
Not only E.T. Phones Home: Analysing the Native User Tracking
of Mobile Browsers

John Pegioudis
FORTH & University of Crete

Greece

Emmanouil Papadogiannakis
FORTH & University of Crete

Greece

Nicolas Kourtellis
Telefonica Research

Spain

Evangelos P. Markatos
FORTH & University of Crete

Greece

Panagiotis Papadopoulos
FORTH
Greece

ABSTRACT
Contemporary browsers constitute a critical component of our
everyday interactions with theWeb. Similar to a small, but powerful
operating system, a browser is responsible to fetch and runweb apps
locally, on the user’s (mobile) device. Even though in the last few
years, there has been an increased interest for tools andmechanisms
to block potentially malicious behaviours of web domains against
the users’ privacy (e.g., ad blockers, incognito browsing mode, etc.),
it is still unclear if the user can browse the Web in private.

In this paper, we analyse the natively generated network traffic of
15mobile browser apps under different configurations to investigate
if the users are capable of browsing the Web privately, without
sharing their browsing history with remote servers. We develop a
novel framework (Panoptes) to instrument and monitor separately
the mobile browser traffic generated by (a) the web engine and
(b) natively by the mobile app. By crawling a set of websites via
Panoptes, and analyzing the native traffic of browsers, we find that
there are browsers (i) who persistently track their users, and (ii)
browsers that report to remote servers (geolocated outside EU), the
exact page and content the user is browsing at that moment. Finally,
we see browsers communicating with third-party ad servers while
leaking personal and device identifiers.

CCS CONCEPTS
• Security and privacy → Web application security; • Infor-
mation systems → Traffic analysis; Online advertising.

KEYWORDS
Mobile Browsers, Native Traffic, User Tracking, Browser History
ACM Reference Format:
John Pegioudis, Emmanouil Papadogiannakis, Nicolas Kourtellis, Evangelos
P. Markatos, and Panagiotis Papadopoulos. 2023. Not only E.T. Phones Home:
Analysing the Native User Tracking of Mobile Browsers. In Proceedings of
the 2023 ACM Internet Measurement Conference (IMC ’23), October 24–26,
2023, Montreal, QC, Canada. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3618257.3624842

This work is licensed under a Creative Commons Attribution
International 4.0 License.

IMC ’23, October 24–26, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0382-9/23/10.
https://doi.org/10.1145/3618257.3624842

1 INTRODUCTION
The proliferation of web applications has made contemporary
browsers a critical component of our interactions with the Internet.
Users use their browser as a gateway to the Web, accessing remote
content and services. This functionality makes browsers’ role simi-
lar to a small but powerful operating system where providers can
instantly run their (web) applications locally, on the user’s device.

Unfortunately, there are many examples of web providers ei-
ther delivering malware or spying on their users via tracking their
behavior [1–5]. Thus, in recent years, we see a great variety of
methods, features [6–8] and products (e.g., ad-blocking extensions
or browsers) aiming at detecting and blocking such malicious user
tracking behaviors of websites and applications. Thus, have users
won this privacy war? If they block the tracking requests generated
by the web engine, can they finally browse in private?

In this study, we aim at investigating this exact question, moti-
vated by the fact that considering its key role (acting as the user’s
gateway), the browser can know what content the user browses and
when. Consequently, there is a hyper-concentration of personal
information in the browser (even greater in recent years, as more
than 58% of the web traffic comes from the more personal, mo-
bile devices [9]), that enables the browser to accurately and fully
estimate the preferences and interests of the user, at any time.

Towards this goal, we develop a first of its kind framework to
instrument mobile browsers and monitor the outgoing traffic of
both the web engine and the mobile browser app itself. Hence, we
are able to analyse the behavior of (i) the websites when rendered
in the web engine but more importantly (ii) the browser’s, when
communicating with second or third-party web entities, or the
remote server of the browser vendor (via the so called “phone
home” requests).

In summary, the contributions of this study include:
(1) We propose Panoptes: a framework to instrument and moni-

tor separately the mobile browser traffic which is generated
by (i) the web engine and (ii) natively by the mobile app.

(2) We implement our framework and by instrumenting 15 dif-
ferent mobile browsers, we crawl 1000 websites. We provide
our tool open source to aid the community with mobile
browser auditing1.

(3) By analyzing the captured traffic, we see that natively gen-
erated traffic can be as high as 1/3 of the total generated
traffic. We also see that when 3 of the tested browsers “phone
home”, they report to servers located outside the EU (where

1Source code of Panoptes: https://github.com/BanForFun/panoptes

181

https://doi.org/10.1145/3618257.3624842
https://doi.org/10.1145/3618257.3624842
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3618257.3624842
https://github.com/BanForFun/panoptes
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618257.3624842&domain=pdf&date_stamp=2023-10-24

IMC ’23, October 24–26, 2023, Montreal, QC, Canada John Pegioudis, Emmanouil Papadogiannakis, Nicolas Kourtellis, Evangelos P. Markatos, & Panagiotis Papadopoulos

the crawling was performed), the exact page and content
the user is browsing. One browser, in particular, does so
together with a persistent identifier so users can be tracked
even if they use Tor [10] or a proxy. In addition, we see
3 other browsers communicating with ad servers or Face-
book Graph API while leaking user personal information
and other device-specific identifiers.

