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ABSTRACT
Location tags are designed to track personal belongings. Never-
theless, there has been anecdotal evidence that location tags are
also misused to stalk people. Tracking is achieved locally, e.g., via
Bluetooth with a paired phone, and remotely, by piggybacking on
location-reporting devices which come into proximity of a tag. This
paper studies the performance of the two most popular location
tags (Apple’s AirTag and Samsung’s SmartTag) through controlled
experiments – with a known large distribution of location-reporting
devices – as well as in-the-wild experiments – with no control on
the number and kind of reporting devices encountered, thus em-
ulating real-life use-cases. We find that both tags achieve similar
performance, e.g., they are located 55% of the times in about 10
minutes within a 100 m radius. It follows that real time stalking
to a precise location via location tags is impractical, even when
both tags are concurrently deployed which achieves comparable
accuracy in half the time. Nevertheless, half of a victim’s exact
movements can be backtracked accurately (10m error) with just a
one-hour delay, which is still perilous information in the possession
of a stalker.
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1 INTRODUCTION
Location tags such as AirTag (Apple) and SmartTag (Samsung)
enable themonitoring of the location of any object they are attached
to. This is achieved locally by using Bluetooth Low Energy (BLE) –
or using UltraWideband if supported – between a tag and the device
it is paired with. When the location tag is out of reach, location
updates are provided remotely by piggybacking on any compatible
iOS device, such as iPhones and iPads (for AirTag), or Samsung
Galaxy devices (for SmartTag) which come into proximity of such
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tag. For a device to be location-reporting, i.e., eligible to relay a tag’s
location, it must support location finding, which Apple enables by
default, but must be opted in on Samsung devices.

Although the intended use case of tags is locating objects, there
is anecdotal evidence of their misuse for tracking people [5, 13] or
stalking. To the best of our knowledge, no scientific study has yet
quantified the accuracy of location tags in the wild, which directly
correlates with their ability (or not) to act as stalking devices. Their
efficacy in both locating and/or stalking depends on a few factors:
1) the technology adopted, and 2) the probability of encountering a
location-reporting device, e.g., a Samsung or Apple with enabled
Bluetooth, GPS location, and data connectivity. While the reach of
the technology can be studied in a lab, the opportunistic encoun-
tering of a reporting device requires experiments in the wild to
account for realistic conditions.

The goal of this paper us to study the performance of location
tags. We tackle this problem with both controlled and in-the-wild
experiments. To enable such experiments, we develop crawlers
for each tag’s companion app (FindMy and SmartThings) which
collect fine-grained tags location histories as reported by location-
reporting devices. We use controlled experiments to shed some
light on the behavior of location tags, e.g., how frequently their
location is reported. First, we deploy an AirTag and a SmartTag in a
secluded area along with Samsung and Apple devices at increasing
distance. Next, we deploy both tags in our campus cafeteria whose
WiFi provides us an estimate of the number of Apple and Samsung
devices present at any point in time.

We use experiments in the wild to comment on the effectiveness
of their opportunistic location reporting in various scenarios, e.g.,
user mobility, population densities, times of day, and days of the
week. We rely on four volunteers to carry an AirTag (Apple) and
SmartTag (Samsung) while traveling to six different countries. The
tags are mounted on the cover of an Android phone – not paired
with the tags, and not an Apple or Samsung – which is equipped
with a custom app logging information like GPS location, connectiv-
ity, etc. The data collected spans 120 days, and 9,378 Kms traveled
across 20 cities.

Our analysis shows that AirTag and SmartTag achieve similar
performance with respect to how quickly and precisely they can
be located. Despite the lower probability to encounter Samsung
location-reporting devices, SmartTag matches AirTag performance
by adopting a more aggressive strategy of higher power Bluetooth
beacons – which are received further away but require 20% more
battery usage – and more frequent location reports. Overall, 10
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minutes are needed to locate a tag within 100 m from its true
location, even when emulating a scenario where Apple devices can
report SmartTags’ location and vice-versa. This result implies that
a victim’s precise location can rarely be tracked in real time, even
when both tags are concurrently deployed. Still, half of a victim’s
movements can be retraced with a 10 meters accuracy after just one
hour, which is still dangerous information in the hand of a stalker.
Furthermore, such stalking capability is achieved with minimal
cost ($30 per tag) and for a very long time, given that both devices
guarantee a battery life of about one year.

