
Towards a Research Agenda for Understanding and Managing
Uncertainty in Self-Adaptive Systems

Danny Weyns1,2, Radu Calinescu3, Raffaela Mirandola4, Kenji Tei5,
Maribel Acosta6, Amel Bennaceur7, Nicolas Boltz8, Tomas Bures9, Javier Camara10,
Ada Diaconescu11, Gregor Engels12, Simos Gerasimou3, Ilias Gerostathopoulos13,

Sinem Getir Yaman3, Vincenzo Grassi14, Sebastian Hahner8,
Paola Inverardi15, Dimitri Van Landuyt1, Rogerio de Lemos16, Emmanuel Letier17, Marin Litoiu18,

Lina Marsso19, Angelika Musil1,20, Juergen Musil20, Genaina Nunes Rodrigues21, Diego Perez-Palacin2,
Federico Quin1, Patrizia Scandurra22, Antonio Vallecillo10, Andrea Zisman7

1KU Leuven; 2Linnaeus University; 3University of York; 4Politecnico di Milano;
5Waseda University; 6Ruhr University Bochum; 7The Open University;

8Karlsruhe Institute of Technology; 9Charles University, Prague; 10Universidad de Málaga;
11Télécom Paris, IP Paris; 12Paderborn University; 13Vrije Universiteit Amsterdam;

14Università di Roma; 15Gran Sasso Science Institute; 16University of Kent;
17University College London; 18York University; 19University of Toronto;
20CDL-SQI, TU Wien; 21University of Brasília; 22University of Bergamo

danny.weyns@kuleuven.be, radu.calinescu@york.ac.uk, raffaela.mirandola@polimi.it, ktei@aoni.waseda.jp

ABSTRACT
Despite considerable research efforts on handling uncertainty in
self-adaptive systems, a comprehensive understanding of the pre-
cise nature of uncertainty is still lacking. This paper summarises
the findings of the 2023 Bertinoro Seminar on Uncertainty in Self-
Adaptive Systems, which aimed at thoroughly investigating the
notion of uncertainty, and outlining open challenges associated
with its handling in self-adaptive systems. The seminar discus-
sions were centered around five core topics: (1) agile end-to-
end handling of uncertainties in goal-oriented self-adaptive sys-
tems, (2) managing uncertainty risks for self-adaptive systems,
(3) uncertainty propagation and interaction, (4) uncertainty in
self-adaptive machine learning systems, and (5) human empow-
erment under uncertainty. Building on the insights from these
discussions, we propose a research agenda listing key open chal-
lenges, and a possible way forward for addressing them in the
coming years.

1. INTRODUCTION
Modern software systems are expected to operate effectively and
without interruption in uncertain real-world conditions. However,
engineering such systems is highly challenging and poses an im-
portant rising topic of research in software engineering [40]. Possi-
ble causes of uncertainties include changes in the operational envi-
ronment, dynamics in the availability of resources, and variations
in user goals. A prominent approach to mitigate uncertainties is
self-adaptation [78, 28, 93, 95] that is typically realized using a
feedback loop. The feedback loop collects additional data about
the uncertainties during operation, and uses these data to resolve
uncertainties, to reason about the system, and to make decisions
about how to reconfigure or adjust it to satisfy the user goals
under changing conditions—or to degrade gracefully if necessary.

Over the past several years, researchers have started studying the
notion of uncertainty in the context of self-adaptation. Different
sources of uncertainty in self-adaptive systems have been identi-
fied, related to the system itself, the system goals, the execution
context, and human aspects [75, 37, 69, 56]. An example of a con-

crete source of uncertainty within the system itself is incomplete
knowledge, e.g., some parts of the system are missing at develop-
ment time and may need to be added at runtime. An example of
uncertainty related to system goals is a change of goals that may
be induced by new customer needs, new regulations, or new mar-
ket rules. An example of uncertainty in the execution context is
imperfect monitoring due to noise in sensors, which are not ideal
devices. An example of uncertainty related to human aspects is
human behavior (e.g., interaction with the system), which can
diverge from the expected behavior.

Researchers have studied multiple strategies for ”taming” uncer-
tainty. One prominent approach is the use of first-class modeling
concepts for specifying the goals of self-adaptive systems that are
subject to uncertainties [98, 86]. Such modeling concepts typi-
cally relax the goals of self-adaptive systems under certain condi-
tions. Making goal models based on such relaxed goals runtime
entities allows a feedback loop system to take into account the
uncertainties when making adaptation decisions. Another pio-
neering approach to mitigate uncertainties is the use of stochastic
models with parameters that represent uncertainties [17, 31, 22].
These models are updated at runtime using actual observations
of the uncertain parameters. The feedback loop system can then
use the up-to-date models to reason about the system and make
informed adaptation decisions. A typical example of such an ap-
proach is runtime quantitative verification, which uses Markovian
models and model checking at runtime for analyzing quality prop-
erties (such as performance and reliability) and selecting adapta-
tion configurations that achieve the required goals. To increase
the scalability of this approach, several researchers have recently
studied the use of statistical verification techniques [58]. Another
approach explored by researchers is the use of controllers based
on control theory to realize runtime adaptation [38, 83]. The task
of the controller is to ensure that the output of the system follows
a set-point goal while reducing the effects of uncertainty, which
appear as disturbances, or as noise in variables or imperfections
in the models of the system or environment used to design the
controller.

While researchers have devoted substantial efforts to handling un-
certainty in self-adaptive systems, a comprehensive understand-
ing of the precise nature of uncertainty is lacking. This refers to
what uncertainty is. Without a proper understanding of the no-
tion of uncertainty, the research community is doomed to study
approaches for mitigating uncertainty in an ad-hoc, case-by-case
manner. This refers to how uncertainty can be mitigated in a
principled and systematic way. As an example, the focus of re-
search in self-adaptation so far has primarily been on paramet-
ric uncertainties, i.e., the uncertainties related to the values of
unknown model parameters such as request arrival rates, compo-
nent failure probabilities, or cost of operations. Little research
has been devoted to so-called structural uncertainties, i.e. un-
certainties related to the inability to accurately model real-world
phenomena. Structural uncertainties may manifest themselves as
model inadequacy, model bias, model discrepancy, etc. To tackle
this problem, techniques from other fields may provide a start-
ing point. E.g., in health economics, techniques such as model
averaging and discrepancy modeling have been used to deal with
structural uncertainties.

This paper reports the results of the Bertinoro seminar on Uncer-
tainty in Self-Adaptive Systems that was organized at the Uni-
versity Residential Center of Bertinoro in Italy from 11 to 15
June 2023.1 The overall goal of the seminar was to investigate
thoroughly the what and how of uncertainty, and to outline a
research agenda for addressing the challenges identified by this
investigation over the coming years. Having a well-defined frame-
work of what uncertainty is and how it affects self-adaptive sys-
tems will provide a foundation for future research efforts and lay
the basis for developing reusable engineering solutions. One of
the most prominent examples is the self-driving vehicle industry:
autonomous vehicles must be prepared to face a multitude of un-
certainties while driving. Massive efforts are devoted to this prob-
lem and any solution must be trustworthy, which requires a solid
understanding of the uncertainties, and systematic and reusable
solutions for handling them.

2. APPROACH
Motivated by the urgent need for a holistic and systematic dis-
cussion of the numerous challenges associated with tackling un-
certainty, the seminar involved a group of 30 active leading re-
searchers from different communities pursuing research on the
causes, effects, and potential solutions of uncertainty. This re-
sulted in a unique environment to discuss the central aspects of
uncertainty, generate new insights and knowledge on uncertainty,
and identify the key challenges for a future research agenda.

The seminar was organized into several parts. In preparation
for the seminar, the participants were asked to complete a short
survey to provide input on their interests and expectations for the
seminar. The data collected from this survey was used to set the
scene at the start of the seminar. Then, four participants were
invited to provide 30-minute talks, introducing different research
areas and perspectives on the notion of uncertainty.

After the first half day, we organized a plenary discussion to iden-
tify topics for in-depth analysis in breakout groups. This dis-
cussion was driven by the input obtained from the pre-seminar
survey and the discussions during the morning. As a result, five
groups were formed respectively on the topics: (1) agile end-to-
end handling of uncertainties in goal-oriented self-adaptive sys-
tems, (2) managing uncertainty and risk for self-adaptive systems,

1https://www.ceub.it/events/event/bertinoro-meeting-o
n-uncertainty-in-self-adaptive-systems-usas/

(3) uncertainty propagation and interaction, (4) goal-driven self-
adaptive machine learning systems, and (5) human empowerment
under uncertainty.

The major part of the seminar consisted of breakout groups with
short plenary reports to steer the work forward and align the
activities of the breakout groups as needed. On the last day, a
plenary session was organized to summarize the meeting findings
and outline future actions for the participants and their research
communities.

3. PRE-SEMINAR SURVEY
Before the seminar, the organizers invited the participants to com-
plete a short online survey to provide input on their interests and
expectations for the seminar. Concretely, the participants were
asked to answer two open questions: (1) Please list your research
interests related to the topic of the seminar, and (2) Please let us
know what you expect to gain from attending the seminar. From
a coding of the answers (29 participants completed the survey),
we identified three dimensions of input.

The first basic dimension is the themes of interest, which refers
to what the participants are interested in for the seminar. Within
this dimension, we identified 9 concrete themes: the notion and
types of uncertainty (12 occurrences), machine learning/artificial
intelligence and uncertainty (9), humans and uncertainty (5),
goals, requirements, and uncertainty (7), security, privacy, safety,
and ethics under uncertainty (8) representation and quantifica-
tion of uncertainty (7), propagation and interaction of uncertainty
(3), mitigating uncertainty (15), and verification/validation and
uncertainty (8).

The second dimension focuses on the methodological viewpoint,
i.e., how participants want to learn from the seminar. We identi-
fied three foci: discuss and enhance understanding (13), exposure
to diverse perspectives (6), and explore future challenges (8).

Lastly, the third dimension was about the output format, i.e., the
format to consolidate the insights and knowledge obtained from
the seminar. We identified two formats: establish an agenda for
future research (5), and establish (project) collaborations (7).

4. SHORT INVITED INTRODUCTORY TALKS
To give the participants a good overview of the current land-
scape of research on uncertainty in self-adaptive systems and help
clarify the commonalities and differences in opinions between re-
search areas, four speakers were invited to give short talks. Amel
Bennaceur talked about adapting systems to the uncertainty of
user requirements, preferences, and values. Ada Diaconescu in-
troduced the participants to essential concepts for self-adaptation
under uncertainty. Paola Inverardi proposed to rely on what we
know (in contrast to focusing on what we do not know). She
attempted to characterize (Self-)adaptive/evolving systems under
uncertainty. Finally, Antonio Vallecillo explained the representa-
tion of aleatory and epistemic uncertainty in software models.

4.1 Adapting Systems to the Uncertainty of User
Requirements, Preferences, and Values

One approach to deal with uncertainty is delaying some decisions
until more knowledge is available. The talk presented three ex-
amples to support this argument.

The first example focuses on requirements adaptation for the case
of meal planning to reduce food waste [13]. Delaying requirement

https://www.ceub.it/events/event/bertinoro-meeting-on-uncertainty-in-self-adaptive-systems-usas/
https://www.ceub.it/events/event/bertinoro-meeting-on-uncertainty-in-self-adaptive-systems-usas/

adaptation until runtime, when the availability of the resources
is known, allows for constraining the search space for achievable
requirements.

The second example focuses on a framework to deal with the in-
herent uncertainty of users’ value [11]. It is common for users to
gain a better understanding of their values as they experience,
reflect, and learn more about them. The framework enables users
to (i) represent, instantiate, and monitor their values and behav-
ior; (ii) understand mismatches between stated values and their
observed behavior; and (iii) recommend ways to align users’ val-
ues and behavior. The approach was illustrated for the domain of
food consumption which is rich in values and regularly undergoes
reflection and debate.