2 BROWSER TRAFFIC MONITORING
To better understand the behavior of mobile browsers and their
actions, we need to monitor their network trafficwhile we automate
their crawling campaigns. The easiest way to achieve this would
be via instrumenting browser apps installed in emulated devices.
However, this is something that could alter the behavior of websites
(i.e., non-realistic web visits) and harm the reproducibility of the
crawls [11].

To that extent, we develop Panoptes: the first of its kind frame-
work to instrument instances of various browser applications resid-
ing in a physical device and monitor their outgoing network traffic.
Our framework is able to capture and differentiate the network traf-
fic generated by the web engine, from the traffic that the browser
app natively creates. Panoptes automatically initiates browser in-
stances, visits websites and captures their network traffic.

As a testbed, we utilize a Linux Desktop responsible for the in-
strumentation of mobile browsing applications and an Android
SM-T580 Samsung Galaxy Tablet, running Android 112, that hosts
the mobile apps, and registers and stores network traffic. In Fig-
ure 1, we provide a high level overview of our methodology. To
instrument browser instances and automate operations, we use
the UI automator of Appium [13], Frida [14] instrumentator and
Chrome DevTools Protocol (CDP) [15]. The implementation of our
framework is publicly available.

2.1 Crawling campaigns
Before starting every crawling campaign, we reset the browser
application to its default factory settings using Appium. Then, we
start each browser using Frida and go through the setup wizard
manually to test various configurations. To visit a website, we
employ CDP and instrument the page object to navigate to a specific
domain. For browsers that do not support CDP, we hook into the
WebView’s functions using a custom Frida script and instrument
them accordingly.

To ensure that the auto-complete feature of modern browsers
will not pollute our network traces, we navigate to every website
directly by using CDP or Frida without typing the domain on the
address bar. When we visit the website, we consider that it is ready
when the DOMContentLoaded event has been triggered, or when
60 seconds have passed since the visit started. Then, we wait for
an additional period of 5 seconds to ensure that the website has
completely loaded and that all its operations have taken place.
2While our work focuses on Android, similar behavior is expected to appear by the
same browsers while running on iOS, since past findings have indicated so [12].
Verifying that is part of our planned future work.

Linux
Desktop

Resets & Configures
Appium

LaunchesFrida

Instruments
Frida Script /

CDP

Android Tablet
Browser

www.example.com

Browser Code

Page

Linux Container

MITM
Proxy

DB

Internet

Figure 1: Overview of our framework system design.

Table 1: Our dataset of mobile browsers along with their
version number.

Browser Version Browser Version

Chrome 113.0.5672.77 DuckDuckGo 5.158.0
Edge 113.0.1774.38 Dolphin 12.2.9
Opera 75.1.3978.72329 Whale 2.10.2.2
Vivaldi 6.0.2980.33 Mint 3.9.3
Yandex 23.3.7.24 Kiwi 112.0.5615.137
Brave 1.51.114 CocCoc 117.0.177
Samsung 20.0.6.5 UC International 13.4.2.1307
QQ 13.7.6.6042

2.2 Monitoring encrypted browser traffic
To monitor and capture encrypted network traffic, Panoptes utilizes
a Man-In-The-Middle (MITM) proxy. Specifically, in the Android
tablet, a Debian container with mitmproxy [16] is installed (along
with its CA certificate) in transparent mode. We use this mode to
proxy all traffic at the network layer without having to configure
each browser app3.

For every browser we analyze, Panoptes extracts their unique
kernel UID under which each browser process is running [17] to
create iptable rules and divert their traffic through the proxy. In
addition to this, Panoptes creates rules to block all HTTP/3 traffic,
as at the time of crawling, mitmproxy did not support the QUIC
protocol. This should not affect the behavior of crawled websites,
since they also support older HTTP versions which the browsers
automatically fall back to.

2.3 Splitting native & web engine browser traffic
A very important contribution of Panoptes is its ability to differ-
entiate between traffic that (i) was generated in the web engine by
the website itself as part of its operations, or due to the actions of
the user, and (ii) the traffic generated natively by the browser app
itself, as designed by the browser vendor (i.e., native traffic). To
achieve this, we make use of CDP and for each browser instance, we
intercept all HTTP requests initiated by the website. In the case of
the UC International browser, we use Frida to hook into an internal
API. Then, for each intercepted request, we perform tainting by
piggybacking an additional custom HTTP header using the ‘x-’
prefix that does not interfere with existing headers.
3Using a MITM proxy, can cause issues in apps that use certificate pinning by prevent-
ing them from issuing some requests (to pinned domains). In this paper, we make no
attempt to bypass certificate pinning, and we consider our results as the lower bounds
of the leaking that may happen in these browsers.

182

Not only E.T. Phones Home: Analysing the Native User Tracking of Mobile Browsers IMC ’23, October 24–26, 2023, Montreal, QC, Canada

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Duck
Duck

Go

Samsu
ng

Opera
Brave Mint

Dolphin

Viva
ldi

W
hale

Chro
me

Kiw
i

CocC
oc

Edge

Yandex
UcIn

tl
QQ

4

3

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Website Requests
Browser Native Requests

3
2

.2
K

3
8

.6
K

3
8

.0
K

3
4

.5
K

5
2

.2
K

5
3

.3
K

3
8

.3
K

3
9

.2
K

3
7

.7
K

5
7

.5
K

4
1

.8
K

3
7

.7
K

3
8

.1
K

5
6

.8
K

5
1

.2
K

Ratio of Native Requests

0.1 0.0 0.0
0.3 0.3 0.3 0.4 0.3

0.0
0.2

0.0
0.3

0.0

0.4
0.1

Figure 2: Number of requests generated by the website and
the browser. In the cases of Edge and Yandex the ratio of
natively generated requests of the brower app (red) to the
requests generated by the web engine (blue) can reach as high
as 0.38 and 0.39 respectively.