2 BACKGROUND AND RELATEDWORK
Location tags like AirTag (Apple) and SmartTag (Samsung) use the
Bluetooth Low Energy (BLE) [11] protocol to transmit a unique
identifier with a range of up to 100 meters. SmartTag+ and the
AirTag also support Ultra Wideband [17] which further extends
the range while allowing more precise device localization. Ultra
Wideband is only supported by recent devices, such as iPhone
models ≥ 11, and Samsung Galaxy from the S21 onwards.

In addition to local (Bluetooth) tracking, remote tracking is
achieved by allowing location-reporting devices – iOS devices for
AirTags, Samsung devices for SmartTags – to report the location
of tags encountered in the wild. Whenever a location-reporting
device comes in the proximity of a location tag, i.e., it receives a
Bluetooth beacon, it updates the tag’s location in the cloud using
its GPS coordinates as an approximation. Tag owners can check
their location via the tag’s companion application. This process
is private, without leaking any information about either the tag’s
owner or the device which has reported its last location.

Apple and Samsung have implemented measures to deter ma-
licious tracking, yet these measures have been insufficient, as dis-
cussed in [9]. In addition, each vendor only alerts a user if an
unpaired tag from the same vendor has been in their vicinity for an
extended period of time. This means that an AirTag could be used to
stalk Samsung users and vice-versa. To address this, Apple released
“Tracker Detect” [2] an Android application which allows its users
to manually scan for nearby AirTags. Heinrich et al. [8] improved
this design by automatically alerting users if they encounter the
same AirTag in three separate locations within a 24 hour period.
Similarly, Briggs et al. [4] extend the design proposed by Heinrich
et al. to generic tags, not just AirTags. These applications are only
partially effective due to MAC address randomization [1], which
makes tags eventually appear as new devices to a third-party app.
Mayberry et al. [14] developed a custom location tag which mim-
ics an AirTag, can be tracked in Apple’s FindMy network, and can
circumvent Apple’s tracking of malicious AirTags. Last but not
least, Shaqfat et al. [18] also demonstrate that the security mea-
sures implemented by Apple can be circumvented with a custom
location tag, and suggest solutions to mitigate stalking risks from
cloned AirTags and enhance the existing anti-stalking safeguards
for AirTags.

To the best of our knowledge, no previous paper investigates
the performance (i.e., accuracy and responsiveness) of tags in real-
world scenarios on a global scale. Instead, Givehchian et al. [6]
have investigated the privacy of devices using the BLE protocol,
such as location tags, showing that physical-layer identification is

FindMy

SmartThings

Figure 1: On the left, two data collection servers (MacOS
and Ubuntu) run the FindMy and SmartThings crawlers. On
the right, several views of our vantage point, a Redmi Go
equipped with two tags.

viable although often unreliable. Hernández et al. [10] have studied
the efficiency of finding AirTags and Tile tags on a university cam-
pus through real and simulated experiments, where they model the
probability of locating a tag utilizing the flow rate of individuals car-
rying a compatible smartphone in the tag’s detection range. They
showed that AirTags exhibit a range between 10-30 m (inline with
our own findings). Furthermore, their results indicate that given a
populated area, both tags relayed their location within one hour
98% of the time. Our work differs from the work of [10] in that
we expand our analysis to a global scale, analyzing the efficiency
of AirTags and SmartTags across multiple countries. Moreover, we
enhance their real experiments with a more comprehensive con-
trolled experiment to evaluate the relationship between smartphone
density and location update rate.

3 METHODOLOGY
This section outlines the methodology we have devised to evaluate
location tags. While we focus on AirTag (Apple) and SmartTag
(Samsung), the methodology is generic and can be adopted to study
other location tags like Tile [19].

3.1 Location Tags Pairing

Apple AirTag: This tag must be paired and registered via Bluetooth
with an iOS or iPadOS device above version 14.5, i.e., no MacOS.
Once the tag is linked to the Apple ID of the device it is paired with,
it is then displayed in the FindMy app across all devices that have
signed in with that Apple ID (including MacOS devices).
Samsung SmartTag: This tag can only be paired and registered
via Bluetooth with a Samsung Galaxy device running Android ≥8.0.
The tag is linked to the Samsung account of the registered device,
and it is displayed as a linked device in Samsung SmartThings app.

