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Fig. 1. Starting with an unoriented point cloud (left), our approach proposes an implicit neural representation by enforcing the Hessian of the implicit function
to be singular for points in close proximity to the surface. By gradually reducing the weight of the singular-Hessian term, it works in a coarse-to-fine fashion
and can ultimately produce a high-fidelity reconstruction result (right).

Neural implicit representation is a promising approach for reconstructing
surfaces from point clouds. Existing methods combine various regularization
terms, such as the Eikonal and Laplacian energy terms, to enforce the learned
neural function to possess the properties of a Signed Distance Function (SDF).
However, inferring the actual topology and geometry of the underlying
surface from poor-quality unoriented point clouds remains challenging. In
accordance with Differential Geometry, the Hessian of the SDF is singular for
points within the differential thin-shell space surrounding the surface. Our
approach enforces the Hessian of the neural implicit function to have a zero
determinant for points near the surface. This technique aligns the gradients
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for a near-surface point and its on-surface projection point, producing a
rough but faithful shape within just a few iterations. By annealing the weight
of the singular-Hessian term, our approach ultimately produces a high-
fidelity reconstruction result. Extensive experimental results demonstrate
that our approach effectively suppresses ghost geometry and recovers details
from unoriented point clouds with better expressiveness than existing fitting-
based methods.
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1 INTRODUCTION
In recent years, numerous learning-based approaches have been
developed to recover the implicit representation of underlying sur-
faces from point clouds, a fundamental task in computer graphics
and computer vision. Despite significant progress [Gropp et al. 2020;
Sitzmann et al. 2020; Xu et al. 2022; Yifan et al. 2021] in surface
reconstruction from high-quality point clouds with reliable normals,
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PCP [2022b] DiGS [2022] Ours
Fig. 2. Our approach can reconstruct rich geometric details from unoriented
point clouds while PCP [Baorui et al. 2022b] and DiGS [Ben-Shabat et al.
2022] cannot.

predicting a faithful surface from an unoriented point cloud remains
a challenging and intriguing research problem due to the lack of
sufficient geometric priors.
Relevant research on reconstructing unoriented point clouds in-

cludes both traditional approaches [Hou et al. 2022; Lin et al. 2022]
and learning-based approaches [Atzmon and Lipman 2020; Baorui
et al. 2022b,a, 2021; Ben-Shabat et al. 2022; Boulch and Marlet 2022;
Erler et al. 2020; Mescheder et al. 2019; Park et al. 2019; Songyou
et al. 2020]. Traditional approaches typically involve repeatedly
adjusting normals to be orthogonal to the zero isosurfaces of an
implicit representation, such as a signed distance function (SDF)
or an occupancy field. Learning-based approaches can be further
categorized into supervised and fitting-based methods. Supervised
learning approaches involve fitting data samples using ground-truth
implicit representations as a guide [Boulch and Marlet 2022; Erler
et al. 2020; Mescheder et al. 2019; Park et al. 2019; Songyou et al.
2020]. However, these approaches may not generalize well to shapes
or point distributions not present in the training set [Sulzer et al.
2023]. Fitting-based approaches [Atzmon and Lipman 2020; Baorui
et al. 2022b,a, 2021; Ben-Shabat et al. 2022], instead, employ different
combinations of regularization terms to ensure specific properties
of a signed distance function (SDF) in order to solve an optimization
problem for each input point cloud, such as the Eikonal term [Gropp
et al. 2020] and the Laplacian energy term [Ben-Shabat et al. 2022].
While these approaches have strong generalization capabilities, their
performance may be compromised when normals are unavailable.
Despite the use of the Eikonal term to suppress vanishing gradients,
controlling the overall shape to adapt to the geometry and topology
complexity of an input point cloud remains challenging. On the one
hand, it is essential to accurately capture geometric details. On the
other hand, unnecessary shape variations and ghost geometry must
be eliminated.
In this paper, we address this problem based on the shape op-

erator [O’Neill 2006] from differential geometry. Given a smooth
surface, there must exist a narrow thin-shell space surrounding it
where the signed distance function (SDF) is differentiable every-
where. For a point 𝑥 in the thin-shell space whose projection onto
the surface is 𝑥 ′, the Hessian of the SDF at 𝑥 has three eigenvectors,
two of which align with principal curvature directions at 𝑥 ′, and
the other aligns with normal vector at 𝑥 ′ with a corresponding
eigenvalue of zero, making the Hessian singular. In other words, by
enforcing the Hessian to own a zero determinant for points near the
surface, it helps align the gradient at 𝑥 with the normal vector at 𝑥 ′.
Based on this observation, we regularize the direction of the gradi-
ent of the SDF by enforcing the Hessian to own a zero determinant
for points near the surface.

Making the Hessian singular differs from enforcing smoothness
energy, such as Hessian energy [Calakli and Taubin 2011; Zhang
et al. 2022] or Laplacian energy [Ben-Shabat et al. 2022]. The main
difference is that the former can align the gradients of a near-surface
point and its corresponding on-surface point, effectively suppressing
surplus shape variations and adapting the implicit function to the
inherent complexity of the input point cloud. Smoothness energy,
on the other hand, tends to reduce the volatility of the implicit
function so that the resulting surface is not overly complicated.
Additionally, while the theoretical minimum value of smoothness
energy cannot be zero (otherwise, the implicit function degenerates
to a globally constant or linear field), the determinant of the Hessian
of the implicit function can be reduced as far as possible. Finally,
the singular-Hessian constraint can effectively eliminate critical
points of the target implicit function near the surface and avoid
unnecessary variations (e.g., ghost geometry). This can be explained
by Morse theory [Audin et al. 2014], which reveals the deep link
between the geometry and topology complexity of the surface and
the number of critical points of the implicit function.

In implementation, we use sinusoidal activation [Sitzmann et al.
2020] to enable the computation of the first-order and the second-
order derivatives of the implicit function. Our approach first gener-
ates a rough but faithful shape by emphasizing the singular-Hessian
constraint and then anneals the constraint to gradually capture fine
details and real topology in a coarse-to-fine fashion. Extensive exper-
imental results demonstrate that our approach can eliminate ghost
geometry while remaining expressive enough to recover geometric
details and sharp features. Compared to state-of-the-art methods,
our approach has superior performance in both fitting a single un-
oriented point cloud and learning a shape space from a group of
point data. It can be seen from Fig. 2 that the reconstructed result by
our approach has richer geometric details and higher fidelity than
recently proposed methods such as PCP [Baorui et al. 2022b] and
DiGS [Ben-Shabat et al. 2022].

2 RELATED WORK
In recent decades, numerous surface reconstruction algorithms have
been proposed [Huang et al. 2022b; Jin et al. 2020; Sulzer et al. 2023].
While most existing research assumes the presence of normals, there
has been growing interest in surface reconstruction from unoriented
point clouds. This section provides an overview of implicit surface
reconstruction methods, including both traditional and learning-
based approaches.

2.1 Traditional Implicit Methods
The earliest implicit method computes the signed distance to the
tangent plane of the closest point [Hoppe et al. 1992]. After that,
radial basis function (RBF) based methods [Carr et al. 2001; Huang
et al. 2019; Li et al. 2016] represent the underlying SDF as a weighted
combination of radial basis kernels, resulting in higher smoothness.
Besides, the implicit moving least-square methods (IMLS) [Kolluri
2008; Öztireli et al. 2009; Schroers et al. 2014; Shen et al. 2004] ap-
proximates the underlying SDF by linearly blending local smooth
planes. The MPU method [Ohtake et al. 2003] models shape by
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blending piecewise quadratic functions that fit the local shape. Pois-
son reconstruction [Kazhdan et al. 2006] and its variants [Kazhdan
et al. 2013, 2020; Sellán and Jacobson 2022; Vizzo et al. 2021] formu-
late the occupancy field as the solution to Poisson’s equation. The
SSD method [Calakli and Taubin 2011] computes the smooth signed
distance by minimizing least-square style energy with a multi-grid
solver. Recently, iPSR [Hou et al. 2022] iteratively runs the Pois-
son reconstruction solver to produce a reconstructed surface from
an unoriented point cloud, using the normals of the reconstructed
surface from the previous iteration as input for the next iteration.
PGR [Lin et al. 2022] infers the occupancy field based on Gauss’s
formula in potential theory by considering surface element areas
and normals as unknown parameters.

2.2 Learning-based Methods
Learning-based approaches can be further categorized into super-
vised and fitting-based methods, which are briefly introduced as
follows.

Supervised Learning-based Reconstruction. Supervised learning-
based reconstruction involves learning the SDF or occupancy field
using a dataset containing precomputed ground-truth field values.
The neural model adjusts its weights as input data is fed into it
until the model is appropriately fitted. Thanks to the data prior
provided by the ground-truth data, these methods generally produce
impressive reconstruction results. Early works encode a global shape
into a fixed-length latent code and recover the underlying surface
through a decoding operation [Mescheder et al. 2019; Park et al.
2019].While thesemethods can encode the overall representation for
a group of similar shapes, they struggle to generalize from training
examples to unseen shapes and to encode shape details with the
global code. To capture the richness of geometry for generality, some
research subdivides 3D space according to surface occupancy and
encodes each part separately, using voxel grid [Chabra et al. 2020;
Jiang et al. 2020; Songyou et al. 2020], k-nearest neighbors [Boulch
and Marlet 2022; Erler et al. 2020], or octrees [Huang et al. 2022a;
Tang et al. 2021a; Wang et al. 2022]. In the context of open surface
reconstruction (e.g., clothes), unsigned distance field (UDF) based
surface reconstruction has attracted increasing attention in recent
years [Chibane et al. 2020; Ye et al. 2022].

Fitting-based Implicit Neural Representation. To increase gener-
alization ability, directly fitting the implicit representation from
raw point clouds has been extensively studied in recent years, en-
abling end-to-end prediction of the target surface. Most methods
apply different regularization techniques to accomplish this task.
SAL/SALD [Atzmon and Lipman 2020, 2021] performs sign agnostic
regression to obtain a signed version from the unsigned distance
function. IGR [Gropp et al. 2020] directly applies the Eikonal term
to encourage the predicted implicit function to have unit gradi-
ents. Inspired by the definition of the SDF, Neural-Pull [Baorui et al.
2021] trains a neural network to predict the signed distance and
gradients simultaneously so that a query point can be pulled to the
closest point on the underlying surface. Based on Neural-Pull, Pre-
dictableContextPrior [Baorui et al. 2022b] first trains a local context

SDF Determinant of HessianDivergence of Gradient
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Fig. 3. Visualizing the differential properties of an SDF for a circle. In
contrast to the divergence of the gradient (i.e., Laplacian energy) utilized
by [Ben-Shabat et al. 2022], the determinant of the Hessian matrix of the
SDF remains consistently zero. This is due to the mathematical fact that,
in the differentiable region near the surface, there exists a zero eigenvalue
associated with an eigenvector aligned with the gradient.

prior and then specializes it in the predictive context prior to learn-
ing predictive queries at inference time. OnSurfacePrior [Baorui
et al. 2022a] improves the reconstruction quality for sparse point
clouds with the help of a pre-trained unsigned distance network.
Recently, CAP-UDF [Zhou et al. 2022] extends Neural-Pull to learn
UDFs directly from raw point clouds. SIREN [Sitzmann et al. 2020]
shows that ReLU-MLPs bias toward low-frequency implicit rep-
resentations, and then it introduces periodic activation functions
to preserve high frequencies. Based on SIREN, Iso-Points [Yifan
et al. 2020] constrains the hybrid representation grouped by explicit
point clouds and implicit neural representation simultaneously to
improve the reconstruction quality. DiGS [Ben-Shabat et al. 2022]
incorporates Laplacian energy as a soft constraint of the SDF to
enable unoriented point cloud reconstruction for SIREN. In general,
most existing approaches require oriented normals to produce high-
quality results. However, the absence of normals may compromise
their performance, resulting in over-smoothed shapes lacking rich
geometric details.

