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Fig. 1. Given a single RGB image of a clothed human (a), the proposed algorithm can accurately recover the underlying garment sewing pattern (b), leading to
wide applications in virtual/augmented reality, for example, 3D garment mesh reconstruction (c) and 3D garment editing in terms of garment texture (d),
human shape (e), and human pose (f).

Garment sewing pattern represents the intrinsic rest shape of a garment,
and is the core for many applications like fashion design, virtual try-on,
and digital avatars. In this work, we explore the challenging problem of
recovering garment sewing patterns from daily photos for augmenting these
applications. To solve the problem, we first synthesize a versatile dataset,
named SewFactory, which consists of around 1M images and ground-truth
sewing patterns for model training and quantitative evaluation. SewFactory
covers a wide range of human poses, body shapes, and sewing patterns,
and possesses realistic appearances thanks to the proposed human texture
synthesis network. Then, we propose a two-level Transformer network
called Sewformer, which significantly improves the sewing pattern predic-
tion performance. Extensive experiments demonstrate that the proposed
framework is effective in recovering sewing patterns and well generalizes
to casually-taken human photos. Code, dataset, and pre-trained models are
available at: https://sewformer.github.io.
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1 INTRODUCTION
In this paper, we study the problem of estimating garment sewing
patterns from a single RGB image (Fig. 1). A garment sewing pat-
tern [Bang et al. 2021; Korosteleva and Lee 2021, 2022] is a collection
of 2D polygons called panels that can be stitched together to form a
garment. It represents the intrinsic rest shape of a garment disentan-
gled from the undesirable complicacy induced by extrinsic factors,
such as external physical forces, collisions, and fabric properties.
Moreover, it is parametric and thus allows direct and interpretable
control over the garment design.

Existing works on sewing pattern reconstruction mainly rely on
rich 3D information as input, such as high-quality 3D scans [Bang
et al. 2021] or point clouds [Korosteleva and Lee 2022] which are
not accessible for general users, limiting their applications in many
practical scenarios. In this work, we focus on a more challenging
task: estimating sewing patterns from a single image, which can
be obtained with only a regular camera or from monocular human
photos on the Internet. The estimated sewing pattern enables more
accessible garment manipulation, such as clothes draping on novel
body poses, and flexible editing of the shape of a captured garment,
and further benefits many downstream applications in metaverse,
such as virtual try-on, garment design, and avatar creation. However,
this problem is very challenging and is still less explored due to
both the inherent ill-posedness of 2D-to-3D conversion and the
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complicacy of real-world conditions, such as varied camera views,
challenging human poses, and occlusions.
Currently, among the few works in this direction, most of them

adopt optimization-based approaches for sewing pattern recon-
struction from images [Jeong et al. 2015; Yang et al. 2018]. Though
achieving good results by imposing heuristic rules and priors, these
methods are typically slow in inference due to the time-consuming
optimization process, less user-friendly due to the difficulty of hyper-
parameter tuning for different images, and susceptible to real-world
inputs where the manually-designed rules could be violated. Re-
cently, Chen et al. [2022a] propose a deep neural network for recov-
ering sewing patterns. Nevertheless, this method does not consider
the variations in garment types, human poses, and textures of real-
world photos, and thereby cannot generalize well to in-the-wild
data.

In this work, we target a data-driven framework for efficient and
generalizable sewing pattern reconstruction using a single image.
There are two major challenges for building such a framework.
First, there is a lack of suitable training data. Existing garment
datasets either do not have sewing pattern annotations [Zhu et al.
2020] or are insufficiently diverse and realistic in terms of clothes
appearances and human poses [Korosteleva and Lee 2021]. To close
this gap, we synthesize a new large-scale dataset, called SewFactory.
SewFactory consists of one million image-and-sewing-pattern pairs
with diverse garments under a wide range of human shapes and
poses, facilitating more effective model training and evaluation. In
order to synthesize such a dataset, a common challenge faced by
many recent datasets [Bertiche et al. 2020; Korosteleva and Lee
2021] is that the rendered human body lacks photorealistic textures.
A simple solution to this problem is to directly apply pre-scanned
human textures [Varol et al. 2017] onto human meshes. However,
this approach often leads to low-quality appearances and artifacts
due to poor scan quality, low human diversity, and 3D discontinuity
in UV mapping. To address this issue, we develop a novel neural
network for textured human synthesis, which enhances our dataset
by adding more realistic skin, faces, and hair. Besides, SewFactory
has abundant high-quality annotations, including depth maps, 3D
human shapes and poses, garment meshes and textures, and 3D
semantic segmentation labels, which could potentially benefit other
tasks in Metaverse beyond this work.
The second challenge is that the data structures of sewing pat-

terns are highly irregular and vary significantly across different
samples. Specifically, different garments may consist of different
numbers of panels, and different panels may be enclosed by differ-
ent numbers of edges. Moreover, estimating the stitch information,
i.e., how individual edges of panels are connected to each other,
further complicates the problem. To handle this issue, we propose
a two-level Transformer network, called Sewformer, which aligns
more closely with the data structure of sewing patterns. It sepa-
rately learns the panel and edge representation in a hierarchical
manner and thereby achieves higher-quality results than the exist-
ing baseline models. In addition, we propose a new panel shape loss
as well as an SMPL-based regularization loss for network training,
which helps the proposed Sewformer learn from the large amount
of training data more effectively.
To summarize, our contributions are as follows:

3D human 
shape and pose

Depth Garment 
mesh

NormalSegmentation 
map

DenseposeRGB Sewing 
pattern

Fig. 2. Annotations of the SewFactory dataset.We generate around one
million RGB images where each is annotated with diverse ground-truth
labels in the figure, supporting a wide variety of tasks in computer vision
and graphics.

• We study the challenging problem of sewing pattern recon-
struction from a single unconstrained human image. We
make early explorations to solve this problem and introduce
Sewformer, a novel two-level Transformer network, which
achieves high-quality results for sewing pattern reconstruc-
tion from an image.

• To facilitate effectivemodel training and evaluation, we present
SewFactory, a versatile and realistic dataset comprising ap-
proximately onemillion image-and-sewing-pattern pairs. This
dataset offers diverse clothing styles and human poses, en-
abling improved model performance.

• To improve the quality of our data, we develop a novel method
for human texture synthesis. This method generates diverse
and photorealistic human images under challenging poses,
contributing to the realism and diversity of our dataset.

• We propose new loss functions that improve the training of
Sewformer, further enhancing the quality of the reconstructed
garment panels.

2 RELATED WORK

2.1 Garment Sewing Pattern Reconstruction
Existing works for garment sewing pattern reconstruction can be
roughly categorized into 3D-based [Bang et al. 2021; Chen et al. 2015;
Goto and Umetani 2021; Hasler et al. 2007; Korosteleva and Lee 2022;
Liu et al. 2018] and image-based approaches [Chen et al. 2022a; Jeong
et al. 2015; Wang et al. 2018a; Yang et al. 2018], depending on their
input type.