3.2 Tag Data Collection
At the time when we developed our methodology, neither Sam-
sung nor Apple offered public APIs to access tag’s location data
(<timestamp, GPS location>) as maintained by each tag’s compan-
ion app: FindMy (Apple) and SmartThings (Samsung). In addition,
FindMy did not support location history, and SmartThings only
provided some low resolution location history for up to 6 days.
Therefore, we developed “crawlers” for both apps which monitor
location changes once a minute, and can thus build fine-grained
location histories. Recently, Apple has released an API to allow au-
thenticated users to query the FindMy service and retrieve location
reports, as discussed in [3].



I Tag, You Tag, Everybody Tags! Conference’17, July 2017, Washington, DC, USA

FindMy Crawler: The FindMy app is available for Apple devices,
e.g., Macbook, iPhone, and iPad. For ease of instrumentation, we
write a crawler for MacOS. Note that MacOS v11 or above is needed,
since FindMy on older MacOS does not support AirTags. In FindMy,
users can find the last reported coordinates of any paired AirTag
as follows. First, by clicking on the targeted tag from the list of
devices in FindMy and selecting the option to open the location in
Apple Maps. Once Apple Maps is launched, a pin is placed with the
latest reported location of the tag. With a right-click, the user is
given the option to “copy coordinates”. We wrote a FindMy crawler
in Python using pyautogui [16] to automate the above, and store
the last reported coordinates of each available AirTag. Along with
a tag’s coordinates, we also store a timestamp approximating when
the coordinates were reported. This is computed using the crawling
epoch time and the time at which a tag was last seen which is
reported by FindMy as “X minutes ago”, thus adding a potential
error of up to one minute. Given this “last seen” time cannot be
extracted from the FindMy app, we use OCR [15] to convert its
value into text.
SmartThings Crawler: The SmartThings app is only available
for Android. In the app, users select a tag from the list of tags
associated with their account, and then click “view location” which
opens Google Maps with a pin showing the tag’s location. At this
point, the tag’s coordinates are available in the search bar and can
be copied. We automate SmartThings via the Android Debugging
Bridge (ADB [7]), a rich Android protocol which allows to automate
app operations like launching, scrolling, and GUI interaction. We
connect an Android device, previously paired with one or more
SmartTags, to a Linux machine via USB. ADB is then used to launch
SmartThings and iterate over the tags. Once a tag’s coordinates
are available in Google Maps, they are copied and logged to a file.
The same OCR-based procedure described for FindMy is used to
approximate the time at which the tag location was updated last.

3.3 Vantage Point
A vantage point consists of an Android device (Xiaomi Redmi Go
with a 1.4 GHz Quad-core and a 1 GB RAM), an AirTag and a Smart-
Tag; both tags are mounted on a custom cover for the mobile device
which we designed and 3D printed as part of the AmiGo testbed
[22] (see Figure 1). The tags are paired with testing Samsung and
Apple accounts as described in Section 3.1. Note that the Android
device used is not capable of reporting the location of neither tags,
thus not impacting the accuracy of the experiments.

The Android device is equipped with an app we developed which
collects GPS data, if available. The app buffers pairs of <timestamp,
GPS location> with a 5-second frequency for up to five minutes;
only GPS variations are recorded, thus avoiding redundant data.
After five minutes, the buffered data is POSTed to a server in our
lab, if a data connection is available. Otherwise, the data is kept
in the buffer until a connection becomes eventually available. The
<timestamp, GPS location> pairs are used as the ground truth
of where the tags were located at a given point in time. This al-
lows us to evaluate the accuracy of a tag’s location as shown by
its companion app, i.e., as reported by location-reporting devices
opportunistically encountered by location tags.

Ctry # of # Report # Report Walk/Jog/ Days
cities Samsung Apple Transit(km)

US 2 145 4,821 14/22/871 30
IT 10 1,361 4,520 157/68/3,170 28
AE 2 1,442 9,572 145/151/3,384 52
PK 1 129 454 13/16/165 2
CH 1 331 489 14/16/62 3
DE 4 187 1,225 46/45/1,021 5
Tot. 20 3,595 21,081 388/317/8,673 120

Table 1: Summary of data-set collected in the wild. # Report
refer to the number of times that tag locations were reported
as “Now” in each companion app.
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Figure 2: Beacon RSSI for each tag at different distances.