3 PRELIMINARIES
Given an unoriented point cloudP, our goal is to find an implicit rep-
resentation 𝑓 : R3 ↦→ R such that the zero level set of 𝑓 accurately
encodes the target surface S:

S =
{
𝒙 ∈ R3 | 𝑓 (𝒙) = 0

}
. (1)

The discrete surface representation can be extracted from 𝑓 us-
ing contouring algorithms. It is important to note that our work
requires 𝑓 to be 𝐶2 continuous.
In previous research, it has been considered a suitable choice to

encourage the neural implicit function 𝑓 to approximate the signed
distance function (SDF). To achieve this, 𝑓 must satisfy three bound-
ary conditions: (1) Dirichlet condition: 𝑓 (𝑝) = 0 for 𝑝 ∈ P, which
encourages any given point to lie on the target surface. (2) Eikonal
condition: ∥∇𝑓 ∥ = 1, which enforces 𝑓 to have a unit gradient norm
or, at the very least, not to vanish as much as possible. (3) Neumann
condition: ∇𝑓 = N , which aligns the gradients with the normal
field N if the normals are available. Existing implicit neural func-
tions leverage the above boundary conditions as constraints, either
explicitly [Gropp et al. 2020; Sitzmann et al. 2020] or implicitly [Atz-
mon and Lipman 2020; Baorui et al. 2021]. In this paper, our method

, Vol. 1, No. 1, Article . Publication date: September 2023.



4 • Zixiong Wang, Yunxiao Zhang, Rui Xu, Fan Zhang, Peng-Shuai Wang, Shuangmin Chen, Shiqing Xin*, Wenping Wang, and Changhe Tu
D

is
ta

nc
e

D
is

ta
nc

e

G
ra

di
en

t

G
ra

di
en

t

Signed distance field Relaxing Signed distance field

Location Location Location Location

Fig. 4. The illustration of the difference between the signed distance field
and the relaxing signed distance field in terms of distance sign and gradient.

leverages the same network architecture as SIREN [Sitzmann et al.
2020].

For the point cloud P, let Qfar be a query point set uniformly sam-
pled from its bounding box. SIREN formulates these requirements
into loss terms as below.

𝐿manifold =

∫
P
∥ 𝑓 (𝑥)∥1𝑑𝑥 (2)

𝐿non-manifold =

∫
Qfar

exp(−𝛼 ∥ 𝑓 (𝑥)∥1)𝑑𝑥, 𝛼 = 100 (3)

𝐿Eikonal =

∫
P∪Qfar

∥∥∇𝑓 (𝑥)∥2 − 1∥1𝑑𝑥 (4)

𝐿Neumann =

∫
P
(1 − ⟨∇𝑓 (𝑥),N(𝑥)⟩)𝑑𝑥 . (5)

The overall loss is thus given by

𝐿orientedSIREN =𝜆manifold𝐿manifold + 𝜆non-manifold𝐿non-manifold+
𝜆Eikonal𝐿Eikonal + 𝜆Neumann𝐿Neumann,

(6)

where the four weights are respectively 3000, 100, 50, and 100. If
the normals are not available, the loss reduces to

𝐿unorientedSIREN =𝜆manifold𝐿manifold + 𝜆non-manifold𝐿non-manifold+
𝜆Eikonal𝐿Eikonal .

(7)

Despite the fact that the loss terms of SIREN establish meaningful
constraints, optimizing SIREN presents a significant challenge. As
indicated by IDF [Yifan et al. 2021], even when provided with nor-
mals, SIREN may generate numerous surplus parts. This problem is
compounded when working with unoriented inputs. If the quality
of the point cloud is poor, accurately estimating reliable normals or
orientations can be notoriously difficult [Xu et al. 2023]. In address-
ing the challenges associated with optimizing SIREN, it is important
to recognize that there are an infinite number of candidate Eikonal
solutions when enforcing the eikonal constraint at a limited number
of sampled points, as discussed in DiGS [Ben-Shabat et al. 2022].
Only eikonal constraint may result in the neural network optimiza-
tion becoming trapped in a local minimum with the emergence of
ghost geometry, which is far removed from the optimal solution.
Additionally, over-parametrized neural networks [Sagun et al. 2017]
often possess a large number of parameters, which can further com-
plicate the optimization process. Some approaches employ a form of
smoothness energy, such as Dirichlet energy [Lipman 2021], Lapla-
cian energy [Ben-Shabat et al. 2022] and Hessian energy [Calakli
and Taubin 2011; Schroers et al. 2014; Zhang et al. 2022], to guide
the neural implicit function towards simplicity, enabling it to adapt
to the inherent complexity of the geometry and topology of the
given point cloud. However, enforcing smoothness can result in
the loss of geometric detail. This motivates us to define a new loss
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Fig. 5. For SIREN (only Eikonal) and DiGS (Eikonal + Laplacian Energy), the
resulting neural implicit function has unnecessary critical points, leading
to ghost geometry near the underlying circle (black). Our singular-Hessian
term can suppress critical points near the surface, thus allowing for high-
fidelity reconstruction either combined with Eikonal loss or Relaxed Eikonal
loss. It’s worth noting that there are 100 data points (white).

function that facilitates the identification of the optimal solution,
rather than relying on smoothness energy.

4 NEURAL SINGULAR HESSIAN

4.1 Singular Hessian Term
Given that the neural implicit function 𝑓 : R3 ↦→ R is utilized to
approximate the SDF and our primary interest lies in the zero level
set of 𝑓 , our focus is on learning 𝑓 in the vicinity of the surface
where the function value is close to 0, rather than approximating the
SDF everywhere. This is illustrated in Fig. 4. The real SDF may not
be differentiable for a smooth surface at all points. However, there
must exist a narrow thin-shell space surrounding the surface within
which the SDF is differentiable. This differentiable region is denoted
by Ω. Consider a point 𝑥 ∈ Ωwhose projection onto the surface is 𝑥 ′.
The Hessian matrix of the SDF at 𝑥 , HSDF (𝑥), has a zero eigenvalue,
with the gradient at 𝑥 ,𝒈SDF (𝑥), being the corresponding eigenvector.
Additionally, the direction aligns with the normal vector at 𝑥 ′. As
a result, we have HSDF (𝑥)𝒈SDF (𝑥) = 0 and Det(HSDF (𝑥)) = 0,
which holds for any point in the differentiable region Ω, see Fig. 3.
This property can be easily derived with the Eikonal condition by
differentiating both sides of the Eikonal equation ∥∇𝑓 ∥ = 1, refer to
the reader [Mayost 2014]. This observation has led us to regularize
the neural implicit function by enforcing a singular Hessian.

Suppose that 𝑓 is 𝐶2 smooth, its Hessian H𝑓 (𝑥) is defined as the
Jacobian of the gradient of 𝑓 :

H𝑓 (𝑥) =

𝑓𝑥𝑥 (𝑥) 𝑓𝑥𝑦 (𝑥) 𝑓𝑥𝑧 (𝑥)
𝑓𝑦𝑥 (𝑥) 𝑓𝑦𝑦 (𝑥) 𝑓𝑦𝑧 (𝑥)
𝑓𝑧𝑥 (𝑥) 𝑓𝑧𝑦 (𝑥) 𝑓𝑧𝑧 (𝑥)

 . (8)

In general, it is desirable for 𝑓 to approach the real SDF as accu-
rately as possible, at least in Ω. Therefore, it is necessary to enforce
H𝑓 (𝑥)𝒈SDF (𝑥) = 0 or Det(H𝑓 (𝑥)) = 0 for any point in Ω. We
utilize Det(H𝑓 (𝑥)) = 0 for points in close proximity to the sur-
face, since (1) the ground-truth gradient 𝒈SDF (𝑥) is unknown and
(2) H𝑓 (𝑥)𝒈SDF (𝑥) = 0 implies Det(H𝑓 (𝑥)) = 0 but not vice versa.
In implementation, we use Qnear to denote the query point set
near the surface (sampling details will be given in Section 5). The
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Fig. 6. Unexpected critical points (red points) near the surface, result in unde-
sired surface variations (left). To address this, we utilize the singular-Hessian
term to suppress these variations and eliminate ghost geometry (right).

singular-Hessian loss is formulated as follows:

𝐿singularH =

∫
Qnear

∥Det(H𝑓 (𝑥))∥1𝑑𝑥 . (9)

4.2 How singular Hessian works
Algebraic viewpoint. According to the Taylor expansion,

𝑓 (𝑥) = 𝑓 (𝑥0) + 𝒈T
𝑓
(𝑥 − 𝑥0) +

1
2
(𝑥 − 𝑥0)TH𝑓 (𝑥) (𝑥 − 𝑥0), (10)

the utilization of Det(H𝑓 (𝑥)) = 0 permits variation in the second-
order term 1

2 (𝑥 − 𝑥0)TH𝑓 (𝑥) (𝑥 − 𝑥0), but with fewer degrees of
freedom. It is important to note that the Hessian energy is defined
as ∥H𝑓 (𝑥)∥22. When the Hessian energy is reduced to 0, all entries
of H become 0, causing 𝑓 to become a linear field and diminishing
its ability to accurately represent geometric details. In contrast to
the Hessian energy, our singular Hessian term still allows 𝑓 to be
sufficiently expressive even if the term is reduced to 0. See Fig. 5 for
an illustration.

Morse theory. The points in Ω (a thin-shell space surrounding the
underlying surface) can be classified as either regular or critical,
based on whether the gradient of function 𝑓 vanishes. The critical
points can be further divided into (1) minimum points (H𝑓 (𝑥) does
not have negative eigenvalues), (2) 1-saddle points (one negative
eigenvalue), (3) 2-saddle points (two negative eigenvalues), and
(4) maximum points (three negative eigenvalues). Let the numbers
be respectively 𝑐min, 𝑐1-saddle, 𝑐2-saddle, and 𝑐max. By taking 𝑓 as a
Morse function defined in Ω, the Euler characteristic of Ω is given
by

𝜒 (Ω) = 𝑐min − 𝑐1-saddle + 𝑐2-saddle − 𝑐max . (11)
Unnecessary surface variations are generally caused by an overly
complicated function 𝑓 containing redundant critical points in Ω,
see Fig. 6. The enforcement of Det(H𝑓 (𝑥)) = 0 drives 𝑓 toward
simplicity by removing critical points in Ω, but has no side ef-
fects for regular points satisfying Det(H𝑓 (𝑥)) = 0. In other words,
Det(H𝑓 (𝑥)) = 0 helps eliminate a minimum point and a 1-saddle
point, or a maximum point and a 2-saddle point, or a minimum point
and a maximum point, or a 1-saddle point and a 2-saddle point, until
the minimum number of critical points exist and precisely conforms
to the Euler characteristic of Ω. In contrast, the enforcement of the
Hessian energy has side effects on regular points and results in a
linear field whose Euler characteristic may be independent of Ω.

Therefore, Det(H𝑓 (𝑥)) = 0 is a more relaxed constraint that still
preserves the topology of Ω.

Table 1. Quantitative comparison on Surface Reconstruction Bench-
mark [Williams et al. 2019]. Note that the methods marked with ‘*’ require
point normals. In each column, the best scores are highlighted in bold with
underline, while the second best scores are highlighted with bold.

Chamfer ↓ F-Score ↑
mean std. mean std.