3D-based sewing pattern reconstruction. Early approaches in this
direction use either template matching [Chen et al. 2015; Hasler
et al. 2007] or surface flattening [Bang et al. 2021; Sharp and Crane
2018] for sewing pattern reconstruction from point clouds or 3D
meshes of dressed humans. More recently, some researchers have
explored data-driven methods for recovering sewing patterns from
3D data [Goto and Umetani 2021; Korosteleva and Lee 2022]. Goto
and Umetani [2021] propose a deep convolutional neural network
(CNN) [Isola et al. 2017] together with exponential map [Schmidt
et al. 2006] for garment panel reconstruction. Korosteleva and Lee
[2022] propose NeuralTailor, which employs a hybrid network archi-
tecture for recovering the garment panels and stitching information
from point clouds. While these methods have achieved good results,
their reliance on high-quality 3D input data limits their usage in
many applications where 3D sensors are not accessible.
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Table 1. Comparison of the proposed SewFactory dataset with existing datasets. SewFactory is the first large-scale dataset that provides sewing pattern
annotations along with high pose variation and realistic garment and human textures. “#Garment” denotes the number of garment instances. “Pose Var”
indicates the level of pose variation exhibited in the dataset, with “None” denoting that all human is in a fixed T-pose. “G-Texture Var” and “H-Texture Var”
represent garment texture and human texture variations, respectively.

Dataset Real/Syn #Garment Pose Var Sewing Pattern G-Texture Var H-Texture Var

MGN [Bhatnagar et al. 2019] Real 712 Low ✘ Low Low
DeepFasion3D [Zhu et al. 2020] Real 563 Low ✘ Low None
3DPeople [Pumarola et al. 2019] Syn 80 High ✘ Low Low
Cloth3D [Bertiche et al. 2020] Syn 11.3k High ✘ High Low
Wang et al. [Wang et al. 2018a] Syn 8k None ✔ Low None
Korosteleva and Lee [Korosteleva and Lee 2021] Syn 22.5k None ✔ Low None
SewFactory Syn 19.1k High ✔ High High

Image-based sewing pattern reconstruction. Due to the intrinsic
difficulties of sewing pattern reconstruction from 2D data, there
are only a limited number of studies in this area [Chen et al. 2022a;
Jeong et al. 2015; Wang et al. 2018a; Yang et al. 2018]. Jeong et al.
[2015] estimate sewing patterns from a single image by predicting
the garment type and the primary body sizes via searching in a pre-
defined database. However, this method is less efficient due to the
exhaustive search process and does not generalize well for poses that
are not in the database. Yang et al. [2018] recover sewing patterns by
estimating panel parameters with iterative optimization [Kennedy
and Eberhart 1995]. Nevertheless, this method requires different
templates for different garment types and relies on tedious prepro-
cessing and registration steps, which can be both computationally
intensive and error-prone. Wang et al. [2018a] propose an encoder-
decoder network for sewing pattern recovery from sketch images.
However, this approach requires training separate models for differ-
ent garments, making it less practical for handling a wide range of
garment types in real-world scenarios. In addition, it is primarily
designed for sketch images and cannot be easily applied to natural
human photos. More recently, Chen et al. [2022a] propose a CNN-
based model that can predict garment panels from a single image
for multiple garment types. To handle the irregular data structure
of various garment panels, this method employs PCA to simplify
the panel data structure. However, this approach is only designed
for predefined panel groups, restricting the output garment space.
Moreover, due to the limitation of existing garment datasets, it only
works well for human images in a standard T-pose, and its per-
formance degenerates significantly for in-the-wild images that are
captured under unconstrained poses. Unlike the above methods, we
propose a new model called Sewformer, which together with the
proposed SewFactory dataset, can effectively handle the irregular
structures of various garment panels without PCA compression and
generate high-quality results for unconstrained human images with
diverse shapes and poses.

3D garment mesh reconstruction from images. This work is also
related to recent works on image-based 3D garment mesh recon-
struction [Moon et al. 2022; Patel et al. 2020; Saito et al. 2019, 2020;
Tiwari and Bhowmick 2021; Wang et al. 2018b; Zhao et al. 2021;
Zhu et al. 2020]. These methods mainly train deep neural networks
to directly regress the garment mesh from images, which can well

reconstruct the coarse garment shape but struggle to produce real-
istic geometry details. Moreover, most of these works suffer from
over-smoothing artifacts in the areas invisible to the camera. In
contrast, our work provides a new paradigm for image-based 3D
garment mesh reconstruction, which first recovers sewing patterns
from the image and then generates 3D garment mesh with the re-
covered patterns using an off-the-shelf simulation engine. This new
paradigm is closer to the real physical process of constructing a
posed garment. Therefore, it can achieve higher-quality 3D garment
reconstruction with realistic geometry details and produce physi-
cally plausible results even for the occluded areas. This paradigm is
also highly flexible for garment editing and character animation.

2.2 Garment Datasets
Garment data plays a key role in building data-driven models for
sewing pattern recovery. There are mainly two types of garment
datasets: 3D scanning and physical simulation. The first type is con-
structed by capturing real garments with 3D scanners [Bhatnagar
et al. 2019; Ma et al. 2020; Tiwari et al. 2020; Zhang et al. 2017; Zhu
et al. 2020]. While possessing realistic appearances and dynamics,
these datasets are limited in size due to the high cost of 3D scanning.
For example, a typical dataset of this kind, DeepFasion3D [Zhu et al.
2020], comprises only 563 scanned garments, which is relatively
small for training generalizable deep neural networks. The second
type of garment datasets uses physical simulation engines for data
synthesis [Bertiche et al. 2020; Hewitt et al. 2023; Jiang et al. 2020;
Pumarola et al. 2019], which overcomes the limitations of 3D-scan-
based datasets and allows for the generation of larger amounts of
garment data at a much lower cost. Nevertheless, most of these
datasets lack sewing pattern labels and thus are not suitable for
our task. Among the few existing datasets that do provide sewing
patterns, [Narain et al. 2012] and [Wang et al. 2018a] do not have
a diverse range of garment panels; although [Korosteleva and Lee
2021] provides various panel templates with different topologies, it
does not consider the complex textures and materials of real-world
garments and only simulates the garments on a fixed T-pose human
model without a realistic human texture, which leads to a significant
domain gap with real-world images, hindering the generalization
ability of trained models.
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To address these issues, we contribute a new synthetic garment
dataset by sampling more sewing patterns and simulating the gar-
ments on a wide range of human shapes and poses. We augment the
dataset by adding realistic garment textures and material properties
to mimic daily human photographs. We also introduce a human
texture synthesis network to generate diverse and realistic human
appearances, which further improves the quality of our data. The
proposed dataset provides various high-quality ground-truth labels,
such as sewing patterns, segmentation masks, 3D human shape and
pose, and garment meshes, making it useful for a wide variety of
applications in fashion research and industry.

2.3 Textured Human Synthesis
Asmentioned above, we propose a human texture synthesis network
to generate photorealistic human images for our garment dataset.
Since generating realistic textures plays an important role in many
applications, such as human avatar creation, it has attracted great
interest in recent years [Albahar et al. 2021; Fu et al. 2022; Lassner
et al. 2017; Sarkar et al. 2021a,b, 2020; Wang et al. 2019; Weng et al.
2020; Xian et al. 2018; Xiang et al. 2022; Zhang et al. 2020].