Considering that all the network traffic of the Android tablet
flows through the MITM proxy, in Panoptes, we have developed
a custom MITM add-on to inspect all headers and separate the
tainted ones. Thus, when HTTP requests arrive at the proxy, the
MITM addon intercepts them at runtime, filters the tainted ones
(i.e., requests originated from the website) before removing the
additional (custom) header and forwarding them to their original
destination. If a request is not tainted, it means that the request was
generated natively by the browser app. The two different categories
of the requests are finally stored in different local databases.

3 DO BROWSERS TRACK THEIR USERS?
By using the above methodology, we investigate our motivating
question: Can users browse without being tracked?
Data collection: Hence, we download and install the top [18] 15
mobile browser apps4 from Google Play Store (see Table 1 for de-
tails). Additionally, we (i) obtain the top 500 most popular websites
based on the Tranco list [20] and (ii) collect an extra 500 websites
that are associated with sensitive information based on the Curlie
directory [21]. To achieve the later, from the Curlie directory, we
manually select websites associated with sensitive issues regarding
Society (e.g., warfare and conflict), Religion, Sexuality and Health
(e.g., mental health). Hence, we form a set of 1000 websites [22],
and we use Panoptes to visit each of these sites via each of the
mobile browsers in our dataset. Our crawls were performed from
an EU-based vantage point.

3.1 Natively generated network traffic
Next, we set out to explore the volume of traffic generated natively
by the browser app. In Figure 2, we plot for each browser, the
number of requests generated (i) by all visited websites (blue) and
(ii) the number of requests the browser natively generated (red).
Additionally, we compute in the plot (black line) the ratio of the
total network traffic the natively generated requests of the browser
4We exclude Firefox from our study because it supports different instrumentation
protocols [19] which are incompatible with Panoptes.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Brave

Chro
me

Dolphin
Mint

Samsu
ng

Viva
ldi

W
hale QQ

Duck
Duck

Go
UcIn

tl

CocC
oc

Edge

Yandex

Opera
Kiw

i

%
 o

f
T

h
ir
d
-p

a
rt

y
 D

o
m

a
in

s

Ad-related Third-party Domains

0.0%0.0%0.0%0.0%0.0%0.0%0.0%0.6%1.7%1.9%
3.5%4.0%

16.0%

19.2%

39.2%

Figure 3: The percentage of domains that browsers send na-
tive request being third party and ad related.

app amount to. We see that a lot of browsers generate a substantial
amount of network traffic that is not related to the website the user
has visited. Specifically, for browsers like Vivaldi, Whale, CocCoc,
Edge and Yandex, more than 1/3 of the total network traffic (as
high as 0.39 and 0.38 in case of Edge and Yandex, respectively) is
attributed to native requests that the browser sends to a remote
server. It is important to note that this amount of additional (native)
traffic is not related at all to the content the user is interested in
and navigated to. As measured in the past [23, 24], such unsolicited
network traffic consumes system resources and energy from the
user’s device.

Interestingly, as depicted in Figure 3, 8 of the browsers in our
dataset issue native requests to third-party (ad) servers, as classi-
fied by the popular Steven Black host list [25]. Surprisingly, almost
40% of the distinct domains to which Kiwi sends native requests to
are ad or analytics-related domains, including rubiconproject.com,
adnxs.com, openx.net, pubmatic.com, bidswitch.net, demdex.net, etc..
Similarly, 19.2% and 16% of the domains with which Opera and
Yandex communicate, respectively, are ad or analytics-related, in-
cluding appsflyersdk.com and doubleclick.net. We also see CocCoc
and Edge browsers sending native requests to analytics services like
adjust.com, whereas it is interesting to note that CocCoc browser
is an ad-blocking browser that enforces the easylist filterlist in its
web engine [26].

In Figure 4, we plot the volume of outgoing network traffic (i.e.,
HTTP(S) requests) generated by both the browser and the websites.
We discover that some browsers generate a substantial amount
of traffic. Specifically, in the case of the QQ browser, we see that
the additional traffic generated by the browser app can amount
to a staggering 42% extra traffic. Of course, such unsolicited and
unnecessary traffic can have considerable impact on the user’s data
plan and performance.

3.2 Leaking the user browsing history
As a next step, we analyze the information that the natively-issued
(from within the browser app) HTTP(S) requests report to remote
servers. When such remote servers are controlled by the browser
vendor or a subsidiary of theirs, we call these generated requests
“phone-home” requests.

183

IMC ’23, October 24–26, 2023, Montreal, QC, Canada John Pegioudis, Emmanouil Papadogiannakis, Nicolas Kourtellis, Evangelos P. Markatos, & Panagiotis Papadopoulos

0MB

10MB

20MB

30MB

40MB

50MB

60MB

70MB

Duck
Duck

Go
Brave

Samsu
ng

Opera

Viva
ldi

Chro
me

W
hale

Edge

CocC
oc

Dolphin

Yandex
Mint

Kiw
i

UcIn
tl

QQ

V
o

lu
m

e
 o

f
N

e
tw

o
rk

 T
ra

ffi
c

Website Requests Browser Native Requests

2
0

.3
M

B

1
8

.6
M

B

2
3

.3
M

B

2
9

.4
M

B

2
5

.9
M

B

2
6

.4
M

B

2
8

.0
M

B

2
6

.8
M

B

2
9

.7
M

B

3
8

.2
M

B

2
8

.4
M

B

3
9

.6
M

B

4
2

.5
M

B

5
0

.1
M

B

3
6

.1
M

B

0MB3MB0MB

1MB5MB6MB5MB
8MB6MB

0MB11MB0MB
1MB

9MB
26MB

Figure 4: Volume of network traffic generated by (blue) the
website and (pink) the browser itself natively. In the case of
QQ browser, the additional traffic generated by the browser
app can amount to an extra 42%.