SPSR∗ [Kazhdan et al. 2013] 4.36 1.56 75.87 18.57
DGP∗ [Williams et al. 2019] 4.87 1.64 73.34 18.56

SIREN [Sitzmann et al. 2020] 18.24 17.09 38.74 31.26
SAP [Peng et al. 2021] 6.19 1.75 57.21 11.66
iPSR [Hou et al. 2022] 4.54 1.78 75.07 19.18
PCP [Baorui et al. 2022b] 6.53 1.75 47.97 14.50
CAP-UDF [Zhou et al. 2022] 4.54 1.82 74.75 18.84
DiGS [Ben-Shabat et al. 2022] 4.16 1.44 76.69 18.15

Ours 3.76 0.98 81.38 13.73

SPSR* DiGSCAP-UDF GTOurs

Fig. 7. We select two point clouds from Surface Reconstruction Bench-
mark [Williams et al. 2019] and give a visual comparison among SPSR [Kazh-
dan et al. 2013], CAP-UDF [Zhou et al. 2022], DiGS [Ben-Shabat et al. 2022]
and ours. ‘*’ means that the approach requires normals. It can be seen from
the highlighted differences that our algorithm can produce a surface with
high fidelity.

4.3 Relaxing Eikonal Term
The Eikonal equation, denoted as ∥∇𝑓 ∥2 = 1, is commonly used to
characterize the first-order property of the SDF. Several research
works have mimicked this condition by requiring ∥∇𝑓 ∥2 = 1. How-
ever, for the surface reconstruction problem, the focus is solely on
the zero-level set of 𝑓 . It is sufficient to require that the gradient of 𝑓
does not vanish near the surface. Therefore, we relax the Eikonal
constraint of ∥∇𝑓 ∥ = 1 into ∥∇𝑓 ∥ > 𝜎min:

𝐿relaxEikonal =

∫
P
ReLU (−(∥∇𝑓 (𝑥)∥ − 𝜎min)) 𝑑𝑥, (12)

where ReLU is the operator of max(0, ·) and 𝜎min represents the
minimum gradient norm that must be retained by the field. We
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Fig. 8. Visual comparison of surface reconstruction under ShapeNet [Chang et al. 2015]. The methods marked with ‘∗’ require normals, and the methods
marked with ‘+’ are supervision-based. Our method can faithfully recover the thin plates/tubes even if the input point cloud is only with 1K points.

set 𝜎min = 0.8 by default. Additionally, the condition is enforced
exclusively for points belonging to the input point cloud.
Remark: Although 𝑓 is intended to approach the real SDF, they
cannot be exactly identical. Relaxing the Eikonal constraint accom-
modates a wider range of possible candidates, allowing for the
identification of the most desirable solution. In summary, by re-
laxing this condition, other terms can play a more significant role,
providing 𝑓 with sufficient expressiveness.

4.4 Total loss
To this end, our total loss is formulated below:

𝐿ours =𝜆manifold𝐿manifold + 𝜆non-manifold𝐿non-manifold+

𝜆relaxEikonal𝐿
relax
Eikonal + 𝜆singularH𝜏𝐿singularH .

(13)

where the parameter 𝜏 is an annealing factor, allowing for a coarse-
to-fine learning process that learns geometric details gradually. The
annealing factor 𝜏 remains 1 during the first 20% iterations, then

linearly decreases to 0.0003 during the 20% to 40% iterations, and
finally decreases to 0.00003 at the termination. We tune weights to
our preferred setting (𝜆manifold= 7000, 𝜆non-manifold = 600, 𝜆relaxEikonal =
50) and use consistent hyperparameters over the different datasets.

5 EXPERIMENTS
In this section, the details regarding parameter selection are first
presented, followed by an explanation of the metrics and evaluation
protocol, more details can be checked in our supplementary mate-
rial. The proposed approach is then evaluated on various datasets,
including both synthetic and real scans. Additionally, the approach
is tested in shape space learning for human body scans.

5.1 Implementation Details
Experiments were conducted using an NVIDIA GeForce RTX 3090
graphics card with 24GiB video memory and an AMD EPYC 7642.
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Table 2. Quantitative comparison on ShapeNet [Chang et al. 2015]. Note that the methods marked with ‘*’ require point normals, and the methods marked
with ‘+’ are supervision based. In each column, the best scores are highlighted in bold, while the second best scores are highlighted in bold with underlining.

1K points 3K points

Normal C. ↑ Chamfer ↓ F-Score ↑ Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std. mean std. mean std. mean std

SPSR∗ [Kazhdan et al. 2013] 91.89 4.76 9.35 7.66 46.91 26.06 95.50 3.30 4.66 4.64 75.28 25.76
NSP∗ [Williams et al. 2021] 87.05 6.05 12.51 7.29 36.17 21.56 90.74 5.48 8.85 6.96 52.42 28.55

SAL [Atzmon and Lipman 2020] 82.99 11.11 47.46 50.57 18.16 19.15 86.69 9.66 29.98 31.86 25.76 22.43
IGR [Gropp et al. 2020] 79.26 12.27 77.68 59.55 22.48 32.08 80.85 11.88 62.54 48.44 26.28 35.91
SIREN [Sitzmann et al. 2020] 79.91 8.87 38.04 46.02 25.02 23.52 83.79 10.20 34.19 46.77 32.34 30.13
DiGS [Ben-Shabat et al. 2022] 92.67 6.03 7.01 5.52 58.72 29.77 95.82 4.44 4.59 4.94 78.87 27.34
OSP [Baorui et al. 2022a] 91.89 5.52 8.77 6.76 47.57 23.45 94.73 3.94 6.80 6.61 59.12 25.82
iPSR [Hou et al. 2022] 87.88 7.26 13.16 11.78 39.36 25.11 93.22 5.26 5.95 5.97 68.42 26.36
PGR [Lin et al. 2022] 89.53 5.35 10.49 6.52 37.61 19.14 91.90 4.93 7.34 4.81 51.44 23.12

SAP+ [Peng et al. 2021] 94.92 3.60 4.64 3.71 73.50 25.02 96.33 3.24 3.75 4.16 84.79 20.94
POCO+ [Boulch and Marlet 2022] 94.79 4.15 4.53 4.05 75.56 26.46 96.41 3.53 3.62 4.21 85.42 23.13

Ours 95.10 4.04 4.26 3.11 80.51 21.48 97.05 2.91 3.08 2.64 90.71 16.28

SPSR*Input

DiGS iPSR PGR POCO+ NG+ Ours GT

SAL IGR SIREN Neural-Pull SAP

Fig. 9. Visual comparison of surface reconstruction under ABC [Koch et al. 2019]. Our method can effectively recover the CAD features (e.g., small holes and
thin plates).

A SIREN-based MLP with its initialization method was used for
the network [Sitzmann et al. 2020]. Inputs were first normalized to
the range [−1, 1]3 for SIREN-based MLP. Qfar is uniformly sampled
within the bounding box of the input point cloud P, while Qnear
is sampled following [Baorui et al. 2021; Gropp et al. 2020; Zhou
et al. 2022] based on Gaussians distribution centered on each input
point. For a point in 𝑝 ∈ P, the Gaussian function is centered at
𝑝𝑖 with the mean and standard deviation set to the distance to its
𝑘-th (𝑘 = 50 by default). We sample one point for each distribution.
The number of points in both Qnear and Qfar complies with the
batch size (15K by default).

5.2 Metrics
Comparison indicators include normal consistency, chamfer dis-
tances, and F-Score. Normal consistency (expressed as a percentage
and abbreviated as ‘Normal C.’) reflects the degree of agreement
between the normals of the reconstructed surface and those of the
ground-truth surface. Chamfer distance (scaled by 103 and using 𝐿1-
norm) measures the fitting tightness between the two surfaces, and
F-Score (expressed as a percentage) indicates the harmonic mean
of precision and recall (completeness). The default threshold for F-
Score is set to 0.005. All meshes are uniformly scaled to [−0.5, 0.5]3,
with 100K points sampled from each mesh for evaluation.
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Table 3. Quantitative comparison on ABC [Koch et al. 2019] and Thingi10K [Zhou and Jacobson 2016]. Each raw point cloud has 10K points. The methods
marked with ‘*’ require point normals, and the methods marked with ‘+’ are supervision-based. In each column, the best scores are highlighted in bold, while
the second best scores are highlighted in bold with underlining.

ABC Thingi10K

Normal C. ↑ Chamfer ↓ F-Score ↑ Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std. mean std. mean std. mean std

SPSR∗ [Kazhdan et al. 2013] 95.16 4.48 4.39 3.05 74.54 26.65 97.15 2.95 3.93 1.79 77.03 23.71

SAL [Atzmon and Lipman 2020] 86.25 8.39 17.30 14.82 29.60 18.04 92.85 5.01 13.46 7.97 27.56 14.64
IGR [Gropp et al. 2020] 82.14 16.12 36.51 40.68 43.47 40.06 90.20 10.61 27.80 34.8 54.28 39.99
SIREN [Sitzmann et al. 2020] 82.26 9.24 17.56 15.25 30.95 22.23 88.30 6.53 17.69 13.47 26.20 19.74
Neural-Pull [Baorui et al. 2021] 94.23 4.57 6.73 5.15 42.67 10.75 96.15 2.80 5.89 1.12 46.44 8.53
SAP [Peng et al. 2021] 81.59 10.61 15.18 16.60 45.88 33.67 92.60 7.03 10.61 13.84 53.32 31.91
DiGS [Ben-Shabat et al. 2022] 94.48 6.12 6.91 6.94 66.22 32.01 97.25 3.30 5.36 5.59 74.45 27.11
iPSR [Hou et al. 2022] 93.15 7.47 4.84 4.06 71.59 24.96 96.46 3.57 4.41 2.94 74.88 22.72
PGR [Lin et al. 2022] 94.11 4.63 4.52 2.13 68.91 27.86 96.80 3.25 4.22 2.01 72.86 22.98

POCO+ [Boulch and Marlet 2022] 92.90 7.00 6.05 6.80 68.29 26.05 95.16 5.00 5.61 9.42 73.92 25.79
NG+ [Huang et al. 2022a] 95.88 3.88 3.60 1.38 81.38 20.39 97.71 2.68 3.16 1.07 86.29 17.39

Ours 97.42 2.37 3.27 1.78 88.62 13.87 98.23 1.98 3.00 2.62 93.50 11.84

SPSR*Input SAL IGR SIREN Neural-Pull SAP

DiGS iPSR PGR POCO+ NG+ Ours GT

Fig. 10. Visual comparison of surface reconstruction under Thingi10K [Zhou and Jacobson 2016]. Our method can recover high-fidelity geometric details.

5.3 Overfitting Surface Reconstruction
A SIREN network consisting of 4 hidden layers with 256 units was
used to conduct experiments. The discrete mesh of the zero-level
set of the implicit function was extracted using the marching cubes
algorithm [Lewiner et al. 2003] from scikit-image [van der Walt
et al. 2014] with 2563 grids. For overfitting experiments, the Adam

optimizer [Kingma and Ba 2014] was used with a learning rate of
5 × 10−5 and a total of 10K iterations by default.