Some works for this problem aim to generate realistic textured hu-
manwith clothed human images as exemplars based on the full-body
sketch, segmentation mask, or pose-aware representations [Albahar
et al. 2021; Sarkar et al. 2021a, 2020; Xian et al. 2018; Zhang et al.
2020]. Meanwhile, another line of work synthesizes textured human
from some pre-defined attributes [Weng et al. 2020] or from ran-
domly sampled noise with GAN architecture [Fu et al. 2022; Sarkar
et al. 2021b].

Recently, some works focus on generating texture maps that are
3D-aware or can be directly utilized on 3D human meshes [Alldieck
et al. 2019; Bhatnagar et al. 2019; Chaudhuri et al. 2021; Chen et al.
2022b; Grigorev et al. 2021; Han et al. 2019; Huang et al. 2020; La-
zova et al. 2019; Saito et al. 2020; Xu and Loy 2021; Yang et al.
2022; Zhao et al. 2020]. Among them, reconstruction-based meth-
ods [Alldieck et al. 2019; Bhatnagar et al. 2019; Huang et al. 2020;
Lazova et al. 2019; Saito et al. 2020; Zhao et al. 2020] aim to predict
the 3D geometry (e.g. normal) from RGB images. Some methods
instead generate 3D-aware textures [Han et al. 2019] or full-body
textured humans [Grigorev et al. 2021; Yang et al. 2022] by using
garment templates or body shape and pose.

A major difference between these methods and our work is that
to build the garment dataset, we are supposed to keep the simulated
garments unchanged while synthesizing the human textures for
the target pose. This introduces additional challenges, as we need
to generate humans with realistic skin and hair while maintaining
challenging or even out-of-distribution poses without altering their
corresponding garments. To fulfill these requirements, we devise a
novel human texture synthesis network that introduces a learnable
texture encoding, which facilitates effective texture extraction and
warping.

3 SEWFACTORY DATASET
We present a new dataset, SewFactory, for sewing pattern recovery
from a single image. A comprehensive comparison between Sew-
Factory and other existing garment datasets can be found in Table 1.

Simulator Human texture 
synthesis

Z

Texture

3D human

Pz ~

Sewing pattern

Fabric

AMASS θ, β~
Simulated garment Clothed human

Garment parameter

SMPL

Fig. 3. Overview of the proposed data synthesis pipeline. We first
generate high-quality garments under different human shapes and poses
with physical simulation and then synthesize realistic human body textures
with a novel neural network.

Notably, SewFactory possesses high pose variability and a diverse
range of garments and human textures, which effectively closes the
domain gap with real-world inputs. Moreover, SewFactory provides
abundant ground-truth labels as shown in Fig. 2, which could poten-
tially benefit many applications even beyond the task in this work.
The whole pipeline for dataset generation is shown in Fig. 3, which
consists of two main steps: garment simulation and human texture
synthesis.

3.1 Garment Simulation
In this step, we start by sampling a set of garment parameters,
including sewing patterns, textures, and fabrics, as well as human
body parameters. These parameters are then used to synthesize
garments with a physical simulator [Choi and Ko 2002].
We use the templates in [Korosteleva and Lee 2021] to generate

the sewing patterns, which cover a wide range of garment shapes
and topologies. We first uniformly sample template parameters such
as the sleeve length and hem width, and then generate the sewing
pattern of each garment with the templates similar to [Korosteleva
and Lee 2021]. A sewing pattern is composed of two parts: a group of
𝑁𝑃 panels {𝑃𝑖 }𝑁𝑃

𝑖=1 and their stitching information 𝑆 . Each panel 𝑃𝑖
is a closed 2D polygon encompassed by a list of 𝑁𝑖 edges {𝐸𝑖, 𝑗 }𝑁𝑖

𝑗=1.
Each edge 𝐸 is a Bezier curve that can be represented by four scalars
𝑥,𝑦, 𝑐𝑥 , 𝑐𝑦 , where (𝑥,𝑦) is the 2D vector from the start to the end
of the edge, and (𝑐𝑥 , 𝑐𝑦) is the control point of the Bezier curve
defined in a local coordinate system. In addition, each panel 𝑃𝑖 is
associated with a 3D rotation 𝑅𝑖 ∈ SO(3) and a translation 𝑇𝑖 ∈ R3,
which describe the relative pose and position between the panel 𝑃𝑖
and the human body. 𝑅𝑖 and 𝑇𝑖 are used in the physical simulation
process of cloth draping. The stitching information 𝑆 is defined by
pairs of edges {(𝑖, 𝑗), (𝑖′, 𝑗 ′)} indicating that the 𝑖-th panel’s 𝑗-th
edge is sewn with the 𝑖′-th panel’s 𝑗 ′-th edge.

To simulate a diverse range of garment data, we assign a unique
set of material parameters to each sample, corresponding to a unique
fabric object and textile image. We utilize three commonly-used
fabric presets, namely cotton, silk, and velvet, as the basic fabric
types. Each fabric encompasses various properties specific to that
fabric type, and we introduce random perturbations to the property
values to simulate garments with different levels of shininess, elas-
ticity, and other fabric-specific characteristics. In order to enhance
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the appearance diversity of the simulated garments, we curate a col-
lection of approximately 600 textile images with free license. These
images serve as the source texture, to which we apply random aug-
mentations, such as scaling and color jittering, to expand the range
of visual appearances.
We use the Qualoth simulator [Choi and Ko 2002] to simulate

the garment dynamics. During the simulation, we randomly pair up
the top and bottom garments, such as T-shirts and pants, to form
garment sets, and then drape each garment set onto a unique 3D hu-
man model. The 3D human model is parameterized by SMPL [Loper
et al. 2015], which uses two parameters 𝛽 ∈ R10 and 𝜃 ∈ R24×3 to
control the 3D human shape and pose. To ensure a sufficient amount
of variation in pose, we sample 13.7k poses from the AMASS dataset
[Mahmood et al. 2019] which are further interpolated into more
poses using Maya [Autodesk, INC. 2019]. For each pose, we ran-
domly sample a shape parameter 𝛽 from a uniform distribution
within the range of [-1.5, 1.5]. This is in sharp contrast to exist-
ing datasets [Korosteleva and Lee 2021; Wang et al. 2018a] that
only consider garments under a fixed T-pose template, leading to a
significant domain gap with real-world photos.
For each simulated garment, we render 24 views from cameras

uniformly distributed around the human body using Arnold ren-
derer [Georgiev et al. 2018]. In some rare cases, the simulator pro-
duces inappropriate simulation results, such as with wrong sizes
or self-intersection, which are manually removed. Overall, the gar-
ment simulation leads to around onemillion RGB images with paired
sewing pattern labels, where 85k images are used for testing, and
the remaining is used for training. Our data splitting ensures no
garment or pose is repeated in training and testing.

