
ReactCOP: Modular and Scalable Web Development
with Context-Oriented Programming

David H. Lorenz
lorenz@openu.ac.il

Dept. of Mathematics and Computer Science

Open University of Israel

Ra’anana 4353701, Israel

O�r Shmuel
openu@ofirshmuel.com

Dept. of Mathematics and Computer Science

Open University of Israel

Ra’anana 4353701, Israel

Abstract

We present a library named ReactCOP that extends React’s

capabilities with support for Context-Oriented Programming.

The library lets developers manage behavioral variations in

React applications through layers, and adapt the applica-

tion’s behavior dynamically based on di�erent contexts.

CCS Concepts: • Software and its engineering → Ab-

straction,modeling andmodularity;Hypertext languages.

Keywords: Context-oriented programming (COP), React.

ACM Reference Format:

David H. Lorenz and O�r Shmuel. 2023. ReactCOP: Modular and

Scalable Web Development with Context-Oriented Programming.

In Companion Proceedings of the 2023 ACM SIGPLAN International

Conference on Systems, Programming, Languages, and Applications:

Software for Humanity (SPLASH Companion ’23), October 22–27,

2023, Cascais, Portugal. ACM, New York, NY, USA, 2 pages. h�ps:

//doi.org/10.1145/3618305.3623609

1 Introduction

React1 is an open-source JavaScript [1] library for build-

ing user interfaces. It was released by Facebook in 2013,

and quickly gained popularity in the web development com-

munity due to its performance, reusability, and component-

based architecture. React utilizes a virtual, lightweight rep-

resentation of the DOM in memory, enabling e�cient update

and rendering of UI components.

Context-oriented Programming (COP) [3] is a programming

paradigm that focuses on managing context-dependent be-

havioral variation in software systems. It provides mech-

anisms to dynamically change the behavior of a program

based on the current context. With COP, developers can

de�ne and activate di�erent sets of behaviors, grouped in

1h�ps://react.dev/

SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0384-3/23/10.

h�ps://doi.org/10.1145/3618305.3623609

layers, depending on the speci�c situation or environment,

called context, in which the program is running.

In this work we present a library named ReactCOP for

handling context-dependent behavioral variations in React

applications by providing support for COP in React.

2 Limitations of React

React uses a single-rooted component tree with unidirec-

tional data �ow, in which a child component acquires data

from its containing parent component [2]. This makes it eas-

ier to understand and reason about the state and behavior of

the application.

React’s default approach to handling dependencies be-

tween components is through props (short for properties).

Props are used to pass data from a parent component to

its child components. Props are immutable and cannot be

modi�ed by the child components. Instead, State is used to

manage component-speci�c data that can change over time.

Unlike props, state is mutable and can be updated.

However, propagating the component state via props is

done manually. This leads to unintentional tight coupling

between parent and descendant components, making it chal-

lenging to enforce proper modularity. The React Context

API and libraries like Redux can help, but they are not easy

to use and do not support the division of code into di�erent

behavioral variations.

In React developers tend to concentrate a lot of code

in one component �le, which includes several di�erent be-

havioral variations of the component. When a React com-

ponent contains too many behavioral variations, its code

becomes complex and di�cult to follow. The logic may be-

come convoluted, making it harder for the developer, as well

as other developers, to comprehend the code’s purpose and

functionality. Existing COP solutions for JavaScript, like

ContextJS [4], are intended for JavaScript objects but not

for React components.

3 ReactCOP

The ReactCOP library lets developers manage behavioral

variations in React and adapt the application’s behavior

dynamically based on di�erent contexts.

Layers. In ReactCOP, the process of creating layers is

straightforward. A new layer is generated by invoking the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

63

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7921-2265
https://orcid.org/0009-0002-7640-1399
https://doi.org/10.1145/3618305.3623609
https://doi.org/10.1145/3618305.3623609
https://react.dev/
https://doi.org/10.1145/3618305.3623609
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618305.3623609&domain=pdf&date_stamp=2023-10-22

SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal David H. Lorenz and Ofir Shmuel

Listing 1. Rendering context-dependant data in Re-

act (List. 1a) and in ReactCOP (List. 1b)

let label, player;

if (isGameover) {

label = "Winner: ";

player = xIsNext ? "O" : "X";

