
Addressing Strategic Manipulation Disparities in Fair
Classification

Vijay Keswani

L. Elisa Celis

vijay.keswani@yale.edu

elisa.celis@yale.edu

Yale University

New Haven, USA

ABSTRACT

In real-world classification settings, such as loan application evalua-

tion or content moderation on online platforms, individuals respond

to classifier predictions by strategically updating their features to

increase their likelihood of receiving a particular (positive) decision

(at a certain cost). Yet, when different demographic groups have

different feature distributions or pay different update costs, prior

work has shown that individuals from minority groups often pay

a higher cost to update their features. Fair classification aims to

address such classifier performance disparities by constraining the

classifiers to satisfy statistical fairness properties. However, we

show that standard fairness constraints do not guarantee that the

constrained classifier reduces the disparity in strategic manipula-

tion cost. To address such biases in strategic settings and provide

equal opportunities for strategic manipulation, we propose a con-

strained optimization framework that constructs classifiers that

lower the strategic manipulation cost for minority groups. We de-

velop our framework by studying theoretical connections between

group-specific strategic cost disparity and standard selection rate

fairness metrics (e.g., statistical rate and true positive rate). Empiri-

cally, we show the efficacy of this approach over multiple real-world

datasets.
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1 INTRODUCTION

In prediction/classification settings, the goal is to develop auto-

mated models that accurately predict class labels using the available

demographic and task-specific features of individuals. The use of

predictive models in many real-world applications, however, im-

pacts the features of the underlying population. One direct way

this happens is when individuals take steps to update their features

to potentially obtain a different prediction in the future. In binary

classification, where positive class labels can denote success for a
given task, individuals who have been negatively classified will

attempt to update their features in a manner that increases their

likelihood of receiving a positive decision in the future.

There are numerous examples of such individual behavior in

response to institutional decisions. Consider the setting of loan ap-

plications, where the features are individuals’ demographics, annual

income, credit history, number of dependents, the number of open

credit lines, etc. The class label to be predicted is whether an individ-

ual will default on a loan or not. The number of open credit lines is

a feature that is often positively correlated with the class label and

individuals can increase their likelihood of positive loan application

(or increase their credit score) by opening more credit lines
1
. How-

ever, opening credit lines requires additional investment on the part

of the individuals [8]. Another example is social media websites

and online platforms. Even without a complete understanding of a

platform’s recommendation system, users nevertheless attempt to

intervene in different ways to exercise control over the platform’s

algorithms [40]. For example, content moderation tools used in

social media platforms flag objectionable posts, which are then

suppressed by the recommendation system to ensure low visibil-

ity [17] (often unfairly targeting minority voices [20, 48]). Users,

in this case, curate and modify their content to work around the

platform’s decision [5, 40]. Beyond content moderation, strategic

manipulation can allow users to avoid harassment, as seen in the

case of Twitter [5]. Evidence of users’ attempts to exercise control

over an online platform’s algorithms has similarly been observed

in ride-hailing apps like Uber and Lyft [36]. A final example is the

setting of college admissions, where the features are individuals’ de-

mographics, school academic records, extra-curricular records, and

scores from standardized tests like GRE. The class label to be pre-

dicted is the likelihood of academic “success” to determine college

admissions. In this case, while higher scores for standardized tests

increase the chances of a successful college application, students

1
For the sake of simplicity, assume all the other features are unchanged; in real-world

scenarios, there will be simultaneous dependence on other variables as well here, e.g.

whether the individual has been regular with their payments or not.
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can take these tests multiple times and submit only the highest

scores. Nevertheless, there is an additional investment required as

every additional test attempt involves monetary and time expenses

[42]. Feature manipulations of these kinds can also take the form of

positive steps taken by individuals to improve their features (e.g.,

investing additional time in test preparation) [2, 30] and/or provide

individuals with the agency to address model decisions [39, 41].

The above-described process involves two main players: the in-

stitution constructing a classifier and the individuals reacting to

the classifier. While the institution’s goal is to minimize prediction

error (or maximize a certain measure of utility), individuals react to

the classifier predictions by strategically manipulating their features
to achieve a positive classification. In these strategic settings, often

due to historical biases, the classifier employed by the institution

can pose relatively higher costs for strategic manipulation (i.e., in-

creased costs to improve their feature values) for individuals from

minority groups (e.g., race and gender minorities). Prior work has

observed such disparities in settings where the datasets used for

training the classifier encode social biases or when minority groups

pay larger costs to update their features [26, 34]. For example, in the

case of loan applications, historical discrimination against African

Americans in financial aspects often deters them from seeking new

credit lines [46]. In the case of social media platforms, content mod-

eration tools exhibit bias against minority groups, for example, by

reducing the visibility of posts by advocates from minority groups

[3, 20, 24] or by using biased sentiment analysis tools [10, 29]; these

biases lead to greater hurdles for these groups to make their voices

heard. Similarly, for graduate school admissions, Wilson [45] re-

vealed limitations of GRE and UGPA scores in predicting graduate

school success for Black students. Using these scores without con-

sidering the racial disparities can create a higher admission barrier

for Black students. These biases are a result of negative stereo-

types and/or historical lack of opportunities for minority groups

and classifiers that inherit such biases can further propagate them.

In the presence of these biases in the predictions of trained classi-

fiers, one can ask whether an institution can construct classifiers

that provide equal opportunities for strategic manipulation to all

groups and address the systemic disparities in investment required

to improve their outcomes. Strategic manipulation opportunities

often serve as mechanisms to provide individuals with recourse or
agency against biased institutional decisions [41]. As such, equaliz-

ing manipulation opportunities will ensure that majority groups

do not solely take advantage of effective strategic manipulations

and provide similar power to minority groups to address classifier

decisions.

Fairness-constrained classification attempts to address such dis-

parities in classifier performance by constraining the classifier to

satisfy certain statistical fairness properties. For example, when

constraining with respect to statistical rate, the classifiers are con-
strained to have an almost-equal selection rate for all groups [1, 6,

13, 38, 47]. Similarly, when constraining with respect to equalized
odds, the classifiers are constrained to have equal false positive

and true positive rates for all groups [6, 22, 38]. However, these

fairness metrics and constraints operate in a static manner and

do not take into account the response of the individuals to the

classifier predictions or the disparity in costs that different groups

pay for updating their features. Even though fairness constraints

encourage the increased selection of minority group individuals,

existing dataset biases or update cost disparities can still dispropor-

tionately affect the negatively-classified individuals in the minority

group. Correspondingly, the primary question we investigate is the
following: Do constraints that use standard static fairness metrics lead
to classifiers that reduce strategic manipulation costs for minority
groups?

Our Contributions.We first theoretically study the relationship

between standard selection rate fairness metrics (like statistical rate

and true positive rate disparity) and the disparity in strategic ma-

nipulation costs between majority and minority groups when only

one-dimensional features and group membership of individuals are

provided (Section 3). Our analysis shows that threshold-based clas-

sifiers that have an equal selection rate for all groups can still have

higher strategic manipulation costs for the disadvantaged groups

when feature distributions or cost functions differ across groups.

(Theorem 3.3, 3.4). Prior works on strategic cost disparities only

demonstrated that this disparity can be large in unconstrained set-

tings [26, 34]. Our analysis demonstrates that even “fair” classifiers

that are constrained using selection rate fairness metrics can still

have large strategic cost disparities. To address this bias, we bound

the strategic cost disparity using the statistical properties of the

classifier and the cost function. Using these bounds as constraints,

we construct classifiers that have both low selection rate dispar-

ity and low strategic cost disparity. We also extend the results to

multi-dimensional settings when the classifier is linear and the cost

function is linear or quadratic (Section 4). The primary technical

challenge we face in proving our results is accounting for all factors

that result in strategic cost disparity. As we discuss in Section 3,

this disparity can arise due to multiple reasons, such as unequal

group selection rates, variation in cost functions across groups,

and “distance” of negatively classified individuals from classifier

thresholds. Correspondingly, our results quantify the relationship

between the strategic cost incurred by each group and the group’s

selection rate using all relevant factors, including bounds on the

cost function gradient and other related empirical properties of the

classifier. Using these bounds, we can construct appropriate classi-

fiers that minimize strategic cost disparity. Our theoretical results

are complemented by empirical analysis on two real-world financial

datasets: the FICO credit dataset [22] and the Adult income dataset

[11] (Section 5). For both datasets, we show that fair classification

with our proposed constraints leads to lower manipulation costs

for the minority group.