3.2 Human Texture Synthesis
While the proposed simulation system is able to produce high-
quality garments and sewing patterns, the generated images still
suffer from an important shortcoming that the rendered human
body lacks photorealistic textures (Fig. 4 (a)). Note that this is a com-
mon challenge faced by many recent datasets [Bertiche et al. 2020;
Korosteleva and Lee 2021]. A simple solution to this problem is to di-
rectly apply pre-scanned human textures, e.g., SURREAL [Varol et al.
2017], onto human meshes. However, this approach often leads to
low-quality results (Fig. 4 (b)) due to noise and artifacts in scanning,
limited human diversity, and 3D discontinuities in UV mapping. To
address this issue, we develop a deep neural network for human tex-
ture synthesis, which enhances our dataset by adding more realistic
skin, faces, and hair. As shown in Fig. 4 (c), this network allows us
to greatly improve the realism and overall quality of the generated
images. Instead of creating human textures from scratch, we utilize
images of real humans [Liu et al. 2016] as a reference. This simplifies
our task by reducing it to transferring the texture of a real human
(Fig. 4 (e)) to the target pose (Fig. 4 (f)). Specifically, given a refer-
ence image 𝑅img ∈ R3×𝐻×𝑊 where 𝐻 and𝑊 are the height and
width of the image, we aim to extract the appearance information
of 𝑅img and then apply it to the target pose 𝑇pose ∈ R3×𝐻×𝑊 . We
use Densepose [Güler et al. 2018] to represent the target pose, as
we find it better represents the semantic information of different
pixels of the human body.

(b) SURREAL(a) w/o texture (c) Ours (d) Ours w/o diff (e) Reference (f) Target pose

Fig. 4. Comparison of different human textures. (a) Original simulation
output that does not have human texture; (b) textured human by using
pre-scanned SURREAL texture [Varol et al. 2017]; (c) our result; (d) our result
without diffusion editing. Instead of creating human textures from scratch,
we synthesize textured human by transferring the texture of a reference
image (e) to the target pose (f).

One straightforward approach to this texture transfer task is to
directly concatenate 𝑅img and 𝑇pose and then feed the concatenated
input into a deep CNN to generate the desired human image. How-
ever, this method has a major drawback in that it cannot accurately
preserve the target pose, resulting in artifacts due to mismatch with
the simulated garment. Moreover, it tends to overfit training poses
and degenerates severely on out-of-distribution poses in test data.
To address this issue, we propose to first extract the texture map of
the human body and then warp the texture to the target pose. An
overview of the proposed framework for textured human synthesis
is shown in Fig. 5, which is comprised of three stages as below.

3.2.1 Neural texture extraction. At the core of the texture extraction
stage is the texture extractor in Fig. 5. It maps a texture encoding
𝑇enc ∈ R𝐷×𝑁p×𝐻tex×𝑊tex to a texture map 𝑇tex ∈ R𝐷×𝑁p×𝐻tex×𝑊tex

by aggregating the information from the reference image 𝑅img,
where 𝐻tex,𝑊tex, 𝐷 are the height, width, and number of channels
of the texture map, and 𝑁p is the number of body parts defined in
Densepose [Güler et al. 2018].𝑇tex can be seen as a generalization of
the UV map in [Xu and Loy 2021], which describes the 3D textures
of different body parts. 𝑇enc is a learnable encoding tensor that is
randomly initialized and shared across different samples. Similar
to [Xu and Loy 2021], we first use a deep CNN encoder to convert
𝑅img into feature space. Then texture extractor exploits the cross
attention mechanism to non-locally distribute the information of
𝑅img into 𝑇tex. Next, we warp the learned texture features 𝑇tex to
the target pose 𝑇pose with bilinear sampling, which generates the
warped features 𝑇warp ∈ R𝐷×𝐻×𝑊 . Our neural texture extraction
approach ensures the synthesized human body always conforms to
the target pose, resulting in a proper fit for the simulated garment.
In addition, as the texture extractor is decoupled from the target
pose, our method is less susceptible to out-of-distribution test poses.

3.2.2 Human synthesis. While one can use𝑇warp as the final output
(by setting 𝐷 = 3), it often leads to low-quality head regions as the
Densepose is not capable of precisely depicting the human head.
Instead, we generate the textured human 𝑇human with another deep
CNN (“Texture synthesis” in Fig. 5) under the guidance of the head
part of the reference image, denoted by 𝑅head. We adopt the U-Net
architecture [Ronneberger et al. 2015] for the texture synthesis CNN,
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Encoder Texture
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Texture
warping

Texture
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Mask 
fusion

Diffusion
editing

Reference image Texture encoding 

Learned texture 

Target pose 

Reference head 

Simulated garment 

Synthesized image Final output 

Neural texture extraction Human synthesis Post-processing

Fig. 5. Overview of the proposed framework for human texture synthesis. First, we use a shared texture encoding𝑇enc to extract texture features𝑇tex
from the reference image 𝑅img and then warp these features to the target pose𝑇pose. Next, we generate textured human𝑇gen by first mapping the warped
features𝑇warp to RGB human textures𝑇human and then fusing𝑇human with the simulated garment𝑇garment with mask fusion. Finally, we employ a diffusion
editing module to further refine the synthesized result.

and the guidance information of 𝑅head is injected with the adaptive
normalization of StyleGAN [Karras et al. 2019].With the synthesized
human body𝑇human, we can generate the clothed human image with
mask fusion:

𝑇gen = 𝑇human · (1 −Mask) +𝑇garment ·Mask,

where𝑇garment andMask are the garment texture andmask obtained
from the simulation system.
We train our network with a combination of pixel-wise loss,

perceptual loss [Johnson et al. 2016], feature-matching loss [Xu et al.
2017], and adversarial loss [Goodfellow et al. 2020].

3.2.3 Post-processing. As shown in Fig. 4 (d), the direct output𝑇gen
from the human synthesis network still contains a considerable
amount of artifacts and distortions. To further improve the quality
of the generated human, we employ diffusionmodels [Rombach et al.
2022] as a powerful image prior for post-processing. Specifically,
we follow the SDEdit framework [Meng et al. 2021] to refine the
human images. We first perturb the synthesized image 𝑇gen with a
moderate ratio of Gaussian noise and then progressively remove
the noise with a denoising network, which effectively improves
the realism of the final output 𝑇out (Fig. 4 (c)) and closes the gap
with real human photos. Eventually, the proposed data generation
pipeline enables highly diversified results with various poses and
realistic appearances as shown in Fig. 6.

4 SEWING PATTERN RECONSTRUCTION
As introduced in Section 3.1, the sewing pattern in our SewFactory
dataset has a highly irregular data structure, making it unsuitable
for the commonly-used deep CNNs that are primarily designed for
regular data structures. Instead, we propose a new model, called
Sewformer, to better accommodate this data. We also propose new
loss functions to facilitate training of Sewformer.

4.1 Architecture
An overview of Sewformer is shown in Fig. 7. It consists of three
main components: (a) a visual encoder to learn sequential visual
representations from the input image, (b) a two-level Transformer

Fig. 6. Example results of human texture synthesis. The proposed algo-
rithm generalizes well to various challenging poses in the black boxes.

decoder to obtain the sewing pattern in a hierarchical manner, and
(c) a stitch prediction module that recovers how different panels are
stitched together to form a garment.
One of the key designs of our work is the two-level structure of

the Transformer decoder. It provides a simple yet effective way to
handle garment sewing patterns. This design is novel and has not
been previously applied to the task of garment reconstruction.