The Yandex case: By parsing the traffic generated by the Yandex
browser app, to our surprise, we see that the browser explicitly
leaks the user’s browsing history via “phone-home” requests to its
vendor’s servers. Specifically, we find that for each page visited,
the browser sends a native request towards sba.yandex.net with the
visited URL (Base64) encoded in the request parameters, along with
a second request towards api.browser.yandex.ru with the visited
hostname, and a unique identifier of the user. This means Yandex
company can track the user persistently even if they erase cookies,
or change their IP address or use Tor/anonymous proxy or VPN!

To add insult to injury, these user tracking requests are not
being issued only the first time the user visits a website, but on
each and every page visit. This means that the remote server knows
exactly what and when the user browses it, thus leaking temporal
and behavioral patterns of the user: i.e., when they are online, how
many times they have visited a web page, and how much time they
spent there before they browse to a different website.

At this point, it is important to note that by reporting the full URL,
the remote server has access not only to the visited domain, but also
the full list of URL parameters, and thus, the exact content the user
consumes (and in some cases, even what actions they performed
on the visited website). As an example, for a user browsing a video
on YouTube, the remote server learns not only that they visited
YouTube, but also the specific video they browsed and when this
visit happened. It is easy to anticipate that such a granular access
to the user’s history leaks interests, sexual preferences, political
beliefs, etc.
What about other browsers? While for Yandex there were past
reports [12] indicating potential mishandling of personal data (such
as device, network and IP address), the users do not seem to be able
to browse without being tracked on other browsers as well. Indeed,
as a next step, we analyze the network traffic that all 15 browser
apps in our dataset generate. Surprisingly, we see that apart from
Yandex, the browsers of QQ and UC International also send the
entire visited URL via “phone home” requests, including the full
path and the query parameters, thus leaking the full content the
user is browsing. Note that, contrary to the other two browsers, UC

POST https://s-odx.oleads.com/api/v1/sdk_fetch
body: {"channelId":"adxsdk_for_opera_ofa_final","countryCode":"ANONYMIZED",
"availableServices":["GOOGLE_PLAY"],"languageCode":"EN","appPackageName":"com
.opera.browser","appVersion":"75.1.3978.72329","sdkVersion":"1.12.2","deviceType":
"PHONE","osType":"ANDROID","osVersion":"11","deviceVendor":"Samsung","device
Model":"SM-T580","deviceScreenWidth":1200,"deviceScreenHeight":1920,"operaId":
"7e5d1382f2dd484e9d036519c8a908ddd5de945b100bc9e66582e2ed4ab0b2ab","operator":"",
"connectionType":"WIFI","userConsent":"false","duration":0,"latitude":ANONYMIZED,
"longitude":ANONYMIZED,"positionTimestamp":1683927615,"placementKey":"s569498648
9856","adCount":2,"floorPriceInCent":0,"timestamp":1683927615,"token":"e4818505
a103a7fc3b3e74174c37e570","supportedAdTypes":["SINGLE"],"supportedCreativeTypes":
["BIG_CARD","DISPLAY_HTML_300x250","LEADS","NATIVE_NEWSFLOW_1_IMAGE","NATIVE_
NEWSFLOW_3_IMAGES","POLL","PREBID_INTERSTITIAL","PREBID_NATIVE","SURVEY_SINGLE_
CHOICE","SURVEY_MULTIPLE_CHOICE","SURVEY_FEW_QUESTIONS","VAST_3_URL","VAST_3_XML",
"NATIVE_VAST","VIDEO_16x9"],"supportedFeaturesList":[{"cache":["v1"]},{"video":
["novast"]},{"display":["mrect","mraid2"]}],"omidpn":"Opera","omidpv":
"omsdk-1.3.16-Opera"}:

Listing 1: Native ad request issued by Opera

International does not leak the browser history by issuing native
requests to the remote server. Instead, it injects an (obfuscated)
JavaScript snippet into every web page the user browses. In the
generated requests, UC International leaks to the remote server the
user’s city-level geolocation and ISP. In addition, we see Edge and
Opera browsers reporting every single visited domain to Bing API
and Opera Sitecheck (Opera’s anti-phishing service), respectively.
In addition, 8 out of all 15 mobile browsers in our dataset query
Cloudflare’s or Google’s third-party DNS-over-HTTPS services for
the visited domains with the rest (7) of them using the device’s local
DNS stub resolver.
Incognito mode: Next, we investigate if a privacy-conscious user
has the option to stop browsers from leaking their browsing history
by browsing in incognito mode. Specifically, we use Panoptes with
the incognito modes of Edge, UC International and Opera to crawl a
subset of the websites in our dataset5. We find that these browsers
that leak the browsing history of their users, continue to do so,
no matter what mode the user is browsing on. This highlights a
gap between what the user expects to happen when they open a
browser in incognito mode and what happens in reality.
Reporting visits to sensitive content: It has been shown in the
past [27] that sharing sensitive information may lead to the expo-
sure of the user’s political beliefs, sexual preferences, etc., and thus,
to targeted attacks (e.g., smear campaigns, de-anonymization on
social media [28], blackmailing, spear phising [29], etc.). Therefore,
as a next step, we set out to explore if the browsers that share the
browsing history of the user with remote servers, perform any sort
of filtering locally to avoid leaking potential user visits to sensitive
content (as per the sensitive categories that Google Ads block [30]).
Specifically, we use the Panoptes framework to crawl websites
dealing with content from these sensitive categories (i.e., religion,
sexual preferences, political beliefs and health). We find that these
same browsers (i.e., Yandex, UC International and QQ) continue
to leak the entire URL the users visits, and thus, the exact content
they browse.

