARTITION is a YES instance in the following steps.

First, no agent can have more than two item 0 in their bundles. Suppose this is not the case, and agent 1 gets at least three
0. Without loss of generality, assume agent 2 gets at most one 0. We show that agent 1 envies agent 2 even after removing one
item.

• If agent 1 removes an item in A1, the best choice is to remove an 0. Then the average value of A1 \ {0} is at most
2T+(k−1)k2T 2

k+1 . This is achieved when A1 contains exactly three 0 and all gj such that xj > 0 (Recall that v(g) > v(b),

so containing b will decrease the average value). On the other hand, the average value of A2 is at least
(k+1)·v(b)

k+2 for one

item 0 and k + 1 item b. Then we have u(A1 \ {0}) < u(A2).

• If agent 1 removes an item g in A2, the average value of A1 is at most
2T+(k−1)k2T 2

k+2 , and the value of remaining A2 is at

least
k·v(b)
k+1 . Still, u(A1) < u(A2 \ {g}).

In both cases, agent 1 envies agent 2, which is a contradiction. Therefore, no agents can have more than two item 0. Then there
are two agents with two item 0 and one agent with one item 0.

Second, the agent with exactly one item 0 must have all the item b. Without loss of generality, let agent 3 have exactly one
0. Then A3 = M2 ∪ {0}. Suppose this is not the case, and A3 contains at least one item from M1. Since v(g) > v(b), we have

u(A3) >
T ′

k+1 , and at least one of A1 and A2 will have a value less than T ′

k+2 . Without loss of generality, assume u(A1) <
T ′

k+2 .

We show that agent 1 envies agent 3 even after removing one item.

• If agent 1 removes an item in A1, the best choice is to remove an item 0. Then u(A1 \{0}) =
k+2
k+1u(A1) <

T ′

k+1 < u(A3).

• If agent 1 removes an item g in A3, then u(A3 \ {g}) ≥
k·v(b)
k+1 = k(k+2)T ′

(k+1)3 = T ′

k+1 −
T ′

(k+1)3 > T ′

k+2 . Still u(A1) <

u(A3 \ {g}).

Agent 1 envies agent 3 even after removing one item, which is a contradiction. Therefore, A3 must contain all the item b.
Finally, agent 1 and agent 2’s bundles must derive a partition of X . That is A1 = M ′

1 ∪ {0, 0}, A2 = (M1 \M ′
1) ∪ {0, 0},

where Y = {xj | gj ∈M ′
1} and X \Y is a partition of X . Suppose it is not the case, and Y is not a partition of X . Without loss

of generality, assume
∑

xj∈Y xj < T . Then we have u(A1) <
T ′

k+2 . With a similar reasoning to the second step, we can show

that agent 1 envies agent 3 even after removing one item. Therefore, Y must be a partitioning of X , and EQUAL-CARDINALITY

PARTITION is a YES instance.

Proof of Lemma 1. Note that v(g) ≥ k2T 2 and v(b) = (k+2)T ′

(k+1)2 = (k+2)(T+k3T 2)
(k+1)2 =. Therefore,

v(g)− v(b) ≥k2T 2 −
(k + 2)(T + k3T 2)

(k + 1)2

=(1 −
k(k + 2)

(k + 2)2
)k2T 2 −

(k + 2)T

(k + 1)2

=
k2T 2

(k + 1)2
−

(k + 2)T

(k + 1)2

=
k2T 2 − (k + 2)T

(k + 1)2

>0.



A.3 Theorem 5

Theorem 5. Given any instance of AEF-1-EXISTENCE with quota (I, Q),

1. if Algorithm 2 returns NO, then (I, Q) does not have an AEF-1 allocation satisfying Q.

2. if Algorithm 2 returns YES, it gives a (1− 4
mn

)-AEF-1 allocation satisfying Q.

Proof. For the proof of the theorem, we first propose the following lemma.

Lemma 2. Given any removing matrix R and allocation A, and for any agent i, if i does not envy any other agent by ε > 0
under R and uR, then uR

i (Ai) ≥
1
n
uR
i (M

′
i)− ε.

Lemma 2 gives a lower bound for agents’ valuation on their own bundle, which guarantees the approximation ratio. The
proof of Lemma 2 is at the end of the proof.