4.1.1 Visual encoder. To use Transformers for sewing pattern re-
construction, we employ the visual encoder to convert the input
image into sequential data. Specifically, we first generate a low-
resolution feature map 𝐹 ∈ R𝐶×𝐻𝐹 ×𝑊𝐹 from the input image with
a CNN backbone (ResNet-50 [He et al. 2016] in our experiments).
Then we serialize 𝐹 by reshaping it into𝐶 × 𝐻𝐹𝑊𝐹 where the spatial
dimensions are flattened in 1D. These serialized features are sub-
sequently processed by a Transformer encoder to learn the visual
tokens 𝐹vis ∈ R𝐶×𝐻𝐹𝑊𝐹 , where each encoder layer consists of a
standard multi-head self-attention module and an MLP similar to
[Vaswani et al. 2017].
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Fig. 7. Overview of the proposed Sewformer. We first send the input image into a visual encoder (a) to generate a sequence of visual tokens. Then the
visual tokens are fed into a two-level Transformer decoder (b) to produce panel-level and edge-level feature tokens, which are subsequently used to recover the
garment panels. The edge features are also used to estimate the stitching relations via the stitch prediction module (c).

4.1.2 Two-level Transformer decoder. Based on the learned visual
tokens 𝐹vis, we propose a two-level Transformer decoder to recover
the garment panels {𝑃𝑖 }𝑁𝑃

𝑖=1 that are introduced in Section 3.1. As
shown in Fig. 7, the first level (panel decoder) is designed to ex-
tract the overall information of the panels; the second level (edge
decoder) is dedicated to learning the specific shapes of the panels by
recovering the edge information. As will be shown in Section 5, com-
pared to normal Transformers that only have a one-level decoder,
the proposed Sewformer considers the two-level (panel and edge)
characteristics of sewing patterns and is able to more effectively
recover the garments in a coarse-to-fine manner.
For the panel decoder, we first randomly initialize 𝑁𝑃 panel

queries {𝑄𝑖
P}

𝑁𝑃

𝑖=1 with Gaussian distribution. These panel queries
are trained using backpropagation along with the whole model. We
predict the panel tokens {𝐹 𝑖

𝑃
}𝑁𝑃

𝑖=1 by applying a multi-head cross-
attention layer between the queries 𝑄𝑖

𝑃
and the visual tokens 𝐹vis:

𝐹 𝑖𝑃 = CrossAttention(𝑄𝑖
P, 𝐹vis). (1)

Then we can use an MLP to predict the 3D rotation and translation
of the panels, i.e., 𝑅𝑖 ,𝑇𝑖 = MLP(𝐹 𝑖

𝑃
).

Similar to the panel decoder, we initialize a set of random query
embeddings for all the panel edges in the edge decoder which are
learned in training. We use a maximum number of panel and edge
queries and remove invalid predictions during inference (edges with
lengths near zero and panels with fewer than three edges). Then
we combine each edge query with its corresponding panel feature
using element-wise sum and pass the combined embeddings into an
MLP to obtain the final edge queries. In this way, the edge queries

belonging to the same panel share the same panel feature, which
facilitates producing consistent edges.

Furthermore, the coarse-to-fine learning process, which progresses
from panel to edge, effectively alleviates the difficulties in training,
while directly learning a large number of edges could be overwhelm-
ing and lead to undesirable local minimums.

Similar to Eq. 1, we feed the edge queries and visual tokens into a
cross-attention layer to generate each edge token 𝐹 𝑖 𝑗

𝐸
(corresponding

to the 𝑗-th edge of the 𝑖-th panel). The edge tokens are then used in
an MLP to predict the Bezier edge parameter 𝐸𝑖, 𝑗 = MLP(𝐹 𝑖 𝑗

𝐸
).

4.1.3 Stitch prediction. Our stitch prediction module is similar to
that of NeuralTailor [Korosteleva and Lee 2022]. As introduced in
Section 3.1, the stitches are defined by pairs of edges from different
panels. Since stitched two edges typically have similar features, such
as orientations and spatial locations, we predict whether two edges
form a stitch based on the similarity between the edge features. As
shown in Fig. 7, we first construct the similarity matrix between
all pairs of edges in the predicted sewing pattern using the learned
edge tokens as stitch tags and then obtain the stitch predictions by
iteratively finding the maximum values in the matrix. Specifically,
since the similarity matrix is symmetric, we first remove its lower
triangular part. We identify the maximum value of the remaining
entries and then eliminate the corresponding row and column. This
process is iterated until all the stitches are determined.

4.2 Loss Function
Our training objective is composed of three parts: a panel prediction
loss, a stitch prediction loss, and an SMPL-based regularization term:
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Ltotal = 𝜆1Lpanel + 𝜆2Lstitch + 𝜆3LSMPL, (2)

where 𝜆1, 𝜆2, 𝜆3 are hyperparameters to balance each term. We use
a stitch prediction loss Lstitch similar to [Korosteleva and Lee 2022],
and the other two terms are explained below.

4.2.1 Panel prediction loss. The panel prediction loss consists of
three terms: 1) the shape loss Lshape to encourage high-fidelity
shapes of the reconstructed panels; 2) the loop loss Lloop to en-
force that the edges of a panel form a closed loop; 3) the rotation
and translation loss LRT to encourage accurate 3D rotation and
translation predictions:

Lpanel = Lshape + Lloop + LRT, (3)

where Lloop and LRT are defined the same way as NeuralTailor [Ko-
rosteleva and Lee 2022].
For the shape loss, a straightforward choice is to use the one

in NeuralTailor [Korosteleva and Lee 2022] as well, which directly
penalizes the L2 distance between the predicted edge and the ground-
truth edge (solid blue lines in Fig. 8(a)). Nevertheless, we find that
this is not always an adequate measure of shape discrepancy be-
tween different panels. For instance, despite the shape of Prediction-
1 in Fig. 8(b) being closer to the ground truth in Fig. 8(a) than
Prediction-2 in Fig. 8(c), the two predictions yield the same value
for the per-edge loss Lshape-NT.
An important cause for this problem is that the per-edge loss

only provides 1D comparisons (lines) between the prediction and
the ground truth, resulting in sparse and implicit supervision of
the 2D shapes. To explicitly enforce shape similarity in 2D, a better
solution is to convert the panel edges into binary 2D masks and
penalize the discrepancy between these masks. However, this con-
version involves rasterization operations that are non-differentiable,
resulting in difficulties in training.
To address this issue, we propose a novel shape loss Lshape to

approximate the 2D mask loss, as illustrated in Fig. 8(d). We start
by collecting a set of vertices on the panel edges and sampling
support vectors on the panel by connecting each pair of vertices.
Our shape loss Lshape is then defined as the L2 error between the
support vectors in the predicted panels and those in the ground-truth
panels. Lshape can be seen as a densified version of the per-edge
loss Lshape-NT, which better encourages 2D shape similarity with
the ground truth. As expected, the more support vectors that are
sampled, the better our shape loss approximates the 2D mask loss.
In our implementation, we use the endpoints and midpoints of the
panel edges as the vertices for simplicity.
To more intuitively understand why sampling more vectors on

the panel leads to a better shape loss, we provide a toy example of
two edge vectors on the panel, i.e., 𝑣1 and 𝑣2 in Fig. 8(b). Denoting
the ground-truth vectors as 𝑣1 and 𝑣2, the per-edge loss could be
written as:

