
Behind the Scenes: Uncovering TLS and Server Certificate
Practice of IoT Device Vendors in the Wild

Hongying Dong
University of Virginia

Hao Shu
New York University

Vijay Prakash
New York University

Yizhe Zhang
University of Virginia

Muhammad Talha Paracha
Northeastern University

David Choffnes
Northeastern University

Santiago Torres-Arias
Purdue University

Danny Yuxing Huang
New York University

Yixin Sun
University of Virginia

ABSTRACT
IoT devices are increasingly used in consumer homes. Despite re-
cent works in characterizing IoT TLS usage for a limited number of
in-lab devices, there exists a gap in quantitatively understanding
TLS behaviors from devices in the wild and server-side certificate
management.

To bridge this knowledge gap, we conduct a new measurement
study by focusing on the practice of device vendors, through a crowd-
sourced dataset of network traffic from 2,014 real-world IoT devices
across 721 global users. By quantifying the sharing of TLS finger-
prints across vendors and across devices, we uncover the prevalent
use of customized TLS libraries (i.e., not matched to any known TLS
libraries) and potential security concerns resulting from co-located
TLS stacks of different services. Furthermore, we present the first
known study on server-side certificate management for servers
contacted by IoT devices. Our study highlights potential concerns
in the TLS/PKI practice by IoT device vendors. We aim to raise
visibility for these issues and motivate vendors to improve security
practice.

CCS CONCEPTS
• Security and privacy → Mobile and wireless security; •Net-
works → Network measurement;

KEYWORDS
Internet of Things, IoT, Measurements, Network security, Public
Key Infrastructure, PKI, Transport Layer Security, TLS

ACM Reference Format:
Hongying Dong, Hao Shu, Vijay Prakash, Yizhe Zhang, Muhammad Talha
Paracha, David Choffnes, Santiago Torres-Arias, Danny Yuxing Huang,
and Yixin Sun. 2023. Behind the Scenes: Uncovering TLS and Server Cer-
tificate Practice of IoT Device Vendors in the Wild. In Proceedings of the
2023 ACM Internet Measurement Conference (IMC ’23), October 24–26, 2023,
Montréal, QC, Canada. ACM, New York, NY, USA, 21 pages. https://doi.org/
10.1145/3618257.3624815

This work is licensed under a Creative Commons Attribution
International 4.0 License.

IMC’23, October 24-26, 2023, Montréal, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0382-9/23/10.
https://doi.org/10.1145/3618257.3624815

1 INTRODUCTION
Consumer Internet-of-Things (IoT) devices are increasingly used on
home networks [43]. Given the rising number of security incidents
involving compromised IoT devices [5, 15, 46] and the sensitive
information that IoT devices collect from users [44], one critical
question is how these devices use Transport Layer Security (TLS)
and Public Key Infrastructure (PKI) to encrypt and protect their
communications.

Several recent works investigate the TLS usage of in-lab IoT
devices [4, 12, 37, 40]. We take a step further by performing crowd-
sourced measurements to capture much richer IoT TLS behaviors—
from more device vendors and more instances of the same vendor—
and provide a deeper understanding of vendor practices in the
wild.

Research questions.We aim to answer two questions: (1) How
do real-world IoT devices in consumers’ homes use TLS? Unlike
prior works in IoT TLS, our goal is to not only identify vulnerabili-
ties (e.g., vulnerable ciphersuites), but also quantitatively measure
the behavior of sharing and customizing of TLS libraries across
devices and vendors at scale. (2) How do “IoT servers” (i.e., IoT-
visited hosts) manage their digital certificates? In particular, we
focus on device vendors who are oftentimes the domain owners
and therefore responsible for maintaining the certificates. This is
the first known study of server-side certificate management for IoT
servers.

To this end, we utilize a crowdsourced dataset of IoT TLS traffic
collected by IoT Inspector [23], consisting of 2,014 IoT devices of
286 models from 65 device vendors, across 721 users worldwide. To
the best of our knowledge, this is the largest dataset of smart home
IoT TLS traffic known to date. For the majority of IoT products
in our dataset, there is more than one device of each product. For
example, we have 75 Wyze Cameras, which could be of different
models running different firmware images at different times. The
dataset spans over 15 months from April 29, 2019 to August 1,
2020, and consists of 11,439 TLS ClientHellos. We also supplement
this dataset with our own probing of IoT servers across multiple
geolocations to construct the certificate dataset for our server-side
analysis.

Goal 1: Dissect the heterogeneity of IoT client-side TLS.
While many prior works perform TLS fingerprinting by matching
against popular known TLS libraries [25, 37], we find that the
majority (∼ 98%) of IoT devices in our dataset do not have exact
matches against these known libraries, which is likely due to the

 

457

https://doi.org/10.1145/3618257.3624815
https://doi.org/10.1145/3618257.3624815
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3618257.3624815
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618257.3624815&domain=pdf&date_stamp=2023-10-24


IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

heterogeneity of IoT device functionalities and configurations. To
tackle the challenge of analyzing the large number of unmatched
TLS fingerprints found in our 2,014 IoT devices, we employ metrics
to quantify the level of fingerprints customizing and sharing across
vendors and across devices. Our approach enables us to uncover
(i) customization of TLS libraries from device vendors, i.e., TLS
fingerprints only observed from devices of a given vendor; (ii)
variance of TLS fingerprints from devices belonging to the same
vendor; (iii) nonstandard TLS fingerprints (i.e., not matched against
any known libraries) shared across different device vendors likely
due to the shared software supply chain. We quantitatively measure
the degrees of sharing and customization in all three scenarios as
well as identify vulnerabilities in fingerprints.

Goal 2: Characterize IoT server-side certificate manage-
ment by vendors. We supplemented the original IoT Inspector
dataset, which only contains TLS ClientHellos, with server-side
certificate data by initiating TLS connections to all the domains
extracted from the Server Name Indication (SNI) field. To ensure
reliability of the data, we initiated TLS connections from three dif-
ferent continents and cross-checked the obtained certificates for
consistency. We segment our analysis by vendor and character-
ize how vendors (i) choose Certificate Authorities (CAs) for their
domains, and (ii) maintain valid certificates. For example, Canary
Connect, a home security system vendor, signs all certificates by
itself without involving any third-party CA, while some vendors,
such as Belkin, use DigiCert to sign all their domains. In addition,
we identify concerns in the certificate validity period and highlight
the insufficiency of Certificate Transparency (CT) in monitoring
many IoT server certificates.

Key contributions. We leverage graph techniques combined
with quantitative metrics to uncover TLS behaviors of IoT devices
in the wild and present the first known study on certificate manage-
ment by IoT servers or vendors. Note that our focus is on charac-
terizing vendor’s practices at scale from the perspective of network
traffic rather than firmware analysis (whose source code is generally
unavailable). Our key findings are:

(1) Heterogeneity in TLS fingerprints across vendors: 20% of ven-
dors only have TLS fingerprints unique to themselves (i.e.,
not observed in any other vendors). 77.47% of all TLS fin-
gerprints are only used by a single vendor. This observation
highlights the high degree of vendor customization of TLS
instances.

(2) Sharing of TLS fingerprints across vendors: aside from vendors,
software and third-party applications installed on devices
also contribute to device TLS fingerprints and likely lead to
the sharing of customized TLS fingerprints across vendors.
17.42% of IoT servers (corresponding to specific applications)
are found tied to their own unique fingerprints from mul-
tiple vendors (i.e., devices only exhibit a given fingerprint
when connecting to a given server). This result highlights
a potential risk factor of the IoT TLS ecosystem: devices
with co-located TLS stacks from different types of services
or functionalities are exposed to an increased attack surface
and are likely affected by the least secure TLS stack.

(3) Self management of IoT server certificates: 9.86% of all server
leaf certificates, affecting 391 devices, are signed by device
vendors instead of a trusted public CA. Consequently, these

certificates are not logged in Certificate Transparency (CT).
Among them, 46.67% have a validity period longer than 5
years. This finding indicates the security risks of the long-
lived vendor-signed certificates that fall out of public moni-
toring.

Summary.We quantitatively measure how TLS/PKI is deployed
in the IoT context and the security concerns. Certain vendor prac-
tices, such as customized TLS libraries and server certificates issued
by private CAs, make it challenging for security auditing. We aim
to raise visibility for these issues, and encourage vendors to im-
prove security practices and regulators to enforce compliance with
corresponding rules.

Open source. In support of the community, we make available
both an anonymized version of our IoT Inspector dataset and server
certificate dataset at: https://github.com/hyingdon/acmimc23_iot.

2 RELATEDWORK
We first discuss TLS/PKI work in the broader domains, and then
focus on comparing with related works in IoT.

TLS measurements. There is a significant amount of works
studying TLS. Zhu et al. [52] assessed TLS certificate revocation
latency and pervasiveness using traffic data collected from a uni-
versity. In 2018, Kotzias et al. [25] conducted a longitudinal study
encompassing both passive monitoring and active network scans.
Their research uncovered significant shifts within the TLS ecosys-
tem in recent years. Brubaker et al. [8] instead took a different
approach by generating synthetic certificates to test TLS certificate
validation in different implementations, and Ma et al. [32] delved
into the root store ecosystem, highlighting security risks linked to
customized trust. Distinct from aforementioned studies, our work
investigates the practices employed by IoT vendors when engaging
with TLS, utilizing a crowdsourced dataset.

Web. Numerous works have studied TLS and PKI on the web.
Akhawe et al. [3] studied how browsers validate TLS certificates and
measured TLS errors on the web, while Liu et al. [31] explored TLS
certificate revocation on the web. Cangialosi et al. [9], on the other
hand, analyzed the prevalence of website-trust third-party hosting
providers and the resulting impact on private key management
practices regarding the web’s HTTPS ecosystem. We note several
key differences between IoT and the web: (1) Different from web
clients like browsers that are relatively well-maintained by major
developers [26], IoT clients are highly heterogeneous, e.g., we found
only 2.55% IoT TLS fingerprints match known libraries including
ones commonly used by the web [25]. (2) Such heterogeneity likely
results in difficulties of monitoring and updating IoT clients, e.g.,
we found 42 devices prefer vulnerable ciphersuites most vs. 0 for
major browsers [10]. (3) IoT servers may not expect web clients,
and therefore they may have a heavier use of certificates issued by
private CAs, resulting in a lack of CT logging.

Mobile. Prior works examining TLS/PKI on the mobile ecosys-
tem [39, 47] largely focus on mobile operating systems (e.g., An-
droid) and mobile applications. Our study, instead, focuses on a
wide range of consumer IoT devices that exclude general computing
devices such as phones, tablets, and computers.

IoT and comparisonwith our work.While there exist studies
on TLS usage in IoT devices, the closest work to ours performed

 

458

https://github.com/hyingdon/acmimc23_iot


Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

both passive and active experiments on a maximum of 40 IoT de-
vices across 6 categories in a controlled-lab environment [37]. They
identified TLS vulnerabilities in devices, such as outdated protocols
and weak ciphersuites, and revealed the sharing of fingerprints with
other devices/applications. Despite some similarity in the client-
side TLS analysis, our work differs in several aspects. First, our work
also investigates server-side certificate management for servers con-
tacted by IoT devices, which was not performed by any prior work.
Second, though both works investigate fingerprint-sharing across
devices, we take the fingerprint-sharing analysis to the next level
by employing metrics to quantify the level of customization and
sharing across vendors and across devices within the same vendor
at a larger scale and at a finer granularity, as well as evaluating the
security level of fingerprints to identify shared vulnerabilities and
problematic vendors. Our analysis is enabled by our crowdsourced
dataset of 2,014 devices from 65 vendors (compared to 40 devices
of 28 vendors [37]), which reveals more diverse behaviors and pro-
vides a deeper understanding of vendor practices. To exemplify, our
research shows that over 70% of vendors introduce at least one dis-
tinctive fingerprint that is not shared with other vendors, implying
the existence of a substantial number of TLS instances specific to
individual vendors. Additionally, our research highlights notable
variations in security practices among vendors, as demonstrated
by the diverse security levels associated with the fingerprints they
employ.