5.3.1 Surface Reconstruction Benchmark (SRB). The Surface Recon-
struction Benchmark (SRB) [Williams et al. 2019] comprises five
shapes, eachwith challenging features such asmissing parts and rich
details. Approaches for comparison include screened Poisson surface
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DiGSInput OursPCP NG+

Fig. 11. Visual comparison of real raw scans from [Huang et al. 2022b] and
Aim@Shape Shape Repository. Our method can deal with real scans and
recover the details.

reconstruction (SPSR) [Kazhdan et al. 2013], SIREN [Sitzmann et al.
2020], DGP [Williams et al. 2019], Shape as points (SAP) [Peng et al.
2021], iPSR [Hou et al. 2022], Predictive Context Priors (PCP) [Baorui
et al. 2022b], CAP-UDF [Zhou et al. 2022] and DiGS [Ben-Shabat
et al. 2022]. It should be noted that SPSR and DGP leverages normals
provided by the input scans. As demonstrated in Tab. 1 and Fig. 7,
our method outperforms existing methods in terms of both Chamfer
distance and F-score. In particular, the visual comparison in Fig. 7
shows that our method can recover the hole feature of the Anchor
model despite the lack of points on the inner wall and preserve the
nearby gaps of the Lord Quas model.

5.3.2 ShapeNet. The ShapeNet [Chang et al. 2015] comprises a
diverse range of CAD models. We follow the splitting of [Williams
et al. 2021] for the 13 categories of shapes with totally 260 shapes.
We perform the comparison under two settings, i.e., “1K points”
and “3K points”. Baseline approaches include the screened Poisson
surface reconstruction (SPSR) [Kazhdan et al. 2013], NSP [Williams
et al. 2021], SAL [Atzmon and Lipman 2020], IGR [Gropp et al. 2020],
SIREN [Sitzmann et al. 2020], DiGS [Ben-Shabat et al. 2022], On-
SurfacePrior (OSP) [Baorui et al. 2022a], iPSR [Hou et al. 2022] and
PGR [Lin et al. 2022]. It should be noted that SPSR and NSP need
to input normals. To make the comparison more convincing, we
provide ground-truth normals to those methods that require nor-
mals. Additionally, learnable baselines such as Points (SAP) [Peng
et al. 2021] and POCO [Boulch and Marlet 2022] are included for
comparison and re-trained from scratch on the ShapeNet dataset
with 1K points and 3K points settings, respectively. Based on the
quantitative comparison in Tab. 2 and the visual comparison in
Fig. 8, it is evident that the majority of existing methods are un-
able to effectively handle data sparsity. This issue is particularly
pronounced when thin-walled plates and tubes are present, as it
significantly increases the difficulty of reconstruction. In contrast,

our method is able to effectively suppress unnecessary variations
near the surface and adapt the implicit representation to the in-
herent complexity encoded by the point cloud. Furthermore, our
reconstruction accuracy surpasses even that of supervision-based
methods SAP and POCO.

5.3.3 ABC and Thingi10K. The ABC dataset [Koch et al. 2019] com-
prises a diverse collection of CAD meshes, while the Thingi10K
dataset [Zhou and Jacobson 2016] contains a variety of shapes
with intricate geometric details. We follow [Erler et al. 2020] to
perform splitting that 100 shapes for each dataset and randomly
sample 10K points from each mesh. The baseline approaches in-
clude the screened Poisson surface reconstruction (SPSR) [Kazhdan
et al. 2013], SAL [Atzmon and Lipman 2020], IGR [Gropp et al.
2020], SIREN [Sitzmann et al. 2020], Neural-Pull [Baorui et al. 2021],
SAP [Peng et al. 2021], DiGS [Ben-Shabat et al. 2022], iPSR [Hou
et al. 2022] and PGR [Lin et al. 2022]. It is important to note that
we find the supervision version of SAP does not generalize well on
the shape not present on the trainset (ShapeNet) when using the
global PointNet-based encoder. As such, we compare against the
unsupervised version of SAP. Additionally, We include supervision
methods POCO [Boulch and Marlet 2022] and Neural Galerkin (NG,
the version without normals) [Huang et al. 2022a] for compari-
son. In order to assess the generalization capabilities of the super-
vised methods, we retrained them using a setting of 10K points on
the ShapeNet dataset. The quantitative comparison statistics are
recorded in Tab. 3. Furthermore, visual comparisons conducted using
the ABC dataset [Koch et al. 2019] (as shown in Fig. 9) demonstrate
that our method is capable of effectively recovering CAD features
such as small holes and thin plates. Similarly, visual comparisons
conducted using the Thingi10K dataset [Zhou and Jacobson 2016]
(as shown in Fig. 10) demonstrate that our method is capable of
recovering high-fidelity geometric details.

5.3.4 Real Scans. We also evaluated our method on real scans
with various artifacts from [Huang et al. 2022b] and AIM@SHAPE-
VISIONAIR. The point clouds from [Huang et al. 2022b]were scanned
using a SHINING 3D Einscan SE scanner and exhibit noise and non-
uniform densities. The point clouds from AIM@SHAPE-VISIONAIR
were scanned using a Kreon scanner and exhibit highly non-uniform
line distributions and unnatural scanner noise.We includedDiGS [Ben-
Shabat et al. 2022], PCP [Baorui et al. 2022b], and supervised method
Neural Galerkin (NG, without normals) [Huang et al. 2022a] as base-
lines for comparison. Qualitative results can be seen in Fig. 11. Our
method effectively recovers the details and concave parts of the
shapes, while other methods do not. In particular, the supervised
method Neural Galerkin performs poorly when applied to real scans
that have point distributions not present in its training dataset (as
shown in the second row of Fig. 11).

5.3.5 Large Scans. We evaluated the ability of our method to handle
large-sized point clouds using three shapes from the ThreedScans
dataset [Laric 2012], randomly sampling approximately 300K points
from each shape. For comparison, we include SIREN [Sitzmann
et al. 2020] with ground truth oriented normals, PCP [Baorui et al.
2022b], DiGS [Ben-Shabat et al. 2022], and the learnable method of
Neural Galerkin (NG, without normals) [Huang et al. 2022a]. For
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this experiment, the final mesh is extracted at a resolution of 5123
rather than 2563. Additionally, we sampled 1M points to analyze
the distance between two surfaces and set the F-Score threshold
to 0.001 (denoted as F-Score△). Quantitative comparison statistics
are provided in Tab. 4, while visual comparisons can be seen in
Fig. 12. It is important to note that we trimmed surplus parts from
SIREN’s results. PCP and DiGS tend to produce smooth results
without geometric details, with DiGS’ smoothing energy weakening
geometric details. Neural Galerkin is a supervised method and thus
exhibits weaker generalization capabilities. In summary, for large-
sized point clouds, our method outperforms existing unoriented
approaches and is even superior to the “with normals” version of
SIREN.

Table 4. Quantitative comparison on large scans [Laric 2012]. The methods
marked with ‘∗’ require normals, and the methods marked with ‘+’ are
supervision based.

Normal C. ↑ Chamfer ↓ F-Score△ ↑
mean std. mean std. mean std.

SIREN∗ (trimmed) [Sitzmann et al. 2020] 98.38 0.30 0.96 0.17 63.61 19.62

PCP [Baorui et al. 2022b] 94.32 2.58 4.44 1.41 11.83 9.41
DiGS [Ben-Shabat et al. 2022] 97.41 0.62 0.92 0.22 63.78 21.91

NG+ [Huang et al. 2022a] 85.97 9.10 3.02 2.09 31.01 20.67

Ours 98.44 0.15 0.74 0.09 79.77 9.90

5.4 Learning Shape Space
Dataset. The D-Faust dataset [Bogo et al. 2017] contains high-

resolution raw scans (triangle soups) of 10 humans in various poses.
We followed the methodology outlined in DualOctreeGNN [Wang
et al. 2022] to perform splitting, using 6K scans for training and 2K
scans for testing. The raw point clouds used as input are incomplete
and noisy due to occlusion during the scanning process and the
limited precision of scanners.

Training details. During the training phase, we utilized an encoder
based on Convolutional Occupancy Networks [Songyou et al. 2020]
to encode shapes that enable shape space learning. Specifically, we
projected sparse on-surface point features obtained using a modified
PointNet [Qi et al. 2017] onto a regular 3D grid and used a convo-
lutional module to propagate these features to the off-surface area.
The query feature was then obtained using trilinear interpolation.
Additionally, we employed FiLM conditioning [Chan et al. 2021],
which applies an affine transformation to the network’s interme-
diate features, as SIREN struggles with handling high-dimensional
inputs [Chan et al. 2021; Mehta et al. 2021]. Furthermore, inspired
by [Tang et al. 2021b], we fine-tuned the network during the infer-
ence phase to perform accurate geometry learning for high-fidelity
surface reconstruction using our novel loss. Ourmodels were trained
for 200 epochs using the AMSGrad optimizer [Reddi et al. 2018] with
an initial learning rate of 10−4, which was decayed to 10−6 using
cosine annealing [Loshchilov and Hutter 2017]. The training set
was divided into mini-batches containing 32 different shapes (with
accumulated gradients), with each shape being randomly sampled
as 10K points.

Table 5. Quantitative comparison on DFAUST [Bogo et al. 2017]. The meth-
ods marked with ‘∗’ require normals, and the methods marked with ‘+’ are
supervision based. In each column, the best scores are highlighted in bold,
while the second best scores are highlighted in bold with underlining.

Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std.

IGR∗ [2020] 92.02 3.34 29.01 33.61 73.32 14.05
DualOctreeGNN∗ [2022] 97.65 0.34 1.78 3.70 97.48 1.03

SAL+ [2020] 96.77 0.81 2.82 4.67 91.35 9.15
SALD∗+ [2021] 97.04 0.92 3.06 1.32 88.56 12.73

IGR [2020] 57.93 3.40 48.56 2.35 6.54 0.11
DiGS [2022] 87.60 1.91 11.87 4.56 37.77 7.11
DualOctreeGNN [2022] 92.42 0.45 3.02 2.38 85.77 3.50

Ours 96.22 0.55 2.50 0.51 94.45 1.48
Ours (fine-tune) 97.05 0.50 1.96 0.27 96.46 0.93

Results. The baseline approaches we compared against include
IGR [Gropp et al. 2020], SAL [Atzmon and Lipman 2020], SALD [Atz-
mon and Lipman 2021], DualOctreeGNN [Wang et al. 2022], and
DiGS [Ben-Shabat et al. 2022]. We also demonstrated the results
of IGR and DualOctreeGNN trained without normals. As shown in
Fig. 13 and Tab. 5, while IGR is capable of generating detailed results,
it also produces spurious planes away from the input. SAL, which
is supervised using unsigned distance, can only produce smooth
results. SALD, with the support of normal supervision, can generate
more detailed results but its reconstruction accuracy is worse than
that of SAL due to a large systematic misalignment that does not
respect input poses. In contrast, DualOctreeGNN produces the most
impressive results due to its well-designed octree network’s ability
to capture local priors for details. However, the performance of
both IGR and DualOctreeGNN is compromised without normals.
In particular, the resulting surfaces of DualOctreeGNN for point
clouds without input normals are not watertight, despite the small
Chamfer distances. While DiGS also being based on SIREN, it can-
not produce reliable results. In summary, our method is capable of
learning shape space without requiring input normals or additional
supervision and still produces faithful shapes. It is important to
note that we did not fine-tune other auto-encoder-based methods
(except for IGR and DiGS, which leverage auto-decoder and have to
be optimized during the inference stage) as our method consistently
outperformed unoriented input even without fine-tuning.

Table 6. Comparison about different gradient constraints.

Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std.

