
Transforming Ideas into Code: Visual Sketching for
ML Development

Luís Gomes
lfgomes@andrew.cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

University of Porto

Porto, Portugal

Abstract

We propose a novel code assistant and generation para-

digm aimed at closing the gap between visual sketching

and code creation for Machine Learning (ML) development.

This approach empowers developers and ML practitioners

to translate hand-drawn sketches into functional code with

enhanced accuracy and usability. Developers are recruited to

assess the tool’s performance. This research contributes to

the future of low-code approaches, facilitating ML applica-

tion development, and promoting an intuitive and accessible

programming environment.

CCS Concepts: • Software and its engineering → Vi-

sual languages; Automatic programming; • Computing

methodologies → Computer vision.

Keywords: Code generation, Visual sketching,Machine learn-

ing, Tool development, Synthetic data

ACM Reference Format:

Luís Gomes. 2023. Transforming Ideas into Code: Visual Sketch-

ing for ML Development. In Companion Proceedings of the 2023

ACM SIGPLAN International Conference on Systems, Programming,

Languages, and Applications: Software for Humanity (SPLASH Com-

panion ’23), October 22–27, 2023, Cascais, Portugal. ACM, New York,

NY, USA, 3 pages. h�ps://doi.org/10.1145/3618305.3623588

1 Introduction

Writing code is challenging, time-consuming, and repeti-

tive. The use of low-code approaches can facilitate Machine

Learning (ML) application development for individuals with

domain expertise but limited programming reasoning [9].

On the other hand, experienced software developers heavily

rely on sketches and diagrams to externalize their mental

models, share ideas, and aid in code implementation [2, 10].

SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0384-3/23/10.

h�ps://doi.org/10.1145/3618305.3623588

Manually translating sketches into code is error-prone, and

lacks traceability, leading to discarded initial drawings [4].

1.1 Problem

Software developers rely on sketches and diagrams in their

daily work [2]. The link between the �nal implementation

and the original sketch is often lost after erasing the sketch

and there is a need to implement it into the code [3, 4].

Although code generation tools have been recently re-

leased to help programmers write their code, generating it

from documentation or text descriptions, it’s not easy to pro-

vide them with the spatial information that is represented

in diagrammatic sketches, such as system architectures or

Data Science work�ows. Furthermore, novice scientists or

students from many �elds who want to start programming

highly bene�t from low-code and visual representations in-

tegrated into the process [15]. These tasks can be automated,

linking code artifacts to sketches and converting the infor-

mation from informal hand-drawn sketches into usable code

[4, 7]. My collaborators and I hypothesize that code assis-

tants capturing visual information and reusing sketches by

developers will greatly bene�t software development.

1.2 Related Work

As shown in Figure 1, this project intends to work from di�er-

ent lines of research. From a technical perspective (blue), we

intend to leverage the advancements in Computer Vision, us-

ing segmentation and classi�cation models [11], make use of

Large Language Models LLMs to generate code [12, 16], and

explore techniques used in similar �elds (Img2Code) where

images are used to generate latex or HTML code [8, 13]. From

a human perspective (orange), we want to understand the

impact of Sketching [1, 5, 6] in ML scenarios, how it relates

to AI Understanding and how low-code platforms (Visual

Low-Code) facilitate building applications [9].

There is a gap between Sketching and generative code

research (Img2Code, Language Models). D’Amorim et al. [7]

proposes the automatic code generation of Data Science con-

cepts. Our aim is to create a pioneering code generation tool

that bridges visual sketching and e�cient code creation. By

applying their idea to full ML work�ows, we explore a new

research direction that combines vision tools and LLMs to

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

10

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://orcid.org/0000-0002-8778-7576
https://doi.org/10.1145/3618305.3623588
https://doi.org/10.1145/3618305.3623588
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618305.3623588&domain=pdf&date_stamp=2023-10-22


SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal Luis Gomes

Figure 1. Related Work - Literature map.

generate code, mapping it directly to developers’ mental mod-

els. Successfully implementing this idea in ML tasks, opens

the door to use a similar approach in other areas, expand-

ing the visual sketching paradigm to broader SE domains.

Bridging these lines of work, we suggest creating a visual

sketching code assistant with sketch-to-code tracking, auto

code generation, and a drag-and-drop low-code interface to

connect sketching and coding. To understand these issues,

we iteratively prototype a tool to convert sketches into code,

re�ning it based on user feedback to meet developer needs

e�ectively. Compared to other works, that focus either only

on code generation or singular bene�ts of sketch represen-

tations, we intend to create a tool that takes advantage of

both, always grounded on what the user needs.

2 Motivation

As presented by many authors, informal sketches play an

important role in shaping software products, helping devel-

opers, especially in 2 moments: a) the early planning phases

as externalized mental models and b) later as documentation

for the code. Reusing those sketches will improve the de-

velopers’ productivity by a) reducing the time they need to

code their ideas and b) reducing the time on understanding

the code. We will focus on Data Science and ML applica-

tions. The need to build systems with AI has been growing

and it makes sense to explore the problem by directing the

attention to this sub-�eld of Software Engineering (SE).