Table 1: Comparison with prior works on IoT TLS.
[4] [40] [23] [37] This

TLS TLS parameters ✓ ✓ ✓ ✓
TLS fingerprint ✓ ✓

Certificate Client side ✓
Server side ✓

Data
Collection

Crowdsourced ✓ ✓
Lab-based ✓ ✓ ✓

Alrawi et al. [4] introduced a systematic methodology for con-
ducting an SoK study on security characteristics, such as crypto-
graphic protocols and TLS libraries, of home-based devices. They
applied the methodology to assess 45 devices spanning diverse
categories by looking into devices, as well as their cloud points,
communication channels, and mobile applications. Ren et al. [40]
undertook a study to characterize information exposure of 81 in-lab
devices across networks, geographic regions, and device interac-
tions, incorporating a combination of automated and manual exper-
iments. Huang et al. [23] introduced IoT Inspector and harnessed a
crowdsourced dataset to explore the utilization of TLS versions and
communication endpoints. In contrast to our work, none of these
studies focus on either the heterogeneity in devices’ TLS instances
or vendors’ roles in the TLS behavior of IoT devices. As a summary,
Table 1 captures how our work compares to the aforementioned
works.

3 DATASET
To characterize how real-world IoT devices use TLS and PKI, we
use a dataset of ClientHello packets collected from IoT Inspector
from April 29, 2019 to August 1, 2020 [23].

IoT Inspector is an open-source tool that crowdsourced the net-
work traffic from 54,094 devices across 5,404 users worldwide [23].

Each user has an option to label their devices with names of the
devices and the manufacturers; in total, 12,993 devices had such
labels across 2,465 users. For these labeled devices, we implemented
rules to perform device identification by applying Natural Language
Processing (NLP) techniques to user labels, based on the method
described in Section 5.1 in the original IoT Inspector paper [23]
(details of device label validation can be found in the paper as well).

For each of these 9,534 devices, IoT Inspector collects the TCP,
UDP, or IP headers, along with the TLS versions, Server Name Indi-
cation (SNI), ciphersuites, and extension types for ClientHellos; IoT
Inspector did not capture the full ClientHello packets to minimize
potentially sensitive information collected [23]. We only observe
ClientHellos on 2,298 devices (24.1%) across 771 users. We do not
observe ClientHellos in the remaining devices likely because (i) they
did not use TLS at all, or (ii) IoT Inspector was not running when
the TLS connection happened. We perform analysis on ClientHellos
in Section 4.

This dataset does not include any ServerHellos. To obtain server
certificates, we need to establish TLS handshakes with the same
servers that the IoT devices connected to (detailed in Section 5.1).
To this end, we extracted SNIs from the ClientHellos and removed
SNIs observed from two or fewer users to eliminate potential bias,
which resulted in a set of 1,194 SNIs from 2,024 devices across
722 users. Due to the time lag between the ClientHello dataset
and our probing (in 2022), 43 servers became unreachable. In the
end, we were able to establish TLS handshakes with 1,151 SNIs
across 2,014 devices from 721 users. We further cross-check our
certificate dataset with additional sources and show that the time lag
does not have a significant impact on certificate characteristics in
Appendix C.4.2. We characterize IoT PKI leveraging this certificate
dataset in Section 5.

We utilize two additional datasets to complete our study:
• Lab dataset: a dataset containing network traffic captured
in the lab of 113 IoT devices belonging to 52 vendors from
2017 to 2021. This dataset is discussed in Appendix C.4 to
cross-check our obtained certificates for consistency.

• Smart TV and local device dataset: a dataset containing net-
work traffic captured in the lab, including smart TVs and 30
IoT devices on the local network. This dataset is analyzed in
Section 6 as case studies.

4 IOT CLIENT-SIDE TLS ANALYSIS
We begin with a traditional TLS fingerprinting analysis to identify
the TLS libraries used by IoT devices (Section 4.1). However, we
find that the majority (∼ 98%) of devices do not have exact matches
against known libraries likely due to the heterogeneity of device
vendors and functionalities. To tackle such challenge, we employ
an approach focusing on the shared (or unshared) fingerprints across
vendors and devices:

• Customization across vendors (Sec. 4.2): how unique are the
fingerprints used by each vendor?

• Customization across devices (Sec. 4.3): how unique are the
fingerprints used by devices within the same vendor?

• Shared supply chains or applications (Sec. 4.4): why do dif-
ferent vendors share the same fingerprints (that are non-
standard libraries)?

 

459



IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

Furthermore, we develop a new metric to measure the similarity
between the customized TLS fingerprints and the known libraries
in Appendix B.2. We also report additional TLS parameters in Ap-
pendix B.3.

4.1 Matching Fingerprints to Libraries
To infer which TLS library version is potentially used by a given
device, we do the following steps: (1) We compile different versions
of known TLS libraries. (2) For each version of a TLS library, we
use its default TLS client (which typically comes with the source
code) to connect to our server on port 443 and capture the TLS traf-
fic. (3) We construct a fingerprint of this particular library version
by concatenating {TLS version, ciphersuites, extensions}. (4) Using
IoT Inspector’s ClientHello data, we construct the TLS fingerprints
for each of the 2,014 devices in our dataset, also by concatenating
{ciphersuites, extension types, TLS version}. In contrast to existing
works [37, 39], we are only using these three fields for TLS fin-
gerprinting, as IoT Inspector does not collect the full ClientHello
payload to reduce privacy risks [23]. Note that any TLS configura-
tion will feature the three fields we base our fingerprints on. If two
fingerprints already differ using these three fields, they will also
differ with more fields. (5) We compare the fingerprint of an IoT
device X against the fingerprints of the known TLS libraries. If the
fingerprints are the same, we say that Device X potentially has the
said TLS library version.

In total, we compiled (i) 19 versions of the OpenSSL libraries,
(ii) 38 versions of the wolfSSL libraries, (iii) 113 versions of the
Mbed TLS libraries, (iv) 5,591 versions of different curl versions
compiled with different OpenSSL versions, and (v) 1,130 versions
of curl with wolfSSL. This gives us 6,891 fingerprints from known
libraries. Note that some consecutive library versions may have
the same fingerprints. For example, OpenSSL versions 𝑖 through
𝑗 (where 𝑖 < 𝑗 ) all have the same fingerprint 𝐹 . In this case, if a
device 𝑋 ’s fingerprint is identical to 𝐹 , then we will use the highest
TLS version 𝑗 . We summarize the coverage of our compiled library
fingerprints in Appendix B.1.

TLS library matching results. We extracted 903 unique fin-
gerprints (i.e., {ciphersuites, extensions, TLS version} tuples) from
the 2,014 IoT devices in our dataset. However, we find that only 23
fingerprints (2.55%, compared to 45% in prior IoT TLS study [37])
have an exact match with 16 known TLS libraries (14 from curl with
OpenSSL and 2 from Mbed TLS, which indicates the possibility of
customization of TLS configuration by IoT vendors. Concerningly,
14 (out of 16) libraries are no longer supported as of 2020, including
severely outdated versions such as OpenSSL 1.0.0t (released in 2015)
with many known vulnerabilities [53].

Fingerprinting validation (case studies). Due to the lack of
ground truth and unavailability of device firmware, we perform
manual search for manufacturer documents and discuss two case
studies: (i) Enphase Solar Monitor: our fingerprinting matches it to
OpenSSL 1.0.1e, which is consistent with manufacturer’s disclosure
that its products use OpenSSL 1.0.1e [17]1; (ii)Wyze devices: our
fingerprinting matches them to OpenSSL 1.0.2u. Wyze disclosed
the usage of OpenSSL 1.0.2o or 1.0.2f [51], where all three OpenSSL

1This device is not included in our TLS analysis because it doesn’t meet our threshold
(>= 2 users per device type).

1.0.2 versions share the same 3-tuple fingerprint with 1.0.2u being
the latest version.

Takeaway. The majority (∼ 98%) of IoT TLS fingerprints differ
from known libraries, which may be due to the customization of
TLS libraries by vendors.

4.2 Customization Across Vendors
We first analyze the uniqueness of the fingerprints across vendors.
We also define the security level of the ciphersuite in the fingerprint
as follows, based on prior work and IETF documents [14, 42]:

• Optimal: equivalent to a modern web browser in terms of
security [21].

• Suboptimal: non-ideal (e.g., non-PFS ciphers), but is not vul-
nerable to known attacks2.

• Vulnerable: with algorithms that are vulnerable to known
attacks, e.g., anonymous key exchange algorithms, export-
grade ciphers, NULL encryption, RC2 and RC4 encryption,
DES and 3DES encryption. We do not include MD5 or SHA-1
as vulnerable as they may not be problematic as cipher-
suites even though they are problematic as a signature algo-
rithm [19].

TLS fingerprint overview by vendors. Figure 1 shows the
results. Numbered nodes represent device vendors (full mapping in
Appendix B.6) and colored nodes represent fingerprints. Color blue
suggests optimal/suboptimal fingerprints, and colors from orange to
red suggest the inclusion of vulnerable versions and/or ciphersuites,
with darker color indicating more vulnerable components. The
security level of each fingerprint is also illustrated by the node
size, with larger suggesting more vulnerable components. Edges
are only between vendors and fingerprints, indicating that at least
one device of the vendor uses the fingerprint.

Table 2: Fingerprint degree distribution.
Degree 1 2 3 - 5 > 5
%.Fingerprints 77.47% 11.43% 8.32% 2.78%

We have two observations on the graph: (i) clusters of finger-
prints unique to certain vendors, and (ii) many vulnerable cipher-
suites (red nodes) for certain vendors. Next, we delve into these
two observations and quantify them.

Howmany vendors share a given fingerprint?We show the
degree of fingerprint, which corresponds to the number of vendors
that use this fingerprint in at least one device, in Table 2.We observe
that the majority (77%) of fingerprints are only used by a single
vendor (𝐷𝑒𝑔𝑟𝑒𝑒 = 1).

Customization across vendors. We then measure from the
vendor’s perspective and answer the question: how unique are the
fingerprints used by a given vendor? We define degree of customiza-
tion across vendors (𝐷𝑜𝐶𝑣𝑒𝑛𝑑𝑜𝑟 ) as

𝐷𝑜𝐶𝑣𝑒𝑛𝑑𝑜𝑟 =
#.fingerprints solely used by this vendor

#.fingerprints used by this vendor
Figure 2 (red dashed line) shows the cumulative distribution func-
tion (CDF) for𝐷𝑜𝐶𝑣𝑒𝑛𝑑𝑜𝑟 of all vendors. We observe that more than
70% of vendors use at least one unique TLS fingerprint that is not
2We consider non-PFS suboptimal rather than vulnerable because attacks targeting
non-PFS ciphers have the prerequisite that the long-term key is compromised.

 

460



Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

Figure 1: TLS fingerprint overview by vendors. Nodes with colors represent unique fingerprints, with redder color indicating
more vulnerable components. Numbered white nodes are vendors with full mapping in Appendix B.6.

used by other vendors and 40% of vendors have a 𝐷𝑜𝐶𝑣𝑒𝑛𝑑𝑜𝑟 higher
than 0.5, suggesting a considerable amount of vendor-specific fin-
gerprints. The security level of vendor-specific TLS customiza-
tion also varies. For example, Synology devices (vendor 23) use
22 unique fingerprints containing multiple vulnerable ciphersuite
components3. On the contrary, most fingerprints exclusively used
by Sonos devices (vendor 26) contain no vulnerable components.
This highlights a significant difference in security practices from
vendors when customizing/maintaining their TLS libraries.

Vulnerabilities in ciphersuites. 403 (44.63%) fingerprints con-
tain at least one vulnerable component, 31.76% of which are used
by multiple devices. In particular, 3DES is found to be the most
seen vulnerable component, included in 376 (41.64%) fingerprints.
Furthermore, 31 fingerprints include anonymous key exchange al-
gorithms, export-grade ciphers, or evenNULL encryption, and these
fingerprints are proposed by 27 devices of 14 vendors4. We show
details on the specific algorithms for each vendor in Appendix B.4.

4.3 Customization Across Devices
We now take a deeper look into devices within the same vendor:
do devices share a similar set of fingerprints, or do they use largely
disjoint fingerprints? Towards this end, we analyze the uniqueness
of the fingerprints across devices by defining degree of customization

3Anonymous key exchange algorithms, export-grade ciphers, NULL encryption,
RC2/RC4 encryption, DES and 3DES encryption.
4Synology, Western Digital, TP-Link, Sony, Amazon, HP, LG, Samsung, QNAP, Vizio,
Philips, Lutron, Amcrest, and Google. Sorted by # of involved devices.