The third example focuses on the uncertainty of human behavior
and preferences arguing for collaborations with other disciplines
such as social psychology to represent and reason about human
behavior and preferences [44]. An adaptive software architecture
was presented that enables cooperation between humans and au-
tonomous systems by leveraging social identity. The social iden-
tity approach establishes that group membership can explain and
drive human behavior and cooperation. By reasoning on groups
during operation, we limit the number of cooperation strategies
the autonomous system needs to explore. The approach was il-
lustrated for a search-and-rescue scenario in which a rescue robot
optimizes evacuation by delaying the decision about the coopera-
tive humans at runtime.

4.2 Essential Concepts for Self-adaptation under
Uncertainty

Self-adaptive systems must observe relevant aspects of themselves
and their environment and change themselves in the face of ex-
ternal and internal variability so as to reach various goals, which
may also change. Such variability may feature diverse levels of un-
certainty, ranging from value changes of known variables, through
updates of known components, and all the way to the occurrence
of unknown events, which the system is ill-equipped to observe,
represent or handle (i.e. unknown unknowns). Numerous ap-
proaches, both overlapping and complementary, have been pro-
posed over the last decades to handle such cases. These include
techniques for online learning, self-evolution, and self-integration;
dynamic discovery and definition of modeling meta-types; and
management of conflicts, stability, and convergence.

This talk relied on the vast body of research in the aforementioned
areas to distill several generic concepts, which can be reused for
facilitating the development of self-adaptive systems operating un-
der uncertainty. The key concepts identified include:

• Goal-orientation: the objectives that a self-adaptive system
strives for must be specified explicitly and formally, allowing
the system to self-evaluate with respect to them. This is
essential when unexpected changes may push the system to
adapt beyond anything that was predicted at design time.

• Innovative self-adaptation: the self-adaptation logic must be
able to undergo open-ended meta-adaptation or evolution.
This allows system adaptation to unforeseen situations, es-
pecially when the goals themselves may change (e.g. intro-
ducing a new type of objective, never seen before).

• Dynamic meta-models: the system’s ontology for modeling
or representing itself and its environment must be able to
evolve dynamically, as new types of events occur (e.g. dis-
covering a new type of resource, never seen before).

• Multi-scale abstraction: the system’s ability to represent it-
self and its environment at increasing abstraction levels, in-
terconnected by feedback loops, maintains its viability when
the number of observable resources and dynamic changes
increases. Multi-scale structures help to encapsulate sub-
systems, rendering them more independent from each other
and hence avoiding chain-propagation of disturbing events.
Only changes that necessitate coordination across the entire
system should penetrate to top scales.

• Self-explanation: the system’s ability to explain its self-
adaptive actions to users (at various expertise levels) and to
other systems allows it to include users, improve debugging
and increase trust in the open-ended self-adaptive process.

4.3 If We Do Not Know, Let Us Rely on What We
Know

Software systems today operate in the presence of different (un-
predictable) context variability dimensions, namely: heterogene-
ity of the environment and changing user needs. Self-adaptive
systems provide means to adjust their behavior in response to
changes in the Self and in the Context. Operating on the Self
dimension may imply operating on the whole body of software,
as represented by the whole set of artifacts that characterize the
development and operation of the system (e.g., new requirements)
Operating on the Context dimension means taking into consider-
ation everything in the operating environment that may affect the
system properties and behavior. Both dimensions may be sources
of uncertainties when dealing with unforeseen context variations
that may require switching towards an unanticipated system vari-
ant that satisfies a new requirement (at runtime). The talk in-
troduced an approach to characterize evolving systems vs adap-
tive one that stress the notion of core functionalities, the known,
ones that needs to be preserved through the changes and are im-
mutable, as opposed to added functionalities that may be added
to respond to a specific context or user’s need changes. Although
these evolutions are unknown the variations in the system do not
happen in a vacuum rather, they need to cope with a set of func-
tional and non-functional constraints that can help reduce the un-
certainties. These constraints may come from the requirements,
the software architecture, the programming languages, and the
runtime support. These constraints can be used in an assume-
guarantee fashion to reduce the level of uncertainty.

4.4 Representing Aleatory and Epistemic Uncer-
tainty in Software Models

A fundamental characteristic of software models is their ability to
represent the relevant characteristics of the system under study, at
the appropriate level of abstraction. For cyber-physical systems,
smart applications, and the Internet of Things, this requires some
form of interaction with the physical world. Uncertainty is an in-
herent property of any system that operates in a real environment
or that interacts with physical elements or with humans. Unfor-
tunately, the explicit representation, management, and analysis of
uncertainty have not received much attention from the software
modeling community. This talk briefly introduced two classes of
uncertainty, namely measurement and belief uncertainty, and how
to represent and deal with them using software models and mod-
eling tools. More specifically, an extension of standard UML data
types was introduced to deal with measurement uncertainty, and
the use of subjective logic to represent belief uncertainty in soft-
ware models. These approaches were illustrated with examples,
such as an extension of knowledge graphs to deal with subjec-
tive opinions, and a UML profile to enrich models with individual
opinions and help stakeholders reach a consensus.

5. AGILE END-TO-END HANDLING OF
UNCERTAINTIES IN GOAL-ORIENTED
SELF-ADAPTIVE SYSTEMS

5.1 Motivation
Nowadays software applications have to be viewed as compre-
hensive end-to-end systems, which serve the needs of users and
their businesses, are realized by networks of components, and are
deployed in an uncertain runtime environment. This integrated
view on systems is often termed BizDevOps (Business - Develop-
ment - Operations) [50]. There is a growing need to adapt these
software end-to-end systems in the field with minimal human in-
tervention and with minimal or no interruption of their services.
This is where self-adaptation comes into place. In order to be able
to adapt to diverse context conditions (like different user profiles
or infrastructures) and in response to changes in the system it-
self and in its requirements/goals [71], these systems have to be
designed as self-adaptive systems (SAS).

To realize these comprehensive self-adaptive end-to-end systems
in a reliable and resilient way, tight integration of all aspects is
needed. This means that all involved stakeholders as well as all
managed artefacts have to be aligned. These are in particular on
one side stakeholders who are acting e.g. as a user, developer,
tester, or operator, and on the other side models like e.g. context
models, goal models, architecture models, or deployment models.
Thus, managing (in-)consistencies, communication, and interrela-
tions during the lifetime of a steadily evolving end-to-end system
becomes a challenging task. This becomes even more ambitious
as quite a number of uncertainties might exist. These range from
uncertain goal-oriented requirements for the system on the user
side to uncertain context and infrastructure conditions, the be-
havior of humans interacting with the system, the system itself
that is managed, the feedback loops, and the runtime models used
to realize the self-adaptive behavior on the running system side.

In this section, we will discuss these challenges of managing un-
certainties in an end-to-end view of systems. We refer to existing
work and identify open research questions on the goal-oriented
evolution management of such systems. In particular, as in [49]
we aim at exploring the role of runtime models as a dynamic
knowledge base that abstracts useful information about the sys-
tem. Such models can be augmented with information available at
design-time and with information collected at runtime as a means
to cope with uncertainty by using, for example, distance metrics
for quantifying it [26, 27] along an enduring evolution process.

Motivating example. To illustrate our ideas we use a simple
smart home app example. The high-level goal of this example
system is to provide high comfort to the user at home continu-
ously by adapting/evolving the system at runtime. This high-level
goal can be realized by achieving more concrete goals like contin-
uously maintaining a constant warm temperature. This concrete
goal again can be realized by a combination of more detailed goals,
e.g., goals that specify what “warm” temperature means in spe-
cific rooms like a living room or a kitchen. Finally, the most
detailed specified goals need to be achieved by taking actions, so-
called operationalization, such as controlling the temperature by
opening/closing a window (manual action) or using a heater (au-
tomatic action). Already in this simple example, we can identify a
set of different factors at the user’s home that influence achieving
the goals at runtime. Such sources of uncertainties in the envi-
ronment/context are, e.g., the number and type of the existing
rooms, house structure, existing resources able to influence the

temperature, temperatures per room that are preferred by the
user, user presence, or the outside temperature. Since these fac-
tors are uncertain at design time, it must be started with an initial
version of the goal model that is specified, implemented, and de-
ployed. But this goal model needs to be adapted/evolved during
runtime as soon as the knowledge about the environment/context
gets available, e.g., in the form of adding new goals or changing
goals.

We framed our work into the following main research question:
How to support agile end-to-end handling of uncertainties in goal-
oriented self-adaptive systems?

5.2 Related Work
We drew inspiration from existing works and frameworks that
influenced our vision. These include, among others, works related
to the evolution/adaptation of goal-oriented requirements, and
layered architectures to deal with changing goals.

Awareness Requirements (AwReqs) [86, 85] specify either the de-
gree of success or the degree of failure where requirements are
acceptable or can be tolerated. AwReqs were extended with
control-theoretic information concerning control variables and in-
dicators to allow the synthesis of controllers by selecting a new
variant of the system’s goal model, and/or new values for its con-
trol variables. RELAX [98, 41] supports the explicit expression
of environmental uncertainty in requirements. As an extension,
AutoRELAX automatically generates RELAXed goal models and
specifies fuzzy logic function boundaries to the goal’s satisfaction
criteria. Tradeoffs between minimizing the number of RELAXed
goals and maximizing delivered functionality are then performed.
FLAGS [8] generalizes the basic features of the KAOS model [33]
(i.e., refinement and formalization) and adds the concept of adap-
tive goal. These goals define the countermeasures that one must
perform if one or more goals are not fulfilled satisfactorily. Each
countermeasure produces changes in the goal model.

The need to deal with hierarchies of control loops and layers
to support both vertical and horizontal modularization in self-
adaptive systems is widely recognized, but the challenging prob-
lem of how to evolve goals and assumptions at runtime has
been investigated to a lesser extent. The reference architecture
MORPH [15] comprises a three-layer architecture model that
makes an explicit distinction between the functionality of the
managing system that is responsible for realizing the adaptation
goals in the current situation (change management) and the func-
tionality that is responsible for selecting adaptation goals over
time when the conditions of the system change (goal manage-
ment). ActivFORMS [97] offers a change management layer com-
prising formally verified feedback loop models that are directly
executed and on top of that a goal management layer that of-
fers basic support for on-the-fly changing adaptation goals and
updating of verified feedback loop models. Other related lines
of recent research that focus on systems subject to uncertainty
and online goal changes include self-evolution [94], self-improving
system integration [10], and self-development [67].

5.3 Novelty and Envisioned Approach
A central problem to cope with is the “tension” between the dif-
ferent types of uncertainty affecting the three cornerstones of the
considered scenario (Biz, Dev, Ops), which can be identified ac-
cording to the following schema:

• Requirement uncertainty (Biz): concerns the definition of
the set O of “observables” that are best suited to express

the business goals, and the range of values for each of them
that can be qualified as “acceptable”; from the Dev/Ops
viewpoint, the greater this uncertainty, the larger the space
of possible design and operational solutions that can be ex-
plored;

• Design/architectural uncertainty (Dev): includes possible
alternative identification of functions/agents (and interac-
tions among them) that can affect elements of O, and
the possible conflicts that could emerge from the interac-
tions among these functions/agents, which could affect the
achievement of the required values for the elements of O;

• Operation/implementation uncertainty (Ops): includes im-
precisions in the estimated/predicted values for elements of
O and how these imprecisions affect the assessment of the
“acceptability” of a given implementation and the identifica-
tion of possible corrective (adaptation, evolution) actions.

To resolve this tension, we advocate for a comprehensive and sys-
tematic approach that goes beyond existing partial or case-specific
solutions. Underpinning this approach are the runtime models we
use to represent the knowledge and related uncertainty we have
about the three elements (Biz, Dev, Ops) mentioned above.