2.1 Importance

The research on converting hand-drawn sketches to code

holds immense signi�cance inmodern software development

and ML. By introducing Sketch Programming assistants, an

intuitive paradigm based on visual sketching, this research

advances Human-Computer Interaction (HCI) and facilitates

software development. Embracing sketches as a universal lan-

guage bridges communication gaps, enabling cross-domain

collaboration and empowering novice developers to engage

with coding more easily. Moreover, the implementation of

a visual sketching code assistant fosters innovation in vi-

sual programming, facilitates user-centric development, and

contributes to broader SE research.

2.2 Di�culties

One of the obstacles is employing Computer vision (CV)

to accurately read and interpret hand-drawn sketches. This

process requires robust algorithms to identify elements and

reconstruct diagrams in a clean manner, essential for gen-

erating good code. Data scarcity poses another challenge.

Training CV models necessitates a large and diverse dataset

of hand-drawn sketches, which can be challenging to obtain

and annotate e�ectively. Furthermore, creating a Domain

Speci�c Language (DSL) that captures both visual informa-

tion and code semantics is crucial. The DSL must bridge the

gap between the two domains, balancing simplicity and ex-

pressiveness. Additional di�culties include handling ambigu-

ity in hand-drawn notations, ensuring real-time conversion

capabilities, managing complex diagrams, and implementing

error handling and validation e�ectively.

2.3 Impact

The successful conversion of hand-drawn sketches to code

bears signi�cant implications for programming. We hope to

introduce a new programming assistant paradigm, Sketch

Programming, representing a departure from the traditional

Natural Language to code approaches. By incorporating vi-

sual sketching as a means of code creation, Sketch Program-

ming o�ers an intuitive alternative that could revolutionize

how developers interact with code. Additionally, we o�er

valuable insights into how ML developers and data scientists

use sketches to express their intent.

Understanding these practices can inform the design of

more e�ective tools, streamlining the development process

and improving coding e�ciency and accuracy. The success-

ful implementation of the tool will enhance code generation

convenience, transparency, and ease of review and modi�ca-

tion.

3 Approach

Our approach is based on iterative prototyping.We �rst build

a prototype of a tool that generates code from a hand-drawn

sketch. Even with limited accuracy, the current version is

able to read an image, segment it into parts, and identify

symbols, such as plots or neural networks, creating a Jupyter

notebook with the corresponding code cells. Arrows and

text are also identi�ed. The information is captured by our

DSL and the code is generated by an LLM using the text

and description of each symbol. Each version of the tool is

presented to users and it is modi�ed based on their feed-

back. It allows us to detail and document the user needs,

improving the tool over time. Interviews and surveys are

also being conducted, asking questions about the planning

11



Transforming Ideas into Code: Visual Sketching for ML Development SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal

process, and observing the participants sketching. The users

are data scientists with di�erent expertise levels, whowant to

design data work�ows, maintain their models documented,

and minimize programming e�orts. Examining their form

of sketching is another goal of the studies.

Therefore, we advance in 3 dimensions: advance technol-

ogy by creating and improving the tool, gain new knowledge

about user needs in the context of sketching, and introduce

a novel paradigm for programming assistants.

4 Evaluation Methodology

The main hypothesis states that creating a code generation

tool from hand-drawn sketches is not only possible but also

has the potential to signi�cantly enhance the productivity

of ML developers. There are two secondary hypotheses. The

�rst one suggests that using the code generation tool im-

proves code quality. By incorporating a linking mechanism,

users are encouraged to understand the code generated from

their sketches and link it to the underlying concepts. This is

expected to reduce bugs introduced on generation, since the

overcon�dence in AI-generated code [14] is compensated by

increased awareness during development.

To overcome data availability issues, we suggest gener-

ating synthetic data comparable to human-drawn sketches.

This other secondary hypothesis states that synthetic sketches

can accurately represent the real ones. We need to test this

hypothesis empirically to train the ML models, enhancing

their accuracy.

4.1 Evaluation Setup

To study productivity, quantitative variables, such as the time

to complete a task, aremeasured but also qualitative variables

that allow us to infer long-term productivity. For instance,

the degree of code understanding is important. Developers

who understand the code in a project resume programming

tasks more easily. We hypothesize that seeing the sketch

helps recall the code in future development iterations, los-

ing less time to understand the code. To study code quality

we need to study quantitatively the capacity of the tool to

generate bug-free code. After the generation step, we also

need to test the user’s code understanding, introducing bugs

in the generated code and testing their capacity to identify

and �x them. To understand if data is accurately generated,

real-world sketches need to be collected. By creating 2 test

sets, one with synthetic data and another with real data, we

will be able to compare the ML model metrics for each case.

To control for bias, ML developers from various back-

grounds, including students, researchers, and data scientists,

are recruited as participants. The sample size is subsequently

enlarged over time in an iterative manner for a comprehen-

sive study. To ensure external validity, the performance of

our code assistant is tested in real-world scenarios, both in

industrial and academic settings.