For the NO case, we turn to prove that if (I, Q) exists an AEF-1 allocation satisfying Q, then Algorithm 2 always returns
YES. Suppose A is an AEF-1 allocation satisfying Q, and R is the corresponding removing matrix. Then for any agent i 6= h
and the corresponding removing item g, ui(Ai \ {g}) ≥ ui(Ah \ {g}). After rounding to uR, the average value of (Ai \ {g})
will not decrease, and the average value of (Ah \{g}) will increase no more than ai

r
according to the rounding on vi. Therefore,

uR
i (Ai \ {g})− uR

i (Ah \ {g}) ≥ −
ai

r
.

In A, agent i will not envy another agent by more than ai

r
after removing one item underuR. Therefore, the state corresponding

to A will be discovered when searching under R.
For the YES case, we show that if A satisfies that any agent i will not envy another agent by more than ai

r
after removing one

item under uR, then A will be (1 − 4
mn

)-AEF-1 under u. From Lemma 2 we know that uR
i (Ai) ≥

1
n
uR
i (M

′
i) −

ai

r
. Suppose

i still envy h even after removing on item g under v. (If this case does not exist, A is an AEF-1 allocation, and the statement
holds). We discuss cases where g belongs to different bundles.
Case 1: g ∈ Ah. By the envy guarantee in the rounded valuation, we have

ui(Ai) ≥ uR
i (Ai)−

ai

r
≥ uR

i (Ah \ {g})−
2ai
r
≥ ui(Ah \ {g})−

2ai
r

Then by the envy in the original valuation, we have

ui(Ah \ {g}) > ui(Ai) ≥ uR
i (Ai)−

ai

r
≥

1

n
uR
i (M

′
i)−

2ai
r

Now note that M ′
i contains at most m items, of which the largest valuation is ai. Therefore, uR

i (M
′
i) ≥

ai

m
. Therefore,

ui(Ai) ≥ui(Ah \ {g})−
2ai
r

=(1−
4

mn
)ui(Ah \ {g}) +

4

mn
· ui(Ah \ {g})−

2ai
r

≥(1−
4

mn
)ui(Ah \ {g}) +

4

mn
· (

1

n
uR
i (M

′
i)−

2ai
r

)−
2ai
r

≥(1−
4

mn
)ui(Ah \ {g}) +

4

mn
·

a

mn
−

4ai
m2n2

≥(1−
4

mn
)ui(Ah \ {g}).

Case 2: g ∈ Ai, and uR
i (Ai \ {g}) ≥ uR

i (Ai). With a similar reasoning, we have ui(Ai \ {g}) ≥ ui(Ah)−
2ai

r
. And

ui(Ah) > ui(Ai \ {g}) ≥ ui(Ai) ≥ uR
i (Ai)−

ai

r
≥

1

n
uR
i (M

′
i)−

2ai
r

Therefore,

ui(Ai \ {g}) ≥ui(Ah)−
2ai
r

≥(1−
4

mn
)ui(Ah) +

4

mn
· (

1

n
uR
i (M

′
i)−

2ai
r

)−
2ai
r

≥(1−
4

mn
)ui(Ah).



Case 3: g ∈ Ai, and uR
i (Ai \ {g}) < uR

i (Ai). In this case, we have

ui(Ai) > ui(Ai \ {g}) ≥ uR
i (Ai \ {g})−

ai

r
≥ uR

i (Ah)−
2ai
r
≥ ui(Ah)−

2ai
r

.

Note that uR(Ai) ≥
1
n
uR(M ′

i)−
ai

r
, which implies u(Ai) ≥

1
n
uR(M ′

i)−
2ai

r
. Therefore,

ui(Ai) >(1 −
4

mn
)(ui(Ah)−

2ai
r

) +
4

mn
ui(Ai)

≥(1 −
4

mn
)(ui(Ah)−

2ai
r

) +
4

mn
(
1

n
uR(M ′

i)−
2ai
r

)

≥(1 −
4

mn
)ui(Ah) +

4

mn
·
ai

mn
−

4ai
r

≥(1 −
4

mn
)ui(Ah).