3.3 Leaking PII and device identifiers
Next, we use keyword matching (via regex) and heuristics to ex-
tract potential Personally Identifying Information (PII) and device-
specific information the browsers may leak via the URL parameters
of the natively generated requests. We exclude the Android version
5Unfortunately the rest of the browsers that leaked users’ browsing history (Yandex
and QQ) do not provide an incognito mode.

184

Not only E.T. Phones Home: Analysing the Native User Tracking of Mobile Browsers IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Table 2: Personally Identifying Information (PII) and device-specific information leaked by the various browser apps.
Connection type can be Metered or Unmetered while the Network type can be WiFi or Cellular.

Device Device Rooted Location Connection Network
Browser Type Manuf. Timezone Resolution Local IP DPI Status Locale Country (lat & long) Type Type

Chrome No No No No No No No No No No No No
Edge No Yes Yes Yes No No No Yes No No Yes Yes
Opera No Yes Yes Yes No No No Yes Yes Yes No Yes
Vivaldi No No No Yes No No No No No No No No
Yandex Yes Yes No Yes No Yes No Yes No No No Yes
Brave No No No No No No No No No No No No
Samsung No No No No No No No Yes No No No No
DuckDuckGo No No No No No No No No No No No No
Dolphin No No No No No No No No No No No No
Whale No No No Yes Yes No Yes Yes Yes No No Yes
Mint No No Yes Yes No No No Yes Yes No No No
Kiwi No No No No No No No No No No No No
CocCoc Yes Yes No Yes No No No Yes Yes No No No
QQ Yes Yes No Yes No No No No No No No No
UC Int. No No No No No No No Yes No No No Yes

and the device model from our analysis, as such information is re-
ported by default for compatibility purposes by all vendors through
the HTTP User-Agent header.

In Table 2, we summarize our findings. Interestingly, we see the
Whale browser leaking the local IP along with the rooted status of
the device, its network type and the country-level geolocation of
the user. Similar geolocation information is shared also by Mint,
CocCoc and Opera browsers, with the latter browser sharing also
the longitude and latitude coordinates of the user. It is important
to note that the information leaked by Opera and QQ is not shared
with their vendors, but with ad servers, as described earlier in
Section 3.1. An example of such a native request along with the
information shared can be seen in Listing 1.

3.4 International data transfers
The General Data Protection Regulation (GDPR) imposes restric-
tions on the transfer of personal data outside the European Union
(EU), to third-party countries or international organizations [31].
To understand where the remote servers (the browsers communi-
cate with when they “phone home”) are located, we follow past
approaches [32]. In particular, we extract the IP address of every re-
mote server receiving native requests from the tested browsers, and
use a popular IP-to-geolocation service [33] to extract its country-
level location. We see that while the crawls took place from EU,
in case of the mobile browsers Yandex, QQ and UC International
which leak in full detail the browsing history of the users, the re-
quests are being received by servers located in Russia, China, and
Canada, respectively. This finding exposes a misalignment with the
users’ expectation regarding online privacy [3, 34], (especially in
incognito or “private” mode). Indeed, it is not clear that users are
fully aware that their data may end up in countries outside the EU.

3.5 Phoning home when idle
Finally, we examine the native network activity of all browsers
in our dataset during idle time. Using Panoptes, we launch each
browser and leave them idle (at the start page) without any user
interaction for 10 minutes, while monitoring their network traffic.
As we can see in Figure 5, even though there is no web activity,
the majority of the mobile browsers have frequent communication

with their associated remote servers. This communication grows
exponentially within the first minute (mostly to update favicons,
thumbnails and DNS entries of the websites in the start page), before
they reach a relative plateau where they “phone home” to query
for updates and send telemetry and analytics). Opera follows a
linear growth because of the frequently updated Opera News feed
appearing in the starting page.

Yet, we see cases like Dolphin and Mint sending 46% and 8%,
respectively, of their native requests to Facebook’s Graph APIs.
Similarly, CocCoc sends 6.7% of its native request to adjust.com ad-
vertisers, whereas Edge is quite active communicating with various
different domains, including the second parties msn, microsoft.com,
bing.com, but also the third party advertisers and analytics of ad-
just.com, outbrain.com, zemanta.com and scorecardresearch.com.
Finally, we see Opera sending 21.9% and 1.7% of its native requests
to doubleclick.net and appsflyers.com, respectively.