Eikonalall 97.33 2.75 3.74 2.86 88.04 15.36
Eikonalhalf 97.52 2.98 3.42 2.80 89.07 15.22

𝜎min = 0.6 97.55 2.84 3.34 2.47 89.92 14.58
𝜎min = 0.8 (Ours) 97.82 2.18 3.13 2.20 91.06 12.85
𝜎min = 1.0 97.48 3.18 3.35 2.57 89.42 14.70
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DiGS

PCP

SIREN*

NG+

Ours

Fig. 12. Tests on large scans (about 30K points) from ThreedScans [Laric 2012] (CC BY-NC-SA). We include SIREN [Sitzmann et al. 2020] (with ground-truth
normals), DiGS [Ben-Shabat et al. 2022], PCP [Baorui et al. 2022b] and NG [Huang et al. 2022a] (supervision-based) for comparison. In contrast to the SOTA
methods, our approach can recover high-fidelity geometry details from unoriented point clouds, and our results are comparable to SIREN trained with
ground-truth normals.
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Fig. 13. Visual comparison of shape space learning under DFAUST [Bogo
et al. 2017]. Ourmethod can learn shape space without normals or additional
supervision. By a fine-turning operation at the inference stage, our method
can produce faithful shapes with great details.

5.5 Ablation Studies
We conducted ablation studies using two datasets: ABC [Koch et al.
2019] and Thingi10K [Zhou and Jacobson 2016]. Each dataset com-
prised 100 shapes, discretized into 10K points. To examine the effects
of hyper-parameters, we also utilized the SRB [Williams et al. 2019]
dataset and five shapes from the Stanford 3D Scanning Repository:
Armadillo, Bunny, Dragon, Asian Dragon, and Thai Statue. More
ablation studies can be found in our supplementary material.

5.5.1 Relaxing Eikonal Constraint. In the following, we will demon-
strate the effectiveness of relaxing the Eikonal constraint. Our re-
laxation technique is two-fold. First, we hope that the gradients
do not vanish, rather than be exactly a unit vector. Second, the
gradient constraint is specified around the surface rather than in
the whole space. For the ablation study purpose, we test the effect
of substituting the traditional Eikonal condition for our relaxed
gradient constraint. The first setting named Eikonalall, requires the

Table 7. Comparison about different smooth energy forms: Dirichlet En-
ergy (𝐸𝐷 ), Hessian Energy (𝐸𝐻2 ), and Hessian Energy based-𝐿1 (𝐸𝐻1 ).

Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std.

𝐸𝐷 94.42 3.71 8.13 6.75 64.45 31.23
𝐸𝐻2 97.62 2.58 3.33 2.28 87.94 17.70
𝐸𝐻1 97.45 2.74 3.85 3.90 87.92 18.48
Ours 97.82 2.18 3.13 2.20 91.06 12.85

Dirichlet Energy Hessian Energy

Hessian Energy-based L1 Ours

Fig. 14. Visual comparison of different smooth energy forms. Our method is
superior to the other approaches in terms of the ability to recover geometry
details.
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gradients at all points, i.e., the input points and the query points, to
be unit vectors. The second setting, named Eikonalhalf, is to specify
the Eikonal constraint at the input points. At the same time, we
test different choices of 𝜎𝑚𝑖𝑛 for our approach, i.e., 0.6, 0.8, and 1.
The statistics in Tab. 6 show that (1) it seems better to specify the
Eikonal constraint at the input points than at all the points, and
(2) the inequality of ∥∇𝑓 ∥2 ≥ 𝜎𝑚𝑖𝑛 is easier to solve compared with
∥∇𝑓 ∥2 = 1.

5.5.2 Comparison to Smooth Energy Forms. The commonly used
Dirichlet energy is as follows:

𝐸𝐷 =
1
2

∫
P∪Qfar

∥∇𝑓 (𝑥)∥22𝑑𝑥, (14)

where Ω is the space of the whole bounding box. The commonly
used Hessian energy is as follows:

𝐸𝐻2 =

∫
P∪Qfar

∥H𝑓 (𝑥)∥22𝑑𝑥. (15)

Zhang et al. [2022] leveraged 𝐿1-based Hessian:

𝐸𝐻1 =

∫
P∪Qfar

∥H𝑓 (𝑥)∥1𝑑𝑥. (16)

To ensure fairness in our evaluation, we combined the smoothness
energy with relaxed Eikonal conditions (as described in Eq. 12)
to demonstrate the effectiveness of 𝐿singularH. As shown in Tab. 7
and Fig. 14, our method not only suppresses ghost geometry but
also recovers high-fidelity geometric details. This demonstrates its
superiority over both the Dirichlet energy, which produces ghost
geometry, and the Hessian energy, which produces over-smoothed
results possibly with adhesion in the area of sharp, thin features. It
is important to note that when the Hessian energy becomes zero,
all entries of H become zero, causing the SDF to degenerate into a
linear function and diminishing its ability to accurately represent
geometric details. In contrast, our term 𝐿singularH : Det(H𝑓 ) = 0 is
more conservative, allowing for flexibility and capacity to recover
geometric details. DiGS [Ben-Shabat et al. 2022] utilizes another
smoothness energy form, Laplacian energy of the Hessian matrix,
we compare against it in the next subsection.

Table 8. Quantitative comparison with DiGS [Ben-Shabat et al. 2022]. Based
on the comparison, our method exhibits a bigger advantage under different
settings.

Ours Weights SIREN Init. Eikonal Relax Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std.

DiGS

95.86 4.71 6.13 6.26 70.34 29.56
✓ 96.15 4.94 5.08 4.65 75.10 27.96

✓ 95.59 5.06 5.89 7.03 76.02 30.48
✓ ✓ 96.51 4.48 5.00 6.19 81.40 26.11

✓ ✓ ✓ 96.32 3.35 4.71 5.27 79.71 26.32

Ours

✓ ✓ 95.36 4.39 5.79 4.81 74.57 25.60
✓ ✓ 97.33 2.75 3.74 2.86 88.04 15.36

✓ ✓ 96.55 4.60 4.52 5.06 84.50 20.94
✓ ✓ ✓ 97.82 2.18 3.13 2.20 91.06 12.85
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Fig. 15. The ablation studies for initiation methods. DiGS [Ben-Shabat et al.
2022] is more sensitive to initiation. Both initiation methods cannot produce
reliable results.

5.5.3 Comparison with DiGS. DiGS [Ben-Shabat et al. 2022] is
another unoriented point cloud reconstruction method based on
SIREN [Sitzmann et al. 2020]. Notably, DiGS leverages the well-
known smoothness of Laplacian energy based on the Hessian matrix
for reconstruction. We conduct comprehensive experiments with
DiGS and present the results in Tab. 8, which demonstrate that our
method outperforms DiGS. Our observations are three-fold. First, we
relax the Eikonal constraint in DiGS using our gradient constraint
and found that DiGS produced better results with our proposed
gradient constraint. Second, as shown in Fig. 15, the MFGI-based ini-
tialization, which initializes the SIREN network as an approximate
sphere, is unable to reconstruct the concave parts of CAD shapes.
In contrast, initializing SIREN directly appears to produce better
results. However, unlike our approach, DiGS does not consistently
yield better results when switching to direct SIREN initialization.

Finally, evenwhen using theweighting scheme of DiGS (𝜆manifold,
𝜆non-manifold, 𝜆Eikonal) = (3000, 100, 50), our method still outper-
forms all variants of DiGS. If the weights are adjusted to our pre-
ferred setting (𝜆manifold= 7000, 𝜆non-manifold = 600, 𝜆relaxEikonal = 50), our
method exhibits an even greater advantage, while the performance
of DiGS variants diminishes.

6 CONCLUSIONS
Learning the implicit neural representation from an unoriented
point cloud is a fundamental task. In this paper, we propose to reg-
ularize the implicit function by enforcing singular Hessian near
the surface. Extensive experimental results demonstrate that our
approach exhibits the superior ability to recover high-fidelity geo-
metric details in the presence of various imperfections.

A ADDITIONAL ABLATION STUDIES

A.1 Loss functions
We conduct experiments to observe the effects of the loss func-
tions in Tab. 9. Compared with the original unoriented version of
SIREN [Sitzmann et al. 2020], our method differs in three main ways:
relaxed Eikonal constraint, singular Hessian term, and our preferred
settings for loss weights. These three factors are mutually influ-
enced and simply tuning the weights cannot improve the overall
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Table 9. Ablation studies on the loss functions.

Eikonal Relax Singular Hessian Term Our weights Normal C. ↑ Chamfer ↓ F-Score ↑
mean std. mean std. mean std.

85.28 6.53 17.62 14.37 28.58 20.99
✓ 88.54 6.71 15.55 11.33 36.64 31.15

✓ 96.34 3.44 4.25 5.06 84.38 20.08
✓ 93.74 4.85 9.45 8.35 61.68 32.83

✓ ✓ 96.55 4.60 4.52 4.17 84.50 20.94
✓ ✓ 94.85 3.54 6.53 3.99 70.92 25.21

✓ ✓ 97.33 2.75 3.74 2.86 88.04 15.36
✓ ✓ ✓ 97.82 2.18 3.13 2.20 91.06 12.85

Table 10. Comparison of the weights of 𝐿singularH and procedure of coarse-
to-fine under SRB [Williams et al. 2019] dataset.

Chamfer ↓ F-Score ↑
mean std. mean std.

𝜆singularH = 0.3 no-decay 4.29 1.38 75.36 15.99
𝜆singularH = 3 no-decay 5.02 1.83 70.76 15.12
𝜆singularH = 30 no-decay 7.41 2.78 56.90 11.56

𝜆singularH = 0.3 & decay 3.88 1.12 78.94 16.45
𝜆singularH = 3 & decay (Ours) 3.76 0.98 81.38 13.73
𝜆singularH = 30 & decay 4.01 1.37 77.14 14.07

performance. Instead, enabling all three factors results in a signifi-
cant improvement in performance. It is important to note that our
method outperforms other fitting-based methods even with only
𝐿singularH (without 𝐿relaxEikonal) and our preferred weights settings.

(a) (b) (c)

(d) (e) (f)
Fig. 16. Comparison about different 𝜆singularH and coarse-to-fine training
curriculum under SRB [Williams et al. 2019] that has different point clouds
artifacts. From left to right: (a) 𝜆singularH = 0.3&𝑛𝑜 − 𝑑𝑒𝑐𝑎𝑦, (b) 𝜆singularH =

3&𝑛𝑜 − 𝑑𝑒𝑐𝑎𝑦 (c) 𝜆singularH = 30&𝑛𝑜 − 𝑑𝑒𝑐𝑎𝑦, (d) 𝜆singularH = 0.3&𝑑𝑒𝑐𝑎𝑦,
(e) 𝜆singularH = 3&𝑑𝑒𝑐𝑎𝑦, and 𝜆singularH = 30&𝑑𝑒𝑐𝑎𝑦 .

A.2 Weight of 𝐿singularH and Coarse-to-fine training
curriculum

We investigate the effects of several design choicesmade for𝐿singularH
over SRB [Williams et al. 2019] dataset with noise or missing parts
shapes in Tab. 10. First, we examine the influence of different𝐿singularH
settings without annealing. Fig. 16 shows that larger weights lead to
over-smooth results with topological errors, while smaller weights

cannot fill the missing parts. Additionally, all results exhibit some
topology errors without annealing. We further test the effect of the
annealing function 𝜏 with different 𝜆singularH settings. Our method
achieves the best performance with initialization 𝜆singularH = 3, bal-
ancing geometric details and robustness to point cloud artifacts. The
remaining question is what are the effects if we keep a very small
weight all the time? In Fig. 17, we show the results with weight
0.01 at different iterations. It can be seen our method can also work
well with a constant small weight, but it may take a longer time to
converge without the coarse-to-fine training curriculum.

Table 11. We compare the impact of the parameter 𝑘 on the sampling
process of𝑄𝑛𝑒𝑎𝑟 using different numbers of points from the Stanford 3D
Scanning Repository. The evaluation metric used in this comparison is the
Chamfer distance.