Therefore, we show that A is an (1− 4
mn

)-AEF-1 allocation under u.

Proof of Lemma 2. Suppose this is not true, and there exists an agent i such that uR
i (Ai) < 1

n
uR
i (M

′
i) − ε. In this case

1
n
uR
i (M

′
i) > ε.

First we show that uR
i (Ai ∩M ′

i) < uR
i (M

′
i). This is because Ai contains at most n− 1 items from MR

i (one for every other

agent). If Ai ∩M ′
i = 0, then uR

i (Ai ∩M ′
i) = 0. Otherwise, uR

i (Ai ∩M ′
i) ≤ nuR

i (Ai) < uR
i (M

′
i). Then there must exist

another agent h 6= i that takes the share of M ′
i with the largest average value in i’s valuation, i.e. uR

i (Ah ∩M ′
i) ≥ uR

i (M
′
i).

We show i must envy h. Suppose the item i removes when comparing with h is g (which is determined by R).

1. If g ∈ Ah, then Ah \ {g} does not contain any item from MR
i and at least one item from M ′

i . Therefore,

uR
i (Ah \ {g}) = uR

i (Ah ∩M ′
i) ≥ uR

i (M
′
i) > uR

i (Ai) + ε.

2. If g ∈ Ai, then Ah contains at most 1 items from MR
i and at least one item from M ′

i . Therefore,

uR
i (Ah) ≥

1

2
uR
i (Ah ∩M ′

i) ≥
1

2
uR
i (M

′
i)

For i, if Ai contains exactly one item, Then

uR
i (Ai \ {g}) = 0 <

1

n
uR
i (M

′
i)− ε ≤ uR

i (Ah)− ε.

Otherwise, Ai contains at least two items. Therefore,

uR
i (Ai \ {g}) ≤ 2uR

i (Ai) < 2

(

1

n
uR
i (M

′
i)− ε

)

< uR
i (Ah)− ε.

3. If g = ∅ (i does not remove any item), similar to the g ∈ Ai case, we have

uR
i (Ai) <

1

n
uR
i (M

′
i)− ε ≤ uR

i (Ah)− ε.

Therefore, i envies h more than ε even after removing one item, which is a contradiction.

B Approximation Algorithm



Algorithm 2 Approximated DP for AEF-1 with quota

Require: Agent set N , item set M , valuation profile V , and quota Q.
Ensure: (1 − 4

mn
)-AEF-1 allocation satisfying Q.

1: for all valid removing matrix R do
2: For each agent i, let MR

i be the items to remove by i in comparisons (indicated by R) and M ′
i ←M \MR

i .

3: Construct the new valuation V R by rounding the valuations for items in M ′
i for each agent i.

r ← m2n2 and ai ← maxg∈M ′

i
vi(g) for all i.

For all agent i and item g ∈MR
i , vRi (g)← vi(g).

For all agent i and item g ∈M ′
i , v

R
i (g) is the rounded version of vi(g) with parameters (r, ai).

4: Allocate all items in MR
i as R indicates.Let M ′′ be the set of unallocated items. Let WR

0 and HR
0 be the (initial) state

after allocation.
5: Define the search space. WR = {0, 1, · · · ,m}n.

HR
i = {0, ai

r
, 2ai

r
, · · · , |M ′

i |ai}
n, andHR = {HR

0 +HR|HR ∈ HR
1 ×H

R
2 × · · · × H

R
n }

6: Initialization: V ld(WR
0 , HR

0 , 0)← 1.
7: for k = 0, 1, · · · , |M ′| − 1 do
8: for W ∈ WR and H ∈ HR such that V ld(W,H, k) = 1 do
9: for i = 1, 2, · · ·n do

10: Update W ′ and H ′ after assigning the k-th item in M ′ to agent i.
11: V ld(W ′, H ′, k + 1)← 1. Prev(W ′, H ′, k + 1)← i.
12: for W ∈ WR, H ∈ HR such that V ld(W,H, |M ′|) = 1 do
13: if (W,H, |M ′|)

(1) satisfies for each i, agent i envies any other agent by at most ai

r
after removing one item,

(2) satisfies the quota Q, then
14: Construct the allocation from Prev backward. return YES and the allocation.
15: return NO.
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