4 RELATEDWORK
Similar to our study, in [35] authors investigate the “phone home”
functionality of the 6 most popular browsers along with its privacy
implications. Specifically, they capture the traffic of the browser’s
web engine and analyze the device and user IDs leaked. Contrary
to our work, authors focus on identifiers leaked during specific
operations (like browser startup, search auto-complete and update
of browser extensions), and show how these identifiers can be used
to identify browser instances. In this work, we follow an automated
and scalable approach using the Panoptes framework, contrary to
the manual analysis of network traffic performed in [35]. Also, we
discover that the user’s browsing history is explicitly leaked by the
browsers, and not because of the auto-complete feature.

Concurrently with our work, in [36] the authors studied the
privacy implications of over 400 Android browsing applications,
and found that some of these apps not only contain advertising and
tracking libraries, but they also leak personal information to third
parties. In this study, we consciously select a smaller set of popular
browsers that account for 75% of the mobile browser market share
worldwide [37]. Our approach allows us to dive deeper in investi-
gating aspects that play a major role in understanding the extent of
the problem. First, we perform our study from an EU vantage point
(where GDPR is in effect) and show that important and private user

185

IMC ’23, October 24–26, 2023, Montreal, QC, Canada John Pegioudis, Emmanouil Papadogiannakis, Nicolas Kourtellis, Evangelos P. Markatos, & Panagiotis Papadopoulos

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

R
e
q
u
e
st

 c
o
u
n
t

Time (in secs)

QQ
Opera
Edge

Yandex
Chrome
CocCoc

Mint
UcIntl
Brave
Whale

Samsung
Vivaldi

Kiwi
Dolphin

DuckDuckGo

Figure 5: Timeline of native requests while the browser is idle
for 10 minutes. The activity of most browsers grows expo-
nentially within the first minute (mostly to update favicons,
thumbnails and DNS entries of the websites in the start page),
before they reach to a relative plateau. where they “phone
home” to query for updates, send telemetry and analytics.

data, such as access to medical sites, is sent to servers outside the
EU. Second, we investigate both regular browsing and incognito
mode, and show that even in incognito mode some browsers leak
the browsing history of their users, exposing the false sense of
privacy that incognito mode may give to the users. This highlights
the discrepancy between what the users expect to happen when
they browse “anonymously” (i.e., incognito mode), and what mobile
browsers actually do. Finally, we study separately domain name
leaking and full path leaking. Indeed, the latter is more significant
as it allows Web entities to have a clear understanding of their
users’ preferences and actions.

In [38] authors study the native requests of Safe Browsing func-
tionality of Google Chrome and Yandex. They show that Safe Brows-
ing can potentially be used as a tool to track specific classes of
individuals. Additionally, they show that data included in Google
and Yandex Safe Browsing provide a concrete set of URLs/domains
that can be re-identified without much effort. In [39] authors ana-
lyzed private browsing modes in modern browsers and discussed
their success at achieving the desired security goals. They point
out several weaknesses in existing implementations, with the most
severe ones enabling a local attacker to completely defeat the bene-
fits of private mode. In [40] authors propose a new whitelist-based
browsing mode that aims to act as a middle-ground between reg-
ular browsing and private mode, thus, enabling users to get the
best of both worlds: the privacy of private mode, along with the
convenience of the regular browsing mode.
Countermeasures: Considering that the user tracking performed
by the browser app takes place natively, and gets leaked to remote
servers via network requests of the browser app itself, traditional
tracker/ad-blocking extensions cannot constitute a useful counter-
measure. In [41] authors propose NoMoAds which leverages the
mobile device’s network interface as a universal vantage point to
intercept, inspect, and block outgoing packets from mobile apps.
NoMoAds extracts features from packet headers and/or payload to

train machine learning classifiers for detecting native ad requests.
Similarly, in [42] authors propose a cross-platform system (ReCon)
that inspects apps’ native traffic and leverages machine learning to
reveal potential PII leaks, thus, giving mobile users control of what
is shared with remote servers. In [43] authors study and compare
the corresponding privacy implications when the user accesses an
online service via the web, or via its dedicated mobile (native) app.
Finally, they propose an anti-tracking mechanism to intercept and
block third party native requests of mobile apps on the OS level
based on custom filterlists.

5 SUMMARY AND CONCLUSION
In this work, we study the privacy implications of mobile browser
apps and investigate whether users can truly browse the Web in
private, even if they do block tracking requests of the web engine.
To achieve this, we develop Panoptes, a framework to instrument
instances of Android browser applications and monitor separately
the mobile browser traffic which is generated by (i) the web engine
and (ii) natively by the mobile browser app.

We use Panoptes to study 15 of the most popular browser applica-
tions and we collect data by crawling 1000 websites. As a summary
of our findings, in this study we:

(1) Analyse the amount of native requests the mobile browsers
generate, and find that it can amount to as high as 1/3 of the
total generated traffic.

(2) See that when Yandex, QQ and UC International browsers
“phone home”, they report to their remote servers the exact
page and content the user is browsing at real time.

(3) Find that Yandex, in particular, does this reporting together
with a persistent identifier, so that users can be tracked even
if they use Tor, an anonymous proxy, or a VPN.

(4) Confirm that the browser history leaking behavior happens
(i) evenwhen the users are browsing in incognitomode, or (ii)
even when the users browse content of sensitive categories
related to religion, sexual or political preferences, health
issues etc.

(5) Find that, in some browser cases, these browsing history
leaks are transmitted to servers located outside EU.

(6) See Opera, CocCoc, Dolphin and Mint browsers communi-
cating with third-party ad and analytics servers, while they
are also leaking PII and device-specific identifiers.