500 1000 10000 100000

𝑘 = 5 9.10 5.88 2.54 2.44
𝑘 = 25 9.40 5.64 2.51 2.14
𝑘 = 50 8.86 5.84 2.61 2.10
𝑘 = 75 9.31 5.88 2.46 2.17
𝑘 = 100 9.41 5.56 2.55 2.14

10

iter: 10,000 iter: 50,000 iter: 100,000 iter: 350,000 iter: 500,000
0

Fig. 17. The reconstruction result of at different iterations with small
weight (0.01). It requires a longer time to converge.

A.3 The Effect of 𝑄𝑛𝑒𝑎𝑟 range
Finally, we discuss the effect of the query location range. By default,
we used the Gaussian destruction with the distance of 𝑘 = 50 neigh-
bors as the standard deviation for sampling 𝑄𝑛𝑒𝑎𝑟 . Here, we use
several candidates including {𝑘 = 5, 𝑘 = 25, 𝑘 = 50, 𝑘 = 75, 𝑘 = 100},
to test the effects of different ranges of 𝑄𝑛𝑒𝑎𝑟 . We report the results
under five shapes from Stanford 3D Scanning Repository with dif-
ferent point clouds resolutions {500, 1000, 10000, 100000} in Tab. 11.
The comparison results indicate that there are no significant differ-
ences observed with different values of𝑘 . We choose to set𝑘 = 50 for
our study. The comparison shows that a query location range that
is either too small or too large will degrade surface reconstruction
performance.

A.4 Combined with Softplus
Our approach is general and can be applied to any network where
second-order derivatives are defined across the entire domain. In
our experiments, we employ Softplus, a smooth variant of ReLU,
and initialize the network using GNI [Atzmon and Lipman 2020].
As depicted in Fig. 18, our method consistently yields reasonable
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results. However, similar to ReLU, Softplus also tends to produce
low-frequency solutions when compared to sine functions, resulting
in less detail.

Softplus w/o Singular loss Softplus w/ Singular loss Sine w/ Singular loss

Fig. 18. Our work consistently works well with other twice-differential
activation functions though Softplus produce fewer details compared to
Sine.

A.5 Runtime Performance
Second-order optimization increases the overhead of back-propagation.
We included IGR [Gropp et al. 2020], SIREN [Sitzmann et al. 2020],
and DiGS [Ben-Shabat et al. 2022] for comparison. We set the batch
size to 15K for all methods and utilized a network with four hidden
layers and 256 units per layer for the SIREN-based methods, which
is the default setting for our method. Tab. 12 reports the time cost
for a single iteration. Generally speaking, the time costs of DiGS
and our method are higher than that of SIREN since DiGS and our
method require second-order optimization. However, our method is
more computationally efficient than IGR.

Table 12. Timing costs per iteration. The comparison is made among
IGR [Gropp et al. 2020], SIREN [Sitzmann et al. 2020], and DiGS [Ben-
Shabat et al. 2022] without the supervision of normals. Timing statistics are
reported in milliseconds (ms).

IGR SIREN DiGS Ours

# parameters 1.86M 264.4K 264.4K 264.4K
time [ms] 50.73 11.52 36.28 40.10

A.6 Illustrative Examples
Nested Surfaces. Our method supports nested surfaces with mul-

tiple connected components. For easy visualization, we present 2D
cases in Fig. 19. Additionally, we present a 3D shape with several sep-
arate tori with different radii to demonstrate our expressive ability.
We also visualize the gecko model in Fig. 20. Our method works in a
coarse-to-fine fashion and can eventually recover the true topology
even for multi-surface shapes.

1

0.75

0.5

0.25

0

-0.25

-0.5

-0.75

-1

Fig. 19. Our method can deal with nested surfaces. The left result is a
disk with two holes, while the right shows three circles with different radii.
Notably, there are 100 data points (white).

Fig. 20. The reconstruction result of a gecko model and several separate
tori with different radii. Each result is reconstructed with 10K input points.
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Fig. 21. Comparing ours (top) and DiGS (bottom) [Ben-Shabat et al. 2022]
by observing the four intermediate iterations under high genus shape. The
input is 100K points.

High-genus Shapes. Fig. 21 shows the iteration process of our
method comparison to DiGS [Ben-Shabat et al. 2022] for high-genus
shapes. The input has 100K points with complex topology. DiGS
cannot incorrectly close the holes of the shapes. Our method first
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suppresses the critical points that look forward to the coarse surface
and then gradually recovers the real complex topology.
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(a) (b) (c) (d)
Fig. 22. We test a point cloud of the genus-3 torus with different experimen-
tal configurations. From left to right: (a) Input, (b) 𝜆singularH = 3&𝑑𝑒𝑐𝑎𝑦, (c)
𝜆singularH = 3&𝑛𝑜 − 𝑑𝑒𝑐𝑎𝑦, and (d) 𝜆singularH = 30&𝑛𝑜 − 𝑑𝑒𝑐𝑎𝑦.

Varying Point Density, Data Sparsity, Noise. In Fig. 22, we used
three-hole shapes to test our methods with different point cloud
artifacts, including varying point density, data sparsity, and noise.
By default, we used 8K points except for data sparsity validation. We
show the results under three different configurations: 𝜆singularH =

3&𝑑𝑒𝑐𝑎𝑦, 𝜆singularH = 3&𝑛𝑜−𝑑𝑒𝑐𝑎𝑦 and 𝜆singularH = 30&𝑛𝑜−𝑑𝑒𝑐𝑎𝑦.
We can observe that the default parameters 𝜆singularH = 3&𝑑𝑒𝑐𝑎𝑦 are
robust to different point cloud artifacts. Additionally, large weights
without decay are more robust to noisy and sparse inputs in terms
of recovering the topology of the underlying shape, but they may
yield over-smoothed results or deviate from the true surfaces.

VIPSSInput OursNG+

Fig. 23. The reconstruction results from sketch points by different methods.

Sketch Input. It is interesting to determine whether our approach
can transform a super-sparse 3D sketch point cloud into a mean-
ingful shape. In VIPSS [Huang et al. 2019], the authors provided a
3D sketch point cloud of approximately 1K points. We visualized
the reconstructed results by VIPSS [Huang et al. 2019], NG [Huang
et al. 2022a], and our method in Fig. 23. NG fails because its training
set does not include sketch-type data. Our result is comparable to
VIPSS, but VIPSS is severely limited by the number of points.

0.01

Hessian Energy & EikonalOurs DiGS

0

Fig. 24. The error colormaps of the octa-flower (10K points) reconstructed
by our method, Hessian energy, and DiGS [Ben-Shabat et al. 2022] indicate
that our method has smaller error near sharp edges.

Sharp Features. We utilize the octa-flower model (comprising 10K
points) to evaluate our method’s capacity to preserve sharp edges
(as depicted in Fig. 24). The error colormaps demonstrate that our
approach surpasses both the Hessian energy method and DiGS [Ben-
Shabat et al. 2022], which employs Laplacian energy. The primary
cause of their suboptimal performance is the smooth energy and
original Eikonal condition, which result in gradient inaccuracies
near sharp edges.

Input OSP DiGS Ours
Fig. 25. The visual comparison under KITTI [Geiger et al. 2012].

B LIMITATIONS
LiDAR Input. In its present state, Neural-Singular-Hessian is not

well-suited for processing LiDAR input with unique point distribu-
tions. Unlike the point clouds from DoF or structural light cameras,
LiDAR has its unique distribution characteristics, which include
stripe distribution, sparsity, and a substantial presence of missing
parts. In particular, most data derived from the KITTI dataset are
partial scans. This presents significant challenges in closing the gaps
inherent between the stripes and completing large missing parts.
Our results, in comparison with DiGS [Ben-Shabat et al. 2022] and
OSP [Baorui et al. 2022a] (specifically designed to handle sparse
point clouds), are presented in Fig. 25 within the context of the KITTI
dataset [Geiger et al. 2012]. Despite its advantages, our algorithm is
unable to effectively process such data, resulting in discrepancies
between different levels of points.

Scene-level Reconstruction. We also try our method to reconstruct
the scene. We propose experiments under 3DScene [Zhou and
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Input SIREN DiGS Ours GT

Fig. 26. Scene-level reconstruction under 3DScene [Zhou and Koltun 2013].

Koltun 2013] with 20K points for each scene. The results in Fig. 26
show that it seems existing methods leveraging sine activation func-
tion without normal are weak in handling scene data due to the
planes (wall, floor). It is interesting to extend our method for scenes
in the future.

C EXPERIMENTAL DETAILS

C.1 Evaluation metrics
To compare the performance of different reconstruction methods,
we use the same evaluation metrics as ConvONet [Songyou et al.
2020], i.e., Chamfer distances, F-Score, and Normal consistency. We
denote𝑀𝑔 and𝑀𝑝 as the ground-truth mesh (or point cloud) and
the mesh of the predicted result, respectively. Let 𝑃1 and 𝑃2 be the
randomly sampled points on the ground-truth mesh (or point cloud)
and the predicted mesh.

Chamfer Distance. The Chamfer distance between two point
clouds 𝑃1, 𝑃2 is defined as follows:

Chamfer (𝑃1, 𝑃2) =
1

2|𝑃1|
∑︁

𝑝1∈𝑃1
min
𝑝2∈𝑃2

𝑑 (𝑝1, 𝑝2)

+ 1
2|𝑃2|

∑︁
𝑝2∈𝑃2

min
𝑝1∈𝑃1

𝑑 (𝑝1, 𝑝2),
(17)

where 𝑑 (𝑝1, 𝑝2) is the straight-line distance between points 𝑝1, 𝑝2.
We use the 𝐿1 norm following ConvONet [Songyou et al. 2020].

F-Score. The F-Score between the two point clouds 𝑃1 and 𝑃2 at a
given threshold 𝑡 is given by:

F-Score (𝑡, 𝑃1, 𝑃2) =
2 Recall Precision
Recall + Precision

, (18)

where

Recall (𝑡, 𝑃1, 𝑃2) =
����{𝑝1 ∈ 𝑃1, s.t. min

𝑝2∈𝑃2
𝑑 (𝑝1, 𝑝2) < 𝑡

}����
Precision (𝑡, 𝑃1, 𝑃2) =

����{𝑝2 ∈ 𝑃2, s.t. min
𝑝1∈𝑃1

𝑑 (𝑝2, 𝑝1) < 𝑡

}���� (19)

Normal consistency. The normal consistency between two point
clouds 𝑃1, 𝑃2 is defined as follows:

NormalC. (𝑃1, 𝑃2) =
1

2|𝑃1|
∑︁

𝑝1∈𝑃1
𝑛𝑝1 · 𝑛closest (𝑝1,𝑃2 )

+ 1
2|𝑃2|

∑︁
𝑝2∈𝑃2

𝑛𝑝2 · 𝑛closest (𝑝2,𝑃1 ) ,
(20)

where

closest(𝑝, 𝑃) = argmin
𝑝′∈𝑃

𝑑
(
𝑝, 𝑝′

)
(21)

C.2 Surface reconstruction on SRB
We report the results of baselines using their official source code.
All methods leverage 2563 grids (SPSR [Kazhdan et al. 2013] and
iPSR [Hou et al. 2022] use the octree of depth 8) to extract the final
mesh. We trained DiGS and SIREN with four hidden layers, each
layer containing 256 units, and the total number of iterations is set
to 10K same as ours. More parameters of each method are used with
their default settings.
In Tab. 13, we provide the relevant comparison statistics on the

Surface Reconstruction Benchmark [Williams et al. 2019]. It can
be seen that our method achieves the best score on all the shapes
except Daratech. Fig. 27 shows the visual comparison.