∥𝑣1 − 𝑣1∥ + ∥𝑣2 − 𝑣2∥ = ∥Δ𝑣1∥ + ∥Δ𝑣2∥, (4)
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Fig. 8. Illustration of the proposed panel shape loss. (a) depicts a ground
truth panel. (b) Each edge of Prediction-1 is slightly shorter than the cor-
responding edge in the ground truth. (c) While most edges of Prediction-2
match the ground truth exactly, the two right-side edges exhibit significant
errors. Overall, (b) and (c) have the same per-edge loss Lshape-NT [Korostel-
eva and Lee 2022]. (d) shows the support vectors connecting vertices on
the edges, including the endpoints (green) and midpoints (orange). We only
show the support vectors emanating from the dark green vertex and omit
others for clarity. (e) provides an intuitive analysis of Lshape, showing how
it encourages more evenly distributed errors among edges of the panel.

where we define Δ𝑣 = 𝑣 − 𝑣 , and ∥ · ∥ represents the L2 norm.
Correspondingly, the proposed Lshape becomes:

∥𝑣1 − 𝑣1∥ + ∥𝑣2 − 𝑣2∥ + ∥(𝑣1 + 𝑣2) − (𝑣1 + 𝑣2)∥
=∥Δ𝑣1∥ + ∥Δ𝑣2∥ + ∥Δ𝑣1 + Δ𝑣2∥
=(1 + cos𝛼1)∥Δ𝑣1∥ + (1 + cos𝛼2)∥Δ𝑣2∥, (5)

where 𝑣1 + 𝑣2 is the newly-added support vector in Fig. 8(b), and
the angles 𝛼1 and 𝛼2 are defined in Fig. 8(e). By comparing Eq. 4
and 5, we can see that the proportion between the two errors ∥Δ𝑣1∥
and ∥Δ𝑣2∥ are adjusted by the proposed shape loss. Suppose that
the prediction of 𝑣1 has a larger error than 𝑣2, i.e., ∥Δ𝑣1∥ > ∥Δ𝑣2∥,
then we have (1 + cos𝛼1)/(1 + cos𝛼2) > 1, implying that larger
errors are more heavily penalized in Eq. 5. In other words, Lshape
encourages more evenly distributed errors among all edges, and
thereby the prediction in Fig. 8(b) is preferred over Fig. 8(c).

For simplicity of the explanation, we assume the predicted edges
are lines instead of Bezier curves in Eq. 4. However, the underlying
concept remains valid, as curves can be effectively approximated by
piece-wise lines.

4.2.2 SMPL-based regularization loss. To further improve the es-
timation of 3D garment panels, a good understanding of the 3D
human pose in the input image could be beneficial. As the garment
panels are typically closely related to the shape and movement of
the body, the 3D human pose that describes the position and orien-
tation of body parts can provide vital information to infer the shape
and location of the garment panels in 3D space, even when they are
partially visible or occluded in the input image.
Motivated by this idea, we introduce an SMPL-based regulariza-

tion loss term in Eq. 2 to guide the training process of Sewformer.
Specifically, we add an extra set of pose queries to the panel queries
in Fig. 7(b), which leads to an additional output of 3D human pose
𝜃 after the panel decoder. Then the regularization term LSMPL is
defined as the mean squared error between the predicted 3D hu-
man pose and the ground truth. As the learned pose features are
adaptively blended into panel tokens by the attention mechanism
in the panel decoder, LSMPL essentially facilitates garment panel
reconstruction with human pose information. Note that we did not
supervise the human shape 𝛽 as we empirically find no benefits in
our experiments. Thanks to the abundant labels provided by the
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SewFactory dataset, we can easily apply the SMPL regularization
term in a supervised manner.

4.3 Relationship with NeuralTailor
The proposed Sewformer is related to NeuralTailor [Korosteleva
and Lee 2022], as both designs share similar elements such as the
loop and RT losses in Eq. 3. Nevertheless, Sewformer introduces
several fundamental improvements and contributions that distin-
guish it from NeuralTailor. First, Sewformer utilizes a new two-level
Transformer model, which effectively handles the complex data
structure of sewing patterns. This design is a significant departure
from the hybrid architecture of EdgeCNN, attention-MLP, and LSTM
used in NeuralTailor. While being much simpler, it results in better
accuracy in high-quality sewing pattern reconstruction. Second,
we introduce two novel loss functions, Lshape and LSMPL, which
significantly improve the training process. In addition, different
from prior methods [Chen et al. 2022a; Korosteleva and Lee 2022]
that only handle one garment at a time (upper or lower clothes),
the proposed Sewformer is capable of predicting the panels for the
entire clothing set in a single model run. To separate the recovered
panels into upper and lower garments, we leverage the predicted
stitching relations and group connected panels into the same clothes
piece. Lastly, empowered by the SewFactory dataset, our proposed
algorithm is capable of effectively handling casual human photos
captured in unconstrained poses, while NeuralTailor is limited to
T-pose inputs, restricting its applicability in real-world scenarios.

5 EXPERIMENTS
We first describe the implementation details of the proposed Sew-
former. Then we provide qualitative and quantitative evaluations of
our algorithm on both synthetic and real-world images.

5.1 Implementation Details
Dataset. We use the SewFactory dataset to train and evaluate our

proposed Sewformer. We group panels of different garment types
based on their spatial attributes, such as top front, top back, sleeve
left front, etc., resulting in 24 semantic panel classes. For efficient
training, we align all garment parameters and ensure that they have
the same dimension by applying zero padding.

Training. During training, we apply random rotation, affine, and
perspective augmentations to the input images, followed by resizing
to a fixed size of 384×384. We use the AdamW optimizer. We set the
initial learning rate of the Transformer to 10−4, the initial learning
rate of the CNN backbone to 10−5, and the weight decay to 10−4.
The backbone is initialized with pre-trained weights from ImageNet,
while the rest of the model is initialized randomly. We train the
models for 40 epochs using 8 A100 GPUs with a total batch size of
512. To balance the different loss terms in the objective function
(Eq. 2), we set the hyperparameters as 𝜆1 = 10, 𝜆2 = 0.5, and 𝜆3 = 1.

5.2 Comparison with the State of the Art
We compare the proposed algorithm against NeuralTailor [Korostel-
eva and Lee 2022], the state-of-the-art method for recovering gar-
ment sewing patterns. Since NeuralTailor is designed for 3D point
clouds, we adapt it to our task by replacing the original graph-based

encoder with a ResNet-50 architecture for feature extraction. The
extracted image features are spatially flattened and treated as point
features in the subsequent modules of NeuralTailor. As NeuralTailor
is originally trained on the dataset of [Korosteleva and Lee 2021],
it is only suitable for fixed T-pose garments and cannot handle
diverse human poses captured in everyday photos. For a more com-
prehensive comparison, we retrain NeuralTailor on our proposed
SewFactory dataset.