6 ACKNOWLEDGEMENTS
This project has received support from the European Union’s Hori-
zon 2020 Research and Innovation program under the CONCORDIA
project (Grant Agreement No. 830927) and SPATIAL project (Grant
Agreement No. 101021808). The authors bear the sole responsibility
for the content presented in this paper, and any interpretations or
conclusions drawn from it do not reflect the official position of the
European Union nor the Research Innovation Foundation.

REFERENCES
[1] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site

measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, CCS’16, 2016.

186

Not only E.T. Phones Home: Analysing the Native User Tracking of Mobile Browsers IMC ’23, October 24–26, 2023, Montreal, QC, Canada

[2] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos. Cookie
synchronization: Everything you always wanted to know but were afraid to ask.
In The World Wide Web Conference, WWW’19, 2019.

[3] Emmanouil Papadogiannakis, Panagiotis Papadopoulos, Nicolas Kourtellis, and
Evangelos P. Markatos. User tracking in the post-cookie era: How websites
bypass gdpr consent to track users. In Proceedings of the Web Conference 2021,
WWW ’21, page 2130–2141, 2021.

[4] Peter Snyder, Soroush Karami, Arthur Edelstein, Benjamin Livshits, and Hamed
Haddadi. Pool-party: Exploiting browser resource pools as side-channels for web
tracking. arXiv preprint arXiv:2112.06324, 2021.

[5] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P Markatos. Exclu-
sive: How the (synced) cookie monster breached my encrypted vpn session. In
Proceedings of the 11th European Workshop on Systems Security, pages 1–6, 2018.

[6] Google Developer. Safe browsing apis (v4). https://developers.google.com/safe-
browsing/v4, 2023.

[7] Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair Shafiq, and Carmela Troncoso.
{WebGraph}: Capturing advertising and tracking information flows for robust
blocking. In 31st USENIX Security Symposium, USENIX Sec’22, 2022.

[8] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the fingerprint-
ers: Learning to detect browser fingerprinting behaviors. In 2021 IEEE Symposium
on Security and Privacy, SP’21, 2021.

[9] Josh Howarth. Internet traffic from mobile devices (apr 2023). https://
explodingtopics.com/blog/mobile-internet-traffic, 2023.

[10] Tor Project. Tor project. https://www.torproject.org/, 2023.
[11] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis Pa-

padopoulos, Matteo Varvello, Benjamin Livshits, and Alexandros Kapravelos.
Towards realistic and reproducibleweb crawl measurements. In Proceedings of
the Web Conference 2021, WWW ’21, page 80–91, 2021.

[12] Patrick McGee. Russian tech giant yandex’s data harvesting raises security
concerns. https://www.ft.com/content/c02083b5-8a0a-48e5-b850-831a3e6406bb,
2022.

[13] Appium. http://appium.io/docs/en/2.0/, 2023.
[14] Frida. https://frida.re/, 2023.
[15] Curlie. Chrome developers. https://chromedevtools.github.io/devtools-protocol/,

2023.
[16] Mitmproxy Project. mitmproxy - an interactive https proxy. https://

mitmproxy.org/, 2023.
[17] Android Developers. Process. https://developer.android.com/reference/android/

os/Process.html#myUid%28%29, 2023.
[18] statcounter. Top mobile browsers. https://gs.statcounter.com/browser-market-

share/mobile, 2023.
[19] Firefox. Remote protocols. https://firefox-source-docs.mozilla.org/remote/

index.html, 2023.
[20] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-

rczyński, and Wouter Joosen. Tranco: A research-oriented top sites ranking
hardened against manipulation. In Proceedings of the 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, February 2019.

[21] Curlie. The collector of urls. https://curlie.org/, 2023.
[22] John Pegioudis. Website list. https://github.com/BanForFun/panoptes-results/

blob/master/1k.txt, 2023. Accessed on September 18th, 2023.
[23] Jiaping Gui, Stuart Mcilroy, Meiyappan Nagappan, and William G. J. Halfond.

Truth in advertising: The hidden cost of mobile ads for software developers.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 100–110, 2015.

[24] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos. The cost
of digital advertisement: Comparing user and advertiser views. In Proceedings of
the 2018 World Wide Web Conference, WWW ’18, page 1479–1489, 2018.

[25] Steven Black. Adware & malware hosts. https://github.com/StevenBlack/hosts,
2023.

[26] Coc Coc Browser. The best browser with adblocker. https://coccoc.com/en/chan-
quang-cao, 2023.

[27] Artur Janc and Lukasz Olejnik. Web browser history detection as a real-world
privacy threat. In Computer Security – ESORICS 2010, pages 215–231, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[28] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Christopher Kruegel. A
practical attack to de-anonymize social network users. In 2010 IEEE Symposium
on Security and Privacy, pages 223–238, 2010.

[29] Rachna Dhamija, J. D. Tygar, and Marti Hearst. Why phishing works. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06,
page 581–590, New York, NY, USA, 2006. Association for Computing Machinery.

[30] Google Ad Manager. Block sensitive categories. https://support.google.com/
admanager/answer/2541069, 2023.

[31] Data Protection Commision. Transfers of personal data to third coun-
tries or international organisations. https://www.dataprotection.ie/en/
organisations/international-transfers/transfers-personal-data-third-countries-
or-international-organisations, 2018.

[32] Costas Iordanou, Georgios Smaragdakis, Ingmar Poese, and Nikolaos Laoutaris.
Tracing cross border web tracking. In Proceedings of the internet measurement
conference 2018, pages 329–342, 2018.