C.3 Surface reconstruction on ShapeNet
We report all baselines using their code. All methods leverage 2563
grids (SPSR [Kazhdan et al. 2013], iPSR [Hou et al. 2022], and
PGR [Lin et al. 2022] use the octree of depth 8) to extract the fi-
nal mesh. We trained DiGS and SIREN with four hidden layers, each
layer containing 256 units. The total number of iterations is set to
10K. We conduct 10K iterations for DiGS and SIREN, the same as
ours, and train SAL and IGRwithin 20K iterations and 15K iterations,
respectively. For NSP [Williams et al. 2021], we follow the parame-
ters used in its main paper (1024 input points with 1024 Nyström
samples and no regularization) and set the Nyström samples to 1000
and 3000 for 1K and 3K input points, respectively, without regular-
ization.For PGR, we use the officially recommended parameters for
sparse inputs (alpha: 2, wmin: 0.04). For the supervision methods
SAP [Peng et al. 2021] and POCO [Boulch and Marlet 2022], we
retrain them with 1K points and 3K points under ShapeNet [Chang
et al. 2015], respectively. More parameters of each method follow
the default setting.

We give the comparison statistics under the settings of 1K points
and 3K points in Tab. 14 and Tab. 15, respectively. The corresponding
visual comparison is given in Fig. 28 and Fig. 29, respectively. Both
qualitative and quantitative comparisons show that our method
can faithfully recover fine geometric details and thin structures,
outperforming the other methods.

C.4 Surface Reconstruction on ABC and Thingi10K
We report the results of baselines using their source code. All meth-
ods leverage 2563 grids, and SPSR [Kazhdan et al. 2013], iPSR [Hou
et al. 2022], PGR [Lin et al. 2022], and Neural Galerkin [Huang
et al. 2022a] use the depth 8 during the mesh extraction phase. For
SAL [Atzmon and Lipman 2020] and IGR [Gropp et al. 2020], we
trained themwith 20K iterations and 15K iterations, respectively.We
conduct 10K iterations for DiGS and SIREN, the same as ours, where
the SIREN network has four hidden layers, each containing 256 neu-
rons. For PGR, we use the officially recommended parameters for
the 10K-point input (alpha: 1.2, wk: 16). For the supervision methods
POCO [Boulch and Marlet 2022] and Neural Galerkin [Huang et al.
2022a] (without normals), we retrained them with 10K points under
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Table 13. Comparison on Surface Reconstruction Benchmark.

Mean Std. Anchor Daratech DC Gargoyle Lord Quas
Chamfer ↓ F-Score ↑ Chamfer F-Score Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑ Chamfer ↓ F-Score ↑

SPSR* [Kazhdan et al. 2013] 4.36 75.87 1.56 18.57 6.93 46.14 4.20 83.22 3.40 85.89 4.37 70.65 2.85 93.60
DGP* [Williams et al. 2019] 4.87 73.34 1.64 18.56 7.56 43.04 3.85 83.05 4.85 78.79 4.84 70.40 3.26 91.45

SIREN [Sitzmann et al. 2020] 18.24 38.74 17.09 31.26 38.31 5.05 6.19 52.30 46.24 75.47 35.50 7.25 6.53 54.58
SAP [Peng et al. 2021] 6.19 57.21 1.75 11.66 8.33 46.73 7.76 48.42 5.11 60.34 4.27 75.66 5.54 54.61
iPSR [Hou et al. 2022] 4.54 75.07 1.78 19.18 7.53 44.29 4.20 83.51 3.52 84.36 4.49 69.87 2.91 93.53
PCP [Baorui et al. 2022b] 6.53 47.97 1.75 14.50 9.04 37.63 7.23 36.08 5.82 45.09 6.17 49.71 4.30 72.09
CAP-UDF [Zhou et al. 2022] 4.54 74.75 1.82 18.84 7.68 43.92 3.96 82.78 3.61 84.03 4.40 70.82 3.06 92.19
DiGS [Ben-Shabat et al. 2022] 4.16 76.69 1.44 18.15 6.63 46.52 3.62 85.54 3.32 86.11 4.19 73.34 3.04 91.86
Ours 3.76 81.38 0.98 13.73 5.31 59.32 3.75 83.89 3.28 87.05 3.84 80.09 2.64 96.46

Input PCP CAP-UDF DiGS Ours GTiPSRSAPSIRENSPSR*

Fig. 27. Visual comparison about various approaches on the Surface Reconstruction Benchmark dataset [Williams et al. 2019].

ShapeNet [Chang et al. 2015] to validate their generalization ability.
Other parameters remain the same with the default settings.

We show the visual comparison of different approaches onABC [Koch
et al. 2019] with 10K points in Fig. 30 and Fig. 31. The comparison
shows that Our method is better at recovering thin geometry fea-
tures and can achieve a good trade-off between smoothness and
feature preservation.

C.5 Real Scans
We report the results of baselines using their source code. Among
them, the supervised method Neural Galerkin [Huang et al. 2022a]
(without normals), and we retrained them with 10K points under
ShapeNet [Chang et al. 2015] to validate its generality. All methods
leverage 2563 grids to extract the mesh. We conduct 10K iterations
for DiGS [Ben-Shabat et al. 2022], PCP [Baorui et al. 2022b], and
ours. Other parameters remain the same with the default settings.

C.6 Large Scans
We report the results of baselines using their source code. All meth-
ods leverage 5123 grids to extract the mesh. We conduct 50K itera-
tions for DiGS and SIREN, where the SIREN network has four hidden
layers, each containing 256 neurons, the same as ours, For the super-
vision method Neural Galerkin [Huang et al. 2022a] (without nor-
mals), we retrained them with 10K points under ShapeNet [Chang
et al. 2015] to validate its generality. Other parameters remain the
same with the default settings.
The quantitative comparison statistics are reported in Tab. 16,

while the visual comparison is available in Fig. 33.

C.7 Shape Space Learning
Shape space learning requires training a single model to learn to
represent multiple shapes from a class of related shapes, which
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Table 14. Class-by-class comparison of the surface reconstruction quality on 1K-point clouds of ShapeNet.

airplane bench cabinet car chair display lamp loudspeaker rifle sofa table telephone watercraft mean std.

Normal C. ↑

SPSR∗ [Kazhdan et al. 2013] 90.79 87.45 92.86 91.30 90.14 94.32 91.06 93.79 94.18 91.58 88.97 96.87 91.46 91.89 4.76
NSP∗ [Williams et al. 2021] 81.87 79.43 89.33 89.49 83.16 90.42 85.70 91.50 89.22 87.01 82.38 94.43 87.74 87.05 6.05

SAL [Atzmon and Lipman 2020] 75.33 73.27 89.04 88.55 75.20 88.61 79.65 93.75 80.43 85.85 73.44 92.25 82.12 82.99 11.11
IGR [Gropp et al. 2020] 74.77 73.65 84.59 84.90 76.02 70.67 82.11 92.46 77.95 85.32 73.03 70.22 82.92 79.26 12.27
SIREN [Sitzmann et al. 2020] 84.70 76.29 74.42 75.44 80.57 83.56 85.47 73.42 83.78 72.63 78.82 88.86 80.94 79.91 8.87
DiGS [Ben-Shabat et al. 2022] 94.12 89.76 91.32 90.06 90.79 94.90 93.19 92.80 96.08 90.44 89.48 98.12 93.70 92.67 6.03
OSP [Baorui et al. 2022a] 92.16 85.66 90.72 90.64 91.67 94.19 91.38 93.48 94.17 91.13 92.26 96.91 90.24 91.89 5.52
iPSR [Hou et al. 2022] 83.41 78.82 91.28 89.93 83.86 89.47 88.94 92.72 92.87 88.73 79.62 94.00 88.61 87.88 7.26
PGR [Lin et al. 2022] 83.16 83.91 91.80 90.25 88.21 93.24 88.06 93.29 89.36 91.02 87.13 95.92 88.54 89.53 5.35

SAP+ [Peng et al. 2021] 94.52 92.53 96.17 92.41 95.17 97.35 93.46 95.15 95.22 95.41 95.66 98.44 92.51 94.92 3.60
POCO+ [Boulch and Marlet 2022] 93.65 91.96 96.20 91.29 95.23 97.38 93.18 95.06 95.91 95.77 95.59 98.62 92.45 94.79 4.15

Ours 96.04 92.20 94.92 93.17 94.93 97.77 94.75 93.58 92.86 96.01 95.81 98.83 95.41 95.10 4.04

Chamfer ↓

SPSR∗ [Kazhdan et al. 2013] 6.09 10.29 9.63 9.53 12.34 9.81 10.35 9.05 3.50 10.52 14.26 6.33 9.86 9.35 7.66
NSP∗ [Williams et al. 2021] 20.84 13.32 12.84 7.74 17.47 10.30 14.13 12.91 4.40 12.18 19.74 6.19 10.46 12.51 7.29

SAL [Atzmon and Lipman 2020] 64.90 56.83 25.53 20.98 92.43 30.14 99.07 20.59 38.40 28.57 71.88 24.37 36.80 47.46 50.57
IGR [Gropp et al. 2020] 13.20 98.42 36.03 55.19 52.71 10.54 65.54 20.19 11.22 44.93 78.41 13.10 78.88 77.68 59.55
SIREN [Sitzmann et al. 2020] 27.12 49.85 26.99 44.64 17.21 41.93 28.31 38.66 84.89 38.38 25.90 33.19 37.39 38.04 46.02
DiGS [Ben-Shabat et al. 2022] 4.17 6.37 10.72 7.39 8.70 6.29 5.59 9.90 2.53 10.04 11.15 3.22 5.11 7.01 5.52
OSP [Baorui et al. 2022a] 7.36 8.89 9.81 10.29 9.49 9.37 7.57 8.93 5.57 9.18 8.56 6.02 12.97 8.77 6.76
iPSR [Hou et al. 2022] 13.98 21.38 10.82 11.03 18.84 12.56 11.93 10.34 3.95 13.65 22.76 7.31 12.41 13.16 11.78
PGR 10.13 11.59 10.54 10.85 11.23 8.72 13.99 10.12 6.11 11.26 13.25 6.69 11.90 10.49 6.52

SAP+ [Peng et al. 2021] 3.36 3.78 4.58 6.19 4.71 3.63 4.20 6.55 2.62 4.94 5.66 2.96 7.16 4.64 3.71
POCO+ [Boulch and Marlet 2022] 4.06 4.42 4.48 6.60 4.93 3.73 4.11 5.84 2.25 4.31 5.86 2.33 6.03 4.53 4.05

Ours 2.66 4.06 5.57 4.68 5.25 3.36 3.45 9.19 2.44 4.28 4.69 2.34 3.33 4.26 3.11

F-Score ↑

SPSR∗ [Kazhdan et al. 2013] 54.28 36.69 39.63 49.11 34.55 38.94 51.89 44.16 76.85 38.52 23.76 71.35 50.08 46.91 26.06
NSP∗ [Williams et al. 2021] 33.69 29.18 21.13 44.77 19.17 36.16 39.69 28.72 69.88 26.08 18.25 59.65 43.91 36.17 21.56

SAL [Atzmon and Lipman 2020] 6.79 9.88 20.30 24.47 7.92 24.92 8.48 23.80 13.67 25.31 7.04 53.29 23.07 18.16 19.15
IGR [Gropp et al. 2020] 0.72 11.84 41.50 32.34 23.48 14.61 29.34 48.08 11.89 40.58 11.32 12.73 24.33 22.48 32.08
SIREN [Sitzmann et al. 2020] 34.92 23.14 18.97 14.56 32.50 22.94 40.34 14.60 30.34 16.00 22.52 32.29 22.16 25.02 23.52
DiGS [Ben-Shabat et al. 2022] 69.85 61.19 38.32 54.62 45.74 57.97 70.23 41.02 88.13 39.74 38.38 87.67 70.44 58.72 29.77
OSP [Baorui et al. 2022a] 40.72 51.27 46.06 35.57 42.16 47.60 58.39 43.93 47.13 52.54 43.26 81.23 28.54 47.57 23.45
iPSR [Hou et al. 2022] 27.35 24.04 32.92 43.52 24.99 33.81 50.28 39.66 72.93 35.79 18.29 64.51 43.37 39.36 25.11
PGR [Lin et al. 2022] 35.49 30.33 35.22 40.82 31.70 37.00 34.25 38.51 52.15 29.30 22.80 65.87 35.51 37.61 19.14

SAP+ [Peng et al. 2021] 82.48 78.55 70.19 67.54 72.31 80.75 77.30 51.80 88.26 73.05 54.48 93.69 65.10 73.50 25.02
POCO+ [Boulch and Marlet 2022] 78.56 74.93 74.35 68.06 72.23 83.71 80.48 60.07 91.82 77.32 57.29 94.48 68.97 75.56 26.46

Ours 90.32 79.93 74.58 75.02 72.28 89.76 85.28 54.87 89.45 80.99 74.13 96.03 83.95 80.51 21.48

OSP iPSR PGR SAP+ POCO+ GTOurs

OSP iPSR PGR SAP+ POCO+ GTOurs

SPSR* NSP* SAL IGR SIREN DiGSInput

SPSR* NSP* SAL IGR SIREN DiGSInput

Fig. 28. Visual comparison on ShapeNet [Chang et al. 2015], where the input has 1K points.