Related Work. Studies by Milli et al. [34] and Hu et al. [26] first

analyzed strategic manipulation cost disparities when feature dis-

tributions or cost functions are biased against minority groups.

However, their analysis is limited to classifiers that optimize institu-

tion utility; in contrast, we also study classifiers that optimize utility

subject to standard fairness constraints. Estornell et al. [14] and

Braverman and Garg [4], on the other hand, assess classifier fair-

ness in strategic settings using only selection rate fairness metrics.

Estornell et al. [14] observed that statistical parity or equalized odds

constrained classifiers become less “fair” (with respect to the same

metrics) than unconstrained classifiers due to strategic manipula-

tions. Braverman and Garg [4] study the impact of randomness on

classifiers trained in strategic settings and propose the use of noisy
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features to address selection rate disparities in the outputs of these

classifiers. Like our work, both these papers evaluate the impact of

fair classification in strategic settings; however, they analyze the

fairness of final individual outcomes using only selection rate met-

rics and do not consider the costs disparity across groups. Similar

to strategic updates, Ustun et al. [39] consider the notion of action-
able recourse and provide tools to minimize recourse cost for linear

classifiers. However, their work does not aim to address recourse

cost disparities. Gupta et al. [19], von Kügelgen et al. [43] extend

this line of work to study recourse disparities in classification; how-

ever, their models only handle settings where cost functions are

the same for all groups. As noted in multiple prior studies [9, 41],

minority group individuals often pay larger costs to update their

features, which then leads to recourse disparities. Our framework

is, hence, more generic (than [19, 43]) as it tackles both cost and

feature disparities.

Static fairness constraints in non-strategic settings, that com-

pare the selection rate of majority and minority groups, have been

extensively studied in the context of constructing fair classifiers

[1, 6, 13, 28, 31, 38, 47, 49, 50]. For non-strategic settings, Hu and

Chen [25] show that selection rate-constrained classifiers may not

improve the average quality of predictions received by the disad-

vantaged groups. We extend this direction to analyze the impact of

fair classification in strategic settings. Recent work on strategic set-

tings has also studied classifiers that are robust to strategic updates

[7, 12, 21, 23, 27, 30]. The analysis in these papers is primarily from

the viewpoint of an institution maximizing its utility given informa-

tion about individuals’ behavior and these papers do not consider

the fairness goal of reducing manipulation costs disparities with

respect to protected attributes. Our paper, instead, considers the

individuals’ perspective and addresses the cost disparities arising

from group memberships. While we look at the one-step feedback

models, performative prediction algorithms model multi-step feed-

back settings to construct classifiers that are stable over induced

distributions [33, 37]. For ease of analysis, we limit our study to

one-step feedback settings.

2 MODEL FORMALIZATION

Let 𝑥 ∈ X ⊆ R𝑑 denote the features of an individual in the pop-

ulation, 𝑦 ∈ {0, 1} denote the true class label to be predicted and

𝑧 ∈ Z denote the protected attribute (assumed to be binary for

our current analysis). We will use D to denote the underlying joint

distribution of features, class labels, and protected attributes, and let

𝑋,𝑌, 𝑍 denote the respective random variables. We will work with

threshold-based classifiers 𝑓 : X → {0, 1} which set a threshold on

the likelihood of any point achieving a positive class label
2
.

Strategic manipulations and individual cost functions. As

mentioned earlier, individuals can update or manipulate their fea-

tures at a certain cost after observing a classifier prediction. Let

𝑐 : X×X → R denote the cost function such that 𝑐 (𝑥, 𝑥 ′) is the
cost paid by an individual to update their feature from 𝑥 to 𝑥 ′. The
subsequent utility gained by the individual from this update can

be quantified as 𝑢𝑥 (𝑓 , 𝑥 ′) := 𝑓 (𝑥 ′)−𝑐 (𝑥, 𝑥 ′). In this setting, the

2
Any hypothesis class where the classifier output is a distribution over the labels (e.g.,

logistic regression, Naive Bayes and MLPs) can be represented using threshold-based

classifiers and correspondingly used in our framework.

optimal feature update for an individual (in response to a classifier

𝑓 ) is captured by Δ𝑓 (𝑥) := argmax𝑥 ′ 𝑢𝑥 (𝑓 , 𝑥 ′) . Since we only aim

to model updates that lead to improved classifier prediction, we

will study cost functions that have no feature update cost if the in-

dividual is already positively classified. In other words, individuals

are rational and aim to maximize their utility (this assumption is

consistent with prior work on strategic settings [21, 26]).

The institution’s aim, in the unconstrained setting, is to minimize

error w.r.t. a given loss function L, i.e., find the classifier 𝑓 that min-

imizes ED [L(𝑓 ;𝑋,𝑌 )]. When using unmanipulated data, this loss

will be a proxy measure for PD [𝑓 (𝑋 ) = 𝑌 ], while for manipulated

data, this loss will be a surrogate for PD [𝑓 (Δ𝑓 (𝑋 )) = 𝑌 ] (i.e., the
standard accuracy measure in strategic classification [21, 32, 33]).

Any common classification loss function can be used for L; e.g., we

use the log-loss function in some of our simulations. Other common

loss functions, such as mean square loss, hinge loss, or regularized

versions of these functions, can also be used with our framework.

However, to incorporate fairness in this optimization program, we

need additional fairness constraints.

Ground truth label 𝑦. Feature manipulations represent actions or

changes that are under individual-level control, such that positively

manipulating the relevant features can potentially lead to a change

in the classifier decision for this individual. In a variety of real-world

settings, individual actions to update features 𝑥 can either change

their ground truth label 𝑦 or not affect their ground truth label

depending on the nature of the update and the context. In all cases,

it is important to ensure that equal opportunities for manipulations

are available across demographic groups. However, in this paper, we

primarily consider the settings where strategic manipulations are

used as a recourse option to address unfair institutional decisions.

While our model and theoretical analysis can handle both settings

(i.e., when manipulations change ground truth and when they don’t

affect ground truth), our empirical analysis will primarily focus

on cases where ground truth remains unchanged due to strategic

updates, as these updates capture recourse strategies. This assump-

tion is also consistent with other works on strategic or adversarial

manipulations [14, 18, 21].

To see why it is important to study strategic manipulations as a

recourse option we present a few examples where feature updates

do not lead to a change in ground truth label 𝑦 but still provide

valuable agency to individuals.

– Example (1):On online platforms, costs associatedwith individuals’

actions can be seen to depend on a variety of factors. Many studies

have reported that Black activists face higher levels of censorship

on social media platforms simply due to mentions of race-associated

terms [20]. To counter this, such activists have to manipulate their

posts (e.g., by changing certain words or using screenshots) to get

around the automated moderation tools, paying a cost in terms

of time and resources required for such manipulation. Note that,

these actions do not change the ground truth label 𝑦 of the post

(i.e., the post continues to remain non-offensive), yet the censored

individuals have to take action and pay associated costs so that the

automated system aligns with their ground truth label.