[33] Brand Media, Inc. Ip address lookup | geolocation. www.iplocation.net, 2023.
[34] Célestin Matte, Nataliia Bielova, and Cristiana Santos. Do cookie banners respect

my choice?: Measuring legal compliance of banners from iab europe’s trans-
parency and consent framework. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 791–809. IEEE, 2020.

[35] Douglas J. Leith. Web browser privacy: What do browsers say when they phone
home? IEEE Access, 9:41615–41627, 2021.

[36] Amogh Pradeep, Alvaro Feal, Julien Gamba, Ashwin Rao, Martina Lindorfer,
Narseo Vallina-Rodriguez, and David Choffnes. Not your average app: A large-
scale privacy analysis of android browsers. Proceedings on Privacy Enhancing
Technologies, 1:29–46, 2023.

[37] StatsCounter. Mobile browser market share worldwide. https://
gs.statcounter.com/browser-market-share/mobile/worldwide, 2023.

[38] Thomas Gerbet, Amrit Kumar, and Cédric Lauradoux. A privacy analysis of
google and yandex safe browsing. 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 347–358, 2016.

[39] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. An analysis of
private browsing modes in modern browsers. In 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings, USENIX Security’10, page 6.
USENIX Association, 2010.

[40] John Korniotakis, Panagiotis Papadopoulos, and Evangelos P Markatos. Beyond
black andwhite: Combining the benefits of regular and incognito browsingmodes.
In 17th International Conference on Security and Cryptography, SECRYPT’20, 2020.

[41] A. Shuba, A. Markopoulou, and Z. Shafiq. Nomoads: Effective and efficient cross-
app mobile ad-blocking. In Proceedings of the Privacy Enhancing Technologies
Symposium, PETS’18, 2018.

[42] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.
Recon: Revealing and controlling pii leaks inmobile network traffic. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications, and
Services, pages 361–374, 2016.

[43] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz,
Christopher Kruegel, and Giovanni Vigna. The dark alleys of madison avenue:
Understanding malicious advertisements. In Proceedings of the 2014 Conference
on Internet Measurement Conference, IMC ’14, 2014.

[44] Erin Kenneally and David Dittrich. The menlo report: Ethical principles guiding
information and communication technology research. Available at SSRN 2445102,
2012.

[45] Caitlin M. Rivers and Bryan L. Lewis. Ethical research standards in a world of
big. F1000Research, 3, 2014.

A ETHICAL CONSIDERATIONS
The execution of this work has followed the principles and guide-
lines of how to perform ethical information research and use of
shared measurement data [44, 45]. Hence, we keep our crawling to
a minimum to ensure that we do not slow down or deteriorate the
performance of the visited web services in any way, and make con-
siderable effort not to overwhelm the hosting servers. As a result,
we crawl only the landing page of each website and visit it only
once. We do not interact with any component inside a website, and
only passively observe network traffic. In addition to this, Panoptes
has been implemented to wait for both the website to fully load
and an extra period of time before visiting another website. Conse-
quently, we emulate the behavior of a normal user that landed on a
website. In accordance to the GDPR and ePrivacy regulations, we
did not engage in collection of data from real users.

187

https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://explodingtopics.com/blog/mobile-internet-traffic
https://explodingtopics.com/blog/mobile-internet-traffic
https://www.torproject.org/
https://www.ft.com/content/c02083b5-8a0a-48e5-b850-831a3e6406bb
http://appium.io/docs/en/2.0/
https://frida.re/
https://chromedevtools.github.io/devtools-protocol/
https://mitmproxy.org/
https://mitmproxy.org/
https://developer.android.com/reference/android/os/Process.html#myUid%28%29
https://developer.android.com/reference/android/os/Process.html#myUid%28%29
https://gs.statcounter.com/browser-market-share/mobile
https://gs.statcounter.com/browser-market-share/mobile
https://firefox-source-docs.mozilla.org/remote/index.html
https://firefox-source-docs.mozilla.org/remote/index.html
https://curlie.org/
https://github.com/BanForFun/panoptes-results/blob/master/1k.txt
https://github.com/BanForFun/panoptes-results/blob/master/1k.txt
https://github.com/StevenBlack/hosts
https://coccoc.com/en/chan-quang-cao
https://coccoc.com/en/chan-quang-cao
https://support.google.com/admanager/answer/2541069
https://support.google.com/admanager/answer/2541069
https://www.dataprotection.ie/en/organisations/international-transfers/transfers-personal-data-third-countries-or-international-organisations
https://www.dataprotection.ie/en/organisations/international-transfers/transfers-personal-data-third-countries-or-international-organisations
https://www.dataprotection.ie/en/organisations/international-transfers/transfers-personal-data-third-countries-or-international-organisations
www.iplocation.net
https://gs.statcounter.com/browser-market-share/mobile/worldwide
https://gs.statcounter.com/browser-market-share/mobile/worldwide

	Abstract
	1 Introduction
	2 Browser traffic monitoring
	2.1 Crawling campaigns
	2.2 Monitoring encrypted browser traffic
	2.3 Splitting native & web engine browser traffic

	3 Do browsers track their users?
	3.1 Natively generated network traffic
	3.2 Leaking the user browsing history
	3.3 Leaking PII and device identifiers
	3.4 International data transfers
	3.5 Phoning home when idle

	4 Related Work
	5 Summary and Conclusion
	6 Acknowledgements
	References
	A Ethical Considerations