, Vol. 1, No. 1, Article . Publication date: September 2023.



Neural-Singular-Hessian: Implicit Neural Representation of Unoriented Point Clouds by Enforcing Singular Hessian • 19

Table 15. Class-by-class comparison of the surface reconstruction quality on 3K-point clouds of ShapeNet.

airplane bench cabinet car chair display lamp loudspeaker rifle sofa table telephone watercraft mean std.

Normal C. ↑

SPSR∗ [Kazhdan et al. 2013] 95.30 92.85 95.98 93.43 95.02 97.35 95.03 96.19 96.93 95.53 94.65 98.67 94.61 95.50 3.30
NSP∗ [Williams et al. 2021] 86.04 85.37 91.30 91.08 87.83 93.70 90.45 92.95 94.94 90.18 87.66 96.87 91.30 90.74 5.48

SAL [Atzmon and Lipman 2020] 77.52 78.04 90.64 90.32 79.57 91.74 86.09 94.60 86.35 90.44 77.05 97.59 87.68 86.69 9.66
IGR [Gropp et al. 2020] 74.48 73.98 88.47 86.00 75.23 76.79 83.46 92.61 78.43 82.07 73.97 82.29 83.22 80.85 11.88
SIREN [Sitzmann et al. 2020] 88.42 80.93 78.58 77.01 84.08 89.76 84.80 78.84 84.98 80.28 86.70 90.27 84.30 83.79 10.20
DiGS [Ben-Shabat et al. 2022] 97.19 93.86 94.61 93.18 93.98 97.50 95.59 96.05 98.12 96.11 94.18 99.02 96.28 95.82 4.44
OSP [Baorui et al. 2022a] 94.97 91.87 95.23 92.90 95.44 97.56 93.00 95.63 92.62 95.70 95.90 97.51 93.23 94.73 3.94
iPSR [Hou et al. 2022] 92.45 88.80 93.26 92.51 92.64 95.35 93.70 94.54 96.39 92.41 89.66 97.56 92.63 93.22 5.26
PGR [Lin et al. 2022] 85.57 86.85 94.09 91.25 91.88 95.59 90.63 95.17 91.14 93.55 91.03 97.80 90.19 91.90 4.93

SAP+ [Peng et al. 2021] 96.10 94.26 97.36 93.79 96.93 98.01 95.35 96.84 96.14 97.34 97.09 99.05 94.01 96.33 3.24
POCO+ [Boulch and Marlet 2022] 96.81 94.23 97.28 93.52 96.56 98.29 95.92 96.86 97.56 96.87 96.65 99.02 93.77 96.41 3.53

Ours 97.62 94.77 97.24 94.97 97.61 98.53 96.53 96.24 96.34 97.81 98.03 99.32 96.70 97.05 2.91

Chamfer ↓

SPSR∗ [Kazhdan et al. 2013] 2.73 4.08 5.06 6.66 5.83 4.08 3.97 6.26 1.73 5.31 6.00 2.36 6.50 4.66 4.64
NSP∗ [Williams et al. 2021] 19.44 7.61 9.57 6.07 11.75 7.08 7.33 13.65 2.45 8.24 10.14 3.82 7.96 8.85 6.96

SAL [Atzmon and Lipman 2020] 52.97 45.43 21.19 14.25 55.97 23.83 34.35 13.93 13.33 17.25 68.27 6.54 23.29 29.98 31.86
IGR [Gropp et al. 2020] 12.44 69.77 34.50 24.30 58.89 91.40 55.51 19.87 68.71 46.77 75.63 83.02 60.22 62.54 48.44
SIREN [Sitzmann et al. 2020] 26.12 38.23 33.62 42.33 23.52 17.84 46.18 34.34 65.53 23.49 21.36 30.22 42.08 34.19 46.77
DiGS [Ben-Shabat et al. 2022] 2.44 3.87 8.50 4.82 7.69 4.45 3.83 5.95 1.35 4.50 6.63 2.36 3.23 4.59 4.94
OSP [Baorui et al. 2022a] 5.85 4.40 6.02 9.28 5.97 4.20 11.91 6.63 9.09 5.09 5.74 5.15 9.06 6.80 6.61
iPSR [Hou et al. 2022] 4.17 6.08 6.35 7.22 6.97 5.40 4.27 7.20 2.10 7.28 7.81 4.60 7.84 5.95 5.97
PGR [Lin et al. 2022] 7.27 8.17 7.19 8.41 7.69 6.22 8.52 7.78 4.93 7.45 8.85 3.70 9.28 7.34 4.81

SAP+ [Peng et al. 2021] 2.63 2.82 3.79 5.89 3.78 3.46 3.40 4.76 2.37 3.11 4.13 2.07 6.48 3.75 4.16
POCO+ [Boulch and Marlet 2022] 2.00 3.64 3.76 5.30 4.02 2.93 2.47 4.13 1.37 3.91 4.99 2.18 6.40 3.62 4.21

Ours 1.84 2.61 3.59 3.61 3.77 2.84 2.34 7.46 1.35 2.97 2.93 1.84 2.90 3.08 2.64

F-Score ↑

SPSR∗ [Kazhdan et al. 2013] 90.17 76.96 67.50 69.99 65.21 81.29 79.09 56.36 95.66 70.81 61.00 94.69 69.64 75.28 25.76
NSP∗ [Williams et al. 2021] 50.61 46.86 38.65 57.83 30.18 54.11 60.14 28.52 91.31 44.29 33.47 81.70 63.80 52.42 28.55

SAL [Atzmon and Lipman 2020] 8.73 15.46 24.86 34.22 11.06 23.62 26.27 31.98 28.40 30.07 8.37 62.90 29.98 25.76 22.43
IGR [Gropp et al. 2020] 1.77 10.28 56.52 47.66 12.76 15.74 31.11 60.90 4.44 34.99 14.17 21.77 29.49 26.28 35.91
SIREN [Sitzmann et al. 2020] 45.30 29.34 17.52 15.28 39.76 45.30 42.28 16.07 44.51 22.96 26.04 47.63 27.59 32.34 30.13
DiGS [Ben-Shabat et al. 2022] 93.08 83.44 53.57 77.66 68.33 77.55 85.41 62.75 98.57 76.56 68.14 95.84 84.40 78.87 27.34
OSP [Baorui et al. 2022a] 43.02 73.47 65.35 38.96 57.37 80.52 57.39 55.29 41.30 75.01 61.78 84.08 35.03 59.12 25.82
iPSR [Hou et al. 2022] 72.59 62.60 58.69 66.97 59.01 73.75 80.01 53.79 93.43 62.92 50.46 91.29 64.98 68.42 26.36
PGR [Lin et al. 2022] 44.70 42.12 46.98 57.14 46.95 57.69 48.46 50.78 62.57 43.66 38.29 84.75 44.64 51.44 23.12

SAP+ [Peng et al. 2021] 91.88 90.83 82.41 75.20 83.54 90.65 87.47 68.85 91.63 88.56 81.13 98.21 71.93 84.79 20.94
POCO+ [Boulch and Marlet 2022] 96.21 82.62 81.33 82.85 83.37 93.08 93.74 72.98 99.30 83.13 71.51 95.31 74.99 85.42 33.13

Ours 98.75 93.13 89.08 85.80 86.56 94.42 92.12 74.05 97.69 91.17 89.79 99.49 87.21 90.71 16.28

SPSR* NSP* SAL IGR SIREN DiGSInput

SPSR* NSP* SAL IGR SIREN DiGSInput

OSP iPSR PGR SAP+ POCO+ GTOurs

OSP iPSR PGR SAP+ POCO+ GTOurs

Fig. 29. Visual comparison the ShapeNet [Chang et al. 2015], where the input has 3K points.
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SPSR*Input SAL IGR SIREN Neural-Pull SAP

SPSR*Input SAL IGR SIREN Neural-Pull SAP

DiGS iPSR PGR POCO+ NG+ Ours GT

DiGS iPSR PGR POCO+ NG+ Ours GT

Fig. 30. Visual comparison about different approaches on ABC [Koch et al. 2019] with 10K points. Our method is better at recovering thin geometry features.

is more challenging than the single overfitting shape. For the en-
coder, we adopt the encoder from Convolutional Occupancy Net-
work [Songyou et al. 2020]. Specifically, we project the sparse on-
surface point features obtained using a modified PointNet [Qi et al.
2017] onto a regular 3D grid, then use a convolutional module to
propagate sparse on-surface point features to the off-surface area,
and finally obtain the query feature using bilinear interpolation. For
the decoder, we use the SIREN network has three hidden layers. Fur-
ther, we adopt the FiLM conditioning [Chan et al. 2021] that applies
an affine transformation to the network’s intermediate features as
SIREN is weak in handling high-dimensional inputs [Chan et al.
2021; Mehta et al. 2021]. We train our models for 200 epochs using
AMSGrad optimizer [Reddi et al. 2018] with an initial learning rate
of 0.0001 and decay to 0.000001 using cosine annealing [Loshchilov
and Hutter 2017]. We divided the training set into mini-batches: a
batch contains 32 different shapes (accumulate batches), where each
shape is randomly sampled to produce 10K points. The experiments
are conducted with 8 RTX 3090 graphics cards. In the inference
stage, we fine-tune the whole network to perform high-fidelity sur-
face reconstruction for each shape 3000 iterations utilizing our loss
without the critical term inspired by SA-ConvNet [Tang et al. 2021b].

For baselines, we use the pre-trained model of IGR [Gropp et al.
2020], SAL [Atzmon and Lipman 2020], SALD [Atzmon and Lipman
2021], DualOctreeGNN [Wang et al. 2022] and DiGS [Ben-Shabat
et al. 2022], and retrained the IGR and DualOctreeGNN for the ver-
sion without normals supervision. We optimize DiGS [Ben-Shabat

et al. 2022] in the inference stage with 3000 iterations for auto-
decoder looking forward to better performance.

The visual comparison of different approaches on theDFAUST [Bogo
et al. 2017] dataset is available in Fig. 32.
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