Figure 1 exemplifies our approach, which refines the twin peaks
model [29] by explicitly distinguishing the two Dev and Ops
“peaks” (besides the Biz peak concerning requirements). As in
[29], we envision a continuous co-evolution of these three peaks
and their associated models, through a series of fine-grained iter-
ations across all of them, to achieve the goal of developing soft-
ware architectures that are stable, yet adaptable, in the presence
of modifications or refinements of the knowledge we have about
any of the three peaks. This will allow systematic and agile end-
to-end handling of the knowledge and uncertainty concerning the
whole system. The co-evolution process of the three peaks gen-
erally initiates from the Biz (requirements) peak for newly devel-
oped systems but could initiate equally well at the other peaks in
case of projects involving modifications to existing systems. Key
points towards the achievement of this vision are:

• The definition of propagation links between models, to sup-
port a coherent knowledge transfer and models evolution as
new knowledge gets available;

• The identification of suitable solution patterns for the man-
agement of conflicts among corrective action targeting dif-
ferent elements of O, aimed at bringing them toward what
is considered as an acceptable value;

• The adoption of methodologies aimed at proactively sup-
porting the acquisition of new knowledge to be embedded
in models and propagated between them;

• The definition of a Reference Architecture for agile goal–
oriented self-adaptive systems, which includes components
supporting the points listed above;

• The extension of the Reference Architecture above via a
multi-scale structure, for scalability purposes. Here, the
functions listed above are performed in parallel, at multiple
abstraction levels; and interrelated via various abstraction
(bottom-up) and reification (top-down) data flows.

Figure 1: High-level schema of a BizDevOps approach to goal-
oriented evolution management and uncertainty mitigation.

5.4 Research Challenges
Some of the essential research challenges to overcome for achieving
the above end-to-end approach to uncertainty handling in agile
goal-oriented self-adaptive systems include:

• Managing conflicts between goals and/or between the sys-
tem implementation that aims to achieve those goals. Here,
conflict management includes conflict detection and han-
dling.

• Handling goal evolution, which may be due to e.g., changes
in user preferences, conflicts with other goals, lack of system
resources or transformations in the running environment.

• Handling the integration of new components, previously un-
known to the system (e.g. so as to help achieve new goals).

• Ensuring the coherence of hybrid uncertainty management
solutions, combining fully-automated and human-in-the-
loop approaches. This also implies ensuring the overall co-
herence of the resulting system behavior.

• Ensuring the scalability of end-to-end uncertainty manage-
ment in large self-adaptive systems, undergoing frequent un-
predictable changes. Multi-scale approaches can be explored
here – i.e. structuring the system into quasi-independent
scales (i.e. abstraction levels), with each scale hiding un-
necessary details from the scale above.

• Tracking and limiting uncertainty propagation across the
system, e.g. via encapsulation and abstraction. This con-
cerns both horizontal propagation (i.e. across interrelated
system components) and vertical propagation (i.e. between
different system scales, or abstraction levels).

• Ensuring the stability and convergence of the multi-
scale self-adaptive process (i.e. vertical cross-scale self-
adaptations, or ‘yoyo’ process).

• Maintaining a sufficiently accurate model of the system’s
stakeholders (i.e. role models) and execution environment

• Providing human-comprehensible explanations to human
users, depending on their expertise and required detail
level. The system’s self-explanatory functions must also be
able to self-adapt/evolve so as to follow the system’s self-
adaptation/evolution.

6. MANAGING UNCERTAINTY RISKS FOR
SELF-ADAPTIVE SYSTEMS

6.1 Motivation
In addition to the what and how, conducting a comprehensive
investigation of uncertainty also requires focusing on the who
and why. This observation motivates the need for a problem-
driven stakeholder-centered perspective on uncertainty identifica-
tion, analysis, and management in self-adaptive systems.

To that end, we consider an actor A as uncertain about X when
A believes that X can have more than one possible value. In
other words, A perceives the true value of X as unknown. It’s
important to note that uncertainty is defined from A’s perspective
of knowledge, rather than the ground truth. We introduce the
concept of uncertainty risk as the negative outcome that can arise
due to uncertainty about X, whereas a risk is an undesirable event
whose occurrence is uncertain [91, 57]. A risk can be quantified
by estimating its likelihood and severity.

To provide a holistic view of uncertainty management, we raised
the research question: How to support stakeholder-driven uncer-
tainty management and risks in self-adaptive systems?

Motivating example. For illustration, we consider an adaptive
helper robot for an elderly person. Our particular focus is on en-
hancing the robot with self-adaptation capabilities to adapt the
features of the robot to deal with the cognitive and physical evo-
lution of the elderly person. As an example, consider an elderly
person as an actor that interacts with the helper robot. The
elderly can be uncertain about the ability of the self-adaptive sys-
tem to accurately measure his or her happiness. The uncertainty
risk here is the potential ignorance or even negative effects of
the self-adaptive helper robot that optimizes its behavior for the
happiness metric without accurately capturing the elderly’s true
happiness.

6.2 Related Work
Over the past decade, multiple research teams have provided com-
prehensive classifications and taxonomies for uncertainty in self-
adaptive systems. We highlight a number of characteristic efforts.

Esfahani and Malek [37] classified sources of uncertainty in self-
adaptive software according to several dimensions: simplifying
assumptions, model drift, noise, parameters in future operation,
human in the loop, objectives/goals, decentralization, context,
and the cyber-physical nature of systems.

Perez-Palacin and Mirandola [75] presented a taxonomy with
three dimensions for uncertainty modeling: the location of uncer-
tainty (context of the model, model structure, input parameters),
the level of uncertainty (degree of knowledge from 0 to 4th order),
and the nature of uncertainty (epistemic, aleatory).

Mahdavi-Hezavehi et al. [69] classified uncertainty in self-adaptive
systems along five dimensions: the location (the place in which
uncertainty emerges in the self-adaptive system), the sources of
uncertainty (model, adaptation functions, goals, environment, re-
sources, managed system), the nature of uncertainty (epistemic,
aleatory), the level/spectrum (scale the uncertainty is specified,
statistical or scenario-based), emerging time (design or runtime).

A recent survey with experts in the field of self-adaptation [56]
highlighted the sources researchers and engineers considered in
self-adaptive systems, the methods used to tackle uncertainty

in concrete applications, and the impact of uncertainty on non-
functional requirements.

In summary, existing work has come a long way in identifying dif-
ferent facets of understanding uncertainties in self-adaptive sys-
tems and mitigating these uncertainties. Yet, despite the multi-
tude of taxonomies, representations, mitigation methods, etc. it
is not always clear what software engineering problems need to be
tackled when managing uncertainty. In particular, we lack knowl-
edge on involving key stakeholders in this process, both domain
stakeholders and engineers of the self-adaptive system.

6.3 Uncertainty Risk Management Framework
Driven by the concerns of both domain stakeholders and engi-
neers, we considered a reusable framework for systematically iden-
tifying and managing risk uncertainties, as shown in Fig 2. The
framework comprises the following interactive steps:

• Identify and classify uncertainties: leveraging stakeholder-
specific concerns to systematically identify and group un-
certainties by determining the knowledge gaps or required
information needed to address each concern effectively.

• Identify uncertainty risks: determining the concerns that
may be negatively affected due to the identified knowledge
gaps.

• Analyze uncertainty risks: assessing whether there are any
conflicts or redundancies between the identified risks, as it
is possible that certain uncertainty risks may no longer pose
a significant threat when considered together.

• Identify potential risk management techniques: identify ex-
isting applicable risk management techniques;

• Select techniques: Select the most suitable techniques for
managing the identified risks.

6.4 Approaches for Resolving Uncertainty Risk
We highlight two possible approaches that may support stake-
holders and engineers to realize the different steps of the uncer-
tainty risk management framework. We start with presenting
the 5Ws and 1H framework that supports eliciting uncertain-
ties from stakeholders (both domain stakeholders and engineer-
ing stakeholders) on the one hand and identifying risk manage-
ment techniques on the other hand. Then we present the un-
certainty heatmap that supports identifying and analyzing uncer-
tainty risks.

5Ws and 1H. Using the common information-gathering and
problem-solving 5Ws and 1H framework, we can identify uncer-
tainties (with the 5Ws) and potential risk management techniques
(with the 1H) as follows.

(1) Who: The uncertain actor can be any entity involved
in the system, including users, system owners, system de-
signers, coders, testing and validation teams, system ad-
ministrators, the adaptive system itself, and even malicious
actors.

(2) What: The uncertainties can pertain to various aspects,
such as the state of the world, the state of the machine, the
user’s current goal, or the desired properties of the world as
defined by stakeholders [75].

Figure 2: Uncertainty risk management framework

(3)Where: The uncertain phenomena can be located either
in the world or within the machine itself. For example, it
could be in the elderly person’s house (in his world).

(4) When: Uncertainties can arise at different times, in-
cluding design time, runtime, or during quality assurance
processes.

(5) Why: Understanding the uncertain actor’s objectives
and the decisions they need to make can provide insights
into the nature of the uncertainties. Whys are the actor
goals affected by the uncertainty. The risks are derived from
these goals; they are risks that the goals are not satisfied.

And (1) How: Actors dealing with uncertainty, including
the uncertain actor or other involved actors, can employ sev-
eral strategies [21]. Strategies may include ignoring the un-
certainty, acquiring more data, mitigating the consequences
of uncertainty, or even delaying decisions until more infor-
mation is available.

Examples The first actor from the motivating example could be
the elderly person (Who). The elderly is uncertain about the
robot helper’s understanding of what happiness means (What).
The uncertainty can arise when the robot helper runs (When).
If the elderly’s goal is to stay happy, the risk is that this may not
be the case (Why). To ensure that the robot helper understands
what the elderly’s happiness means, it can adjust the weight as-
signed to happiness in its decision-making process (How).

A second actor from the example could be the adaptive helper
robot (Who) who is uncertain about the validity of the happiness
metric (What) within the machine (Where) at runtime (When).
The robot faces this uncertainty because it needs to make adaptive
decisions that optimize happiness (Why). To address this uncer-
tainty, the engineer may revise the metric with a domain expert,
employ multiple metrics for triangulation, or avoid overfitting by
using a “good enough” optimization approach (How).

Uncertainty Heatmap. Given the information gathered using the
5Ws and 1H framework, one can now systematically identify the
negative outcome that can arise due to uncertainty, i.e., risks.
This will help the selection process of the most applicable risk
management technique (in the “how”). Specifically, for each ac-
tor’s uncertainty (who and what), we can identify the risks by
exploring the impact of lacking knowledge affecting the end ac-
tor goal (why) at different times (when) and in different places
(where). One possible approach to accomplish this is by pro-
ducing an uncertainty heatmap. A heatmap lists the concerns
of stakeholders in a table along with the knowledge required to
deal with these concerns. The required knowledge may be clas-
sified into three classes: the knowledge is directly available, the
knowledge can be collected at runtime by the system, and the
knowledge is inaccessible. Each of these classes expresses a po-
tential level of severity of risk associated with the concerns that

can be visually represented in the heatmap with warmer colors
(from green to red). Through interaction with the stakeholders
and by grouping related concerns with similar patterns, the un-
certainty risks can be determined. This provides the basis for
managing the uncertainty risks.

As an example, Table 1 shows a small excerpt of an uncertainty
heatmap for the motivating example.

Concerns
Knowledge

Available Collect Inaccessible

happiness
what impacted the decrease/

history current feedback
increase of happiness

medical duties history status context

safety mental state elderly

...

Table 1: Simple excerpts of an uncertainty heatmap

For instance, to deal with the concern of happiness, historical
data is available that can be directly used to deal with the con-
cern. Additional knowledge about the happiness of the elderly
person may be collected by the system during operation through
interaction with the elderly. Yet, the impact of the feedback pro-
vided by the elderly on happiness is internal to the person and
is not accessible. To deal with the concern of medical duties, the
earlier behavior of the elderly person may be available and addi-
tional knowledge may be collected about the status of medication.
For the safety concern, the mental state of the elderly person may
not be accessible.

The uncertainty heatmap may give engineers a systematic ap-
proach to exploring what additional data the self-adaptive system
may or may not be able to collect to reduce some uncertainty risk.