4 DATA COLLECTION AND ANALYSIS
This section describes two data-sets (controlled and in-the-wild) we
have collected. It further details the crawling infrastructure used.
Lastly, it introduces metrics and methodology we have devised to
analyze location tag data-sets
Controlled Experiments – We deployed an AirTag and a Smart-
Tag at a university cafeteria over five days. The cafeteria serves
roughly 1,000 students, faculty, and staff, and operates everyday
between 7:30am and 10pm, with peak hours during lunch (12 to
3pm) and dinner (6 to 9pm). Meanwhile, we ran our crawlers and
collaborated with the university’s IT infrastructure team to monitor
the number of Apple and Samsung devices connected to the WiFi
access point in the cafeteria. This is achieved by inspecting the des-
tinations of the traffic generated by each device connected to WiFi.
The rationale is that a clear distinction arises between Samsung
and Apple devices since they rely on disjoint and proprietary data-
centers to run their services. This was needed as modern mobile
phones hide their vendor information from the MAC address [1].
This information was aggregated into a count of the number of
Apple and Samsung devices at different times, and thus completely
anonymized.

One limitation of this experiment is that we miss devices not
connected to WiFi. While we cannot quantify this limitation, most
phones rely on WiFi due to poor mobile coverage in the cafeteria.
Another limitation is that we approximate the number of devices
connected to WiFi to the number of reporting devices. This can be
an overestimate, especially for Samsung devices whose users are
required to opt-in to enable this behavior.

We conduct an experiment in a secluded area – 300 m away from
any building – where only our tags and phones are present. For
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Figure 3: Update rates of AirTag and SmartTag at different times of day in a busy university cafeteria.

Figure 4: AirTag/SmartTag update rates as a function of the likelihood to have N reporting devices within one hour.

each tag, we deploy four phones at distances of 0, 10, 20, and 50 m
from the tag and measure both the frequency and strength of the
Bluetooth beacons received. SmartTags beacons are easy to detect
as they carry the sending tag name. Note that AirTags beacons can
be uniquely identified since they share the first 4 bytes of their
header (“1EFF004C12”).
In-The-Wild Experiments – We deployed four vantage points
(Android device reporting GPS location along with an AirTag and
a SmartTag) via four volunteers between March and August 2022.
In total, the tags were carried along 9,378 Kms across six countries
and 20 cities (see Table 1). Participants were instructed to carry
the vantage point as much as possible, and only interact with it
to charge the phone, connect to WiFi, or insert a SIM card with
a mobile data plan. To avoid biasing results in favor of either tag,
participants ensured the location reporting option was disabled on
any personal device they owned. Other family members were not
required to do so. We filter data recorded within a 300 m radius
of each participant’s home, as to not bias the data in the event
of a neighbor or family member’s phone repeatedly reporting a
tag’s location. Home locations are assumed as our participants
homes, hotels, or any place they slept overnight. Overall, this filter
accounted for 65% of all data collected.

We analyze the performance of AirTag and SmartTag both in-
dependently and combined, which emulates a scenario where both
devices report the location of each other’s tags, functionally detach-
ing the two tags from their proprietary ecosystems. This scenario is
representative of a victim being stalked by both tags concurrently.
We rely on two metrics: accuracy and responsiveness.
Accuracy – At high level, assessing the accuracy of a tag consists
of comparing its reported location, at a given time, with the location
of its associated vantage point. Several factors might impact a tag’s
accuracy. First and foremost, the tag’s location is approximated by

the GPS location of the reporting device. Given Bluetooth has a 100
meter range, this can cause an error of up to 100 m. Another source
of error is the movement of both the tag and the reporting device:
as these devices move, the time needed to extract and report the
GPS location can introduce some error. For example, when moving
on a high speed train (300 Kmh) our sampling of the GPS locations
every 5 s can introduce an error of up to 400 m.