Figure 2: Degree of TLS fingerprint customization. Higher
degree indicates more unique fingerprints.

for a given device of a specific vendor (𝐷𝑜𝐶) as

𝐷𝑜𝐶 =
#.fingerprints solely used by this device within the vendor

#.fingerprints used by this device

We then compute degree of customization across devices for
a given vendor (𝐷𝑜𝐶𝑑𝑒𝑣𝑖𝑐𝑒 ) as the mean 𝐷𝑜𝐶 value across all de-
vices for this vendor. Figure 2 (blue solid line) shows the CDF for
𝐷𝑜𝐶𝑑𝑒𝑣𝑖𝑐𝑒 of all vendors. We also show a detailed 𝐷𝑜𝐶 distribution
of all devices in Appendix B.5.

 

461



IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

Interestingly, there is a similar degree of customization across
devices within the same vendors as well, where devices of close
to 20% vendors have 𝐷𝑂𝐶𝑑𝑒𝑣𝑖𝑐𝑒 = 1 (completely disjoint sets of
fingerprints). Table 3 shows statistics of fingerprints across devices
from top 10 major vendors with the most fingerprints. We can see
that only a small fraction of fingerprints are shared across devices
within the same vendor, which are likely vendor-specific libraries.
The vast majority are only used by a single device, potentially
due to application-specific libraries from installed applications on
devices. We next explore this observation by taking a deeper look
into Amazon devices (top 1 vendor in our dataset). We will further
investigate the possible reasons in Section 4.4.

Table 3: Heterogeneity in fingerprints across devices within
the top 10 vendors.

Vendor #.Fingerprints
%.Fingerprints
shared by 10 or
more devices

%.Fingerprints
used by 1 device

Amazon 244 12.30% 68.85%
Google 172 11.05% 65.12%
Synology 107 3.74% 67.29%
Samsung 104 9.62% 60.58%
Sony 97 6.19% 57.73%
LG 54 3.70% 64.81%
Western Digital 49 0.00% 95.92%
Nvidia 43 9.30% 46.51%
TP-Link 39 2.56% 87.18%
Roku 38 23.68% 63.16%

Figure 3: Fingerprints by different types of Amazon devices.
Colored nodes correspond to fingerprints and white nodes
represent device types.

Deeper look into Amazon devices. One potential cause for
heterogeneity across devices from the same vendor is the differ-
ences in device types/functions. Figure 3 depicts the fingerprints
(color indicates vulnerabilities) of each Amazon device type. We
observe clusters of unique fingerprints surrounding each device
type, where a total of 180 fingerprints are exclusively associated
with only one device type. This result indicates one potential cause

Figure 4: Fingerprints by Amazon Echo devices. Black dots
are devices. Colored nodes are fingerprints.

of heterogeneity across devices—the device type and hence its as-
sociated functions.

Deeper look into Amazon Echo devices.We notice a partic-
ularly large cluster of fingerprints from Amazon Echo devices in
Figure 3, which contrasts vastly with findings in prior work [37]
where only 8 fingerprints were found fromAmazon Echos. Thus, we
further investigate Amazon Echos to answer the question whether
the heterogeneity in fingerprints exists even within the same device
type. Figure 4 shows the result, where each black dot corresponds
to a single device and colored nodes correspond to fingerprints. We
can see multiple device-fingerprint clusters, which could be due to
differences in device updates/versions or installation of third-party
applications/services.

Takeaway. Our analysis reveals the customization of TLS li-
braries across vendors and devices. Such practice makes it more
challenging to continuously monitor and maintain the TLS libraries,
which likely contributes to the large number of vulnerable cipher-
suites we observe.

4.4 Shared Fingerprints Across Vendors
While we focus on the customization/uniqueness of TLS finger-
prints across vendors in Section 4.2, we also observe 203 out of
903 (22.48%) fingerprints that are shared across multiple vendors.
We aim to answer the question: why are these non-standard fin-
gerprints (i.e., not matched to known libraries) used by multiple
vendors?

Towards this end, we use Jaccard metric [24] to calculate pair-
wise similarities for all vendor nodes in Figure 1 based on their
fingerprints. We employ Jaccard metric because it captures the
differences in both fingerprints and the number of fingerprints,

 

462



Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

which we believe is a contributing factor to the similarity assess-
ment. When two sets of fingerprints exhibit a substantial difference
in size, we classify them as dissimilar, even if the smaller set is a
subset of the larger set. In other words, the more fingerprints that
two vendors have in common, the higher the similarity value is.
The similarity becomes 1 when two vendors have an identical set
of fingerprints. Table 4 shows the results for vendor tuples with
similarity value ≥ 0.2.

Table 4: Vendor tuples with Jaccard similarity ≥ 0.2.
Jaccard similarity Vendor tuple
1 {HDHomeRun, Silicondust}
[0.7, 1) {Sharp,TCL}
[0.4, 0.7) {Arlo, NETGEAR}

[0.3, 0.4)
{Onkyo, Pioneer}, {Brother, Sharp}, {Insignia, Sharp},

{Bose, Texas Instruments, Skybell}, {Sense, Texas Instruments},
{Insignia, TCL}

[0.2, 0.3)
{Nvidia, Xiaomi}, {Brother, TCL}, {Arlo, iRobot},

{Dish Network, Skybell}, {Denon, Marantz},
{Synology, Western Digital}

We discuss two potential reasons of such sharing behavior:
• Sharing due to shared supply chains: this could happen when
the different vendors are owned by the same supply chain
within partnered companies.

• Sharing due to shared applications: devices from different
vendors may install the same software or application, which
has its own customized TLS library.

Servers as a proxy for applications. Given that we do not
have any information on the applications (due to TLS-encrypted
traffic), we use servers (through SNIs) as a proxy. The intuition is that
many servers are application-specific, where the servers are only
visited by devices with the corresponding applications installed.
Excluding fingerprints that can be matched to standard libraries, we
find 17.42% SNIs that are tied to server-specific fingerprints and are
visited by multiple devices who share the same fingerprint when
visiting a given server. After excluding cases where one device is
involved to avoid potential outliers, 37 SNIs are found to be linked
to server-specific fingerprints across devices from multiple vendors,
as shown in Table 5. Note that for simplicity, we show second-level
domains rather than Fully Qualified Domain Names (FQDNs).

Key observations. Based on the aforementioned reasons along
with Table 4 and 5, our findings are:

• Devices of the same company, though branded as different
vendors, share the same fingerprint when visiting the com-
pany’s servers. For instance, {Arlo, NETGEAR} devices and
{HDHomeRun, SiliconDust} devices are tied to specific finger-
prints, respectively. This is consistent with the observation
in Figure 1.

• Cooperation of companies is likely to result in the sharing
of integrated TLS configuration. Amazon, IKEA, and Sonos
devices visit sonos.com domains with the same client fin-
gerprint, and these three vendors all make Sonos-enabled
speakers; it is likely that the TLS library is a part of Sonos’
software development kit (SDK) to provide the smart speaker
functionality. Further, given that Sonos uses the Pandora API
in the back-end for music streaming, it is presumably an
integrated TLS stack.

• Co-op devices of partnered companies, such as Roku with
Insignia/Sharp/TCL, are likely to share the same TLS configu-
ration, and thus sharing the same client-proposed fingerprint
when visiting servers.

• Requirements of third-party applications or services could
result in the sharing of client-side TLS instances. For example,
5 nflxvideo.net servers all link to the same fingerprint, and
this fingerprint is used by multiple devices across different
vendors. On the other hand, servers associated with different
functionalities/services, even within the same second-level
domain, may require dissimilar client TLS configurations.
Examples include differing roku.com servers tied to different
device fingerprints.

Takeaway. Our analysis identifies the sharing of customized
TLS libraries due to shared supply chains or third-party applications.
Not only does such sharing shed light into the software supply
chains of various IoT devices (possibly revealing the software bills-
of-materials), it also highlights a potential security risk: if these
upstream libraries or SDKs are vulnerable, the downstream devices,
as shown in Table 5, may likely be affected (e.g., 118 Roku devices
are affected by vulnerable ciphersuites containing RC and 3DES).

5 SERVER KEY INFRASTRUCTURE
Having measured the TLS behaviors of IoT devices, we now delve
into the IoT servers, i.e., servers which IoT devices connect to. Vul-
nerabilities in server certificates have direct impact on the security
of the TLS connections, and one server could affect a large number
of IoT devices.

We begin by describing our IoT server certificate dataset in Sec-
tion 5.1. Then, we aim to answer the following questions:

• Who are the certificate issuers/signers? (Section 5.2)
• Are the certificate chains valid? (Section 5.3)
• Are the certificates logged in Certificate Transparency (CT)
logs? (Section 5.4)

Similar to the TLS analysis, we seek answers to the above questions
by focusing on the vendors, as vendors are likely the key decision
makers on the certificate management for IoT servers.

5.1 Certificate Dataset
So far, we have utilized the TLS ClientHello dataset from IoT Inspec-
tor, as described in Section 3 and 4. Although there is no ServerHello
or certificate data in the IoT Inspector dataset, we extract over one
thousand distinct Server Name Indications (SNIs) from TLS Clien-
tHellos of the 2,014 IoT devices. These SNIs represent the real-world
servers visited by consumer IoT devices in the wild.

With the extracted SNIs, we construct our server certificate
dataset by using our own TLS client to establish multiple connec-
tions to port 443 of each SNI from 3 different global vantage points
in April 2022, during which we capture the ServerHello and certifi-
cate chain. In total, we successfully captured 842 leaf certificates
from 1,151 IoT servers. Table 6 summarizes the certificate dataset.

IoT servers.We observe a long-tail distribution on Second-Level
Domains (SLDs) of the 1,151 IoT servers, with a total number of 357
distinct SLDs. Each SLD is contacted by an average of 24.42 unique
devices, with a maximum of 556 and a median of 7 devices. We
summarize the most popular 30 SLDs in Table 15 in Appendix C.1.

 

463



IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

Table 5: Servers linked with particular client fingerprint across multiple vendors. Each row represents a unique {second-level
domain, fingerprint} tuple, and each bordered cell corresponds to one unique fingerprint.

Second-level domain #.FQDNs Vulnerability in fingerprint #.Visiting devices Device vendors
arlo.com 2 - 13 Arlo,NETGEAR
netgear.com 1 4 Arlo,NETGEAR
hdhomerun.com 2 - 8 HDHomeRun,SiliconDust
pandora.com 1 - 8 Amazon,Sonos
sonos.com 5 75 Amazon,IKEA,Sonos
mgo.com 2

RC,3DES

37 Insignia,Roku,Sharp,TCL
mgo-images.com 2 37 Insignia,Roku,Sharp,TCL
ravm.tv 1 35 Insignia,Roku,TCL
roku.com 8 118 Insignia,Roku,Sharp,TCL
roku.com 6 3DES 31 Insignia,Roku,Sharp,TCL
cast4.audio 1 3DES 7 Onkyo,Pioneer
googleapis.com 1 - 6 Nvidia,Sony
nflxvideo.net 5 - 5 Amazon,LG

Table 6: IoT server certificate dataset.

#. Servers (FQDNs) 1151 #. Leaf certificates 842
#. Issuer organizations 33 #. Device vendors 65

Certificate sharing. Note that there are more servers (FQDNs)
than the number of distinct leaf certificates. This is due to the shar-
ing of certificates across different server names, as exemplified by 29
distinct Google servers of 6 different SLDs that utilize the identical
leaf certificate. We observe an average of 1.72 servers per certifi-
cate (i.e., 1.72 FQDNs present the same leaf certificate on average),
with a variance of 5.53 servers and a max of 32 servers per certifi-
cate. We further investigate the IP addresses of different servers
sharing the same certificate, and find that 547 (64.96%) certificates
are shared across multiple IPs, with a mean of 5.43 and a max of
93 IP addresses per certificate. It is noteworthy that while servers
sharing the same leaf certificate typically belong to the same orga-
nization, these servers usually have diverse service functions. For
instance, NVIDIA’s server services.tegrazone.com and ota.nvidia.com
use the same leaf certificate. The former is responsible for delivering
gaming services to application users, while the latter manages user-
firmware updates. This phenomenon highlights one security risk –
if the shared certificate is invalid/compromised, it affects multiple
servers and significantly more devices connecting to those servers.
In particular, when servers sharing the problematic certificate are
responsible for different functionalities, an even broader spectrum
of users becomes vulnerable to security risks. Additionally, vendors
may encounter greater difficulties in mitigating the risk due to the
widespread impact of affected servers.

Next, we discuss two potential concerns about the certificate
dataset and how we address them.