Uncertainty risk management challenges. The framework de-
scribed above can help identify, analyze, and manage uncertainty
risks. However, further study and expansion are necessary to help
self-adaptive system engineers. We list a set of key challenges:

• Develop a systematic approach to identify and classify un-
certainty risks. 5Hs and 1H is one possible approach that
may be useful. Yet, the framework may need to be comple-
mented with more rigorous and scalable approaches.

• Develop a systematic approach to analyze uncertainty risks.
The uncertainty heatmap is one possible approach. Yet, the
practical applicability of the heatmap in terms of granularity
and scalability needs to be further investigated.

• Create reusable engineering solutions to manage uncertainty
risks and identify possible gaps in existing techniques to
resolve uncertainty risks.

7. UNCERTAINTY PROPAGATION AND IN-
TERACTION

7.1 Motivation
Sources of uncertainty in adaptive systems are rarely independent
and their interactions can affect the achievement of system goals
in subtle and often unpredictable ways [25]. Hence, management
of uncertainty interactions (UIx) must be considered as a first-
class systems development problem, e.g., by representing them
explicitly in models and making analysis and planning activities
aware of them.

To devise systematic approaches that can enable system devel-
opers to reason about and mitigate the effects of uncertainties,
including their interactions, there is a need to address challenges
that concern both the modeling and representation of UIx, as well
as their analysis and quantification.

So far, we only have notations available to represent different
types of uncertainty [88], but not their interaction [24, 25]. Being
able to represent different types of UIx that affect relevant system
properties remains largely an open problem.

7.2 Related Work and Challenges
Although there is existing work on how uncertainties propagate in
areas that are not limited to computer science (such as mechanical
engineering [46]), these approaches are mostly focused on homoge-
neous uncertainties, i.e., uncertainties that are similar in nature.
Some examples include the propagation of measurement uncer-
tainty [61], propagation of belief uncertainty based on probability
theory [34], possibilities (in Fuzzy set theory [77, 100]), plausi-
bilities or belief functions (in Dempster-Shafer’s theory [80]), or
subjective logic [62]. Propagation of design uncertainty has also
been treated through design space variability exploration tech-
niques [19, 45, 84, 90].

In contrast, the propagation of heterogeneous uncertainties has
received little attention. This is partly due to the lack of system-
atic approaches that enable the rigorous treatment (e.g., represen-
tation, analysis, mitigation) of common uncertainty interactions
in the area of self-adaptation (e.g., measurement uncertainty vs
model abstraction). Devising such approaches will enable assess-
ing the impact of the emerging effects of combined uncertainties
upon relevant system properties, contributing to the engineering
of more robust and resilient adaptive systems. Yet, representing
different types of UIx remains a major challenge.

This challenge entails not only categorizing the different classes
of interactions that can be found in the context of an adaptive
system but also devising appropriate notations and patterns to
represent them and enable their automated analysis and mitiga-
tion. In particular, some of the requirements for these notations
are that they should be able to capture how uncertainty prop-
agates both horizontally (i.e., at the same level of abstraction),
as well as vertically (i.e., across different levels of abstraction,
for instance going from the managed subsystem to the manag-
ing subsystem [35], and vice versa). Representing some classes
of uncertainty, such as those of a crosscutting nature that entails
uncertainty in timing aspects of the system, or epistemic uncer-
tainty (e.g., due to the incompleteness of information in models),
is particularly challenging and demands special attention.

Once the means to appropriately represent UIx are available, there
will be a need to leverage such representations and analyze how
uncertainty propagation and interaction affect relevant system
properties. An important challenge in this context is that analy-

ses of different classes of uncertainty tend to produce results that
are often qualitatively different, precluding their meaningful inte-
gration. For instance, the statistical techniques used to analyze
measurement uncertainty typically produce confidence intervals
or credibility intervals, whereas the probabilistic modeling tech-
niques used to establish dependability and performance properties
of software systems operate with point estimates of the probabil-
ities of transition between pairs of system states. To make things
even more challenging, uncertainty propagation can spread to the
entire system, and this is something that can add unnecessary
complexity to reasoning upon the effects of UIx. Hence, there
is a need to provide scoping mechanisms to limit the analysis of
uncertainty propagation only to areas of the system that might
have an actual impact on system properties.

7.3 Vision
To address the challenges in representation and reasoning about
UIx, there is a need for notations and analysis techniques able
to capture and analyze heterogeneous sources of uncertainty, en-
abling engineers to trace them back to the properties on which
they have an impact. Data Flow Diagrams (DFD) [36] have been
successfully used to trace uncertainty through software system
models while analyzing confidentiality [51] and also for the prop-
agation of uncertainty [52]. UML activity diagrams [73] have also
been extended with uncertainty information [48, 42]. Further-
more, within the systems safety analysis domain, error propaga-
tion analysis has been traditionally employed during the early
stages of systems engineering to understand how error can prop-
agate by leveraging system architectural representations [1]. Al-
though quite useful, these notations and analysis techniques are
not enough to address the challenges posed by UIx. Driven by the
state of practice, however, we posit that leveraging key elements
of such data flow and architectural representations in the context
of self-adaptive systems can, not only enhance our understanding
of how uncertainty propagates both horizontally and vertically
at different levels of abstraction but also about how uncertainty
interactions (either homogeneous or heterogeneous) can influence
the satisfaction of system properties.

Different stakeholders have diverse levels of knowledge and con-
cerns about the multiple system uncertainties. Moreover, the
existence of uncertainties spreads along multiple entities in the
self-adaptation process. Therefore, an approach that represents
uncertainties and their interaction in a flat, holistic model can
quickly become cumbersome. On the contrary, hierarchical mod-
eling notations naturally allow information abstraction.

Building on these concepts and focusing on the effect of the prop-
agation of uncertainty in the flow and processing of information,
we aim at defining Uncertainty Flow Diagrams (UFD) to capture
and reason about the impact of uncertainty interactions on system
properties. To realize this vision, we propose:

• Operationalizing available artifacts in self-adaptive systems
based on the MAPE-K closed-control feedback loop [63, 35,
92, 59] that employ architecture-centric descriptions to rea-
son about system adaptations. For instance, adaptation
triggers captured as architectural invariants in Rainbow [43]
can be traced back to the component and connector prop-
erties on which they depend in architectural descriptions
within the knowledge base. These, in turn, can be related
to values retrieved by the monitoring infrastructure from
sensors embedded at the managed system level.

• Developing modeling notations and formalisms, including
abstract syntax and concrete syntax instances, that enable

the definition of UFDs in a structured and formal way. Using
this modeling technology, system developers will be able to
define UFDs by exploiting architecture-centric descriptions
of their target systems and the outputs from item 1 above.
To date, we envisage a UFD notation that copes with a)
hierarchical modeling, b) data typing, c) uncertainty from
the process actions or operations, and d) uncertainty in the
data.

• Leveraging model transformation techniques to automati-
cally translate between uncertainty flow diagrams and dif-
ferent formalisms that can enable the analysis of uncertainty
interaction. Such formalisms will vary, depending on the
types of uncertainties involved. For instance, Bayesian Net-
works is a promising candidate to analyze belief or condi-
tional dependencies between system components, whereas
stochastic Petri Nets [9] can be used to analyse uncertainty
in concurrent probabilistic real-time systems.

• Addressing the necessary integration of multiple analysis
techniques. This will involve exploring the use of compo-
sitional verification, including, but not limited to assume-
guarantee [66, 74], as well as direct integration of heteroge-
neous analysis mechanisms that enable the analysis of sys-
tem behavior under combined sources of uncertainty (e.g.,
design uncertainty and stochastic behavior [18, 23]). This
piece of work can build on previous results in data flow anal-
ysis, e.g., making use of data flow constraints [53].

8. UNCERTAINTY IN SELF-ADAPTIVE
MACHINE LEARNING SYSTEMS

8.1 Motivation
Recent advances in machine learning (ML) have had a transfor-
mative effect on both the managed components and the feedback
loops of self-adaptive systems. The integration of ML elements
(for perception, user interaction, etc.) into the managed com-
ponents of these systems has enabled important new types of
applications. As an example, ML techniques for real-time ob-
ject detection (RTOD) are essential for applications ranging from
autonomous driving to automated passport control. As another
example, natural language processing (NLP) is at the core of ap-
plications including virtual personal assistants, and customer ser-
vice chatbots. The adoption of ML within the feedback loops of
self-adaptive systems [16, 47, 76, 96] has been equally impactful,
not least by augmenting these loops with new sensor fusion and
fast adaptation-strategy selection capabilities.

More often than not, these uses of ML allow self-adaptive systems
to handle uncertainty. For instance, RTOD enables autonomous
cars to identify the unknown objects in their vicinity, and ML
classifiers can suggest suitable adaptation strategies in scenarios
where the merits of the alternative strategies available are difficult
to establish. At the same time, ML can never be 100% accurate,
and therefore its use within self-adaptive systems is in itself a
source of uncertainty that may need to be mitigated through the
use of (additional) feedback loops.

This dual role of ML as an uncertainty mitigation tool and a
source of uncertainty poses major challenges for the development,
deployment, and operation of self-adaptive systems with ML com-
ponents, and requires significant changes to the way in which these
systems are engineered.

Motivating example. To illustrate these challenges—and a
methodology we advocate for addressing some of them—we

use a (self-adaptive) assistive-care robot. Inspired by the au-
tonomous assistive-care application developed by the recent ALMI
project [3, 4, 54], this self-adaptive system uses a TIAGo PAL
Robotics social robot to help an early-stage Alzheimer’s sufferer
with the preparation of a simple pasta meal. To accomplish this
task, the TIAGo robot uses a combination of ML/AI techniques.
These techniques include NLP to receive commands from its user,
RTOD to detect the objects around it (including meal ingredi-
ents such as a box of spaghetti and a can of pasta sauce), a
deep-learning classifier to perceive the state of the user (rested
or tired), and an AI planner to select suitable paths for its move-
ment around the user’s apartment. Feedback loops are required
to ensure that the NLP is adapted in line with any changes in
the user’s voice (e.g., because the user may have a cold that af-
fects their voice, or is tired and speaking slowly), that the RTOD
is adjusted in line with lighting conditions, that navigation way-
points rendered unusable by clutter are no longer selected by the
AI planner, etc.

8.2 Vision
As a possible way to tackle the challenges of developing self-
adaptive systems that contain ML components, we envision an
iterative development process consisting of five steps (Figure 3).
We describe each of the steps in the subsections below.

The key idea of the process is to systematically identify uncer-
tainties (often coming out of ML) and to address them via self-
adaptation (often employing ML). Furthermore, the process also
specifically looks at the uncertainties that emerge through the in-
teraction of feedback loops. The steps of the process are repeated
until no new uncertainties are identified.

The process leads to a system architecture that consists of multi-
ple feedback loops, some of which may control another feedback
loop or a group of feedback loops. Contrary to the traditional view
of self-adaptive systems as consisting of a non-adaptive base and
the controller (which may have been introduced later), we assume
that the adaptive ML systems are built as greenfield projects with
feedback loops present already from the beginning.

1. Identify
sources of
uncertainty

2. Define/Refine
feedback loops

3. Design ML
models

4. Devise ML
adaptation

mechanisms

5. Identify Emergent
Interactions of ML

feedback loops

Knowledge

requirements,
goals

runtime
observations

Figure 3: Goal-driven self-adaptive MLS development process.

1. Identify sources of uncertainty. The goal of the first step is to
identify the sources of uncertainties. Uncertainties can be related
to both the environment of the system to be developed and the
system itself. This is a common first step in the development of
self-adaptive systems. This step receives as input a number of
goals and requirements that the system should satisfy, e.g. “the
system shall adapt to the emotional state of the user” or “the

system should use dark mode in low-light environments” (green
arrow in Figure 3). For the identification of different types of
uncertainties, existing taxonomies can be employed [56]. It is
important to highlight that:

• Addressing some of the identified uncertainties may require
the use of ML components

• Introducing ML components that takes place in steps 2-5
leading back to step 1 to complete a loop (Figure 3) may in
turn introduce more uncertainties that need to be identified,
analyzed, and addressed.