– Example (2): In a lending situation, an individual’s credit score is an
important factor when evaluating their loan application. However,

many studies have shown that changes in credit scores are related
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to factors beyond an individual’s financial credibility. Take the

following example from a CNBC article
3
: two people with equal

annual income, equal credit card debt, and equal credit limit got

the $1200 stimulus check. The first one used the entire amount to

pay off the credit card debt while the second one used $600 towards

paying off their debt and used $600 for their savings. However, due

to different credit utilization rates, the first person’s credit score will
be higher than the second person’s score. Both individuals in this

case have the same income/resources and, if they both applied for a

loan, they arguably would have a similar likelihood to pay back the

loan (implying no significant changes in ground truth for default

risk 𝑦). Yet, because the first person has a higher credit score, any

decision-making policy that uses credit scores would prefer the

first person for the loan. Hence, individual actions affect classifier

decisions, sometimes independent of ground truth.

The above examples are settings where individuals can use strate-

gic manipulations as a recourse option when they believe that the

institution’s decision is not correct. These examples also make it

clear that addressing incorrect decisions can require monetary or

time investments by individuals. In these examples and numer-

ous other settings explored in prior work [3, 10, 24, 45], strategic

manipulations are used by individuals to exercise control over insti-

tutional decisions. We primarily analyze strategic manipulations in

these recourse contexts because our analysis considers the perspec-

tive of the individuals and the agency provided to them to address

unfair institutional decisions. The institution can use a classifier

that either simply maximizes their utility/accuracy or they can use

one that is fair with respect to standard selection rate fairness met-

rics. We evaluate the impact of such classifiers on individuals from

different groups and the average cost they have to pay to positively

manipulate their features based on their group membership.

Selection rate fairness metrics. The protected attribute 𝑧 ∈ Z
is the focus of our analysis of fairness. Standard fair classification

algorithms measure fairness using group-specific selection rates,

either over the entire population or over certain subpopulations

[6, 35]. For any sub-population condition𝜓 : X × Y → {0, 1}, the
(conditional) selection rate of a classifier 𝑓 with respect to protected

attribute group 𝑧 can be defined as 𝐻𝑧 (𝑓 ,𝜓 ) := PD [𝑓 (𝑋 ) = 1 |
𝜓 (𝑋,𝑌 ) = 1, 𝑍 = 𝑧]. With respect to this definition, the conditional

selection rate fairness of 𝑓 can be quantified as

𝐻 (𝑓 ,𝜓 ) := 𝐻0 (𝑓 ,𝜓 ) − 𝐻1 (𝑓 ,𝜓 ) .
If the condition is identity, i.e. 𝜓 (𝑥,𝑦) = 1, then 𝐻𝑧 (𝑓 ,𝜓 ) simply

measures the fraction of elements in group 𝑧 that are positively

classified and 𝐻 (𝑓 ,𝜓 ) in this case is the standard statistical rate

metric [13]. If the condition is 𝜓 (𝑥,𝑦) = 1(𝑦=1), then 𝐻𝑧 (𝑓 ,𝜓 )
measures the true positive rate for group 𝑧, and 𝐻 (𝑓 ,𝜓 ) is the true
positive rate disparity across the protected attribute groups [22, 47].

Using the above definition of 𝐻 , all standard linear fairness metrics
considered in Celis et al. [6] can be represented in additive form.

When clear from context, we will use shorthand𝜓 to denote𝜓 (·, ·).
Strategic cost disparity. The power of strategic manipulation can

be different for different demographic groups, which is the primary

kind of bias we tackle in this paper. As mentioned earlier, these

biases can occur when the underlying distributions vary across

3
https://www.cnbc.com/select/paying-off-credit-card-debt-boosts-credit-score/

groups due to possibly different historical evolution trajectories

followed by group-specific distributions [46], or when one group

pays larger update costs than others for similar updates [15].

For a classifier 𝑓 , the expected cost incurred by individuals from

group 𝑍 = 𝑧 can be measured using ED [𝑐 (𝑋,Δ𝑓 (𝑋 )) | 𝑍 = 𝑧], a
quantity referred to as the social burden for the group 𝑧 by Milli

et al. [34]. Therefore, one measure of fairness we can look at in

this strategic setting is the following gap: E[𝑐 (𝑋,Δ𝑓 (𝑋 )) | 𝑍 =

0] − E[𝑐 (𝑋,Δ𝑓 (𝑋 )) | 𝑍 = 1]. Higher values (> 0) of this quantity

imply that individuals from group 0, on average, pay a larger cost to

strategically manipulate their features than individuals from group

1. While the above measure evaluates the cost for all individuals

in each group, different contexts might require focusing on dif-

ferent sub-populations of individuals from each group. E.g., in the

recidivism risk assessment setting [44], we may want to analyze the

average cost paid by a low-risk individual from the minority group

who has been deemed high-risk to overturn the classifier decision.

In this case, the expected cost E[𝑐 (𝑋,Δ𝑓 (𝑋 )) | 𝑌 = 1, 𝑍 = 𝑧] is
more relevant (𝑌 = 1 denotes low-risk). Hence, in general, for any

classifier 𝑓 , we can define the social burden for any group 𝑧 with

respect a given sub-population condition 𝜓 : X × Y → {0, 1} as
𝐺𝑧 (𝑓 ,𝜓 ) := E[𝑐 (𝑋,Δ𝑓 (𝑋 )) | 𝜓 (𝑋,𝑌 ) = 1, 𝑍 = 0] and, correspond-
ingly, define the social burden gap as

𝐺 (𝑓 ,𝜓 ) := 𝐺0 (𝑓 ,𝜓 ) −𝐺1 (𝑓 ,𝜓 ) .

Classifiers that equalize manipulation costs (𝐺 (𝑓 , ·) = 0) ensure

that all groups have similar manipulation power. In certain cases,

we might even require 𝐺 (𝑓 , ·) less than 0 to counter historical

inequalities faced by disadvantaged groups. Hence, our goal is to

provide an optimization framework to construct classifiers with a

desired social burden gap.

3 LINKING SELECTION-RATE FAIRNESS AND

SOCIAL BURDEN GAP IN

ONE-DIMENSIONAL SETTING

We first look at the case when the features are one-dimensional

and positive, i.e., X = R≥0. This setting models several real-world

scenarios such as the use of credit scores for loan applications or

exam scores for school admissions. Furthermore, when the likeli-

hood of positive classification (P[𝑌=1 | 𝑋=𝑥]) can be computed

(even approximately), one can use the likelihood as the feature for

classification (similar to the model of Milli et al. [34]). Secondly,

we will assume outcome monotonicity of the cost function with

respect to the feature: if 𝜏>𝑥1>𝑥2, then 𝑐 (𝑥2, 𝜏)>𝑐 (𝑥1, 𝜏). In this

case, threshold-based classifiers will classify all individuals with

feature values greater than a specific threshold as positive and all

individuals with feature values less than the threshold as nega-

tive. As mentioned before, we study cost functions that only have

non-zero costs for the individuals classified as negative. Hence,

we assume that the cost function 𝑐 has the following property:

𝑐 (𝑥1, 𝑥2) is non-zero (and positive) only when 𝑥1<𝑥2; i.e., for a con-

tinuous and differentiable function 𝑑 : X×X→R, we can say that

𝑐 (𝑥1, 𝑥2) = 𝑑 (𝑥1, 𝑥2) · 1(𝑥2>𝑥1). Due to outcome monotonicity, the

gradient of 𝑐 (𝑥1, 𝑥2) with respect to 𝑥1 will be negative. We note

that these assumptions are similar to those considered in [26, 34].

https://www.cnbc.com/select/paying-off-credit-card-debt-boosts-credit-score/
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Prior work has shown that two kinds of biases can lead to ma-

nipulation cost disparities: feature biases and cost function biases.
For the first part of the analysis, we focus on feature biases and we

analyze the impact of cost function biases later in this section. Fea-

ture biases refer to settings where disadvantaged group individuals

have scores concentrated in sub-spaces that have a lower likelihood

of positive classification; e.g., credit score datasets exhibit these

biases for African-Americans [22]. They can be formally defined

as follows. For a sub-population condition𝜓 , there is feature bias

against group 𝑍 = 0 in distribution D if, for all 𝑥 ∈ X, 𝑧 ∈ {0, 1} s.t.
Pr[𝑋<𝑥 | 𝑍 = 𝑧,𝜓 (𝑋,𝑌 )=1] ∈ (0, 1), we have that
PD [𝑋 < 𝑥 | 𝑍 = 0,𝜓 (𝑋,𝑌 ) = 1] > PD [𝑋 < 𝑥 | 𝑍 = 1,𝜓 (𝑋,𝑌 ) = 1] .