Geographical locations of the TLS client. Servers, especially
CDN servers, may respond with different certificates based on the
location of client IP address. To address this concern, we use three
TLS clients located in U.S., Europe, and Asia, respectively, to initiate
connections to each server. Upon analyzing the certificates obtained
from the three clients, we find that the difference is negligible. We
discuss in further details in Appendix C.4.1. For simplicity, we will

use the certificates obtained by the client located in New York, US,
for the remaining analysis in this section.

Difference in certificates over time.While we obtain the list
of SNIs from real-world IoT devices, we have to capture the certifi-
cates using our own TLS client. One potential concern is that the
certificate characteristics of the same server may change over time.
To address this concern, we utilize an additional dataset consisting
of ServerHello and certificate data captured at 113 IoT devices from
2017 to 2021 in a university lab, which we refer to as the lab dataset.
We identify common IoT devices between our real-world dataset
and the lab dataset, and then compare the certificates and issuers
for the same IoT servers. Our results show that both the certificate
issuers and other certificate characteristics are largely consistent
across the two datasets for servers in common, suggesting that the
time lag likely does not have a significant impact on the certifi-
cate characteristics. We discuss the comparison in further detail in
Appendix C.4.2.

5.2 Certificate Issuers
The certificate issuer plays an important role in the PKI as it is
responsible for establishing the chain of trust and certificate revo-
cation. It is critical for certificate issuers to follow best practices to
prevent adversaries from tampering the certificates. We extracted
the certificate issuer of leaf certificates from our certificate dataset.
We categorize leaf-certificate issuers into two groups:

• Public trust CA: as an organization or company, provides
certificate signing services to domain owners, or has its root
certificate in major trust stores.

• Private CA: only signs its own domains and its root certificate
is not in major trust stores.

For example, Roku is a private CA as it only signs its own domains
and its root certificate is not in major trust stores (despite being
trusted by Roku devices). On the contrary, Apple is a public trust
CA since its root certificate is in major trust stores, even though it
usually signs its own domains.

Certificate issuer results. We identified 33 distinct certificate
issuer organizations for the 1,151 certificates based on CCADB [35],
involving 2,014 devices and 65 device vendors. Figure 5 shows the
issuers on the Y axis, with respect to the device vendors on the X

 

464



Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

Figure 5: Issuers of certificates sent from servers visited by IoT devices. X-axis shows vendors of devices, and is sorted by the
prevalence of public trust CAs for visited IoT servers in a descending order. Y-axis shows certificate issuers for visited IoT
servers, sorted by the number of issued leaf certificates in a descending order. Public trust CAs are shown in blue on the y-axis
while private CAs are labeled in red.

axis. The public trust CAs are colored in blue while the private CAs
are in red. Color of squares reveals the ratio of certificates by each
issuer among devices from a given vendor, and squares of value 0
are grayed out. In other words, values in each column should sum
up to 1.

Public trust CAs. The majority of leaf certificates are issued
by public trust CAs, with DigiCert signing 47.26% of all certificates.
Devices from 31 vendors (starting from Yamaha on the left toWyze
in Figure 5) only visit servers whose leaf certificates are issued by
public trust CAs. These servers behave very similar to the web PKI.

Private CAs. Despite the prevalent usage of public trust CAs,
many private CAs are observed as well, signing 9.86% of all leaf
certificates. Most private CAs are device vendors themselves, who
sign leaf certificates for their own servers. In total, devices from
16 vendors visit servers signed by the vendors themselves5, and
these servers are mainly visited by their own devices. In particular,
devices from 3 vendors – namely, Canary, Tuya, and Obihai – only
visit servers with leaf certificates signed by their own vendors.

Servers visited by devices across vendors. It is worth noting
that issuers like Amazon, Google Trust Services, Microsoft Corpora-
tion, and Apple appear more frequently in certificates used by IoT
servers compared to the web [2, 13, 22]. This is expected since these
issuers are, at the same time, well-known IoT device manufacturers
5Roku, Samsung Electronics, Nintendo, Sony, Tesla, Nest Labs, Sense Lab, ATT Mobility
and Entertainment, LG, Canary Connect, Philips, Obihai Technology, EchoStar, Tuya,
Universal Electronics and ecobee.

and/or cloud providers that offer services to IoT devices. These
issuers are categorized as public trust CAs due to the presence of
their root certificates in major trust stores.

One interesting case is Netflix, who is not a device vendor but
signs many certificates for Netflix servers that are visited by various
devices, especially smart TVs. We discuss security issues in Netflix-
signed certificates in Section 5.3 and 5.4, which impact many IoT
devices.

Takeaway. 16 device vendors sign leaf certificates for their own
servers which are visited by their own devices. As we will dis-
cuss next, such vendor-signed certificates often fall out of public
monitoring and can have a profound impact on the security of the
devices’ TLS connections.

5.3 Certificate Chain Validation
We performed certificate chain validation using Zeek [38], one of
the most popular tools in network security monitoring. By default,
Zeek uses Mozilla trust store [36], and we further supplemented it
with two other major trust stores from Apple [7] andMicrosoft [33].

Chains with validation failure. Table 7 describes certificate
chains with validation failure due to the lack of the presence of root
certificates in both trust stores and the server-presented chains,
which involves 45.78% of leaf certificates signed by private CAs. It is
possible that the root is hard-coded and trusted by the device as RFC
5246 [11] specifies that the root certificate may be omitted from the

 

465



IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

Table 7: Certificate chains with validation failure.

Domain #. FQDN(s) Leaf certificate issued by
Chain
length

Visited by
#.devices Visited by devices of

netflix.com 6 Netflix 2 278

Amazon, Amcrest,
Brother, Dish Network,
HP, Humax, Insignia, LG,
Nvidia, Panasonic, Philips,
Roku, Samsung, Sharp,
Sky, Sony, TCL, Tivo,
Vizio, Wink, Xiaomi

roku.com 14 Roku 1, 2, 3 131 Brother, Cisco, Insignia,
Roku, Sharp, TCL

nest.com 3 Nest Labs 2 65 Google, Philips, Synology
samsungcloudsolution.net 7 Samsung Electronics 1 43 Netatmo, Samsung
meethue.com 1 Philips 2 31 Philips
nintendo.net 4 Nintendo 1 24 Nintendo
samsungcloudsolution.com 4 Samsung Electronics 1 24 Netatmo, Samsung
playstation.net 1 Sony Computer Entertainment 1 13 Sony
sonyentertainmentnetwork.com 1 Sony Computer Entertainment 1 9 Sony
tesla.services 4 Tesla Motor Services 1, 2 6 LG, Tesla
amazonaws.com 1 DigiCert 2 4 Vizio
obitalk.com 1 Obihai Technology 1 4 Obihai
samsungrm.net 1 Samsung Electronics 1 4 Netatmo, Samsung

* Issuers in bold are public trust CAs.

chain when the remote end already possesses it. However, a recent
study shows that it is also likely that servers present broken certifi-
cate chains and devices do not perform certificate chain validation
properly [37], making the connection vulnerable to interception
attacks. Because the lack of abilities to continuously monitor and
maintain certificates can significantly increase the attack surface of
underlying TLS connections, whether these public-not-trust certifi-
cates provide optimal security practices remains a question. Once
compromised, the inability of public-not-trust issuers to quickly
replace or rotate the certificate may open the door to attackers.

Table 8: Details on expired certificates.

Domain Not after Issued by Visited by
#. devices Vendor

skyegloup.com 07/31/2018 Gandi 7 Denon, Marantz
wink.com 04/17/2019 COMODO 11 Samsung, Wink

Expired certificate. Table 8 shows the expired certificates, af-
fecting 18 devices from vendors including Samsung andWink. Note
that these certificates had already expired at the time of the IoT
Inspector capture (from 4/29/2019 to 08/01/2020). In other words,
consumer devices in the wild were actively connecting to these
servers even though their certificates had long expired, indicating
the lack of proper validation by these devices.

Private root CA and self-signed certificates. We show the
details of certificates with such status in Table 14 in Appendix C.2.
In particular, the “self-signed certificate" status indicates that the
leaf certificate has identical issuer and subject and is issued by a
private CA. One interesting case is log.samsunghrm.com, which uses
a certificate chain consists of two certificates that are exactly the
same, with the identical issuer and subject *.samsunghrm.com. Such
signing practice makes it very difficult for certificate revocation,

which is further exaggerated by the absence of logging in Certificate
Transparency logs (Section 5.4).

Common Name mismatch. Such error occurs when the sub-
ject Common Name (CN) value or Subject Alternative Name (SAN)
extension value of a server’s leaf certificate is not associated with
the SNI, making the connection vulnerable to a redirection or spoof-
ing attack to allow host impersonation. We observe that server
a2.tuyaus.com uses a certificate signed by the device vendor Tuya
that does not include its hostname in either subject CN or SAN
field. This server is regularly visited by 3 Tuya devices.

Takeaway. Many IoT device vendors, including major vendors
like Samsung and Wink, do not properly manage certificates for
their own servers that are regularly visited by many consumer IoT
devices. Examples of such poor practice include long-expired cer-
tificates and lack of proper certificate chains, which could increase
security risks.

5.4 CT and Validity Period
Certificate Transparency (CT) is an open-source framework of In-
ternet security standard designed for monitoring and auditing TLS
certificates that aims to allow adequate identification of mis-issued
certificates in a manner of maintaining a system of public logs. CT
is described in an experimental RFC 6962 [29] in 2013, and is further
pushed forward by Google soon after. Although public trust CAs
are incentivized, rather than required by any policies, to log issued
certificates in CT, the fact that CT is enforced by several major
browsers including Chrome[45] and Safari[6] makes CT mandatory
for certificates issued by public trust CAs as of 2021.

On the other hand, IoT devices are unlikely to enforce CT logging
for certificates. We aim to study two questions here: (1) Do public
trust CAs still submit certificates to CT for IoT servers? (2) Unlike
certificates issued by private CAs (without a trusted root) that

 

466



Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

Figure 6: Certificates of servers visited by IoT devices. X-axis shows device vendors, and is sorted by the number of appearance
of manufactured devices in the dataset. Y-axis shows certificate validity period in days. Colors suggest different chain status:
blue represents “public trust leaf and root certificates", yellow speaks “private leaf, public trust root certificates", and orange
indicates “private leaf and root certificates". The shape of point shows the corresponding status in CT, with the horizontal line
denoting absence and the vertical line signifying its presence.

cannot be submitted to CT, leaf certificates issued by a private CA
but chained to a trusted root can be submitted to CT. Are any of
such certificates logged in CT?

CT dataset. To investigate the logging of leaf certificates in CT,
we extracted 4,949 distinct {server, leaf certificate, device vendor}
tuples from our certificate dataset. We queried each certificate in
CT logs [30] to check its existence.

Figure 6 shows whether a certificate is in CT together with the
chain status (i.e., public trust leaf and root certificates, private leaf
and root certificates, etc.) and the certificate validity period for each
device vendor.

Validity periods. We can see that nearly all leaf certificates
issued by public trust CAs have validity periods less than 1,000
days, while certificates signed by private CAs have validity peri-
ods exceeding way beyond 1,000 days. In addition, we performed
multiple scans throughout 2021 and found no reissuance of these
long-lasting private issuer-signed certificates.

The primary motivation of issuing certificates with shorter valid-
ity is that renewing more frequently allows for rolling in security
updates faster while ensuring the regeneration of keys frequently
as well. However, several private CAs (i.e., device vendors) have
issued certificates for extremely long validity periods, ranging from
19.8 to 100 years6.

The pattern of vendor-signed certificates with long validity pe-
riods highlights one concerning practice: vendors sign and install
certificates on their own IoT servers, and likely do not plan to ever
update the certificates. Long validity period leads to heightened
security risks, while shorter validity period facilitates algorithm
upgrades and faster certificate/key replacements, especially during
attacks [20, 49]. In fact, Let’s Encrypt, a public trust CA that issues
certificates for free, only provides a 90-day validity period mainly

6Tuya (36,500 days), Samsung Electronics (25,202 and 10,950 days), EchoStar (24,855
days), Universal Electronics (21,946 days), and Nintendo (9,300 and 7,233 days).

to limit damage from key compromise and mis-issuance [1]. One
possible reason that leads to the long validity periods by vendors is
the lack of expertise in certificate maintenance, i.e., it is way easier
to “set it and forget it" instead of performing certificate updates and
risking bricking devices. While there is always a tension between
security and availability, this has already played out in the Web PKI
with the adoption of ACME (Automated Certificate Management
Environment) protocol [16] that is initiated by Let’s Encrypt and
streamlines certificate management. We hope the same can be done
for the IoT PKI if device vendors choose to adopt a similar model
and automation framework for certificate management.