A possible source of uncertainty in our motivating example is the
human user, whose needs may not be known upfront. The robot
should then use natural language generation and processing to
identify the user’s needs. As another example, the state of the
user (tiredness, anxiety level, etc.) is also not known a priori and
can change at runtime. A possible solution here is to use an ML
classifier to ascertain the user’s state based on a video feed.

2. Define/Refine feedback loops. In this step, new feedback loops
should be introduced in the system or existing feedback loops may
be refined to deal with the uncertainties identified in step 1. For
each feedback loop, the triggers (inputs) and actions (outputs)
need to be specified. It is also important to specify any context
dependencies or assumptions related to a loop – e.g. it might be
the case that the feedback loop should only be active under certain
conditions (this allows for building hierarchies of loops). Finally,
the role of AI/ML methods and models within each feedback loop
(e.g. analysis of images for classifying user emotions, reducing the
adaptation space via classification of applicable configurations,
etc.) needs to be clearly identified.

As an example, a feedback loop in our motivating example could
be that the robot uses reduced vocabulary or starts talking slowly
or more empathetically if the user is detected to be tired or con-
fused. In this loop, an ML classification model can be used for
the identification of the user state (e.g. tired).

3. Design ML models. This step is specific to the development of
the ML components of the system that are involved in the feed-
back loops specified in step 2. For each ML model, its Operational
Design Domain (ODD), its input data, potential features, and
outputs should be identified. Data pipelines should be designed
to gather and pre-process the ML input data. Importantly, in this
step, the designers of the system also need to decide on the gran-
ularity of the ML models used in a loop – possible options are one
per user, one per application, and one per application domain.

In our motivating example, a possible ML model is a user state
classifier that obtains images by processing the video feed of the
robot, applying certain filters (e.g. to only consider images where
a user is detected), and predicting states such as “high tiredness”,
“high stress”, etc. For training such classifiers, a training set with
labeled images needs to be provided. Finally, in such a case, a
possible design decision is to train and use a single model for all
users (contrary to training e.g. one model per user).

4. Devise ML adaptation mechanisms. In this step, the pipelines
for training and re-training the ML models specified in step 3
should be implemented and tested. Apart from training the initial
version of the models, special focus should be put on allowing the
system to evolve its ML models with new data, by connecting the

model training and model serving pipelines and if possible, allow-
ing the retraining to happen at runtime. Monitoring mechanisms
should also put in place to detect data drifts and trigger model
re-training processes. This step considers techniques within the
AutoML umbrella – e.g. hyperparameter optimization – as well
as techniques within the MLOPS domain – e.g. model version-
ing, model update, ensemble learning, switching models used for
prediction in the running system, etc.

In our motivating example, the pipelines for training, versioning,
serving, monitoring, and automated re-training of the user state
ML model (e.g. “high tiredness”, “high stress”, etc.) should be
implemented and tested.

5. Identify Emergent Interactions of ML feedback loops. In this
final step of the envisioned iterative process, interactions between
the feedback loops identified in step 2 and the way they were ad-
dressed in steps 3 and 4 need to be analyzed. Here, techniques
for analyzing the propagation of uncertainty across loops (Sec-
tion 7) can be employed. It is important also to focus on possible
interactions that may have not manifested yet but can happen
be the result of the long-term operation of ML components (e.g.
concept drift in one model resulting in a decrease of performance
not only of that model but also of other models relying on its
results). This step receives inputs from the running system and
the deployed models therein (red arrow in Figure 3).

As an example, in our motivating scenario, a possible interaction
may happen if the user state classifier starts to wrongly classify
users as always tired. Then, the feedback loop would be activated
resulting in the robot speaking slowly. This in turn may lead to
the user becoming more tired, hence destabilizing the feedback
loop.

8.3 Open Challenges
Even when not life-critical, ML systems may have high conse-
quences and if we are to use ML in our businesses, at doctor’s
offices, on our roads, or in our homes, we need to build ML sys-
tems that precisely specify (and satisfy) the requirements of their
stakeholders. However, specifying requirements for ML systems
remain more a craft than a science as these systems are often
specified based on optimization and efficiency measures rather
than well-specified quality requirements that relate to stakehold-
ers’ needs. The important questions to be asked here are:

• How can we relate stakeholders’ requirements to ML con-
figuration parameters such as features, accuracy, and preci-
sion?

• How can we integrate the specification of ML components
into existing requirement models?

Even when if ML systems are made to work perfectly in experi-
mental settings, they often fail when deployed in real-world set-
tings [32]. There are multiple ways in which ML systems can fail
either through adversarial/malicious behavior or due to faults [64].
This will require systematic methods for assessing and assuring
their quality to gain confidence in their correctness [55], to quan-
tify the uncertainty introduced by their ML components [20], and
to identify deficiencies [65].

While building good models is important, many organizations now
realize that more work needs to be done to put them into prac-
tical use, from data management to deployment and monitoring.

MLOps aims to support the end-to-end pipeline by unifying ML
system development (Dev) and ML system operation (Ops). How-
ever, in production deployments, performance can degrade due to
unforeseen changes, e.g., concept drift (where the function map-
ping changes) or data drift (where the input distribution changes).
Therefore, adaptation is necessary to enable ML systems to con-
tinually improve and avoid, withstand, recover from, and evolve
to changes, faults, failure, and adversity, i.e. to be resilient [5].
This leads to the following question:

• How to ensure continuous improvement and adaptation of
ML systems?

Considering the role of ML testbeds to allow practitioners to
learn, test, and evaluate their approaches, it is paramount to have
testbeds that truly represent the challenges of ML systems in real-
world settings. Thus, the key question here is:

• How can we create ML systems testbeds that reflect the
complexity of deployment in the real world?

One of the most pressing issues facing ML systems is ensuring
that they are developed in a socially ethical way for maximizing
public good [72, 68]. However, while significant work has been
achieved in defining what social and professional values should
be embedded in ML systems, critically important new research
is still needed to investigate how such systems can be engineered
responsibly to embody these values that affect society, business,
and the environment and how these values can be maintained at
runtime in the presence of data and concept drift.

ML practitioners are able to create applications that push the
boundary of what is possible but are not always able to foresee
the potential consequences (good or bad) of the applications they
create. Just like they take responsibility for identifying and fixing
the bugs in their code, significant responsibility lies with practi-
tioners to take responsibility for the values embedded into their
software. Training ML systems practitioners with this mindset
can start by bringing real-world examples into the training en-
vironment, to show how the abstract concepts we learn play out
in reality. Closing the gap requires answering the following ques-
tions:

• How can we implement value-rich self-adaptive ML systems?

• How do we empower developers to adopt responsible soft-
ware engineering practices when developing self-adaptive
ML systems?

9. HUMAN EMPOWERMENT UNDER UN-
CERTAINTY

9.1 Motivation
Technology plays an increasingly important and impactful role
on our everyday lives and society at large. We live in a software-
intensive world in which the behavior of people and society is in-
fluenced by the software used in both positive and negative ways.

Nowadays, society is experiencing a world that is fully connected;
data is available to anyone, anywhere, at any time; and the behav-
ior of people and society is constantly influenced by this connec-
tivity. Therefore, the existing software-intensive world needs to

consider human empowerment while engineering and using these
software systems; i.e., humans need to be in power and control of
their own life and beliefs, independently of the technology they
use. We refer to humans as individuals, groups of people, and
society in general. More specifically, we consider that humans en-
gaging in system interactions may be motivated by personal and
individual needs, values, and ethical norms [12, 39, 70, 79, 81].
These aspects may be shared among larger communities, regard-
less of whether these community relations have been regulated.
Finally, nations, regions, and societies can be considered as types
of community given that these have the additional power to set
rules and regulations to impose the ethical concerns for which
there is broader societal agreement.

The unmistakeable trend toward extensive automation leads to
greater societal fears about autonomy in self-adaptive socio-
technical systems (SASTS). Whereas these systems are still con-
trolled by humans —moderators, decision-makers, data scientists,
operators — there is a growing concern about (i) these systems
optimizing goals that are not in line with societal and human val-
ues at stake, (ii) algorithmic bias, and (iii) inability to take into
account human values and ethics’ concerns [30]. These concerns
and uncertainty impede the overall evolution, development, and
acceptance of the next generation of SASTS2.

We discuss the potential upturn and challenges of increasing the
role of human empowerment in SASTS in the presence of uncer-
tainties. We concentrate on uncertainties with respect to changes
in the system; changes in humans’ values, needs, and desires; and
changes in regulations in which the systems operate. The research
problem we focus on raises the following key challenges:

Complex decision-making How can a SASTS accommodate and
reconcile the diverse needs, values, and ethics of different
humans, which are often not at all fully satisfiable, while
also attaining other important systems goals?

Capturing stakeholder goals How can humans express their needs,
values, and ethics in such a way that they can be interpreted
and taken into account in the complex decision-making of
SASTS?

Stakeholder engagement How can humans be sufficiently in-
formed about complex decision-making (transparency and
awareness), and how can humans intervene when necessary
(empowerment)?

Evolution & change How can a SASTS deal with uncertainties
of human values, ethics, and needs, and how can a SAST
change while remaining respectful of values, ethics, and
needs?

Motivating example. In order to illustrate, consider a software
system that implements the queuing logic for dealing with med-
ical prescriptions. In its implementation, the system enforces a
’first-come-first-served scheme’, which may be motivated by its
designer as the fairest and correct approach. However, such an
approach fails to take into account (i) whether specific customers
waiting in the queue may be willing to freely forego their position
to more vulnerable other customers; (ii) the nature of the indi-
vidual requests, e.g. one customer may want to buy a significant

2Stricter regulation (e.g., GDPR, AI Act, etc) is a direct response
to such concerns. However, its development is slow and after the
fact, and such initiatives are aimed at limiting excesses and ad-
dressing problems that have already become reality. In addition,
regulation may also become overly restrictive, impeding positive
evolution, innovation, and advancement of society.

part of the medication stock to resell it later, to the disadvantage
of other customers waiting in line; or (iii) the medical urgency
or necessity behind the request. This simplified example shows
the need for systems to not just take into account economical
(maximize profit) or technical (to optimize throughput, reduce
queue lengths) system goals, but also human values such as fair-
ness, compassion, privacy, respectfulness [60], transparency and
explainability [7].

9.2 Vision
We envision a situation where both humans and SASTS can
change independently, without any awareness, request for permis-
sion to do so, or being concerned about the consequences of these
uncertainties. In this case, it is important to empower humans
to support the consequences of systems’ changes and to provide
mechanisms to the systems to deal with uncertainties regarding
humans in terms of their needs, values, and ethics concerns. A
key design element is to be able to define the scope of autonomy
of the SASTS. That is, which are the decisions that the system
can take autonomously and which are the decision that can be
objects of adaptation/negotiation due to human values and ethi-
cal concerns when the system interacts with a human. In [60] the
notion of digital ethics as introduced by Floridi [39] is suggested
as a way to help draw the line of system’s autonomy w.r.t. user’s
autonomy. Digital ethics is divided into two parts: hard ethics
which are defined in terms of laws and established societal rules,
e.g. GDPR, and soft ethics which represent the moral preferences
of each single user. The system needs to comply with hard ethics
and can host soft ethics to enable decisions that have an ethical
implication whether at the societal or personal level. However,
each user interacting with the system is equipped with her soft
ethics, i.e., human values. When the system and the user inter-
act, the user’s soft ethics should be able to manifest and influence
the system’s behavior accordingly. Referring to the queuing sys-
tem example, the compassionate user shall be able to leave her
position to others and update the default system’s soft ethics.

In order to carry on the envisaged interactions, we propose an
architecture that aims to empower humans and distributes the
responsibility by including two main components, namely Con-
nector and Mediator, as explained below.