For a given tag, we group the locations reported within the same
X-minutes interval into the same “bucket”. For each X-minutes
“bucket”, we calculate the distance between the location reported
by the vantage point and the locations crawled from the tag’s com-
panion app. If the distance between the vantage point’s location
and a tag’s location is below a (radius) threshold we count a “hit”,
otherwise we count a “miss”. We compute a tag’s accuracy as per-
centage of hits. To identify the radii of interest, we analyzed the
combined accuracy of the location tags as we increase the radius
of reporting across different time intervals (see Figure 8 in Appen-
dix C). In the case of short time intervals (1 and 10 minutes), the
accuracy increases as the radius increases, eventually plateauing
at roughly 100 m. For longer time intervals, there is no significant
improvement in accuracy beyond 50 m. Accordingly, we will use
the following radii in our analysis: 10, 25, and 100 m.
Responsiveness – Having accurate tag locations is important, but
their locations also need to be reported in a timely manner. If a
tag’s location is updated frequently, then the owner will have less
area to backtrack as (s)he realizes that the “tagged” object was lost.
At the same time, a high update frequency is also an enabler of
stalking or unsolicited tracking. We calculate tag responsiveness as
the difference between the timestamp of the first hit – i.e.,when the
distance between the vantage point and a tag’s location is below
a radius — and the first time that the vantage point reported such
location.
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Figure 5: Evaluation of AirTag, SmartTag and “combined” accuracy in the wild. (a) Time sweep (10 m radius). (b) Time sweep (25
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Ethics – We obtained IRB approval (HRPP-2021-185) and informed
participants of our data collection practices through a consent
form. While we collect GPS data, we do not gather any identifiable
personal information.

5 RESULTS
5.1 Controlled
We start by analyzing the signal strength of the Bluetooth beacons
emitted by each tag. To do so, we measure the signal strength
in a secluded area with phones. Figure 2 shows that, at a shorter
distances (0 and 10 meters), SmartTag beacons are received with
about 10dBm higher RSSI (Received Signal Strength Indicator) than
AirTag beacons. However, at a distance of 20 meters, both tags’
beacons were received at a similar RSSI.

Next, we investigate each tag’s update rate, computed as the
number of location updates reported by location-reporting devices
every hour. Accordingly, we focus on the controlled experiments
performed in a cafeteria where the number of Samsung/Apple
devices encountered by each tag naturally varies over time. Figure 3
shows the update rate as a function of the surrounding location-
reporting devices. The figure shows, for each hour of the day, the
average (over 5 days) tag’s update rate and device count, i.e., the
number of Apple and Samsung devices present in the cafeteria.
The shaded areas and error bars in the figure report the standard
deviation of each metric. The figure shows an overall similar update
rate between tags, peaking at roughly 15 updates per hour during

lunch and dinner, and dipping to zero over night. However, the
figure also shows that there were far more Apple than Samsung
devices, up to 6 times more devices during peak hours, e.g., 320
Apple devices versus only 50 Samsung devices at 8pm.

To further understand the previous result, Figure 4 shows the
update rate as a function of the likelihood to have N location-
reporting devices within one hour, e.g., up to 10 and between 10
and 20. As expected from Figure 3, it is more likely to find few
Samsung devices, e.g., less than 20, whereas it is more likely to find
lots of Apple devices, e.g., between 100 and 300. The key result of
this analysis is that, while both AirTags and SmartTags converge
to a similar maximum update rate (15-20 updates per hour), they
do so in a very different way. Samsung implements an aggressive
update strategy, which quickly converges to the maximum update
rate. In contrast, Apple implements a conservative strategy, e.g., half
the update rate of Samsung when less than 20 devices are present.
Samsung’s update rate was not measured beyond 71-80 devices per
hour due to the fact that there was never more than 80 Samsung
phones in the cafeteria at any hour during the experiment.

5.2 In-The-Wild
Tags Accuracy and Responsiveness – We begin our analysis
by investigating each tag’s accuracy within a given radius as a
function of its responsiveness. Figure 5 summarizes this analysis as
we consider a radius of 10, 25, and 100 meters; note that “combined”
refers to a unified Apple/Samsung ecosystem. Intuitively, Figure 5
(a,b,c) shows that relaxing the responsiveness, i.e., allowing more
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time to locate a tag within a radius, improves tag accuracy, e.g.,
the combined tag’s accuracy for larger radii (25 and 100 meters)
grows from 10% to 80% as the responsiveness grows from one to
120 minutes. Combining tags offers a 15% improvement, on average,
over the accuracy of each individual tag.

The previous observations also apply to a small radius (10 meters,
see Figure 5a) although with a few important differences. First,
one minute is too fast to locate a tag within such a small radius,
e.g., an accuracy of 2% versus 8-10% at larger radii. Second, as
we relax the responsiveness, the tag’s accuracy increases much
slower than what is observed for larger radii, e.g., 40-45% versus
60-63% assuming a responsiveness of 25 minutes. This happens
because, as both tags and reporting users might move, it is more
challenging to correctly report the right location with such small
radius and high responsiveness. Finally, the maximum accuracy
caps at 72%, when considering both tags combined, or 8% less
than what observed for larger radii. Given the slow responsiveness
allowed, this reflects errors introduced by approximating a tag’s
location with the reporting device location, which is unlikely more
than 50 meters as per Figure 2.