CT logging. Most certificates issued by public trust CAs are
logged in CT as expected. However, we found 8 certificates issued
by public trust CAs, includingMicrosoft (4),Apple (2), Sectigo (1) and
DigiCert (1), do not appear in CT. Meanwhile none of the certificates
signed by private CAs with valid chains to public trust roots are
logged in CT (which can be submitted to CT if they choose to). They
involve popular device vendors such as Roku, Amazon, Samsung,
Tivo, Xiaomi, and many others. This result indicates that these IoT
servers are indeed for IoT only, which are not used by web clients,
otherwise the certificates should be logged in CT due to browser
CT enforcement. This finding also reinforces the concern of lack
of transparency and monitoring for IoT certificates without any
CT logging or enforcement. We further show the relation between
invalid chains and CT appearance in Appendix C.3.

Netflix.We observe that Netflix is the only private CA that signs
leaf certificates with validity periods as short as 30 days and as long
as 8,150 days, as shown in Table 9. The certificate lasting 8,150 days
is for appboot.netflix.com and cloud.netflix.net. The leaf certificates
with shorter validity periods have a valid chain to a trusted public
CA, while the chain with long-valid certificates are completely
self-signed by Netflix. In addition, none of the Netflix-signed leaf
certificates are logged in CT.

 

467



IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

Table 9: Variance in certificate validity periods by Netflix.

Leaf issuer Leaf validity days Topmost issuer #.Cert In CT
Netflix Primary Certificate Authority 8150 Netflix Primary Certificate Authority 3 False

Netflix Public SHA2 RSA CA 3 30,31,32,33,
34,36,396

VeriSign Class 3 Public
Primary Certification 13 False

Takeaway. Leaf certificates signed by device vendors tend to
have very long validity periods, the risk of which is further height-
ened by the lack of logging and monitoring through CT. We urge
the private CAs (e.g., device vendors) to adopt an automation frame-
work such as ACME [16] to facilitate certificate management, and
motivate the community to develop an auditing mechanism that
can accommodate certificates issued by private CAs.

6 CASE STUDIES
We take a deeper look into the key infrastructure in smart TVs and
communications between IoT devices on the local network. For the
following case studies, we use additional traffic datasets directly
captured from the devices in the lab (rather than by IoT Inspector).

6.1 Smart TVs
Smart TVs are of particular interest among IoT devices given the
rich information it collects from users (e.g., viewing history, loca-
tions) [34].We perform a case study on smart TVs by using two addi-
tional datasets with network traffic directly captured from Amazon
and Roku smart TVs in 2019 [34]. We find that while servers man-
aged by third-party channels/applications use certificates from pub-
lic trust CAs, the vendor-owned servers all use certificates signed by
the vendor, where Roku signs certificates with validity period over
13 years and one Amazon server provides an expired certificate.

Servers managed by third-party channels or applications.
The majority of such servers (except for Netflix) use certificates
signed by public trust CAs. However, the majority send an incom-
plete chain and 5 servers provide expired certificates. This high-
lights the fact that some channels may not correctly perform certifi-
cate validation [34]. Netflix uses certificates signed by both public
trust CAs and itself for different servers, which is consistent with
our findings in Section 5.4.

Servers managed by device vendors. Roku exclusively signs
all its certificates, consistent with our findings in Section 5.2. Ama-
zon also signs its certificate. However, we find that one Amazon
server7 uses an expired certificate. We show details of certificate
issuers and status in Table 17 in Appendix C.5.

Vendor key infrastructure. To further investigate the key in-
frastructure for servers managed by smart TV vendor Amazon and
Roku, we divide traffic into two groups:

• Amazon: traffic betweenAmazon devices andAmazon servers.
• Roku: traffic between Roku devices and Roku servers.

We exclude connections to domain amazonaws.com and amazon-
video.com from the Amazon group because these two domains are
visited by Roku devices as well.

Figure 7 shows the validity periods and CT log status for different
issuers. Amazon servers have a simple key infrastructure where leaf
certificates are issued by either Amazon or DigiCert with consistent

7arcus-uswest.amazon.com.

certificate validity around 400 days. Additionally, all certificates
used by Amazon servers are found logged in CT. On the contrary,
Roku servers have a more complicated key infrastructure, involving
certificates signed by a mixture of public trust CAs and private
CAs, including Amazon, DigiCert, Let’s Encrypt, and Roku, leading
to a large variance in certificate validity period. In particular, most
certificates signed by Roku itself have a much longer validity period,
reaching around 5,000 days (over 13 years), and none are logged in
CT. These findings align closely with our earlier observations on
smart TV devices and vendors.

Figure 7: Leaf certificates in Amazon and Roku groups.

6.2 PKI on the Local Network
Many IoT devices communicate with one another on the local net-
work over TLS. To study the PKI involved in such local communi-
cations, we capture the local network traffic of Amazon and Google
devices, along with a phone and computer on the same network
in the lab. Using Wireshark, we identify TLS packets and extract
server certificates in TLS handshakes. We find that Amazon and
Google devices communicate with each other and with other local
devices over TLS with certificates issued by private CAs (Amazon
devices), with root certificates not in either Android’s or macOS’
trust store (Google devices), and with certificates that would expire
in 20+ years (Google devices).

Method. We set up a wireless network in the lab, where the
following devices are connected:Amazon Echo andAmazon Fire TV;
Google Chromecast and Google Home Voice Assistant; one Google
Pixel 5 Android phone whose screen is locked; a MacBook with the
Chrome browser open; and a Raspberry Pi that is capturing all the
local network traffic with a modified version of IoT Inspector [23].
We capture the traffic for 24 hours, during which we do not actively
interact with these devices.

Observations for Amazon devices. The Amazon Echo and
Fire TV communicate with each other over TLS 1.2 on the local
network. Echo listens on a non-IANA assigned port 55443, and
Fire TV connects to Echo from random ports. During each TLS
handshake, Echo presents what appears to be a single self-signed

 

468



Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

certificate with no intermediate certificates. The Common Name
on the certificate is the IP address of Echo. The certificate has an
expiry date of one year in future from the issuance date.

Observations forGoogle devices. Chromecast and Home com-
municate with each other and also with the Pixel phone and Mac-
Book over TLS. In particular, Google Home connects with Chrome-
cast on port 10101 over TLS 1.2; Pixel connects with Chromecast on
port 8443 over TLS 1.2; and MacBook connects with Chromecast
on port 32245 over TLS 1.3. Additionally, Pixel also connects with
Google Home on port 8443 over TLS 1.2.

We are able to extract server certificates in TLS 1.2 connections,
as the certificates are encrypted in TLS 1.3 [41]. In each TLS hand-
shake with Google Home and Pixel, Chromecast would present two
certificates in the chain: a leaf certificate with what looks like a
serial number in the Common Name, followed by a root certificate
with a Common Name “Chromecast ICA 12”, signed by “Cast Root
CA”, with 22 years of validity. Similarly, Google Home also presents
two certificates in the chain: a leaf certificate with a potential serial
number in the Common Name (different from Chromecast), fol-
lowed by a root certificate with the Common Name “Chromecast
ICA 16 (Audio Assist 4)”, signed by, again, “Cast Root CA”. The
validity period is 20 years.

Google appears to be using certificate pinning or its own PKI for
Chromecast and Google Home. However, we do not find any of its
certificates in CT and we do not find any “Cast Root CA” in the trust
stores of either the Pixel phone or macOS. These results comple-
ment our prior analysis IoT server certificates, showing concerning
suboptimal server-side certificate practices in local network as well.

7 DISCUSSION
Recommendations.Our objective is to reveal the current TLS and
certificate management practices, and motivate IoT device vendors
towards adopting a proactive approach to security by consistently
maintaining and improving the TLS instances integrated into their
devices. This commitment to ongoing enhancement will serve as
a fundamental pillar in strengthening overall security practices
within the IoT industry.

In parallel, we strongly advocate for private CAs like device ven-
dors to embrace automation frameworks to streamline the process
of certificate management. By doing so, they can efficiently and ef-
fectively handle the issuance and renewal of certificates, ultimately
bolstering security measures.

Furthermore, we envision a collaborative effort within our com-
munity to develop an auditing mechanism specifically tailored to
accommodate certificates issued by private CAs. Such a mechanism
would play a crucial role in enforcing compliance with relevant
regulations and standards. It is our hope that this collaborative
initiative will lead to greater transparency and accountability in
the IoT ecosystem, ensuring the protection and trustworthiness of
IoT devices and services.
Limitations. Our research is mainly limited by the lack of ground
truth in IoT-deployed TLS instances and the unavailability of de-
vice firmware. Consequently, our fingerprinting results may exhibit
biases associated with the extent of our collected TLS library fin-
gerprints, and our examination of fingerprint sharing is restricted
to what we have observed, inferred, and validated. Moreover, our

analysis could further benefit from continuous data collection of
a larger number of devices from IoT Inspector. While IoT Inspec-
tor provides us with the largest smart home IoT dataset known to
date, the data collected from many devices is intermittent due to its
crowdsourced nature, leading to potential bias in flavor of certain
device vendors and device types (also discussed in [23]). If we can
obtain continuous data collection from a given device, we would be
able to perform additional measurements that delve deeper into the
change of TLS behaviors potentially resulting from maintenance
and updates during the device’s life cycle, especially when con-
sidering the availability of release dates for IoT TLS instances on
individual devices.

8 CONCLUSION
We have conducted a measurement study that provides a quan-
titative analysis on the extensive heterogeneity present in TLS
instances used by IoT devices in real-world scenarios. Leverag-
ing a crowdsourced dataset comprising network traffic data from
2,014 distinct IoT devices, our research unveils instances of vulner-
able TLS configurations shared across various devices and device
vendors, probably due to shared supply chains or third-party appli-
cations. Furthermore, we have identified multiple contributors to
the configuration of IoT TLS and exposed shortcomings in certifi-
cate management practices employed by IoT servers, including the
use of long-lasting or even long-expired certificates, the delivery
of improperly configured certificate chains, and a notable absence
of public auditing mechanism to ensure adherence to regulations
and standards. These findings underscore significant security con-
cerns associated with TLS and PKI practices in the IoT landscape,
particularly when considering the sheer scale and diversity of IoT
deployments. Our study serves as a call to action, aiming to raise
awareness within the broader community about these critical secu-
rity issues in the IoT ecosystem.

ACKNOWLEDGMENTS
We thank our shepherd Mattijs Jonker and the anonymous IMC
reviewers for their insightful and constructive suggestions and
feedback. This work is supported by National Science Foundation
grants CNS-2154962, CNS-2319421, CNS-2219867, CNS-1955227,
and a Consumer Reports Digital Lab Fellowship.

REFERENCES
[1] Josh Aas. 2015. Why ninety-day lifetimes for certificates? (2015). https:

//letsencrypt.org/2015/11/09/why-90-days.html.
[2] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan

Flores-López, J Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric
Rescorla, et al. 2019. Let’s Encrypt: an automated certificate authority to encrypt
the entire web. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2473–2487.

[3] Devdatta Akhawe, Johanna Amann, Matthias Vallentin, and Robin Sommer. 2013.
Here’s my cert, so trust me, maybe? Understanding TLS errors on the web. In
Proceedings of the 22nd international conference on World Wide Web.

[4] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. Sok:
Security evaluation of home-based iot deployments. In 2019 IEEE symposium on
security and privacy (sp). IEEE.

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th {USENIX} security
symposium ({USENIX} Security 17). 1093–1110.

[6] Apple. 2023. Apple’s Certificate Transparency policy. (2023). https://support.ap
ple.com/en-us/HT205280.

 

469

https://letsencrypt.org/2015/11/09/why-90-days.html
https://letsencrypt.org/2015/11/09/why-90-days.html
https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280


IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

[7] Apple. 2023. Available trusted root certificates for Apple operating systems.
(2023). https://support.apple.com/en-us/HT209143.

[8] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In 2014 IEEE Symposium on Security
and Privacy. IEEE.

[9] Frank Cangialosi, Taejoong Chung, David Choffnes, Dave Levin, Bruce M Maggs,
Alan Mislove, and ChristoWilson. 2016. Measurement and analysis of private key
sharing in the https ecosystem. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. 628–640.

[10] Songqing Chen, Kim-Kwang Raymond Choo, Xinwen Fu, Wenjing Lou, and
Aziz Mohaisen. 2019. Security and Privacy in Communication Networks: 15th EAI
International Conference, SecureComm 2019, Orlando, FL, USA, October 23–25, 2019,
Proceedings, Part II. Vol. 305. Springer Nature.