Connector An element close to the human. The Connector man-
ages the representations of the individual human values
w.r.t. the interaction with the system. This element is
highly trusted and needs to be controlled by the human. It
engages in negotiation and communication on the human’s
behalf.

Mediator An element placed in between the human and the sys-
tem. The Mediator makes complex trade-offs that take into
account hard ethics, as well as values (soft ethics) from the
humans and requirements of the system.

As shown in Figure 4, when interacting with the System, the
Human only interacts with her Connector. The Connector in
turn interacts with the Mediator, which interacts with the Sys-
tem. Through our envisioned architecture, the responsibility of
aligning with values and ethics is distributed across different com-
ponents and, therefore, it is not only the system’s responsibility.
Models of the human (including information about his or her val-
ues and ethics) are maintained by the Connector and Mediator
components. Moreover, we envision that separate models should
be built for each distinct system. The System does not store mod-
els of the human, but rather interacts with the Mediator to learn
about and factor in the human’s values and ethics.

Dealing with uncertainties. We make a distinction between two
types of uncertainties: uncertainties concerning changes to the
system, and uncertainties concerning changes to the human. In
case of the system changes and no longer aligns with the human’s
values and ethics, the Mediator and Connector are still in place
to empower the human; i.e., providing the human with additional
means to interact with the system3 in a way that is compliant
with his or her own values and ethics. As human values and ethics
change, individuals can adjust their values and ethics by using the
Connector, or the Mediator, regarding ethics, e.g. through legal
change.

Figure 4 also shows a Third Party Auditor, which checks, inspects,
and verifies the Human, Connector, Mediator, and System. This
auditor is required to inspect whether someone within the inter-
action is misbehaving. This is especially important in case of
adaptation of either the Connector, Mediator, or System in our
envisioned architecture. Part of our vision is also aligned with
Art. 12 of the GDPR [89]. We envision that the system should be
auditable, act in a transparent way, and be able to justify certain
behavior or decisions. Checking these requirements is also part of
the responsibility of the Third Party Auditor.

Human

Mediator

C
o

n
n

e
c
to

r System
System

System

Individual Group

Model Model

Model

Society

Third Party Auditor

Figure 4: Vision of human empowerment with regards to systems.

9.3 Open Challenges
There are several open challenges when dealing with human em-
powerment under uncertainties for SASTS. We categorize the
open challenges into three areas: system, human, and the gen-
eral realization of the vision.

System. Regarding the system, we identify the operationaliza-
tion of human values and ethics to be a significant challenge [12,
82]. Despite some advances in the literature (e.g. [87, 99]), the
operationalization of human values, as defined in [82] — the pro-
cess of identifying human values and translating them to accessi-
ble and concrete concepts so that they can be implemented, vali-
dated, verified, and measured in software, is still an open prob-
lem both during design time and run time of the systems [12,
87]. This is even more prominent under uncertainty situations.
There are difficulties in modeling values and ethics and accounting
for context-awareness. Especially the flexibility in human values

3For instance, the Connector should be open to interventions ini-
tiated by the human.

(soft ethics) needs to be considered and distinguished correctly be-
tween human’s preferences and his or her values4. Additionally,
we see, that human values need to be made tangible, ensuring
that the system understands them and can adapt according to
their changes. Moreover, uncertainty also lies in the future evo-
lution of regulations and the representation of the hard ethics in
a matter that is comprehensive to the system [14]. The impacts
of system adaptations on the system and humans are uncertain
and need to be handled. Uncertainty also arises regarding the
representation of human values, their potentially higher rate of
change, and their potential conflicts and ambiguities.

Humans. Regarding humans, empowering individuals, groups and
society is a challenge [2, 6]. In addition to the current lack of
means to empower people, there is uncertainty about the effective-
ness of future methods and whether they will actually be utilized.
Furthermore, we see that when providing means to empower hu-
mans, potential opportunities for abuse of the system arise. This
in turn produces uncertainty in dealing with potential adversar-
ial humans. It is necessary to support negotiation between hu-
mans and the system when interacting. However, negotiation in
this setting requires a mutual understanding of both values and
ethics. Also, there is uncertainty regarding the outcome of the
negotiation process, especially in the presence of conflicts.

Vision Realization. In terms of the realization of our vision de-
scribed in Section 9.2, the development and operationalization of
the system, connectors, and mediators are open challenges. Ne-
gotiation protocols that handle the previously described uncer-
tainties need to be established. The negotiation protocols need to
consider transactional properties of negotiation outcomes and to
enable re-negotiation after changes in the human or system. In
this process, the system should be able to inform humans about
its changes and be aware of possible reluctance. Additionally,
it is crucial that these negotiation protocols can deal with con-
flicts that may arise due to incompatibilities between a human’s
ethics and the system’s goals. Balancing the system’s involvement
with connectors and mediators is also challenging. We highlight
that there should always be a default of zero harm to humans, a
fallback policy that may involve minimal system involvement or
even require blocking it altogether. Therefore, the system should
remain open, aware, and adaptive to mediators.

10. TOWARDS A RESEARCH AGENDA
Leveraging the open challenges identified in the different discus-
sion groups as explained in sections 5 to 9, we outline now a
possible agenda for future research as shown in Figure 5.

We identified two main lines for future research: understanding
uncertainty and managing uncertainty respectively.

Understanding Uncertainty. While substantial efforts have been
devoted on understanding the notion of uncertainty in self-
adaptive systems, the discussions pointed out that a holistic per-
spective is required to understand uncertainty that goes beyond
the classic taxonomies and classifications in terms of sources and
types of uncertainties. To obtain such a holistic understanding,
research is required to better understand the “who” and “why”
of uncertainty. Furthermore, the discussions lead to the insight
that uncertainties are heterogeneous and crosscut business, de-
sign and implementation, and operation. This calls for research
on modeling heterogeneous uncertainties and notations and for-
malisms for the propagation of uncertainties and the interaction

4Including the deduction of the motives behind human decisions.

between uncertainties. We also need a deeper understanding of
the relationships between uncertainties and risks. Finally, as ma-
chine learning is penetrating many software systems today, we
need to better understand how machine learning can help resolve
uncertainties, but on the other hand also how machine learning
components may introduce new types of uncertainty.

Managing Uncertainty. A key insight from the discussions is that
managing uncertainty is a lifelong process, meaning uncertainty
needs to be considered throughout the lifetime of a system, from
inception to operation and evolution. We identified two main
needs for future research on managing uncertainty: the need for
an end-to-end approach, and the need for a stakeholder/human-
centered perspective.

In contrast to traditional uncertainty management approaches
that focus on specific facets of systems or specific phases of the
life cycle, the discussions pointed out that managing uncertainty
requires an end-to-end approach. Such an approach put several
challenges on the table. It requires new methods to model and
analyze uncertainties throughout the different phases of the life
cycle. Evidently, this involves methods to represent and man-
age the propagation and interaction of uncertainties within and
between different phases. To effectively deal with uncertainties,
research is required to develop knowledge and reusable methods
to assess and manage uncertainties. Given the increasing role
and use of machine learning in software systems, an important
research challenge is to develop methods to manage the impact
of learning, as well as learning methods that help mitigate uncer-
tainty. Any methods developed to identify, analyze, and manage
uncertainties within and across different phases of a system’s life-
time should be scalable and able to deal with system evolution
that will increasingly occur during operation.

Whereas traditional approaches for managing uncertainty put the
emphasis on the technical aspects, the discussions pointed out the
need for future research that put stakeholders and humans in the
center. Hence, an important challenge is to develop knowledge
and methods for the identification and analysis of uncertainty and
associated risks that take a problem-driven stakeholder-centered
perspective. Since stakeholder goals and preferences are dynamic
and change over time, any methods used for dealing with un-
certainty should take these dynamics into account. Research is
required that considers human values and empowerment as first-
class citizens. Dealing with the tension of values of individuals,
groups, and society poses another difficult challenge for future re-
search. Last but not least, new methods are required that enable
the machine to explain to stakeholders how it makes decisions,
and vice versa, new methods are needed that empower humans to
express their needs and preferences to the machine.

All together, tackling these challenges will require a multi-years
concerted effort of multiple research teams. Multi-disciplinarity
within and across these teams will be key to obtaining the funda-
mental knowledge and engineering know-how that is required to
realize reusable solutions that will work in practice.

Acknowledgements
We express our sincere appreciation to the staff of the Bertinoro
research centre for their commitment in organising the practical-
ities of the seminar. The financial support by Christian Doppler
Research Association, the BMDW and the National Foundation
for Research, Technology and Development is also acknowledged.

Managing Uncertainty:
A Lifelong Process

End-to-End Approach Stakeholder/Human-Centred
Perspective

Understanding Uncertainty:
A Holistic Perspective

 Key Challenges

 - Modelling and analysing uncertainties from
 requirements to design, implementation,
 and operation
 - Representing and managing the
 propagation & interaction of uncertainties
 - Continually assessing and managing
 uncertainty in changing real-world settings
 - Understanding and managing the impact of
 machine learning on uncertainty and the
 other way around
 - Ensuring the scalability of uncertainty
 managements approaches
 - Dealing with uncertainty for evolving
 systems

 Key Challenges

 - Problem-driven, stakeholder-centred
 identification and analysis of uncertainties
 and risks
 - Dealing with uncertainty under changing
 goals and expectations of users
 - Operationalising human values and
 empowerment
 - Balancing the values of individuals versus
 group and societal values
 - Explainability of uncertainty management
 and user empowerment

 Key Challenges

 - Understanding the "Who" and "why" facets
 of uncertainty
 - Modelling the heterogeneity of
 uncertainties (business, design, operation)
 - Defining notations and formalisations for
 the propagation & interaction of
 uncertainties
 - Understanding trade-offs between
 uncertainties and risks
 - Understanding the relation between
 uncertainties and machine learning
 systems

Research Agenda for Uncertainty in
Self-Adaptive Systems

Figure 5: Overview of research agenda for uncertainty in self-adaptive systems

11. REFERENCES
[1] Walid Abdelmoez, DM Nassar, Mark Shereshevsky,

Nicholay Gradetsky, Rajesh Gunnalan, Hany H Ammar,
Bo Yu, and Ali Mili. Error propagation in software
architectures. In Proc. of METRICS’04, pages 384–393.
IEEE, 2004.

[2] Costanza Alfieri, Paola Inverardi, Patrizio Migliarini, and
Massimiliano Palmiero. Exosoul: ethical profiling in the
digital world. In HHAI, 2022.

[3] ALMI assistive-care robot video, 2023.
https://youtu.be/VhfQmJe4IPc.

[4] Ambient Assisted Living for Long-term Monitoring and
Interaction (ALMI), 2023. Project website.
https://www.york.ac.uk/assuring-autonomy/demonstr

ators/safe-robots-assisted-living/.

[5] Jesper Andersson, Vincenzo Grassi, Raffaela Mirandola,
and Diego Perez-Palacin. A conceptual framework for
resilience: fundamental definitions, strategies and metrics.
Computing, 103:559–588, 2021.

[6] Marco Autili, Davide Di Ruscio, Paola Inverardi, Patrizio
Pelliccione, and Massimo Tivoli. A software exoskeleton to
protect and support citizen’s ethics and privacy in the
digital world. IEEE Access, 7:62011–62021, 2019.

[7] Nagadivya Balasubramaniam, Marjo Kauppinen, Kari
Hiekkanen, and Sari Kujala. Transparency and
explainability of ai systems: ethical guidelines in practice.
In Requirements Engineering: Foundation for Software

Quality: 28th International Working Conference, REFSQ
2022, Birmingham, UK, March 21–24, 2022, Proceedings,
pages 3–18. Springer, 2022.

[8] Luciano Baresi, Liliana Pasquale, and Paola Spoletini.
Fuzzy Goals for Requirements-Driven Adaptation. In RE
2010, 18th IEEE International Requirements Engineering
Conference, Sydney, New South Wales, Australia,
September 27 - October 1, 2010, pages 125–134. IEEE
Computer Society, 2010.