(1)

With respect to feature biases, we restate the result of Milli et al. [34]

below, generalizing it to cases when cost analysis may be limited

to a certain sub-population defined by condition𝜓 .

Proposition 3.1. Suppose we have a sub-population condition𝜓
and a cost function 𝑐 (·, ·). For a classifier 𝑓𝜏 , characterized by a single
threshold 𝜏 , if there is feature bias against group 0 as defined in (1)

then for all 𝜏 ∈ X, 𝐺 (𝑓𝜏 ,𝜓 ) > 0.

Proposition 3.1 states that if there is feature bias against group 0

then using 𝑓𝜏 leads to higher expected strategic cost for group 0

than group 1. For the one-dimensional setting, the above result

shows that a single threshold-based classifier can be discriminatory.

Classifiers that use group-specific thresholds, on the other hand,

can achieve low social burden gaps as we show below. For 𝜏0, 𝜏1∈X,

let 𝑓𝜏0,𝜏1 denote the classifier that uses threshold 𝜏0, 𝜏1 for group 0,

1 respectively.

Proposition 3.2. Suppose we are given a sub-population condition
𝜓 and a cost function 𝑐 (𝑥1, 𝑥2). Say there is feature bias against group
0 in distributionD as defined in (1). Then there exist 𝜏0, 𝜏1 ∈ X2 such
that 𝐺 (𝑓𝜏0,𝜏1 ,𝜓 ) < 0.

Proposition 3.2 shows that appropriately selected group-specific

thresholds can lead to a relatively lower social burden for disadvan-

taged groups; strategies for efficiently searching for these appropri-

ate thresholds are discussed later in this section. The proofs of both

propositions are presented in Appendix A. We next study whether

group-specific classifiers that are fair with respect to selection rate

fairness metric 𝐻 (𝑓 ,𝜓 ) also have low social burden gap 𝐺 (𝑓 ,𝜓 ).
As mentioned earlier, one of the goals of fair classification is to

provide equal opportunities for all demographic groups. By equaliz-

ing selection rates across groups, prior work forces the classifier to

select more disadvantaged group individuals who otherwise would

not be selected in the unconstrained case due to dataset biases.

However, we show below that achieving fairness w.r.t. selection

rate-based metrics (like statistical rate) may not lead to reduced

strategic manipulation costs for the disadvantaged group. This is

because the average strategic cost incurred by a group depends on

the distance between the classifier’s threshold for the group and

the features of negatively classified individuals from this group; the

greater this distance, the greater the strategic cost. Even when a

classifier 𝑓 with fair w.r.t. selection rate fairness metric 𝐻 (𝑓 , ·), it
may not be fair w.r.t. social burden gap 𝐺 (𝑓 , ·) since the distance
between classifier threshold and features of negatively-classified in-

dividuals of a minority group can still be large (Section 5.1 presents

simulations on this point). The following theorem quantifies this

issue and shows that the social burden gap depends not just on

selection rate disparity, but also on cost function and classifier

properties.

Theorem 3.3. Suppose we are given group-specific thresholds 𝜏0, 𝜏1
and a sub-population condition𝜓 , and the cost function 𝑐 (𝑥1, 𝑥2) =
𝑑 (𝑥1, 𝑥2)1(𝑥2 > 𝑥1). For a fixed 𝑥2, suppose that the gradient of
𝑑 with respect to 𝑥1 at any point in (0, 𝑥2) is in the range [𝑔𝑙 , 𝑔𝑢 ],
for some 𝑔𝑙 ≤ 𝑔𝑢 ≤ 0. Let 𝑃𝑧 (𝜏) = P[𝑋 ∈ (0, 𝜏) | 𝑍 = 𝑧,𝜓 ] and
𝐸𝑧,𝜏 = E[𝑋 | 𝑋 ∈ [0, 𝜏], 𝑍 = 𝑧,𝜓 ]𝑃𝑧 (𝜏). Then, we can bound the
social burden gap of classifier 𝑓𝜏0,𝜏1 as follows

𝐺 (𝑓𝜏0,𝜏1 ,𝜓 ) ≤ 𝑔𝑢𝜏1𝐻 (𝑓𝜏0,𝜏1 ,𝜓 )+(𝑔𝑢𝜏1−𝑔𝑙𝜏0)𝑃0 (𝜏0)−𝑔𝑢𝐸1,𝜏1+𝑔𝑙𝐸0,𝜏0 ,

𝐺 (𝑓𝜏0,𝜏1 ,𝜓 ) ≥ 𝑔𝑙𝜏1𝐻 (𝑓𝜏0,𝜏1 ,𝜓 )+(𝑔𝑙𝜏1−𝑔𝑢𝜏0)𝑃0 (𝜏0)−𝑔𝑙𝐸1,𝜏1+𝑔𝑢𝐸0,𝜏0 .

The proof is presented in Appendix A. Note that Theorem 3.3 does

not assume feature bias (Eq (1)) to be explicitly present and can

handle generic feature distributions. To interpret the above theorem,

consider the impact of different 𝐻 (𝑓𝜏0,𝜏1 ,𝜓 ) values. For simplicity,

suppose 𝜓 (𝑥,𝑦)=1 for all (𝑥,𝑦) (i.e., 𝐻 (𝑓𝜏0,𝜏1 ,𝜓 ) is the statistical

rate). When 𝐻 (𝑓𝜏0,𝜏1 ,𝜓 )=0, the classifier has an equal selection rate

for group 0 and group 1. Consider the setting when 𝑑 is linear, i.e.,

𝑑 (𝑥1, 𝑥2) = 𝑥2 − 𝑥1. In this case, the upper and lower bounds are

equal and the social burden gap is (𝜏0 − 𝜏1)𝑃0 (𝜏0) − 𝐸0,𝜏0 + 𝐸1,𝜏1 .

Since 𝐻 (𝑓𝜏0,𝜏1 ,𝜓 ) = 0, we can simplify𝐺 (𝑓𝜏0,𝜏1 ,𝜓 ) to be (𝜏0 −E[𝑋 |
𝑋 ∈ [0, 𝜏0], 𝑍 = 0] − 𝜏1 + E[𝑋 | 𝑋 ∈ [0, 𝜏1], 𝑍 = 1])𝑃0 (𝜏0).

In this equation, (𝜏𝑧 − E[𝑋 | 𝑋 ∈ [0, 𝜏𝑧], 𝑍 = 𝑧]) is the average
distance of feature values of negative-classified individuals of group

𝑧 from the decision boundary. The difference between these dis-

tances for group 0 and group 1 depends on the choice of 𝜏0, 𝜏1 and

group distributions. To intuitively understand this dependence, we

provide simulations over datasets generated using Gaussian distri-

butions in Section 5.1. The simulations show that as the distribution

variance increases, the social burden gap of classifiers, constrained

to have 𝐻 (𝑓𝜏0,𝜏1 ,𝜓 )≈0, can also dramatically increase. This is why

simply constraining 𝐻 (𝑓𝜏0,𝜏1 ,𝜓 ) is not sufficient to obtain a classi-

fier with a low social burden gap. However, when 𝐻 (𝑓𝜏0,𝜏1 ,𝜓 )<0,
the difference between the above distances is unlikely to be small

since (a) low 𝐻 implies that 𝜏0 is higher or similar to 𝜏1 and (b) due

to feature bias the feature values of group 0 are lower than group

1. Hence, 𝐻 (𝑓𝜏0,𝜏1 ,𝜓 ) being greater than or equal to 0 is necessary

(but not sufficient) to have low social burden gap.