Evaluation metrics. We use the same evaluation metrics as [Ko-
rosteleva and Lee 2022]: 1) Panel L2: the L2 distance between the
edge parameters of the predicted and ground-truth panels, measur-
ing the quality of shape predictions; 2) Rot L2 and Trans L2: the L2
error of the predicted rotations 𝑅 and translations 𝑇 compared to
their ground truth; 3) #Panel: the accuracy of the predicted number
of panels within each garment pattern; 4) #Edges: the accuracy of
the number of edges within each correctly-predicted panel; 5) the
precision, recall, and F1 score of the stitches, evaluating the quality
of recovered stitching relations.

Quantitative evaluation. As shown in Table 2, our Sewformer
demonstrates superior performance compared toNeuralTailor across
multiple evaluation metrics. In particular, our method achieves a
relative decrease of 19% in Panel L2 error, a relative decrease of
32% in Rot L2 error, a relative decrease of 34% in Trans L2 error,
an absolute increase of 5.1% in #Panel accuracy, and an absolute
increase of 11.2% in F1 score, showing the effectiveness of our algo-
rithm. Meanwhile, our method exhibits a slightly lower accuracy in
#Edges compared to NeuralTailor. This discrepancy arises due to the
fact that our approach well recovers more panels than NeuralTai-
lor, including panels that consist of particularly challenging edges.
Consequently, these challenging edges contribute to the increased
complexity of edge estimation in our #Edges results.

Furthermore, it is worth mentioning that Sewformer and Neural-
Tailor are trained using different loss functions. To emphasize the
efficacy of the architecture of Sewformer, we also retrain Neural-
Tailor using our proposed loss functions (denoted as NeuralTailor∗
in Table 2). Although NeuralTailor∗ demonstrates improvements
across most metrics compared to the baseline, it still clearly falls
short of the performance of Sewformer.

Qualitative evaluation. Wepresent qualitative evaluations in Fig. 9.
It is evident that our proposed model outperforms NeuralTailor by a
substantial margin. Particularly, the results obtained fromNeuralTai-
lor exhibit significant deficiencies in terms of fidelity and accuracy.
For instance, the skirt appears distorted, and the waistband takes
on an irregular polygonal form, deviating from the ground-truth
rectangular shape. In contrast, Sewformer produces more precise
details, such as the length of the skirts and pants.

Comparing with NSM.. We further compare the proposed Sew-
former with NSM [Chen et al. 2022a]. Since the code for NSM is
not publicly available, we directly use the reconstructed garment
mesh provided by the original authors for comparison. As shown
in Fig. 10, our method produces high-quality results, while the re-
sults of NSM suffer from low fidelity and artifacts. Moreover, these
artifacts make it problematic to simulate the garment of NSM for
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Input NeuralTailor* Sewformer† Sewformer Ground Truth

Fig. 9. Qualitative evaluation of panel predictions by different methods on our dataset. For each method, the two columns represent the front view
and back view results, respectively. Major errors of the baseline approaches are highlighted with red edges. In the last row, the display order for the 4-panel
skirt is left-front-right-back. Please see the caption of Table 2 for the explanations of the baseline methods.

Table 2. Quantitative evaluation on the SewFactory dataset. The evaluation metrics are introduced in Section 5.2. Sewformer† is a variant of our model
with a one-level Transformer decoder. NeuralTailor∗ is the NeuralTailor model [Korosteleva and Lee 2022] trained with our proposed loss functions. ↑: the
higher the better; ↓: the lower the better.

Model Panel L2 ↓ Rot L2 ↓ Trans L2 ↓ #Panel ↑ #Edges ↑ Precision ↑ Recall ↑ F1 score ↑
Sewformer 3.57 0.0205 0.693 88.7% 97.5% 96.1% 95.4% 95.7%
Sewformer† 3.91 0.0322 0.979 87.5% 95.6% 82.8% 98.9% 90.1%
NeuralTailor∗ 4.15 0.0347 0.995 83.8% 97.5% 76.8% 99.6% 86.7%
NeuralTailor 4.41 0.0300 1.050 83.6% 97.8% 81.5% 87.8% 84.5%

Table 3. Effectiveness of the proposed loss functions. “w/o Lshape”
represents the model trained with Lshape-NT.

Model Panel L2 ↓ Rot L2 ↓ Trans L2 ↓ #Panel ↑ #Edges ↑
full model 3.57 0.0205 0.693 88.7% 97.5%
w/o Lshape 3.71 0.0260 0.966 88.2% 97.8%
w/o LSMPL 3.63 0.0243 0.897 86.1% 97.9%

different poses, while our results can be conveniently manipulated
and edited as elaborated in Section 5.4.

5.3 Ablation Study
Effectiveness of the two-level architecture. In Section 4.1, we pro-

pose a two-level Transformer decoder to handle the hierarchical

Input NSM Sewformer

Fig. 10. Comparison with NSM [Chen et al. 2022a]. The proposed algo-
rithm achieves higher-quality garment reconstruction.

structure of sewing patterns. To investigate the impact of this de-
sign, we train a variant of the Sewformer with a one-level decoder
(denoted as Sewformer†), which relies on the panel tokens to query
the garment information from the visual encoder and predicts the
final edge vectors with a subsequent MLP. As shown in Table 2,
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Ground Truth

Ours
w/ NeuralTailor edge loss

Input

w/ w/o

Fig. 11. Effect of different shape losses. Compared to the prior
method [Korosteleva and Lee 2022] (w/o Lshape), the proposed shape loss
(w/ Lshape) leads to better shape predictions closer to the ground truth. The
top and bottom rows show the front and back views, respectively.

while Sewformer† gives better results than NeuralTailor, there is
still a clear performance gap between Sewformer† and Sewformer,
highlighting the effectiveness of the two-level design. Further, the
visual examples in Fig. 9 also support this observation, where the
results of Sewformer† lack important details, especially in panel cor-
ners. In contrast, the proposed model consistently generates more
accurate results, demonstrating the crucial role of the two-level
Transformer in capturing intricate panel details.

Effectiveness of the loss functions. In Section 4.2.1, we introduce a
new panel shape loss Lshape which better encourages shape similar-
ity between the prediction and ground truth compared to the prior
method Lshape-NT from [Korosteleva and Lee 2022]. As shown in
Table 3, the proposed shape loss achieves noticeably smaller errors
in panel shape (Panel L2). This improvement is further supported
by the visual example in Fig. 11, which demonstrates that our pro-
posed shape loss is able to recover panel shapes closer to the ground
truth. Remarkably, Lshape also improves the prediction accuracy
of the panel rotation and translation in Table 3. We hypothesize
that this can be attributed to that our shape loss encourages the
model to learn more discriminative panel features, which conse-
quently facilitates more accurate estimations of panel rotation and
translation.

As a garment is closely related to the human body wearing it, we
propose an SMPL-based regularization loss LSMPL to exploit the hu-
man body information for improving garment panel reconstruction.
As shown in Table 3, the absence of this loss leads to inaccurate
panel rotation and translation predictions, as well as a significant
drop in the #Panel accuracy, showing the important role of human
body information in understanding the spatial relationship of differ-
ent panels. Additionally, Fig. 12 demonstrates that the model trained
without the SMPL loss produces inferior results in terms of panel
shape and global 3D parameters. Notably, our proposed LSMPL pro-
duces plausible results even for occluded regions, emphasizing the
significance of incorporating human body information for garment
panel reconstruction.