[11] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard). (Aug. 2008). http://www.ietf .org/rfc
/rfc5246.txt Updated by RFCs 5746, 5878, 6176.

[12] Daniel J Dubois, Roman Kolcun, Anna Maria Mandalari, Muhammad Talha
Paracha, David Choffnes, and Hamed Haddadi. 2020. When speakers are all
ears: Characterizing misactivations of iot smart speakers. Proceedings on Privacy
Enhancing Technologies (2020).

[13] Zakir Durumeric, James Kasten, Michael Bailey, and J Alex Halderman. 2013.
Analysis of the HTTPS certificate ecosystem. In Proceedings of the 2013 conference
on Internet measurement conference.

[14] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael Bailey, J Alex Halderman, and Vern Paxson. 2017. The Security
Impact of HTTPS Interception.. In NDSS.

[15] Sam Edwards and Ioannis Profetis. 2016. Hajime: Analysis of a decentralized
internet worm for IoT devices. Rapidity Networks 16 (2016), 1–18.

[16] Let’s Encrypt. 2022. ACME Client Implementations. (2022). https://letsencrypt.
org/docs/client-options/.

[17] Enphase Energy. 2023. Envoy 3.8.X. (2023). https://www4.enphase.com/en-us/l
egal/open-source-license-compliance-envoy-3.8.x.

[18] Trusted Firmware. 2023. Mbed TLS ChangeLog. (2023). Retrieved September
2023 from https://review.trustedfirmware.org/plugins/gitiles/mirror/mbed-tls/+/
7c94d8bcab1ed7e7a0079c67aa41731243de6f54/ChangeLog

[19] Sergey Frolov and Eric Wustrow. 2019. The use of TLS in Censorship Circum-
vention.. In NDSS.

[20] Google. 2023. Certificate Lifetimes. (2023). https://chromium.googlesource.com/
chromium/src/+/HEAD/net/docs/certificate_lifetimes.md.

[21] Google. 2023. Chromium.IsSecureTLSCipherSuite function. (2023). https:
//chromium.googlesource.com/chromium/src/net/+/master/ssl/.

[22] Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. 2011. The
SSL landscape: a thorough analysis of the x. 509 PKI using active and passive
measurements. In Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference.

[23] Danny Yuxing Huang, Noah Apthorpe, Frank Li, Gunes Acar, and Nick Feamster.
2020. Iot inspector: Crowdsourcing labeled network traffic from smart home
devices at scale. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (2020).

[24] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New
phytologist 11, 2 (1912), 37–50.

[25] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G Paterson,
Narseo Vallina-Rodriguez, and Juan Caballero. 2018. Coming of age: A lon-
gitudinal study of tls deployment. In Proceedings of the Internet Measurement
Conference 2018.

[26] Lydia Kraus, Martin Ukrop, Vashek Matyas, and Tobias Fiebig. 2020. Evolution of
SSL/TLS Indicators and Warnings in Web Browsers. In Security Protocols XXVII:
27th International Workshop, Cambridge, UK, April 10–12, 2019, Revised Selected
Papers 27. Springer, 267–280.

[27] ABI Laboratory. 2023. API/ABI changes review for mbed TLS. (2023). Retrieved
September 2023 from https://abi-laboratory.pro/index.php?view=timeline&l=m
bedtls

[28] ABI Laboratory. 2023. API/ABI changes review for wolfSSL. (2023). Retrieved
September 2023 from https://abi-laboratory.pro/?view=timeline&l=wolfssl

[29] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.
RFC 6962. (June 2013). https://doi.org/10.17487/RFC6962

[30] Sectigo Limited. 2023. Crt.sh. (2023). Retrieved September 2023 from https:
//crt.sh/

[31] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
Alan Mislove, Aaron Schulman, and Christo Wilson. 2015. An end-to-end mea-
surement of certificate revocation in the web’s PKI. In Proceedings of the 2015
Internet Measurement Conference.

[32] Zane Ma, James Austgen, Joshua Mason, Zakir Durumeric, and Michael Bailey.
2021. Tracing your roots: exploring the TLS trust anchor ecosystem. In Proceedings
of the 21st ACM Internet Measurement Conference.

[33] Microsoft. 2023. Certificate Stores. (2023). https://docs.microsoft.com/en-us/win
dows-hardware/drivers/install/certificate-stores.

[34] Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess, Arunesh Mathur,
Danny Yuxing Huang, Nick Feamster, Edward W Felten, Prateek Mittal, and
Arvind Narayanan. 2019. Watching you watch: The tracking ecosystem of over-
the-top tv streaming devices. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security.

[35] Mozilla. 2023. Common CA Database. (2023). https://www.ccadb.org/.
[36] Mozilla. 2023. Mozilla’s CA Certificate Program. (2023). https://wiki.mozilla.org

/CA.
[37] Muhammad Talha Paracha, Daniel J Dubois, Narseo Vallina-Rodriguez, and David

Choffnes. 2021. IoTLS: understanding TLS usage in consumer IoT devices. In
Proceedings of the 21st ACM Internet Measurement Conference.

[38] The Zeek Project. 2020. Zeek. (2020). https://zeek.org/.
[39] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth

Sundaresan, Johanna Amann, and Phillipa Gill. 2017. Studying TLS usage in
Android apps. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies.

[40] Jingjing Ren, Daniel J Dubois, David Choffnes, Anna Maria Mandalari, Roman
Kolcun, and Hamed Haddadi. 2019. Information exposure from consumer iot
devices: A multidimensional, network-informed measurement approach. In Pro-
ceedings of the Internet Measurement Conference.

[41] Eric Rescorla. 2018. RFC 8446: The Transport Layer Security (TLS) Protocol
Version 1.3. (2018). Retrieved September 2023 from https://datatracker.ietf .org/d
oc/html/rfc8446/

[42] Hans Christian Rudolph and Nils Grundmann. 2022. Ciphersuite Info. (2022).
https://ciphersuite.info/.

[43] Paul Shorey. 1907. Emendation of Plato Charmides 168b. Classical Philology 2, 3
(1907), 340–340.

[44] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-
Porisini. 2015. Security, privacy and trust in Internet of Things: The road ahead.
Computer networks 76 (2015), 146–164.

[45] Certificate Transparency. 2023. Google’s Certificate Transparency project. (2023).
https://certificate.transparency.dev/.

[46] Bhagyashri Tushir, Hetesh Sehgal, Rohan Nair, Behnam Dezfouli, and Yuhong
Liu. 2021. The impact of dos attacks onresource-constrained iot devices: A study
on the mirai attack. arXiv preprint arXiv:2104.09041 (2021).

[47] Yingjie Wang, Guangquan Xu, Xing Liu, Weixuan Mao, Chengxiang Si, Witold
Pedrycz, and Wei Wang. 2020. Identifying vulnerabilities of SSL/TLS certificate
verification in Android apps with static and dynamic analysis. Journal of Systems
and Software 167 (2020), 110609.

[48] WIKIPEDIA. 2023. OpenSSL. (2023). Retrieved September 2023 from https:
//en.wikipedia.org/wiki/OpenSSL

[49] Ben Wilson. 2020. Reducing TLS Certificate Lifespans to 398 Days. (2020).
https://blog.mozilla.org/security/2020/07/09/reducing-tls-certificate-lifespans-
to-398-days/.

[50] wolfSSL. 2023. wolfSSL change log. (2023). Retrieved September 2023 from
https://github.com/wolfSSL/wolfssl/blob/master/ChangeLog.md

[51] Wyze. 2021. Open Source Software. (2021). https://support.wyze.com/hc/en-us/
articles/360012546832-Open-Source-Software.

[52] Liang Zhu, Johanna Amann, and John Heidemann. 2016. Measuring the latency
and pervasiveness of TLS certificate revocation. In International Conference on
Passive and Active Network Measurement. Springer.

[53] Serkan Özkan. 2023. OpenSSL verion 1.0.0: Security vulnerabilities. (2023).
Retrieved September 2023 from https://www.cvedetails.com/vulnerability-list/ve
ndor_id-217/product_id-383/version_id-453965/Openssl-Openssl-1.0.0.html/

A ETHICS
The authors’ use of the IoT Inspector dataset has gained the appro-
priate permission from the original authors’ IRB.

B IOT CLIENT-SIDE TLS ANALYSIS
B.1 Fingerprints Coverage
While our compiled TLS libraries may not encompass all possible
scenarios, it is worth noting that our collection of standard TLS
libraries is similar in scope to that of [37], as it includes the major
libraries commonly employed by IoT devices. We show the coverage
of our compiled library fingerprints as follows:

• 19 OpenSSL versions:
– 1.0.0m, 1.0.0q, 1.0.0t
– 1.0.1h, 1.0.1l, 1.0.1r, 1.0.1u
– 1.0.2, 1.0.2f, 1.0.2-beta1, 1.0.2-beta2, 1.0.2m, 1.0.2u

 

470

https://support.apple.com/en-us/HT209143
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
https://letsencrypt.org/docs/client-options/
https://letsencrypt.org/docs/client-options/
https://www4.enphase.com/en-us/legal/open-source-license-compliance-envoy-3.8.x
https://www4.enphase.com/en-us/legal/open-source-license-compliance-envoy-3.8.x
https://review.trustedfirmware.org/plugins/gitiles/mirror/mbed-tls/+/7c94d8bcab1ed7e7a0079c67aa41731243de6f54/ChangeLog
https://review.trustedfirmware.org/plugins/gitiles/mirror/mbed-tls/+/7c94d8bcab1ed7e7a0079c67aa41731243de6f54/ChangeLog
https://chromium.googlesource.com/chromium/src/+/HEAD/net/docs/certificate_lifetimes.md
https://chromium.googlesource.com/chromium/src/+/HEAD/net/docs/certificate_lifetimes.md
https://chromium.googlesource.com/chromium/src/net/+/master/ssl/
https://chromium.googlesource.com/chromium/src/net/+/master/ssl/
https://abi-laboratory.pro/index.php?view=timeline&l=mbedtls
https://abi-laboratory.pro/index.php?view=timeline&l=mbedtls
https://abi-laboratory.pro/?view=timeline&l=wolfssl
https://doi.org/10.17487/RFC6962
https://crt.sh/
https://crt.sh/
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/certificate-stores
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/certificate-stores
https://www.ccadb.org/
https://wiki.mozilla.org/CA
https://wiki.mozilla.org/CA
https://zeek.org/
https://datatracker.ietf.org/doc/html/rfc8446/
https://datatracker.ietf.org/doc/html/rfc8446/
https://ciphersuite.info/
https://certificate.transparency.dev/
https://en.wikipedia.org/wiki/OpenSSL
https://en.wikipedia.org/wiki/OpenSSL
https://blog.mozilla.org/security/2020/07/09/reducing-tls-certificate-lifespans-to-398-days/
https://blog.mozilla.org/security/2020/07/09/reducing-tls-certificate-lifespans-to-398-days/
https://github.com/wolfSSL/wolfssl/blob/master/ChangeLog.md
https://support.wyze.com/hc/en-us/articles/360012546832-Open-Source-Software
https://support.wyze.com/hc/en-us/articles/360012546832-Open-Source-Software
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/version_id-453965/Openssl-Openssl-1.0.0.html/
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/version_id-453965/Openssl-Openssl-1.0.0.html/


Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

– 1.1.0l, 1.1.0-pre1, 1.1.0-pre2, 1.1.0-pre3
– 1.1.1i, 1.1.1-pre2

• 38 wolfSSL versions:
– 1.8.0
– 2.1.1, 2.2.1, 2.2.2, 2.3.0, 2.4.6, 2.4.7, 2.5.0, 2.5.2, 2.5.2b, 2.6.0,
2.8.0, 2.9.0

– 3.0.0, 3.0.2, 3.1.0, 3.4.0, 3.4.2, 3.4.8, 3.6.0, 3.7.0, 3.8.0, 3.9.0,
3.9.10-stable, 3.10.2-stable, 3.10.3, 3.11.0-stable, 3.12.0-stable,
3.13.0-stable, 3.14.2, 3.14.5, 3.15.0-stable, 3.15.3-stable, 3.15.6,
3.15.7-stable,

– 4.0.0-stable
– WCv4.0-RC4, WCv4.0-RC5

• 113 Mbed TLS versions:
– PolarSSL 0.13.1, 0.14.0, 0.14.2, 0.14,3
– PolarSSL 1.0.0, 1.1.0, 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, 1.1.6,
1.1.7, 1.1.8