Extension to group-specific cost functions. In many settings,

strategic cost disparity can arise due to cost function biases, i.e.,
from different groups having different cost functions. Due to these

biases, for the same unit of a feature update, the disadvantaged

group would pay a larger cost than the advantaged group; e.g.,

African Americans face larger access barriers to credit than White

Americans [9]. To account for group-specific costs, Theorem 3.3

can be extended to use group-specific gradient bounds for the cost

function; incorporating them leads to the following bounds.

Theorem 3.4. Suppose we are given group-specific thresholds 𝜏0, 𝜏1
and a sub-population condition𝜓 . Let 𝑐𝑧 (𝑥1, 𝑥2) = 𝑑𝑧 (𝑥1, 𝑥2)1(𝑥2 >

𝑥1) denote the cost for group 𝑧 individuals. For a fixed 𝑥2, suppose
that the gradient of 𝑑𝑧 with respect to 𝑥1 at any point in (0, 𝑥2) is in
the range [𝑔𝑙,𝑧 , 𝑔𝑢,𝑧], for some 𝑔𝑙,𝑧 ≤ 𝑔𝑢,𝑧 ≤ 0 for all 𝑧 ∈ {0, 1}. Let
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𝑃𝑧 (𝜏) := P[𝑋 ∈ (0, 𝜏) | 𝑍 = 𝑧,𝜓 ] and 𝐸𝑧,𝜏 = E[𝑋 | 𝑋 ∈ [0, 𝜏], 𝑍 =

𝑧,𝜓 ]𝑃𝑧 (𝜏). Then, the social burden gap𝐺 (𝑓𝜏0,𝜏1 ,𝜓 ) is upper-bounded
by

𝑔𝑢,1𝜏1𝐻 (𝑓𝜏0,𝜏1 ,𝜓 ) + (𝑔𝑢,1𝜏1 − 𝑔𝑙,0𝜏0)𝑃0 (𝜏0) − 𝑔𝑢,1𝐸1,𝜏1 + 𝑔𝑙,0𝐸0,𝜏0 ,

and lower bounded by

𝑔𝑙,1𝜏1𝐻 (𝑓𝜏0,𝜏1 ,𝜓 ) + (𝑔𝑙,1𝜏1 − 𝑔𝑢,0𝜏0)𝑃0 (𝜏0) − 𝑔𝑙,1𝐸1,𝜏1 + 𝑔𝑢,0𝐸0,𝜏0 .

The proof of the theorem is presented in Appendix A. Cost function

biases can be inherently captured using the gradient of the group-

specific cost functions. This is because these biases imply that

the rate of increase in cost for the disadvantaged group is greater

than that of the advantaged group. Hence, if group 0 faces higher

manipulation costs to move to the same point than group 1, then

the absolute gradient of 𝑐0 will be larger than the absolute gradient

of 𝑐1; this can result in higher social burden gaps than the case

when cost function is same for both groups. For instance, suppose

𝑑0 (𝑥1, 𝑥2)=𝑎(𝑥2−𝑥1) and 𝑑1 (𝑥1, 𝑥2)=(𝑥2−𝑥1) and𝐻 (𝑓 ,𝜓 )=0. If 𝑎 >

1, then the social burden gap can be shown to be (𝑎(𝜏0 −E[𝑋 | 𝑋 ∈
[0, 𝜏0], 𝑍 = 0]) − (𝜏1 − E[𝑋 | 𝑋 ∈ [0, 𝜏1], 𝑍 = 1]))𝑃0 (𝜏0) which is

larger than the corresponding social burden gap when cost function

is same for both groups. The above theorem can account for both

cost function and feature biases and provides a succinct relationship

between standard fairness metrics and social burden gap.

Fair classification with low social burden gap and low selec-

tion rate disparity. To construct a classifier that has high institu-

tion utility and low social burden gap, we can employ Theorem 3.3,

3.4. Recall that loss function L measures the expected risk of any

classifier. Standard fair classification algorithms already optimize

error rate of 𝑓 w.r.t. L and subject to selection rate constraints (i.e.,

ED [L(𝑓 ;𝑋,𝑌 )]) subject to constraints on 𝐻 (𝑓 ,𝜓 ).
To construct low social burden gaps, we can alternately use a

modified constraint on the upper bound in Theorem 3.3 or Theo-

rem 3.4 to obtain a classifier with low social burden gap. For exam-

ple, in the setting of just feature bias, we can use the upper bound

from Theorem 3.3 as a constraint; i.e., minimize ED [L(𝑓 ;𝑋,𝑌 )]
subject to (𝑔𝑢𝜏1 − 𝑔𝑙𝜏0)𝑃0 (𝜏0) − 𝑔𝑢𝐸1,𝜏1 + 𝑔𝑙𝐸0,𝜏0 ≤ 0. Quantities

𝑃𝑧 (𝜏𝑧) and 𝐸𝑧,𝜏𝑧 can be computed empirically for a given dataset:

𝑃𝑧 (𝜏𝑧), 𝐸𝑧,𝜏𝑧 are the fraction and empirical mean, respectively, of

group 𝑧 individuals who are negatively classified. In Section 5, we

empirically show that using this modified optimization program

results in classifiers that low social burden gaps.

4 EXTENSION TO MULTIPLE DIMENSIONS

Suppose that features are 𝑛-dimensional, for 𝑛>1. For this multi-

dimensional setting, we consider classifiers that threshold over a

linear combination of the features of the individuals. We again

assume that all features are outcome monotonic, i.e., increasing

each feature value results in increase in likelihood of positive clas-

sification. Hence, we only consider manipulations from 𝑥1 to 𝑥2

when 𝑥2 ≥ 𝑥1, i.e., for all 𝑖 ∈ [𝑛], 𝑥 (𝑖 )
2

≥ 𝑥
(𝑖 )
1

. Finally, the cost

function is assumed to be linear, i.e, for an individual from group

𝑧 ∈ {0, 1}, the cost function is 𝑐𝑧 (𝑥1, 𝑥2) = 𝑑⊤𝑧 (𝑥2 − 𝑥1) if 𝑥2 ≥ 𝑥1
and 𝑐 (𝑥1, 𝑥2) = 0 if 𝑥2 ≤ 𝑥1, given 𝑑0, 𝑑1 ∈ R𝑛 (we study the qua-

dratic cost function setting in Appendix A). Linear cost functions

have been used in prior work to approximately model real-world

strategic settings [14, 21, 26]. Vector 𝑑𝑧 can encode the different

costs paid for updating different features; e.g., in the credit score

setting, opening new credit lines has lower costs than increasing

annual income. In this multi-dimensional setting, we can prove the

following result.

Theorem 4.1. Suppose we have a linear classifier 𝑓 such that for
an individual with 𝑥 and group 𝑧, 𝑓 (𝑥) = 1 if and only if 𝑢⊤𝑥 ≥ 𝑣𝑧
and 0 otherwise. For an individual from group 𝑧 with unmanipulated
datapoint 𝑥1, the cost to move to point 𝑥2 is defined as 𝑐𝑧 (𝑥1, 𝑥2) =
𝑑⊤𝑧 (𝑥2 − 𝑥1) if 𝑥2 ≥ 𝑥1 and 0 otherwise, for 𝑑0, 𝑑1 ∈ R𝑛 . Let 𝑤★

𝑧 :=

max𝑖∈[𝑛] 𝑢𝑖/𝑑𝑧,𝑖 . Then,

𝐺 (𝑓 ,𝜓 ) = − 1

𝑤★
1

(𝑣1𝐻 (𝑓 ,𝜓 )) −𝛿,

where 𝛿 =

(
𝑣1
𝑤★
1

− 𝑣0
𝑤★
0

)
𝑃0 − 1

𝑤★
1

𝐸1,𝑣1 + 1

𝑤★
0

𝐸0,𝑣0 , 𝑃𝑧 = P[𝑓 (𝑋 ) = 0 |
𝑍 = 𝑧,𝜓 ], 𝐸𝑧,𝜏 = E[(𝑢⊤𝑋 ) | 𝑓 (𝑋 ) = 0, 𝑍 = 𝑧,𝜓 ]𝑃0.