Finally, if we focus on each tag independently, Figure 5a shows
that SmartTag slightly outperforms AirTag at a radius of 10 m but
perform similarly at radii of 25 and 100 m, which is inline with
Samsung’s stronger signal strength at smaller radii, but similar
performance at 20 m as shown in Figure 2.
Mobility and Time of the Day – We continue our analysis by
exploring the effect of different mobility and temporal character-
istics on the accuracy of each tag. For this analysis, we assume a
responsiveness of 10 minutes and radii of 10, 25, and 100 meters.
We also compute the statistical significance between different mo-
bility and temporal scenarios by running t-tests across the average
accuracy computed for each scenario. In Figures 5d-f, statistical sig-
nificant tests are denoted using the following symbols: ns denotes
a 𝑝 > 0.05, * denotes 0.01 < 𝑝 < 0.05, ** denotes 0.001 < 𝑝 < 0.01,
*** denotes 0.0001 < 𝑝 < 0.001, and **** denotes 𝑝 < 0.0001.

Figure 5d shows average tag’s accuracy – 95% confidence in-
tervals reported as error-bars across the different radii considered
– as we vary how fast a tag is moving (estimated as the average
speed over 10 minutes as per our ground truth). We find that while
walking at a pedestrian speed (< 6.0 km/h), the accuracy is maxi-
mized for both tags and even when combined. The rationale behind
this finding is that walking represents a good equilibrium between
number of devices the tag may be exposed to, e.g., higher than when
being stationary, and the length of the time window for the Blue-
tooth signal to be picked up by a location-reporting device. As the
speed increases, e.g., when jogging (speed comprised between 6.0
and 12.0 km/h) or in transit (≥ 12.0 km/h), the accuracy deteriorates
due to the little time allowed for Bluetooth communication.

Figure 5e shows a tag’s mean accuracy during different times
of the day. The figure shows no significant differences between
morning (6 to 10 A.M.) lunch (10 A.M. and 2 P.M.), afternoon (2 to 6
P.M.) and evening hours (6 to 10 P.M.), but a statistically significant
decrease at night (10 P.M. to 2 A.M.). Next, Figure 5f shows signifi-
cant tag’s accuracy increase on weekends compared to weekdays,
likely due to greater outdoor activity by the general public.

5.3 Discussion
This study highlights the effectiveness of AirTags and SmartTags
in tracking the location of items or individuals across various situa-
tions. Specifically, the findings indicate that while these tags may
not provide an immediate precise location, they can still offer an
approximate location with just a one hour delay. This performance,
although not flawless, carries significant implications for privacy
and security, including the potential for misuse such as government
surveillance of dissidents or domestic abuse-related stalking.

It is also important to acknowledge that this study is not without
limitations. While we are able to provide an estimate of the perfor-
mance of location tags in real-world scenarios, this performance is
ultimately dictated by the distribution of location-reporting devices
in the vicinity of the tags, which we cannot quantify. Additionally,
although our experiments aimed to encompass a diverse range
of real-world scenarios, the study’s scale was limited, involving
only four participants carrying the tags and vantage points. Future
research could expand upon these findings by involving a larger
participant pool and exploring different geographical contexts.

6 CONCLUSION
Location tags such as AirTag and SmartTag are useful tools for
locating objects, but there is anecdotal evidence of their misuse
for tracking and stalking people. This paper has studied the per-
formance of location tags through experiments in the wild and in
controlled settings; all the data collected can be found at: https:
//github.com/comnetsAD/Tags. These experiments showed that
AirTag and SmartTag achieve similar performance with respect to
how quickly and precisely they can be located, in various scenarios.
With respect to “stalking” people, both trackers (or a combination
of the two) can effectively locate half of a victim’s movements with
10 meters accuracy with just a one-hour delay. Conversely, real
time stalking is less practical given that, most of the time, at least
10 minutes are required to achieve a 100 meters accuracy. It is im-
portant to note that these results might change over space, e.g.,
in presence of different distributions of location reporting devices,
and time, e.g., due to future modification of the reporting protocols.
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A HEXAGONAL HIERARCHICAL SPATIAL
INDEX