5 Conclusion

The impact of this research extends beyond technical ad-

vancements. It introduces a new way of programming as-

sistance, empowers ML developers with e�cient tools, and

paves the way for a more intuitive and inclusive program-

ming ecosystem. By leveraging the power of visual sketching,

this approach has the potential to reshape the landscape of

SE and promote innovative approaches to coding.

References
[1] E. Almeida, Iftekhar Ahmed, and A. Hoek. 2022. Let’s Go to the White-

board (Again): Perceptions from Software Architects on Whiteboard

Architecture Meetings. h�ps://doi.org/10.48550/ARXIV.2210.16089

[2] Sebastian Baltes and Stephan Diehl. 2017. Sketches and Diagrams in

Practice. h�ps://doi.org/10.1145/2635868.2635891

[3] Sebastian Baltes, Fabrice Hollerich, and Stephan Diehl. 2017. Round-

Trip Sketches: Supporting the Lifecycle of Software Development

Sketches from Analog to Digital and Back. h�ps://doi.org/10.1109/

VISSOFT.2017.24

[4] Sebastian Baltes, Peter Schmitz, and Stephan Diehl. 2017. Linking

Sketches and Diagrams to Source Code Artifacts. h�ps://doi.org/10.

1145/2635868.2661672

[5] Stacy M. Branham, G. Golovchinsky, S. Carter, and Jacob T. Biehl.

2010. Let’s go from the whiteboard: supporting transitions in work

through whiteboard capture and reuse. h�ps://doi.org/10.1145/

1753326.1753338

[6] M. Cherubini, Gina Venolia, R. DeLine, and Amy J. Ko. 2007. Let’s go

to the whiteboard: how and why software developers use drawings.

h�ps://doi.org/10.1145/1240624.1240714

[7] Marcelo d’Amorim, Rui Abreu, and Carlos A. B. Mello. 2020. Visual

sketching: from image sketches to code. h�ps://doi.org/10.1145/

3377816.3381745

[8] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B.

Tenenbaum. 2018. Learning to Infer Graphics Programs from Hand-

Drawn Images.

[9] Martin Hirzel. 2022. Low-Code Programming Models. h�ps://doi.

org/10.48550/ARXIV.2205.02282

[10] Thomas D. LaToza, Gina Venolia, and R. DeLine. 2006. Maintaining

mental models: a study of developer work habits. h�ps://doi.org/10.

1145/1134285.1134355

[11] Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Chaoxi Zhang, and Furu

Wei. 2022. DiT: Self-supervised Pre-training for Document Image

Transformer. h�ps://doi.org/10.1145/3503161.3547911

[12] OpenAI. 2023. GPT-4 Technical Report. h�ps://doi.org/10.48550/

ARXIV.2303.08774

[13] Dipti Pawade, Avani Sakhapara, Sanyogita Parab, Divya Raikar, Ru-

chita Bhojane, and Henali Mamania. 2018. Automatic HTML Code

Generation from Graphical User Interface Image. h�ps://doi.org/10.

1109/RTEICT42901.2018.9012284

[14] Neil Perry, Megha Srivastava, Deepak Kumar, and D. Boneh. 2022.

Do Users Write More Insecure Code with AI Assistants? h�ps:

//doi.org/10.48550/ARXIV.2211.03622

[15] A. Rao, Ayush Bihani, and Mydhili K. Nair. 2018. Milo: A visual

programming environment for Data Science Education. h�ps://doi.

org/10.1109/VLHCC.2018.8506504

[16] Frank F. Xu, Uri Alon, Graham Neubig, and V. Hellendoorn. 2022.

A systematic evaluation of large language models of code. h�ps:

//doi.org/10.1145/3520312.3534862

Received 2023-07-21; accepted 2023-08-10

12

https://doi.org/10.48550/ARXIV.2210.16089
https://doi.org/10.1145/2635868.2635891
https://doi.org/10.1109/VISSOFT.2017.24
https://doi.org/10.1109/VISSOFT.2017.24
https://doi.org/10.1145/2635868.2661672
https://doi.org/10.1145/2635868.2661672
https://doi.org/10.1145/1753326.1753338
https://doi.org/10.1145/1753326.1753338
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1145/3377816.3381745
https://doi.org/10.1145/3377816.3381745
https://doi.org/10.48550/ARXIV.2205.02282
https://doi.org/10.48550/ARXIV.2205.02282
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1145/3503161.3547911
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.1109/RTEICT42901.2018.9012284
https://doi.org/10.1109/RTEICT42901.2018.9012284
https://doi.org/10.48550/ARXIV.2211.03622
https://doi.org/10.48550/ARXIV.2211.03622
https://doi.org/10.1109/VLHCC.2018.8506504
https://doi.org/10.1109/VLHCC.2018.8506504
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862

	Abstract
	1 Introduction
	1.1 Problem
	1.2 Related Work

	2 Motivation
	2.1 Importance
	2.2 Difficulties
	2.3 Impact

	3 Approach
	4 Evaluation Methodology
	4.1 Evaluation Setup

	5 Conclusion
	References