We obtain an equality relation here since the cost function is linear.

The proof (presented in Appendix A) follows by reducing this case

to the single-dimensional setting. This is possible since in the case

of linear classifiers the distance of negatively-classified individuals

from the classifier threshold can be captured using 𝑢⊤𝑥 . While

limiting the analysis to linear classifiers might seem restrictive,

Theorem 4.1 still provides evidence that social burden gap𝐺 (·) can
be large for classifiers in multi-dimensional settings even when

selection rate disparity 𝐻 (·) is small, due to additional factors cap-

tured by 𝛿 . Furthermore, empirical analysis of real-world fairness

benchmark datasets (Section 5) shows that linear classifiers achieve

close to state-of-the-art performance for these datasets. Thus, it is

important to study constraints on linear classifiers that can ensure

low manipulation costs for all groups.

5 EMPIRICAL ANALYSIS

5.1 Synthetic Simulation

To intuitively explain different components of Theorem 3.3, 3.4, we

design a simulation using a synthetic data generation process. Sup-

pose that features of group 𝑧 ∈ {0, 1} are sampled from 𝑁 (`𝑧 , 𝜎𝑧),
where `0, `1, 𝜎0 ∈ R>0 and 𝜎1 = 𝜎0/2. Let 𝑋𝑧 denote the features of

group 𝑧. Suppose that for element 𝑥𝑖 from group 𝑧, class label 𝑦𝑖 is

1 with probability (𝑥𝑖 +min(𝑋𝑧))/(max(𝑋𝑧) +min(𝑋𝑧)). We sam-

ple 500 elements for each group. When `0 < `1, there will likely

be feature bias in this dataset and any classifier 𝑓 trained over

this dataset will have to use group-specific thresholds to achieve

statistical parity. Suppose the cost function for manipulation is

linear. Consider two classifiers trained using the above data. The

first classifier is trained to achieve maximum accuracy subject to

|𝐻 (𝑓 ,𝜓 ) | ≤ 0.4; here 𝜓 is the identity function. The second clas-

sifier is trained to achieve maximum accuracy subject to the con-

straint that |𝐺 (𝑓 ,𝜓 ) | ≤ 4. In other words, the first classifier uses

constraints on the statistical rate while the second classifier uses

constraints on the social burden gap. From Figure 1a,b, we can see

that these classifiers can have different group thresholds.

To understand Theorem 3.3, 3.4 using this example, note that the

bound in both theorems depend on the difference between group-

specific quantities (𝜏𝑧−E[𝑋 |𝑋∈[0, 𝜏𝑧], 𝑍=𝑧]): the average distance
of feature values of negative-classified individuals from group 𝑧
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(a) Stat. rate constrained classifier (b) Thm 3.4 constrained classifier (c) Variance vs social burden gap

Figure 1: Performance of statistical rate constrained classifier and classifier constrained using our method on a synthetic dataset. Plots (a), (b)

show the distribution and classifier thresholds for one random iteration. Plot (c) shows the mean and deviation (over 50 repetitions) of social

burden gap of classifiers that are statistical rate-constrained and classifiers that are constrained using Thm. 3.4.

from the decision boundary. This difference will increase as 𝜎0 in-

creases since within-group variances will increase and the group

0 variance grows faster than group 1 variance (since 𝜎1 = 𝜎0/2).
Hence, as 𝜎0, increases, the social burden gap of a classifier can

increase even when the statistical rate remains small. We empir-

ically observe this phenomenon in Figure 1c, where we see that

increasing 𝜎0 leads to an increase in the social burden gap of the

statistical rate-constrained classifier. However, we also observe that

classifiers constrained using Theorem 3.4 have almost-zero social

burden gap, demonstrating that using Theorem 3.4 for forming

fairness constraints leads to classifiers with low social burden gaps

for all 𝜎0 values.

5.2 FICO Credit Dataset

Dataset. We use the FICO credit data [22] for preliminary real-

world data analysis of classifiers that are fair with respect to stan-

dard fairness metrics and classifiers that are fair with respect to the

social burden gap. This dataset contains 116k credit scores corre-

sponding to White individuals and 16k credit scores corresponding

to Black/African-American individuals and a binary class label for

loan default for each individual (pre-processing details are provided

in Appendix B). As shown by prior work [34], this dataset exhibits

feature bias against African-American individuals.

Methodology. Around 20k random samples from the dataset are

removed to create a test partition. Each classifier is composed of

two thresholds (𝜏0, 𝜏1). Threshold 𝜏0 is for credit scores of African-
American individuals and threshold 𝜏1 is for credit scores of White

individuals. A classifier assigns a positive class label to an individual

if the individual’s credit score is larger than the classifier’s threshold

for the individual’s group. Since the credit scores lie in the range

from 1 to 100, we evaluate all possible classifiers, with 𝜏0, 𝜏1 in

the set {1, 2, . . . , 100} × {1, 2, . . . , 100}, and record their properties.

We use the linear cost function 𝑐 (𝑥, 𝑥 ′) := 1(𝑥 > 𝑥 ′) · (𝑥 − 𝑥 ′)
for this section and provide results for the quadratic separable

cost function in Appendix C. We analyze classifier performance

for two sub-population conditions: (a) 𝜓𝑠𝑟 which is always 1, i.e.,

𝜓𝑠𝑟 (𝑥,𝑦)=1, for all 𝑥,𝑦, and (b) 𝜓𝑡𝑝𝑟 which is 1 if true class label

is 1, i.e.,𝜓𝑠𝑟 (𝑥,𝑦)=1(𝑦=1). 𝐻 (𝑓 ,𝜓𝑠𝑟 ) measures statistical rate and

𝐻 (𝑓 ,𝜓𝑡𝑝𝑟 ) measures true positive rate disparity.

Results. Statistical rate 𝐻 (·,𝜓𝑠𝑟 ) vs social burden gap 𝐺 (·,𝜓𝑠𝑟 ).
Plot 2a presents the results for classifiers that use the same threshold

for both groups. As discussed in Proposition 3.1, these classifiers

always have social burden gap ≥0 and lead to higher strategic

manipulation cost for African-American individuals. Furthermore,

even the statistical rate of these classifiers is low implying that

all classifiers using single thresholds select White individuals at a

higher rate. Plot 2b presents fairness metrics for classifiers that use

group-specific thresholds. Here, we observe that the range of val-

ues achieved for statistical rate and low social burden gap is much

larger. A classifier with a high statistical rate favoring the disadvan-

taged group (>0.5) also has a low social burden gap (<−10) for this
dataset. However, almost equal group selection rates do not imply

parity with respect to social burden. For classifiers with statistical

rate close to 0, the social burden gap ranges from [−12, 30].
True positive rate 𝐻 (·,𝜓𝑡𝑝𝑟 ) vs social burden gap𝐺 (·,𝜓𝑡𝑝𝑟 ).With

𝜓𝑡𝑝𝑟 , we compute costs for individuals who are incorrectly nega-

tively classified. From Plot 3a, we again see that single-threshold

classifiers have social burden gap ≥0. Plot 3b, however, shows that
there exist group-specific thresholds that result in low social burden

gap and high true positive rate for African-American individuals.

Plots 2c, d, 3c, d present the relationship between group thresholds

and fairness metrics. Increasing group 0 threshold increases the

social burden for group 0 and decreases the statistical/true positive

rate as positive classifications decrease.