– PolarSSL 1.2.0, 1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5, 1.2.6, 1.2.7,
1.2.8, 1.2.9, 1.2.10, 1.2.11, 1.2.12, 1.2.13, 1.2.14, 1.2.15, 1.2.16,
1.2.17, 1.2.18, 1.2.19

– 1.3.0, 1.3.1, 1.3.2, 1.3.3, 1.3.4, 1.3.5, 1.3.6, 1.3.7, 1.3.8, 1.3.9
– Mbed TLS 1.3.10, 1.3.11, 1.3.12, 1.3.13, 1.3.14, 1.3.15, 1.3.16,
1.3.17, 1.3.18, 1.3.19, 1.3.20, 1.3.21, 1.3.22

– Mbed TLS 1.4-dtls-preview
– 2.1.0, 2.1.1, 2.1.2, 2.1.3, 2.1.4, 2.1.5, 2.1.6, 2.1.7, 2.1.8, 2.1.9,
2.1.10, 2.1.11, 2.1.12, 2.1.13, 2.1.14, 2.1.15, 2.1.16, 2.1.17,
2.1.18

– 2.2.0, 2.2.1
– 2.3.0
– 2.4.0, 2.4.2
– 2.5.1
– 2.6.0
– 2.7.0, 2.7.2, 2.7.3, 2.7.4, 2.7.5, 2.7.6, 2.7.7, 2.7.8, 2.7.9, 2.7.10,
2.7.11, 2.7.12, 2.7.13, 2.7.14, 2.7.15

– 2.8.0
– 2.9.0
– 2.11.0
– 2.12.0
– 2.13.0
– 2.14.0, 2.14.1
– 2.16.0, 2.16.2, 2.16.2, 2.16.3, 2.16.4, 2.16.5, 2.16.6

• 5,591 versions of different curl versions (from curl 7.19.010
to curl 7.71.09) compiled with different OpenSSL versions

• 1,130 versions of different curl versions (from curl 7.25.0 to
curl 7.68.0) compiled with different wolfSSL versions

Specifically, we document the release dates of significant versions
of the aforementioned libraries in Table 10 [18, 27, 28, 48, 50]. We
note that our ClientHello dataset is collected from April 29, 2019 to
August 1, 2020. Our matching findings indicate that 23 fingerprints
of IoT Inspector ClientHellos align precisely with 16 established
TLS libraries. Among these, 14 out of 16 are no longer supported as
of 2020, including severely outdated versions like OpenSSL 1.0.0q,
1.0.0t, 1.0.1h, 1.0.1l, 1.0.1r, 1.0.1u, 1.0.2f, 1.0.2u, wolfSSL 2.9.0.

B.2 Semantics-aware TLS Fingerprinting
Client-side TLS fingerprinting help reveal vulnerabilities in device
configuration. Even without exact match, proposing ciphersuites

Table 10: Release date of major library versions.

Library Version Release date Last minor version

OpenSSL

1.0.0 29 March 2010 1.0.0t (3 December 2015)
1.0.1 14 March 2012 1.0.1u (22 September 2016)
1.0.2 22 January 2015 1.0.2u (20 December 2019)
1.1.0 25 August 2016 1.1.0l (10 September 2019)
1.1.1 LTS 11 September 2018 1.1.1w (11 September 2023)

wolfSSL

1.8.0 23 December 2010 -
2.1.1 25 May 2012 -
3.0.0 29 April 2014 -
3.4.0 23 February 2015 -
3.10.0 21 December 2016 -
3.12.0 4 August 2017 -
3.14.0 2 March 2018 -
3.15.0 5 June 2018 -
4.0.0 20 March 2019 -

Mbed TLS

1.0.0 27 July 2011 -
1.2.0 31 October 2012 -
1.3.0 1 October 2013 -
2.1.0 4 September 2015 -
2.2.0 4 November 2015 -
2.3.0 27 June 2016 -
2.6.0 10 August 2017 -
2.7.0 5 February 2018 -
2.8.0 16 March 2018 -
2.16.0 21 December 2018 -
2.16.4 15 January 2020 -

with the same or similar components as known libraries enables
the sharing of similar risks. In order to draw comparison across all
device fingerprints, we need to expand the TLS library matching
in Section 4.1 to significantly more devices. Thus, we develop a
new semantics-aware TLS fingerprinting approach that identifies
the likely known library based on the specific algorithms in the
proposed ciphersuites. We use the following criteria and assign
categories corresponding to the degree of similarity:

• Exact match: the proposed ciphersuite list is exactly the same
as a known TLS library. This is slightly different from the
exact matching in Section 4.1, where here it may include
device fingerprints that have the same ciphersuite list but
not the same extensions or TLS version.

• Same set different ordering: the proposed ciphersuite list con-
tains the same ciphersuites as a known TLS library, but they
appear in different orderings in the list.

• Same component: the proposed ciphersuites contain the same
sets of components as a TLS library, i.e., key exchange and
authentication algorithm set, encryption algorithm set, and
MAC set, but have different combinations of these algo-
rithms, leading to different ciphersuites.

• Similar component: the proposed ciphersuites contain similar
(albeit not the same) sets of components as a TLS library.
We define two algorithms to be similar to each other when
they only differ in key length and provide the same level
of security8. E.g., cipher AES_128_CBC and AES_256_CBC,
and MAC SHA256 and SHA384, are two pairs of similar algo-
rithms. But MAC SHA-1 and SHA256 are not similar.

8We exclude key exchange and authentication algorithm as there is no key length
involved.

 

471



IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

Table 11: Semantics-aware fingerprinting results.

Category %Total #.Vendors %Outdated*

Exact same 10.69% 34 99.20%
Same set diff order 0.46% 10 81.48%
Same component 6.42% 17 97.59%
Similar component 35.80% 56 99.66%
Customization 46.63% 51 71.99%

Figure 8: Jaccard Similarity of client-proposed ciphersuite
lists and the most likely libraries for category Same com-
ponent and Similar component. Y-axis shows the number of
each unique {device, ciphersuite list} tuple.

• Customization: the proposed ciphersuites are further cus-
tomized by device vendors.

Semantics-awarefingerprinting results.We showfingerprint-
ing results of 5,827 unique {device, ciphersuite list} tuples in Table 11,
where each value represents the number of such tuples. We are
able to identify the closest library for over half of the device finger-
prints. This result suggests that most devices use customized TLS
configurations that cannot be matched against standard libraries.

Most of the devices are matched to libraries that are no longer
supported as of 2020, with more than half using legacy library
versions whose last update was prior to 2017, resulting in many
known vulnerabilities. It is worth mentioning that we observed
combinations of up-to-date curl versions and outdated TLS library
versions such as curl 7.71.018 OpenSSL 1.0.0t and curl 7.65.1 wolfSSL
3.7.1.

Table 12: TLS version proposed by IoT devices.

TLS version TLS 1.2 TLS 1.1 TLS 1.0 SSL 3.0
#. Proposals 5214 18 236 31

We next dig further into ciphersuite overlaps of category same
component and similar component by measuring Jaccard Similarity
of device-proposed ciphersuites and the most likely library. We
show the distribution in Figure 8. Comparing to same component,
similar component distributes more towards both end. The higher-
end distribution suggests strong possibilities of many devices mak-
ing changes based on specific libraries. This includes Roku and
Amazon devices. On the contrary, though devices at the lower-end
show amuch higher degree of customization, they still share similar
risks as known libraries because of the usage of similar algorithm
components.

Limitation. Our method of matching fingerprints helps us in-
fer the likely TLS libraries and versions used. Absent the ground

Figure 9: Inclusion of vulnerable ciphersuite components.
Each flow unit shows a unique {device, ciphersuite list} tu-
ple.

truth at scale (e.g., vendors’ disclosures), our results are not de-
finitive, although they provide directional values to researchers.
Given the large variety of devices and their black-box nature, our
analysis can potentially point researchers to relevant directions
and suggest possible IoT device candidates (e.g., those with out-
dated OpenSSL versions) for further in-lab analysis (which is often
time-consuming).

B.3 TLS Parameters
B.3.1 Ciphersuites. Besides unfolding vulnerable ciphersuite

algorithms used by IoT devices, we perform additional analysis
on client-proposed ciphersuites in terms of specific ciphersuite
inclusion and algorithm ordering.

TLS_FALLBACK_SCSV ciphersuite. The presence of such ci-
phersuite, though does not reveal any weakness at the device side,
indicates the possibility of a downgrade attack. We observed that
20 devices from 6 vendors, including Amazon, support such cipher-
suite.

Other metrics.We developed other metrics to evaluate client-
proposed ciphersuites such as lowest index of vulnerable cipher-
suites, and most preferred algorithms. We show details in Appendix
B.7 - B.8.

 

472



Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

Figure 10: Degree of customization across devices for vendors.

Table 13: Index and vendor mapping in Figure 1.

Index Vendor Index Vendor Index Vendor Index Vendor Index Vendor
1 Roku 2 TCL 3 Samsung 4 Sharp 5 Insignia
6 Amazon 7 Nvidia 8 Google 9 HP 10 Western Digital
11 Xiaomi 12 Sony 13 Lutron 14 iDevices 15 TP-Link
16 Vizio 17 Pioneer 18 Onkyo 19 wink 20 LG
21 Cisco 22 Philips 23 Synology 24 TiVo 25 Wyze
26 Sonos 27 Amcrest 28 Panasonic 29 QNAP 30 Fing
31 Brother 32 Dish Network 33 Skybell 34 NETGEAR 35 Arlo
36 iRobot 37 Yamaha 38 Texas Instruments 39 Tesla 40 Bose
41 Sky 42 Humax 43 Ubiquity 44 Logitech 45 Netatmo
46 SiliconDust 47 HDHomeRun 48 Sense 49 DirecTV 50 Denon
51 Marantz 52 Nanoleaf 53 VMware 54 Obihai 55 Canary
56 ecobee 57 Epson 58 IKEA 59 Belkin 60 Nintendo
61 Sleep number 62 Tuya 63 Canon 64 Vera 65 Withings

Figure 11: The distribution of the lowest index of vulnerable ciphersuites. Without or with higher y-values generally indicate
more secure practices. The x-axis is sorted by the mean index of vulnerable ciphersuites in an ascending order, from left to
right. The y-axis shows the distribution of indices of vulnerable ciphersuites. The values in parentheses on the x-axis show
numbers of each unique {device, ciphersuite list} tuple per vendor.

B.3.2 TLS versions. Table 12 shows the number of connections
of each TLS version, excluding those that cannot be parsed. We
do not observe any TLS 1.3 connection, even though TLS 1.3 was
released 8 months prior to our data capturing. 194 (out of 2,014) de-
vices propose more than one TLS version during our 15-month cap-
turing period. However, we do not observe any trend in proposed
TLS versions over the capturing period. Alarmingly, 26 devices9
still propose SSL 3.0 for 31 times even though it was deprecated in
2015. This may be due to two reasons: (i) the vendor may not have
installed the latest TLS library on the device when manufacturing it;

9Amazon (13), Synology (5), Samsung (4), LG (2), TP-Link (1), andWestern Digital (1).

(2) the device never updates TLS library after being manufactured,
which is the more likely reason.

B.3.3 TLS extensions. We observe some devices have the same
ciphersuite lists as known TLS libraries, but do not have the same
fingerprints due to different extensions. After taking a further look,
we find that the differences mainly attribute to the inclusion of
application-specific extensions10 and the extension padding. Exten-
sion session_ticket and renegotiation_info are much more frequently
included by IoT devices compared to known libraries. We show
further details of this analysis, including other extensions such as
10application_layer_protocol_negotiation and next_protocol_negotiation.

 

473



IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

Figure 12: Component algorithms of ciphersuite proposed by client devices in the first place of each ciphersuite list. Squares
of value 0 (i.e., no usage) are grayed out. Algorithms in color orange are considered suboptimal, and those in color red are
vulnerable.

OCSP request and GREASE, in Appendix B.9 and B.10.

B.4 Proposal of Vulnerabilities
Figure 9 shows details on the proposal of vulnerabilities in cipher-
suites on a vendor basis where each flow unit represents a unique
{device, ciphersuite list} tuple.

B.5 Degree of Customization Across Devices
Figure 10 demonstrates the 𝐷𝑜𝐶 distribution for all 65 vendors
where a darker color indicates a higher degree of customization. Figure 13: Leaf certificates in invalid chains.