} else {

label = "Next player: ";

player = xIsNext ? "X" : "O";

}

return (

<div className="status">

{label}

{player}

</div>

);

(a) React

return (

<div className="status">

<Gameover.Layer>

Winner:

<XTurn.Layer>O</XTurn.Layer>

<OTurn.Layer>X</OTurn.Layer>

</Gameover.Layer>

<Move.Layer>

Next player:

<XTurn.Layer>X</XTurn.Layer>

<OTurn.Layer>O</OTurn.Layer>

</Move.Layer>

</div>

);

(b) ReactCOP

createLayer() function. Once the layer is created, it be-

comes possible to attach behavioral variations to it, enabling

the customization of speci�c behaviors within the applica-

tion. For example, List. 1 displays the di�erences between

rendering context-dependant data in React (List. 1a) and

the corresponding code with the same functionality using

layers in ReactCOP (List. 1b).

Activation. In ReactCOP, the activation or deactivation

of a layer can be dynamically controlled. This can be deter-

mined based on the current context, a local variable within

the application, or even an external API. The �exibility of

ReactCOP allows for the dynamic management of layers

based on various runtime conditions and external factors.

Behavioral Variations. In ReactCOP, the developer has

the ability to transform nearly every aspect of the compo-

nents into a behavioral variation. This includes controlling

the rendering of child components, modifying style and other

props, and even adapting in-component functions. The pro-

cess of converting these aspects into behavioral variations

requires only a small amount of code and leverages com-

monly used design patterns in React.

Scoping. By leveraging the React component tree, Re-

actCOP enables the activation and deactivation of layers,

facilitating the concept of scoping. This means that multi-

ple layers can be activated simultaneously within the same

scope, and the same layer can be activated in one scope

while deactivated in another. As a result, a component can

exhibit di�erent behaviors in di�erent scopes, allowing for

contextual adaptation and providing enhanced �exibility in

rendering and functionality.

4 Conclusion

ReactCOP is a library that signi�cantly expands React’s

capabilities by incorporating support for COP within React

applications. By harnessing the power of COP, ReactCOP

provides developers with the means to dynamically manage

and adapt behavioral variations within their applications

based on varying contexts. This addresses unintentional cou-

pling between components, complex dependency manage-

ment, and scalability issues that can arise within React’s

component tree.

Through the creation and activation of layers, ReactCOP

empowers developers to easily customize behaviors, modify

styles and props, and adapt component functions, all while

maintaining the integrity of commonly used React design

patterns. The library’s approach to scoping enables the ac-

tivation and deactivation of multiple layers within distinct

scopes, facilitating contextual adaptation and rendering �ex-

ibility. Furthermore, ReactCOP’s advanced layer concept

expands the possibilities by introducing complement, inter-

secting, and union sets, empowering developers to intuitively

manipulate behavioral variations.

Overall, ReactCOP o�ers a comprehensive solution to

managing context-dependent behavioral variations in React

applications, enhancing the modularity, adaptability, and

scalability of React-based projects.

References
[1] David Flanagan. 2011. JavaScript: the de�nitive guide (6th ed.). O’Reilly

Media, Inc., Sebastopol, CA.

[2] Joseph Gil and David H. Lorenz. 1996. Environmental Acquisition – A

New Inheritance-Like Abstraction Mechanism. In Proceedings of the 11th

Annual Conference on Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA’96). ACM SIGPLAN Notices 31(10) Oct. 1996,

San Jose, California, 214–231. h�ps://doi.org/10.1145/236338.236358

[3] Robert Hirschfeld, Pascal Costanza, and Oscar Marius Nierstrasz. 2008.

Context-oriented programming. Journal of Object Technology 7, 3

(March 2008), 125–151. h�ps://doi.org/10.5381/jot.2008.7.3.a4

[4] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld.

2011. An open implementation for context-oriented layer composition

in ContextJS. Science of Computer Programming 76, 12 (2011), 1194–1209.

h�ps://doi.org/10.1016/j.scico.2010.11.013

64

https://doi.org/10.1145/236338.236358
https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.1016/j.scico.2010.11.013

	Abstract
	1 Introduction
	2 Limitations of React
	3 ReactCOP
	4 Conclusion
	References