[9] Falko Bause and Pieter S Kritzinger. Stochastic petri nets,
volume 1. Vieweg Wiesbaden, 2002.

[10] K. Bellman, A. Diaconescu, and S. Tomforde. Special issue
on “self-improving self integration”. Future Generation
Computer Systems, 119:136–139, 2021.

[11] Amel Bennaceur, Diane Hassett, Bashar Nuseibeh, and
Andrea Zisman. Values@ runtime: An adaptive framework
for operationalising values. In International Conference on
Software Engineering: Software Engineering in Society,
2023.

[12] Amel Bennaceur, Diane Hassett, Bashar Nuseibeh, and
Andrea Zisman. Values@runtime: An adaptive framework
for operationalising values. In Proceedings of the 45th
International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS), ICSE-SEIS
’23, New York, NY, USA, 2023. Association for
Computing Machinery.

[13] Amel Bennaceur, Andrea Zisman, Ciaran McCormick,

https://youtu.be/VhfQmJe4IPc
https://www.york.ac.uk/assuring-autonomy/demonstrators/safe-robots-assisted-living/
https://www.york.ac.uk/assuring-autonomy/demonstrators/safe-robots-assisted-living/

Danny Barthaud, and Bashar Nuseibeh. Won’t take no for
an answer: resource-driven requirements adaptation. In
2019 IEEE/ACM 14th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 77–88. IEEE, 2019.

[14] Nicolas Boltz, Leonie Sterz, Christopher Gerking, and
Oliver Raabe. A model-based framework for simplified
collaboration of legal and software experts in data
protection assessments. INFORMATIK 2022, 2022.

[15] Victor Braberman, Nicolas D’Ippolito, Jeff Kramer, Daniel
Sykes, and Sebastian Uchitel. An extended description of
morph: A reference architecture for configuration and
behaviour self-adaptation. In Software Engineering for
Self-Adaptive Systems III. Assurances, pages 377–408,
Cham, 2017. Springer International Publishing.

[16] Ricardo Diniz Caldas, Arthur Rodrigues, Eric Bernd Gil,
Genáına Nunes Rodrigues, Thomas Vogel, and Patrizio
Pelliccione. A Hybrid Approach Combining Control
Theory and AI for Engineering Self-Adaptive Systems. In
Shinichi Honiden, Elisabetta Di Nitto, and Radu
Calinescu, editors, International Symposium on Software
Engineering for Adaptive and Self-Managing Systems.
ACM, 2020.

[17] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola,
and G. Tamburrelli. Dynamic qos management and
optimization in service-based systems. IEEE Transactions
on Software Engineering, 37(3), 2011.

[18] Radu Calinescu, Milan Ceska, Simos Gerasimou, Marta
Kwiatkowska, and Nicola Paoletti. Designing robust
software systems through parametric markov chain
synthesis. In Proc. of ICSE’17, pages 131–140. IEEE
Computer Society, 2017.

[19] Radu Calinescu, Milan Češka, Simos Gerasimou, Marta
Kwiatkowska, and Nicola Paoletti. Efficient synthesis of
robust models for stochastic systems. Journal of Systems
and Software, 143:140–158, 2018.

[20] Radu Calinescu, Calum Imrie, Ravi Mangal,
Genáına Nunes Rodrigues, Corina Păsăreanu,
Misael Alpizar Santana, and Gricel Vázquez.
Discrete-event controller synthesis for autonomous systems
with deep-learning perception components. CoRR,
abs/2202.03360, 2023.

[21] Radu Calinescu, Raffaela Mirandola, Diego Perez-Palacin,
and Danny Weyns. Understanding uncertainty in
self-adaptive systems. In International Conference on
Autonomic Computing and Self-Organizing Systems, pages
242–251. IEEE, 2020.

[22] Radu Calinescu, Danny Weyns, Simos Gerasimou,
Muhammad Usman Iftikhar, Ibrahim Habli, and Tim
Kelly. Engineering trustworthy self-adaptive software with
dynamic assurance cases. IEEE Transactions on Software
Engineering, 44(11):1039–1069, 2018.

[23] Javier Cámara. HaiQ: Synthesis of Software Design Spaces
with Structural and Probabilistic Guarantees. In
Kyungmin Bae, Domenico Bianculli, Stefania Gnesi, and
Nico Plat, editors, Proc. of FormaliSE@ICSE’20, pages
22–33. ACM, 2020.

[24] Javier Cámara, Radu Calinescu, Betty H. C. Cheng, David
Garlan, Bradley R. Schmerl, Javier Troya, and Antonio
Vallecillo. Addressing the uncertainty interaction problem
in software-intensive systems: challenges and desiderata.
In Proc. of MODELS’22, pages 24–30. ACM, 2022.

[25] Javier Cámara, Javier Troya, Antonio Vallecillo, Nelly
Bencomo, Radu Calinescu, Betty H. C. Cheng, David

Garlan, and Bradley R. Schmerl. The uncertainty
interaction problem in self-adaptive systems. Softw. Syst.
Model., 21(4):1277–1294, 2022.

[26] Matteo Camilli, Angelo Gargantini, Patrizia Scandurra,
and Catia Trubiani. Uncertainty-aware exploration in
model-based testing. In 14th IEEE Conference on Software
Testing, Verification and Validation, ICST 2021, Porto de
Galinhas, Brazil, April 12-16, 2021, pages 71–81. IEEE,
2021.

[27] Matteo Camilli, Raffaela Mirandola, and Patrizia
Scandurra. Taming model uncertainty in self-adaptive
systems using bayesian model averaging. In Bradley R.
Schmerl, Martina Maggio, and Javier Cámara, editors,
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2022,
Pittsburgh, PA, USA, May 22-24, 2022, pages 25–35.
ACM/IEEE, 2022.

[28] Betty HC Cheng et al. Software engineering for
self-adaptive systems: A research roadmap. In Software
engineering for self-adaptive systems. Springer, 2009.

[29] Jane Cleland-Huang, Robert S. Hanmer, Sam Supakkul,
and Mehdi Mirakhorli. The twin peaks of requirements
and architecture. IEEE Software, 30(2):24–29, 2013.

[30] European Commission. European group on ethics in
science and new technologies, statement on artificial
intelligence, robotics and ’autonomous’ systems.
Publications Office, 03 2018.

[31] J. Cámara, W. Peng, D. Garlan, and B. Schmerl.
Reasoning about sensing uncertainty and its reduction in
decision-making for self-adaptation. Science of Computer
Programming, 167:51–69, 2018.

[32] Alexander D’Amour, Katherine Heller, Dan Moldovan,
Ben Adlam, Babak Alipanahi, Alex Beutel, Christina
Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D
Hoffman, et al. Underspecification presents challenges for
credibility in modern machine learning. The Journal of
Machine Learning Research, 23(1):10237–10297, 2022.

[33] Anne Dardenne, Axel van Lamsweerde, and Stephen
Fickas. Goal-Directed Requirements Acquisition. Science
of Computer Programming, 20(1):3–50, 1993.

[34] Bruno de Finetti. Theory of Probability: A critical
introductory treatment. John Wiley & Sons, 2017.

[35] Rogério De Lemos, Holger Giese, Hausi A Müller, Mary
Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl,
Gabriel Tamura, Norha M Villegas, Thomas Vogel, et al.
Software engineering for self-adaptive systems: A second
research roadmap. In Software Engineering for
Self-Adaptive Systems II: International Seminar, Dagstuhl
Castle, Germany, October 24-29, 2010 Revised Selected
and Invited Papers, pages 1–32. Springer, 2013.

[36] Tom DeMarco. Structure analysis and system specification,
pages 255–288. Springer, 1979.

[37] Naeem Esfahani and Sam Malek. Uncertainty in
self-adaptive software systems. In Software Engineering for
Self-Adaptive Systems II: International Seminar, Dagstuhl
Castle, Germany, October 24-29, 2010 Revised Selected
and Invited Papers. Springer, 2013.

[38] Antonio Filieri, Henry Hoffmann, and Martina Maggio.
Automated design of self-adaptive software with
control-theoretical formal guarantees. In 36th International
Conference on Software Engineering. ACM, 2014.

[39] Luciano Floridi. Soft ethics and the governance of the
digital. Philosophy & Technology, 31:1–8, mar 2018.

[40] Stefano Forti, Uwe Breitenbücher, and Jacopo Soldani.

Trending topics in software engineering. SIGSOFT Softw.
Eng. Notes, 47(3):20–21, jul 2022.

[41] Erik M. Fredericks, Byron DeVries, and Betty H. C.
Cheng. AutoRELAX: Automatically RELAXing a Goal
Model to Address Uncertainty. Empir. Softw. Eng.,
19(5):1466–1501, 2014.

[42] Luis Enrique Garćıa-Fernández and Mercedes Garijo.
Modeling strategic decisions using activity diagrams to
consider the contribution of dynamic planning in the
profitability of projects under uncertainty. IEEE Trans.
Engineering Management, 57(3):463–476, 2010.

[43] David Garlan, Shang-Wen Cheng, An-Cheng Huang,
Bradley R. Schmerl, and Peter Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable
infrastructure. Computer, 37(10):46–54, 2004.

[44] Carlos Gavidia-Calderon, Amel Bennaceur, Anastasia
Kordoni, Mark Levine, and Bashar Nuseibeh. What do
you want from me? adapting systems to the uncertainty of
human preferences. In Liliana Pasquale and Christoph
Treude, editors, 44th IEEE/ACM International
Conference on Software Engineering: New Ideas and
Emerging Results ICSE (NIER) 2022, Pittsburgh, PA,
USA, May 22-24, 2022, pages 126–130. IEEE/ACM, 2022.

[45] Simos Gerasimou, Radu Calinescu, and Giordano
Tamburrelli. Synthesis of probabilistic models for
quality-of-service software engineering. Automated
Software Engineering, 25:785–831, 2018.

[46] Roger Ghanem, David Higdon, Houman Owhadi, et al.
Handbook of uncertainty quantification, volume 6.
Springer, 2017.

[47] Omid Gheibi, Danny Weyns, and Federico Quin. Applying
machine learning in self-adaptive systems: A systematic
literature review. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 15(3):1–37, 2021.

[48] Carlo Ghezzi, Leandro Sales Pinto, Paola Spoletini, and
Giordano Tamburrelli. Managing non-functional
uncertainty via model-driven adaptivity. In Proc. of
ICSE’13, pages 33–42. IEEE Computer Society, 2013.

[49] Holger Giese, Nelly Bencomo, Liliana Pasquale, Andres J.
Ramirez, Paola Inverardi, Sebastian Wätzoldt, and
Siobhán Clarke. Living with uncertainty in the age of
runtime models. In Nelly Bencomo, Robert France, Betty
H. C. Cheng, and Uwe Aßmann, editors, Models@run.time:
Foundations, Applications, and Roadmaps, pages 47–100.
Springer International Publishing, Cham, 2014.

[50] Volker Gruhn and Clemens Schäfer. Bizdevops: Because
devops is not the end of the story. In Hamido Fujita and
Guido Guizzi, editors, Intelligent Software Methodologies,
Tools and Techniques, pages 388–398, Cham, 2015.
Springer International Publishing.

[51] Sebastian Hahner, Tizian Bitschi, Maximilian Walter,
Tomáš Bureš, Petr Hnětynka, and Robert Heinrich.
Model-based confidentiality analysis under uncertainty. In
Proc. of ICSA’23 Companion (ICSA-C), pages 256–263,
2023.

[52] Sebastian Hahner, Robert Heinrich, and Ralf Reussner.
Architecture-based uncertainty impact analysis to ensure
confidentiality. In Proc. of SEAMS’23. IEEE/ACM, 2023.
Accepted, to appear.