Constructing classifiers with low social burden gap.We next em-

pirically analyze the inequalities in Theorem 3.3. Suppose the goal

of the institution is to maximize accuracy subject to the constraint

that social burden gap is ≤𝑔, for some 𝑔∈R. Since group 0 is the

marginalized one, the institution aims to achieve a non-positive

social burden gap to address the manipulation cost disparities. As

shown in 3.3, social burden gap is upper bounded by 𝑔𝑢𝜏1𝐻 (𝑓 ,𝜓 ) +
(𝑔𝑢𝜏1 − 𝑔𝑙𝜏0)𝑃0 (𝜏0) − 𝑔𝑢𝐸1,𝜏1 + 𝑔𝑙𝐸0,𝜏0 . For the linear cost function,
𝑔𝑢 = 𝑔𝑙 = 1. Hence, we use the burden gap constraint

𝜏1𝐻 (𝑓 ,𝜓 ) − (𝜏1 − 𝜏0)𝑃0 (𝜏0) + 𝐸1,𝜏1 − 𝐸0,𝜏0 ≤ 𝑔. (2)

For 𝑔=0, Figure 4 plots the accuracy and social burden gap of all

classifiers that satisfy the above conditions for 𝜓𝑠𝑟 and 𝜓𝑡𝑝𝑟 . The
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(a) 𝜏0=𝜏1∈{1, . . . , 100} (b) (𝜏0, 𝜏1 ) ∈{1, . . . , 100}2 (c) Social burden gap vs 𝜏0 (d) Statistical rate vs 𝜏0

Figure 2: Statistical rate and social burden gap of all classifiers for FICO dataset. Each point represents a classifier and the axes plot different

properties of these classifiers. Plot (a) presents social burden gap𝐺 (𝑓 ,𝜓𝑠𝑟 ) vs statistical rate𝐻 (𝑓 ,𝜓𝑠𝑟 ) for classifiers that use the same threshold

for both groups. Plots (b), (c), (d) present social burden gap 𝐺 (𝑓 ,𝜓𝑠𝑟 ) vs statistical rate 𝐻 (𝑓 ,𝜓𝑠𝑟 ) for classifiers that can use group-specific

threshold. The range of statistical rate and social burden gap values achieved for these classifiers is larger.

(a) 𝜏0=𝜏1∈{1, . . . , 100} (b) (𝜏0, 𝜏1 ) ∈{1, . . . , 100}2 (c) Social burden gap vs 𝜏0 (d) True positive rate vs 𝜏0

Figure 3: True positive rate and social burden gap of all classifiers for the FICO dataset. Plot (a) presents social burden gap𝐺 (𝑓 ,𝜓𝑡𝑝𝑟 ) vs true
positive rate 𝐻 (𝑓 ,𝜓𝑡𝑝𝑟 ) for single-threshold classifiers. Once again, the true positive rate and social burden gap for these classifiers favor the

majority group. Plot (b), (c), (d) present𝐺 (𝑓 ,𝜓𝑡𝑝𝑟 ) vs 𝐻 (𝑓 ,𝜓𝑡𝑝𝑟 ) for classifiers that use group-specific thresholds.

(a) Stat. rate vs𝐺 (𝑓 ,𝜓𝑠𝑟 ) (b) Accuracy vs𝐺 (𝑓 ,𝜓𝑠𝑟 ) (c) TPR vs𝐺 (𝑓 ,𝜓𝑡𝑝𝑟 ) (d) Accuracy vs𝐺 (𝑓 ,𝜓𝑡𝑝𝑟 )

Figure 4: Performance of classifiers that satisfy the modified fairness constraints. Plots (a),(b) present the statistical rate and accuracy vs social

burden gap𝐺 (𝑓 ,𝜓𝑠𝑟 ) for all classifiers for which condition (2) is satisfied with𝜓 = 𝜓𝑠𝑟 . Plots (c),(d) present the true positive rate (TPR) and

accuracy vs social burden gap𝐺 (𝑓 ,𝜓𝑡𝑝𝑟 ) for all classifiers for which condition (2) is satisfied with𝜓 = 𝜓𝑡𝑝𝑟 .

plots show that all classifiers that satisfy the constraint on the up-

per bound from Theorem 3.3 satisfy the condition𝐺 (𝑓𝜏0,𝜏1 ,𝜓𝑠𝑟 )<0.
Furthermore, even in this case, the classifier that optimizes this

constrained problem has high accuracy. For 𝜓𝑠𝑟 the accuracy of

the optimal constrained classifier is 0.86 and 𝐺 (𝑓𝜏0,𝜏1 ,𝜓𝑠𝑟 )=−0.21
and for 𝜓𝑡𝑝𝑟 the accuracy of the optimal constrained classifier is

0.86 and 𝐺 (𝑓𝜏0,𝜏1 ,𝜓𝑡𝑝𝑟 )=−0.03. In comparison, the accuracy of the

optimal unconstrained classifier is 0.88, showing minimal loss in

accuracy due to the constraints.

5.3 Adult Income Dataset

Dataset. For analysis of multi-dimensional data, we use the Adult

Income dataset. We use the new version of this dataset developed

and preprocessed by Ding et al. [11]. It contains information on

around 251k individuals from the state of California surveyed in

2019. The classification task is to predict whether the income of

an individual is above $50k or not. The strategic features available

are “class of worker”, “occupation”, and “hours worked per week”

(the other five features are listed in Appendix B). We use race as

the protected attribute, limiting the dataset to White (93% of the

dataset; 𝑧 = 1) and Black/African-American (7% of the dataset;

𝑧 = 0) individuals.

Methodology. The cost function used is linear and group-specific.

Let 𝑑′∈R9 be the underlying cost vector such that 𝑑′
𝑖
=100 if 𝑖 rep-

resents “class of worker” feature, 𝑑′
𝑖
=10 if 𝑖 represents “occupa-

tion”, 𝑑′
𝑖
=1 if 𝑖 represents “hours per week”, 𝑑′

𝑖
=∞ for other non-

strategic features. 𝑑′ assigns a higher cost factor depending on

the difficulty of updating a feature value. The cost function for

group 0 is 𝑐0 (𝑥, 𝑥 ′):=2·𝑑′⊤ (𝑥 ′−𝑥) and cost function for group 1 is

𝑐1 (𝑥, 𝑥 ′) := 𝑑′⊤ (𝑥 ′−𝑥). In this case, African-American individuals

pay twice the cost that White individuals pay for the same feature

update. The dataset is partitioned into 80-20 random train-test splits.

Once again, suppose𝜓𝑠𝑟 (𝑥,𝑦)=1 for all (𝑥,𝑦).
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Table 1: Performance of the unconstrained classifier 𝑓𝑢𝑛𝑐𝑜𝑛𝑠 , classi-

fier constrained to achieve statistical rate ≥ 0 𝑓𝑠𝑟 , fair classifier from

Rezaei et al. 𝑓𝑅𝐹𝑀𝑍 , and classifier constrained to achieve low social

burden gap using our method 𝑓𝑠𝑡𝑟𝑎𝑡 on the Adult dataset.

Classifier Accuracy Stat. Rate Burden gap

Baselines

𝑓𝑢𝑛𝑐𝑜𝑛𝑠 0.84 ± 0.00 -0.11 ± 0.01 2.23 ± 0.04

𝑓𝑠𝑟 0.83 ± 0.01 0.01 ± 0.03 1.12 ± 0.15

𝑓𝑅𝐹𝑀𝑍 0.83 ± 0.00 -0.08 ± 0.01 1.88 ± 0.08

Our method 𝑓𝑠𝑡𝑟𝑎𝑡 0.82 ± 0.00 0.24 ± 0.01 0.04 ± 0.01

We will restrict the classifiers to be from the linear family and

use the logistic log-loss function L(𝑓 ;𝑥,𝑦) := −𝑦 log𝜎 (𝑓 (𝑥)) −
(1−𝑦) log(1−𝜎 (𝑓 (𝑥))) to measure prediction error of 𝑓 (here 𝜎 (·)
is the standard sigmoid function). We analyze the following dif-

ferent classifiers. Classifier 𝑓𝑢𝑛𝑐𝑜𝑛𝑠 := argmin𝑓 E[𝐿(𝑓 ;𝑋,𝑌 )] will
denote the unconstrained classifier. For pre-specified desired sta-