Uber’s Hexagonal Hierarchical Spatial Index [20] models the globe
as an icosahedron, and creates 12 pentagons centered on each of
its vertices joined by 110 hexagons. Each cell is then recursively
filled with a number of hexagons which depends on the desired
resolution. The total number of cells at a given resolution r is given
by 𝑐 = 2 + 120 ∗ 7𝑟 . For instance, at a resolution of zero, the earth
is covered by 110 hexagons, whereas at a resolution of eight, the
number of hexagons increases to 691,776,110 [21]. Naturally, as
the number of cells which cover the surface of the earth increases,
each cells occupies less area overall. At a resolution of eight, an
individual hexagon has an average area of 0.737 km2. In our analysis
(see Section 5.2), we use a resolution of eight as it coincides with
the resolution used in the Kontur Hexagon Population density data
set [12], which reports population densities within H3 hexagons
inferred from satellite images of building density.

Figure 6 shows an example of the hexagons visited by one of our
study participants in Abu Dhabi (UAE). We consider an hexagon
visited if our participant (and tag) spent at least 5 consecutive
minutes within it, thus ignoring hexagons which a user has only
visited briefly, e.g., while driving on the highway. We color code
each hexagon using the Kontur data-set for population density,
from low density (orange) to high density (dark read). Thresholds
for classifying a particular hexagon as low, medium, or high density
are explained in Section 5.2.

B IMPACT OF POPULATION DENSITY ON TAG
ACCURACY

Intuitively, the accuracy of a tag depends on the number and type of
devices in their vicinity. While we cannot collect this information
in the wild, we approximate it with the Kontur Hexagon Population
density data set [12], which reports population densities within
H3 hexagons inferred from satellite images of building density. H3
is Uber’s Hexagonal Hierarchical Spatial Index [20] which groups
GPS locations as hexagons.

We group GPS locations from our data-set as hexagons using a
“resolution” of eight as in the Kontur data set; see Appendix A for
more details. We threshold the different population density buckets
as the 33rd, 66th, 100th percentiles of the population densities of
all hexagons visited in our study. As such, we designate hexagons
which hold a population < 600 (33rd percentile) as “low density”,
those with a 600 ≤ population < 1, 750 (66th percentile) as “medium
denisty” and those with population ≥ 1, 750 as “high density”.
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Figure 7: CDF of tags accuracy for different population den-
sities; one hour responsiveness and 100 meters radius.
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Figure 8: Combined accuracy of tags vs. radius across differ-
ent time windows.

Figure 7 shows the Cumulative Distribution Function (CDF) of
the accuracy as a function of population density (low, medium, and
high). For this analysis, we consider a responsiveness of one hour
and radius of 100 meters. The figure shows that the probability
of a zero accuracy, i.e., no correct location reported within 100
meters, drops from 20-25% in low density areas down to 10-15%
in high density areas. A slight decrease in accuracy is observed
between low and medium density areas for the median accuracy

(roughly 45% in low-density areas vs. 42% in median-density areas),
while it increases to 63% for high density areas. With respect to the
combined accuracy, high density areas see the least improvement:
on average 15% versus 20% in low density areas. This happens
because the benefit of sharing the same ecosystem reduces as an
area is already highly populated with devices from each ecosystem.

C IMPACT OF RADII ON TAG ACCURACY
To determine the accuracy of a tag, we compare the vantage point’s
location (our ground truth) with a tag’s location. If this distance is
within a radius we count a “hit”, otherwise we count a “miss”. We
then compute a tag’s accuracy as percentage of hits. To determine
which radius values to use in our analysis, we have explored the
impact of different radii on each tag’s accuracy. Figure 8 shows the
combined tag’s accuracy, i.e., considering a unified Apple/Samsung
ecosystem, as a function of both radius and responsiveness, or how
quickly a tag’s location is correctly reported within a radius value.
We only show the combined tag’s accuracy since its trend is repre-
sentative of each tag’s accuracy. When considering an aggressive
responsiveness (1 minute), the accuracy greatly improves as the
radius increases, starting with an accuracy of 5% at 10 meters, and
increasing to 17% at 100 meters. When allowed a longer time to
correctly locate a tag, the accuracy still increase as we increase the
radius, but plateaus at a smaller radius (between 50 and 70 meters)
compared to a more aggressive responsiveness. Accordingly, for
the purpose of our study we select radii of 10, 25, and 100 meters.
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