 

474



Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

Table 14: Certificate chains with private issuers.

Certificate chain
validation Domain #. FQDN(s) Leaf certificate

issued by
Chain
length

Visited by
#.devices

Visited by
devices of

Private root CA

roku.com 15 Roku 2, 3 102
Brother, Cisco,
Insignia, Roku,
Sharp, TCL

rokutime.com 1 Roku 2 38 Brother, Insignia,
Roku, TCL

nintendo.net 14 Nintendo 2 28 Nintendo
playstation.net 11 Sony Computer Entertainment 2 17 Sony

netflix.com 4 Netflix 2 15
Amazon, LG,
Panasonic, Roku,
Samsung, Sony, Tivo

lgtvsdp.com 2 LG Electronics 2 12 LG
canaryis.com 2 Canary Connect 4 10 Canary
netflix.net 1 Netflix 2 9 Roku, Samsung
samsungelectronics.com 1 Samsung Electronics 4 8 Samsung
pavv.co.kr 1 Samsung Electronics 2 7 Netatmo, Samsung

sense.com 2 Sense Labs 3 6 Sense,
Texas Instruments

sonyentertainmentnetwork.com 1 Sony Computer Entertainment 2 5 Sony
ecobee.com 1 ecobee 3 4 ecobee

dtvce.com 1 ATT Mobility and Entertainment 4 3 DirecTV, Humax,
Samsung

tesla.services 1 Tesla Motor Services 3 3 LG, Tesla

Self-signed
certificate

ueiwsp.com 1 Samsung Electronics 1 8 Samsung
dishaccess.tv 2 EchoStar 1 3 Dish Network
samsunghrm.com 1 Samsung Electronics 2 3 Samsung
tuyaus.com 1 Tuya 1 3 Tuya

B.6 Vendor and Fingerprint Mapping
We show the mapping between device vendor and vendor index in
Table 13.

B.7 Lowest Index of Vulnerable Ciphersuites
The order of the ciphersuites proposed by the client has significant
security implications, as many servers default to choose the first
supported ciphersuite from the list. For example, if the client pro-
poses (vulnerable_ciphersuite, optimal_ciphersuite), and the server
also supports the vulnerable ciphersuite, then the vulnerable ci-
phersuite will likely be chosen despite the presence of a secure
ciphersuite.

Thus, we performed analysis on the lowest index of cipher-
suites proposed by clients containing vulnerable algorithms (de-
fined in 4.2). The results are shown in Figure 11. We find that at
least one device from 13 vendors proposes a vulnerable ciphersuite
as the first (i.e., most preferred) ciphersuite. Devices of 7 vendors
never contain any vulnerable ciphersuite.

B.8 Ciphersuites: Most Preferred Algorithms
We pick the first ciphersuite in each client-proposed list, and divide
it into three components: the key exchange and authentication algo-
rithm, the cipher algorithm, and the MAC (Message Authentication
Code) algorithm. We show the ratio of usage of each component
algorithm that is ever proposed in the first place on a device vendor
basis in Figure 12. Note that the number of device vendors may be
less than the total number of vendors in IoT Inspector Dataset as

devices that put renegotiation information11 in the first place of its
preferred list are excluded.

Considerable amount of devices prefer a ciphersuite consists
of suboptimal or even vulnerable algorithms most. Some devices
of vendor Synology put a ciphersuite containing vulnerable algo-
rithms in at least one algorithm component, and Synology is the only
vendor with devices proposing a ciphersuite including vulnerable
DH_ANON and KRB5_EXPORT key exchange and authentication
algorithms as the most preferred ciphersuite. All Belkin devices
propose a ciphersuite containing the vulnerable RC4_128 cipher
algorithm in the first place. Other devices including an insecure ci-
pher algorithm are with 12 vendor12. Devices from several vendors
still prefer MD5 as the MAC algorithm13.

B.9 Extension: OCSP Request
OCSP (Online Certificate Status Protocol) stapling is a standard
that allows the presenter of a certificate to staple an OCSP response
signed by the CA during TLS handshake. In TLS connections, a
client can include the extension status_request in the ClientHello
to request for an OCSP response from the server. In IoT Inspector
Dataset, we find that 648 out of 2,014 devices include this extension
in at least one connection. These devices are from 33 (out of 65)
vendors.

11TLS_EMPTY_RENEGOTIATION_INFO_SCSV.
12Synology, TP-Link, Western Digital, Amazon, Dish Network, LG, Netatmo, Roku, Sam-
sung, Sony, Tivo, and QNAP.
13Netatmo, QNAP, Samsung, Sony, Synology, TP-Link, Tivo, andWestern Digital.

 

475



IMC’23, October 24-26, 2023, Montréal, Canada Hongying Dong, et al.

B.10 GREASE
GREASE (Generate Random Extensions And Sustain Extensibility),
according to RFC 8701, is a mechanism to prevent extensibility
failures in the TLS ecosystem by reserving a set of TLS protocol
values that may be advertised to ensure peers correctly handle
unknown values.

Ciphersuite GREASE. 501 out of 2,014 distinct devices use
GREASE in the supported ciphersuite lists. These 501 devices belong
to 23 device vendors.

Extension GREASE. 503 out of 2,014 devices use GREASE in
extensions. These 503 devices belong to 15 device vendors. In par-
ticular, we note that 2 devices are observed to include GREASE
only in extensions rather than ciphersuites, of vendor Google and
Amazon, respectively.

C SERVER PKI INFRASTRUCTURE
C.1 SLDs of IoT Servers
Table 15 summarizes the most popular 30 SLDs of 1,151 IoT servers,
sorted by their popularity among IoT devices.

Table 15: Popular SLDs of 1,151 IoT servers.

SLD
#. Servers
(FQDNs)

Contacted by
#. unique devices

amazon.com 57 556
google.com 24 499
googleapis.com 35 420
amazonalexa.com 2 337
gstatic.com 10 328
netflix.com 30 327
amazonaws.com 33 250
doubleclick.net 9 232
youtube.com 2 217
cloudfront.net 21 150
googleusercontent.com 6 146
roku.com 42 135
nflxext.com 2 125
sonos.com 10 124
scdn.co 11 124
spotify.com 8 117
facebook.com 9 112
googlesyndication.com 3 105
amazonvideo.com 23 101
ggpht.com 5 99
ytimg.com 4 94
media-amazon.com 1 93
amazon-dss.com 1 90
meethue.com 3 84
amcs-tachyon.com 1 82
sentry-cdn.com 1 75
ssl-images-amazon.com 1 70
plex.tv 11 69
nest.com 4 68
google-analytics.com 2 63

Table 16: Certificates usage across geographical locations.

New York Frankfurt Singapore
#.SNIs with certificate
successfully extracted 1151 1149 1150

#.SNIs with certificate
shared across all places 1087

#.SNIs with certificate
exclusive in this location 106 99 82

C.2 Certificate Chains with Private Issuers
Table 14 shows details on domains that present a certificate chain
with status “untrusted root CA" or “self-signed certificate". Certifi-
cate chains with status “self-signed certificate" usually just have
one certificate in chains, leading to difficulties in chain validation.

C.3 CT and Certificate Chains with Private
Issuers

We show the correlation between leaf certificates in chains signed
by private issuers and their corresponding CT existence in Figure
13, with the majority of leaf certificates in such chains not logged
in CT. We observe usage of 2 expired leaf certificates that are issued
by public trust issuers, including 1 by Sectigo (not logged in CT)
and 1 by Gandi, suggesting that besides authenticated CAs, server
owners should also prioritize monitoring their TLS certificates even
if issued by public trust issuers.

Table 17: Servers presenting an invalid or misconfigured certificate chain.

Chain validation Domain(s) visited by
Amazon device

Domain(s) visited by
Roku device

Incomplete chain

netflix.com (5)
playstation.net (2)

tremorvideo.com (1)
hsn.com (1)

netflix.com (12)
roku.com1 (6)
vvond.net (2)

tremorvideo.com (1)
cymtv.com (1)

rhythmxchange.com (1)
rubiconproject.com (1)

contextweb.com (1)
sonyentertainmentnetwork.com (1)

otherworlds.tv (1)
spotxchange.com (1)

Untrusted root CA roku.com1 (2)
roku.com1 (12)
netflix.com (1)

rokutime.com1 (1)

Expired certificate amazon.com2 (1)
clikia.com (1)

altitude-arena.com (1)
saddleback.com (1)
smartott.com (1)

yumenetworks.com (1)
1 Domains run by Roku.
2 Domains run by Amazon.

C.4 Dataset Validation
As mentioned in Section 5.1, we address several concerns on the
accuracy of our certificate dataset by comparing across multiple
geographical locations and cross checking with a lab dataset.

C.4.1 Comparison across geographical locations. We first in-
vestigate the impact of geographical locations of TLS client on
IoT servers’ choices of leaf certificates. We compared certificates

 

476



Uncovering TLS and Server Certificate Practice of IoT Vendors IMC’23, October 24-26, 2023, Montréal, Canada

obtained using TLS clients located in New York (U.S.), Frankfurt (Eu-
rope), and Singapore (Asia). Table 16 shows the number of identical
certificates across the three locations.

Though a small amount of servers use exclusive certificates
for specific places, including 106 servers in New York, 99 and 82
in Frankfurt and Singapore respectively, we observe 1,087 SNIs
with certificates shared by all geographical locations, indicating an
overall consistency in certificate usage across places. Given that the
difference is negligible, we use certificates captured at New York
for our analysis for simplicity.

C.4.2 Comparison with Lab Dataset. The Lab Dataset, as de-
scribed in Section 5.1, contains network traffic captured in the lab
of 113 IoT devices belonging to 52 vendors from 2017 to 2021. Al-
though it has far fewer devices than the IoT Inspector dataset, its
certificate data is captured directly from the devices, serving as a
supplemental data source for cross checking.

17 device vendors are found in both datasets, covering 88.61% of
all connections in the lab dataset and 81.52% of connections in our
certificate dataset . Among them, 362 SNIs are visited by devices
in common in both datasets. In particular, 356 (out of 362 SNIs
that are in common in both datasets) present certificates issued by

the same issuer organization in both datasets, covering 13 device
vendors. These certificates show overall consistency in certificate
validity period and CT appearance. The remaining 7 SNIs provide
certificates issued by different issuers, but are largely consistent
in CT appearance. In summary, certificates across both datasets
exhibit similar properties.

We also notice growing trend of CT logging from the same public
trust CAs in our 2022 certificate dataset compared to the lab dataset.
This is consistent with the increasing deployment of CT in recent
years. Thus, we argue that our certificate dataset provides an up-
to-date view on IoT server certificates as of early 2022.

C.5 Case Study: Smart TVs
Table 17 shows domains with invalid or misconfigured certificate
chains visited by Amazon and Roku smart TVs. Note that values
in brackets suggest number of FQDN(s) for each domain. Servers
sending incomplete chains are with certificates issued by public
trust issuers, except 5 from netflix.com (signed by Netflix) and 6
from roku.com (with issuer Roku). Servers with the issue “untrusted
root CA" use certificates signed by private issuer Roku and Netflix,
while all expired certificates are found issued by public trust issuers,
which is consistent with our previous observation in Section 5.3.

 

477


	Abstract
	1 Introduction
	2 Related Work
	3 Dataset
	4 IoT Client-Side TLS Analysis
	4.1 Matching Fingerprints to Libraries
	4.2 Customization Across Vendors
	4.3 Customization Across Devices
	4.4 Shared Fingerprints Across Vendors

	5 Server Key Infrastructure
	5.1 Certificate Dataset
	5.2 Certificate Issuers
	5.3 Certificate Chain Validation
	5.4 CT and Validity Period

	6 Case Studies
	6.1 Smart TVs
	6.2 PKI on the Local Network

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Ethics
	B IoT Client-side TLS Analysis
	B.1 Fingerprints Coverage
	B.2 Semantics-aware TLS Fingerprinting
	B.3 TLS Parameters
	B.4 Proposal of Vulnerabilities
	B.5 Degree of Customization Across Devices
	B.6 Vendor and Fingerprint Mapping
	B.7 Lowest Index of Vulnerable Ciphersuites
	B.8 Ciphersuites: Most Preferred Algorithms
	B.9 Extension: OCSP Request
	B.10 GREASE

	C Server PKI Infrastructure
	C.1 SLDs of IoT Servers
	C.2 Certificate Chains with Private Issuers
	C.3 CT and Certificate Chains with Private Issuers
	C.4 Dataset Validation
	C.5 Case Study: Smart TVs