tistical rate 𝜖∈[−1, 1], classifier 𝑓𝑠𝑟 := argmin𝑓 E[𝐿(𝑓 ;𝑋,𝑌 )] sub-
ject to 𝐻 (𝑓 ,𝜓𝑠𝑟 )≥𝜖 . Finally, for a pre-specified 𝑔∈R, we construct
classifiers with social burden gap 𝐺 (𝑓 ,𝜓𝑠𝑟 ) ≤ 𝑔. To do so, we

use the result from Section 4 and construct classifier 𝑓𝑠𝑡𝑟𝑎𝑡 :=

argmin𝑓 E[𝐿(𝑓 ;𝑋,𝑌 )] subject to − 1

𝑤★
1

(𝑣1𝐻 (𝑓 ,𝜓 )) −𝛿 ≤ 𝑔 (quan-

tities 𝑤★
1
, 𝑣1, 𝛿 are defined in Theorem 4.1). We will set 𝜖=0 and

𝑔=0 to analyze classifiers with equal selection rate and zero social

burden gap in this section, and present variation of performance

with these parameters in Appendix D. To compare with another fair

classification baseline, we also implement the fair logistic regres-

sion algorithm of Rezaei et al. [38] with statistical rate constraints;

we will call this classifier 𝑓𝑅𝐹𝑀𝑍 . We report the mean and stan-

dard error of accuracy, statistical rate, and social burden gap of all

classifiers over 100 random train-test splits. Implementation details

of all methods are provided in Appendix B.

Results. Table 1 presents the performance of classifiers 𝑓𝑢𝑛𝑐𝑜𝑛𝑠 ,

𝑓𝑠𝑟 , 𝑓𝑅𝐹𝑀𝑍 , 𝑓𝑠𝑡𝑟𝑎𝑡 . First note that the unconstrained classifier 𝑓𝑢𝑛𝑐𝑜𝑛𝑠
has an average statistical rate of -0.11 (i.e., the selection rate of

African-American individuals is much lower than the selection rate

of White individuals) and the average social burden gap is 2.23 (i.e,

cost of strategic manipulation is higher for African-Americans).

Hence, fairness interventions are necessary in this case to achieve

equal performance. For classifier 𝑓𝑠𝑟 , the statistical rate is close to

0; however, the social burden gap is still greater than 0 in this case,

showing that an almost equal selection rate does not necessarily

imply a low social burden gap. Similarly, baseline 𝑓𝑅𝐹𝑀𝑍 has a high

social burden gap despite having a better statistical rate than the

unconstrained classifier. In comparison, our classifier 𝑓𝑠𝑡𝑟𝑎𝑡 has a

statistical rate of 0.24, i.e., the selection rate for African-Americans

is higher. Furthermore, classifier 𝑓𝑠𝑡𝑟𝑎𝑡 achieves a social burden gap

close to 0 on average. Hence, both groups pay almost equal cost for

strategic manipulation. In terms of accuracy, 𝑓𝑢𝑛𝑐𝑜𝑛𝑠 achieves the

highest accuracy (0.84) and the accuracy of 𝑓𝑠𝑡𝑟𝑎𝑡 is only slightly

lower (0.82), implying a minimal loss in accuracy due to fairness

constraints.

6 DISCUSSION AND LIMITATIONS

Our paper untangles the relationship between manipulation cost

disparities and standard fairness metrics and provides a framework

to construct classifiers with low costs for minority groups. The pro-

posed framework can be useful for real-world classification settings

where individuals repeatedly interact with an institution and its

classifier (e.g., applying for loans after rejection with updated fea-

tures). In these settings, the institution can employ our framework

to ensure that minority individuals do not pay disparately higher

costs to exercise their available recourse options. In this section, we

discuss philosophical grounding, practical advantages, and certain

limitations of our framework.

Philosophical grounding. Venkatasubramanian and Alfano [41]

argued how recourse options can be systematically helpful to groups

that have been historically oppressed. In particular, they distinguish

between “token acts of exercising recourse (reversing a single harmful
decision) and the general state of enjoying systematic access to the
power to reverse harmful decisions (knowing that if a harmful decision
were to be made, one would be able to get it reversed).” Recognizing
this distinction at an institutional level motivates the construction

of classifiers that equalize manipulation costs across groups to en-

sure systematic access to recourse for all. This way, the institution

can acknowledge biases in data and costs and provide redressal

mechanisms that account for structural inequalities.

Practical advantages and information required by the institu-

tion to address manipulation disparities. Beyond the presented

analysis, our framework has advantages that allow for easy use

in applications. For instance, the bounds on the social burden gap

require minimal information about cost functions and can handle

settings where cost functions vary across individuals but belong to

the same class of gradient-bounded or Lipschitz functions. Hence,

an institution aiming to construct classifiers with a low social bur-

den gap would not need to model the complete update behaviors

of every individual. Nevertheless, some information about the cost

function gradient is required for implementing our framework in

practice. While this can be quantified by observing the past and

current behavior of individuals who have been negatively classi-

fied, errors in cost function gradient measurement can affect the

performance of our proposed fairness intervention. Future work

can additionally explore methods to reduce strategic manipulation

disparities while ensuring that the method is robust to gradient

measurement errors.

A social burden gap of 0 implies equal manipulation costs for

all groups; however, in some cases, a gap of less than 0 may be

necessary. In multi-feedback settings, the predictions at one time

step affect the classifier training at the next time step [37] and

biases can be amplified across feedback iterations. In these cases,

our framework can also be used to construct a classifier with a

negative social burden gap to tackle these biases.

Negative manipulations. Strategic manipulations can potentially

be used to “game” a classifier [21] and, by reducing manipulation

costs, our methods can potentially lead to increased “gamification”.

The issue of gamification primarily arises due to noisy features that

are only superficially predictive of the class label. In the absence

of other robust features, a classifier will use these noisy features

for prediction. However, the presence of noisy features does not

warrant disparity in manipulation costs, especially if these features

favor the majority group. Nevertheless, recent papers have also

suggested classifier designs that incentivize positive manipulations
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to improve individuals’ task-related qualities [30]; using our frame-

work with these classifiers can ensure that all groups have equal

opportunities for improvement.

Model limitations. For multi-dimensional settings, our framework

considers linear and quadratic cost functions. Extensions of our

framework for generic cost functions in multi-dimensional settings

can be further studied as part of future work. Secondly, while we

consider binary protected attributes in our analysis, our results can

be extended to non-binary attributes. This is because the non-binary

setting can be reduced to the binary setting by considering the

pairwise comparison of measures for different protected attribute

values. However, due to multiple comparisons, the bounds for𝐺 (·, ·)
will be weaker, and future work can explore ways to improve these

bounds for non-binary attributes.

Additional limitations of our framework are related to the accu-

racy of information about the individuals available to the institution.

As mentioned earlier, if the institution does not have accurate in-

formation about the costs associated with feature updates, then our

proposed framework might not be completely effective in address-

ing manipulation disparities. Another information-based limitation

is the assumption that the classifier used by the institution is known.

This may not be true in real-world settings and only partial infor-

mation about decision rules may be publicly available. Recent work

by Ghalme et al. [16] aims to address this problem in general strate-

gic classification settings and our framework can potentially be

extended in the future along similar lines.

7 CONCLUSION

We study the impact of fair classifiers on individuals’ ability to

positively manipulate their features based on their group mem-

bership. In settings where feature distributions or cost functions

are biased against minority groups, we observe that classifiers can

have (almost) equal selection rates for all groups but can still have

relatively higher strategic manipulation costs for individuals from

minority groups. We propose modified fairness constraints to con-

struct classifiers that reduce this disparity and show its efficacy

over the FICO Credit and Adult Income datasets. Our work demon-

strates the necessity of analyzing the impact of fair classifiers in

dynamic settings and developing approaches that provide recourse

opportunities that are independent of their group memberships.
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