[53] Sebastian Hahner, Stephan Seifermann, Robert Heinrich,
Maximilian Walter, Tomáš Bureš, and Petr Hnětynka.
Modeling data flow constraints for design-time
confidentiality analyses. In Proc. of ICSA’21 Companion
(ICSA-C), pages 15–21, 2021.

[54] Jordan Hamilton, Ioannis Stefanakos, Radu Calinescu, and
Javier Camara. Towards planning and adaptation of
assistive-care robot tasks. In Fourth Workshop on Formal
Methods for Autonomous Systems, 2022.

[55] Richard Hawkins, Colin Paterson, Chiara Picardi, Yan Jia,
Radu Calinescu, and Ibrahim Habli. Guidance on the
assurance of machine learning in autonomous systems
(AMLAS). CoRR, abs/2102.01564, 2021.

[56] Sara M. Hezavehi, Danny Weyns, Paris Avgeriou, Radu
Calinescu, Raffaela Mirandola, and Diego Perez-Palacin.
Uncertainty in self-adaptive systems: A research
community perspective. ACM Trans. Auton. Adapt. Syst.,
15(4), dec 2021.

[57] Douglas W Hubbard. The failure of risk management:
Why it’s broken and how to fix it. John Wiley & Sons,
2020.

[58] M. Usman Iftikhar and Danny Weyns. Activforms: Active
formal models for self-adaptation. In 9th International
Symposium on Software Engineering for Adaptive and
Self-Managing Systems, page 125–134. ACM, 2014.

[59] Didac Gil De La Iglesia and Danny Weyns. Mape-k formal
templates to rigorously design behaviors for self-adaptive
systems. ACM Trans. Auton. Adapt. Syst., 10(3), sep 2015.

[60] Paola Inverardi. The european perspective on responsible
computing. Commun. ACM, 62(4):64, mar 2019.

[61] JCGM 100:2008. Evaluation of measurement data—Guide
to the expression of uncertainty in measurement (GUM).
ISO Joint Com. for Guides in Metrology, 2008.
http://www.bipm.org/utils/common/documents/jcgm/J

CGM_100_2008_E.pdf.

[62] Audun Jøsang. Subjective Logic – A Formalism for
Reasoning Under Uncertainty. Artificial Intelligence:
Foundations, Theory, and Algorithms. Springer, 2016.

[63] Jeffrey O. Kephart and David M. Chess. The Vision of
Autonomic Computing. Computer, 36(1):41–50, 2003.

[64] Ram Shankar Siva Kumar, David O Brien, Kendra Albert,
Salomé Viljöen, and Jeffrey Snover. Failure modes in
machine learning systems. arXiv preprint
arXiv:1911.11034, 2019.

[65] Marta Z. Kwiatkowska. Safety verification for deep neural
networks with provable guarantees (invited paper). In
Wan J. Fokkink and Rob van Glabbeek, editors, 30th
International Conference on Concurrency Theory,
CONCUR 2019, August 27-30, 2019, Amsterdam, the
Netherlands, volume 140 of LIPIcs, pages 1:1–1:5. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[66] Marta Z. Kwiatkowska, Gethin Norman, David Parker,
and Hongyang Qu. Assume-guarantee verification for
probabilistic systems. In Proc. of TACAS’10, volume 6015
of LNCS, pages 23–37. Springer, 2010.

[67] M. Lippi, S. Mariani, M. Martinelli, and F. Zambonelli.
Individual and collective self-development: Concepts and
challenges. In 2022 17th Conference on Computer Science
and Intelligence Systems (FedCSIS), pages 15–21, 2022.

[68] Qinghua Lu, Liming Zhu, Jon Whittle, and James Bret
Michael. Software engineering for responsible AI.
Computer, 56(4):13–16, 2023.

[69] S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns. A
classification framework of uncertainty in
architecture-based self-adaptive systems with multiple
quality requirements. In Ivan Mistrik, Nour Ali, Rick
Kazman, John Grundy, and Bradley Schmerl, editors,
Managing Trade-Offs in Adaptable Software Architectures,
pages 45–77. Morgan Kaufmann, Boston, 2017.

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

[70] Gregory R Maio. The psychology of human values.
Routledge, 2016.

[71] Danilo Filgueira Mendonça, Genáına Nunes Rodrigues,
Raian Ali, Vander Alves, and Luciano Baresi. GODA: A
Goal-Oriented Requirements Engineering Framework for
Runtime Dependability Analysis. Information and
Software Technology, 80:245–264, 2016.

[72] Jessica Morley, Luciano Floridi, Libby Kinsey, and Anat
Elhalal. From what to how: an initial review of publicly
available ai ethics tools, methods and research to translate
principles into practices. Science and engineering ethics,
26(4):2141–2168, 2020.

[73] Object Management Group. Unified Modeling Language
(UML) Specification. Version 2.5, March 2015. OMG
document formal/2015-03-01.

[74] Esteban Pavese, Vı́ctor A. Braberman, and Sebastián
Uchitel. Probabilistic environments in the quantitative
analysis of (non-probabilistic) behaviour models. In Proc.
of FSE’09, pages 335–344. ACM, 2009.

[75] Diego Perez-Palacin and Raffaela Mirandola. Uncertainties
in the modeling of self-adaptive systems: a taxonomy and
an example of availability evaluation. In Proceedings of the
International Conference on Performance Engineering,
(ICPE’14),Dublin, Ireland, pages 3–14. ACM, 2014.

[76] Arthur Rodrigues, Ricardo Diniz Caldas, Genáına Nunes
Rodrigues, Thomas Vogel, and Patrizio Pelliccione. A
Learning Approach to Enhance Assurances for Real-Time
Self-Adaptive Systems. In International Conference on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’18, pages 206–216. ACM, 2018.

[77] Stuart J. Russell and Peter Norvig. Artificial Intelligence,
A Modern Approach. Prentice Hall, 3 edition, 2010.

[78] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Transactions on
Autonomous and Adaptive Systems, 4(2), 2009.

[79] Shalom H Schwartz. An overview of the schwartz theory of
basic values. Online readings in Psychology and Culture,
2(1):2307–0919, 2012.

[80] Glenn Shafer. A Mathematical Theory of Evidence.
Princeton University Press, 1976.

[81] Mojtaba Shahin, Waqar Hussain, Arif Nurwidyantoro,
Harsha Perera, Rifat Ara Shams, John C. Grundy, and
Jon Whittle. Operationalizing human values in software
engineering: A survey. CoRR, abs/2108.05624, 2021.

[82] Mojtaba Shahin, Waqar Hussain, Arif Nurwidyantoro,
Harsha Perera, Rifat Ara Shams, John C. Grundy, and
Jon Whittle. Operationalizing human values in software
engineering: A survey. ArXiv, abs/2108.05624, 2021.

[83] Stepan Shevtsov, Danny Weyns, and Martina Maggio.
Handling new and changing requirements with guarantees
in self-adaptive systems using simca. In IEEE/ACM 12th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2017.

[84] Marco Sinnema and Sybren Deelstra. Classifying
variability modeling techniques. Inf. Softw. Technol.,
49(7):717–739, 2007.

[85] Vı́tor E. Silva Souza, Alexei Lapouchnian, and John
Mylopoulos. Requirements-Driven Qualitative Adaptation.
In Robert Meersman, Hervé Panetto, Tharam Dillon,
Stefanie Rinderle-Ma, Peter Dadam, Xiaofang Zhou, Siani
Pearson, Alois Ferscha, Sonia Bergamaschi, and Isabel F.
Cruz, editors, On the Move to Meaningful Internet
Systems: OTM 2012. Springer, 2012.

[86] Vı́tor Estêvão Silva Souza, Alexei Lapouchnian,

William N. Robinson, and John Mylopoulos. Awareness
Requirements for Adaptive Systems. In Holger Giese and
Betty H. C. Cheng, editors, 2011 ICSE Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2011, Waikiki, Honolulu , HI, USA,
May 23-24, 2011, pages 60–69. ACM, 2011.

[87] Beverley Townsend, Colin Paterson, T. T. Arvind, Gabriel
Nemirovsky, Radu Calinescu, Ana Cavalcanti, Ibrahim
Habli, and Alan Thomas. From pluralistic normative
principles to autonomous-agent rules. Minds Mach.,
32(4):683–715, 2022.

[88] Javier Troya, Nathalie Moreno, Manuel F. Bertoa, and
Antonio Vallecillo. Uncertainty representation in software
models: A survey. Softw. Syst. Model., 2021.

[89] European Union. Regulation (eu) 2016/679 of the
european parliament and of the council of 27 april 2016 on
the protection of natural persons with regard to the
processing of personal data and on the free movement of
such data, and repealing directive 95/46/ec. Official
Journal of the European Union, 59:1–88, 05 2016.

[90] Ken Vanherpen, Joachim Denil, Paul De Meulenaere, and
Hans Vangheluwe. Design-space exploration in MDE: an
initial pattern catalogue. In Proc. of
CMSEBA@MODELS’14, volume 1340 of CEUR Workshop
Proceedings, pages 42–51. CEUR-WS.org, 2014.

[91] David Vose. Risk analysis: a quantitative guide. John
Wiley & Sons, 2008.

[92] D. Weyns, M. Usman Iftikhar, and J. Söderlund. Do
external feedback loops improve the design of self-adaptive
systems? a controlled experiment. In 2013 8th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 3–12, 2013.

[93] Danny Weyns. Introduction to Self-Adaptive Systems: A
Contemporary Software Engineering Perspective. Wiley,
2020. ISBN 978-1-119-57494-1.

[94] Danny Weyns and Jesper Andersson. From
Self-Adaptation to Self-Evolution Leveraging the
Operational Design Domain. In International Symposium
on Software Engineering for Adaptive and Self-Managing
Systems, 2023.

[95] Danny Weyns et al. Self-adaptation in industry: A survey.
ACM Transactions on Autonomous and Adaptive Systems,
18(2), 2023.

[96] Danny Weyns, Omid Gheibi, Federico Quin, and Jeroen
Van Der Donckt. Deep learning for effective and efficient
reduction of large adaptation spaces in self-adaptive
systems. ACM Transactions on Autonomous and Adaptive
Systems, 17(1–2), 2022.

[97] Danny Weyns and M. Usman Iftikhar. Activforms: A
formally founded model-based approach to engineer
self-adaptive systems. ACM Trans. Softw. Eng. Methodol.,
32(1):12:1–12:48, 2023.

[98] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty HC
Cheng, and Jean-Michel Bruel. Relax: Incorporating
Uncertainty into the Specification of Self-Adaptive
Systems. In 2009 17th IEEE International Requirements
Engineering Conference, pages 79–88. IEEE, 2009.

[99] Sinem Getir Yaman, Charlie Burholt, Maddie Jones, Radu
Calinescu, and Ana Cavalcanti. Specification and
validation of normative rules for autonomous agents. In
Fundamental Approaches to Software Engineering.
Springer, 2023.

[100] Hans-Jürgen Zimmermann. Fuzzy Set Theory – and Its
Applications. Springer Science+Business Media, 2001.

	Introduction
	Approach
	Pre-Seminar Survey
	Short Invited Introductory Talks
	Adapting Systems to the Uncertainty of User Requirements, Preferences, and Values
	Essential Concepts for Self-adaptation under Uncertainty
	If We Do Not Know, Let Us Rely on What We Know
	Representing Aleatory and Epistemic Uncertainty in Software Models

	Agile End-to-End Handling ofUncertainties in Goal-orientedSelf-adaptive Systems
	Motivation
	Related Work
	Novelty and Envisioned Approach
	Research Challenges

	Managing uncertainty risks for self-adaptive systems
	Motivation
	Related Work
	Uncertainty Risk Management Framework
	Approaches for Resolving Uncertainty Risk

	Uncertainty Propagation and Interaction
	Motivation
	Related Work and Challenges
	Vision

	Uncertainty in Self-adaptive Machine Learning Systems
	Motivation
	Vision
	Open Challenges

	Human Empowerment under Uncertainty
	Motivation
	Vision
	Open Challenges

	Towards a Research Agenda
	References