Ground Truth w/ w/o Input

w/ SMPL loss

Fig. 12. Effect of the SMPL Loss. The result without LSMPL suffers from
incorrect spatial arrangement of the panels and noticeable shape errors. In
comparison, incorporating LSMPL leads to improved performance, generat-
ing plausible results even for occluded regions.

5.4 Garment Reproduction and Editing
An important application of ourwork is the reproduction and editing
of garments from a single image. Specifically, given an input image,
we first use the proposed Sewformer to recover its sewing pattern. As
shown in Fig. 13, our predicted panel shapes exhibit faithful details,
such as the depth and angle of the neckline, the width of the hems
and sleeves, and the symmetry within and between the panels in
the sewing pattern. The high-quality sewing pattern reconstruction
allows us to use physical simulators like Qualoth [Choi and Ko 2002]
to obtain an accurate reproduction of the 3D garment by simulating
the sewing pattern on the input human shape and pose. We estimate
the 3D human shape and pose with RSC-Net [Xu et al. 2020]. This
process enables flexible editing of the 3D garment as illustrated in
Fig. 13, including modifications to garment textures, human poses,
human shapes, and more. These capabilities are highly valuable in
procedural production processes.

5.5 Single-View Garment Mesh Reconstruction
In Fig. 14, we present a comparison with two state-of-the-art meth-
ods, ECON [Xiu et al. 2023] and SMPLicit [Corona et al. 2021], for
garment mesh reconstruction from a single image. As shown in
Fig. 14, while ECON well handles front views, it is susceptible to
occlusions and produces unrealistic details and over-smoothed areas
for the back views. SMPLicit addresses this issue by explicitly con-
sidering clothing parameters, resulting in plausible outputs for both
front and back views. However, due to the oversimplified parameter
space, its results are less accurate. In contrast, our proposed method
achieves improved results, demonstrating high fidelity and realistic
details even in occluded regions.

5.6 Generalization to Real Photos
We present visual results on real human images in Fig. 15. The pro-
posed algorithm produces garments that closely resemble the input
image, demonstrating the strong generalizability of our method.

Effectiveness of human texture synthesis. In Section 3.2, we propose
a human texture synthesis network to generate realistic training data
for our algorithm. To investigate the effectiveness of the synthesized
human texture, we compare the pattern reconstruction results of
models trained with different human textures on real input images.
Specifically, we compare three different types of data: 1) training
images without human textures; 2) training images rendered with
scanned skin textures from the SURREAL dataset [Varol et al. 2017];
and 3) images rendered with our textures from the human texture
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Input Ground Truth Panel Shape T-pose (front) ReproductionT-pose (back) Editing

Fig. 13. Garment reproduction and editing. Each row shows an example. The first column is the input RGB image, and the second column is the
corresponding ground truth sewing pattern. The third column is the sewing pattern recovered by our method. For ease of comparison, we show the back-side
panels in the front for the first and fourth examples, where the human is facing backward. The fourth and fifth columns show the recovered garment in T-pose.
The sixth column is the reproduction of the input garment, and the last column is a random editing result. The garment textures are manually added.

Input ECON SMPLicit Sewformer

Fig. 14. Comparison with single-view garment mesh reconstruction
methods. Compared to ECON [Xiu et al. 2023] and SMPLicit [Corona et al.
2021], the proposed method achieves high fidelity and realistic details even
in occluded areas.

synthesis network. As “w/o texture” and SURREAL suffer from
domain gaps with real data (Fig. 4), they result in degraded results as
shown in Fig. 15. In contrast, our human texture synthesis network
produces diverse high-quality human textures, effectively reducing

Table 4. User study of different human textures for sewing pattern
reconstruction on real images. Participants are asked to rate the three
methods on a scale of 3 (excellent) to 1 (poor) or 0 (fail in simulation).

Texture w/o texture SURREAL Ours

Score ↑ 0.822 1.12 2.35

the domain gap and improving the performance on real human
photos.

Furthermore, we conduct a user study for a more comprehensive
evaluation. This study uses 51 images randomly selected from the
DeepFashion dataset [Liu et al. 2016]. 45 subjects are asked to rank
the recovered sewing patterns by the models trained using different
human textures, with the input image as the reference (1 for poor
and 3 for excellent). We use the averaged scores for measuring the
results. As shown in Table 4, the model trained with the proposed
human textures is clearly preferred over other models, suggesting
the effectiveness of our algorithm in handling real-world human
photos.
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Input w/o texture (Grey) SURREAL Ours T-pose (front) Editing

Fig. 15. Results on real human images. The second, third, and fourth columns are results recovered by the proposed network trained on three different
datasets. The proposed algorithm shows strong generalization capabilities, reconstructing garments that closely resemble the input image. Meanwhile, the
proposed human texture synthesis network is crucial for reducing domain gap and achieving good generalization ability.

Input Sewing pattern Reconstructed garment

Fig. 16. Generalization to novel patterns. With the template-free net-
work design and the high-quality dataset, the proposed algorithm is able to
handle garment topology unseen during training.

Generalization to unseen topology. As demonstrated in Fig.16, the
proposed algorithm is able to generalize to unseen garment topolo-
gies, where the sewing pattern (a one-piece jumpsuit) has not been
encountered during training. This capability can be attributed to
two key factors. First, our network is designed without assuming
the input garment type. This stands in contrast to approaches such
as [Chen et al. 2022a], which is constrained by predefined panel
groups, or [Bhatnagar et al. 2019], which relies on fixed garment
templates. By avoiding these constraints, our network can effec-
tively handle diverse and novel garment topologies. Second, the
SewFactory dataset, specifically designed to prioritize scale and di-
versity, plays a crucial role in enabling such generalization. This
comprehensive dataset allows the network to learn the fundamental
concept of assembling panels into garments, rather than being re-
stricted to the specific styles present in the training data. As a result,
our algorithm exhibits the ability to adapt and generate accurate
sewing patterns for unseen garment styles.

Input Sewing pattern T-pose (front) Reproduction

Fig. 17. Failure case. The proposed method cannot well handle the classical
Chinese dress Qipao whose stitching relations are beyond the settings of
our training data. It also lacks the capability to predict unseen accessories
such as hats.

Limitations. While exhibiting strong generalization capabilities to
real photos, our method encounters challenges when presented with
special inputs that deviate significantly from garments in training
data. As illustrated in Fig. 17 where we show a classical Chinese
dress (known as Qipao), the method may exhibit notable errors in
reconstructing stitching relations that are not in training data and
lack the capability to predict unseen accessories such as hats. To
encompass a broader range of clothing styles and accessories can
potentially alleviate this issue and improve the model to handle
more diverse fashion elements.

6 DISCUSSION AND FUTURE WORK
In this work, we tackle the challenging task of recovering garment
sewing patterns from a single unconstrained human image. Our
contributions include the introduction of the SewFactory dataset,
which provides a substantial amount of image-and-sewing-pattern
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pairs to train data-hungry deep learning models. Additionally, we
propose a simple yet powerful Transformer model that achieves
high-quality results for sewing pattern reconstruction from a single
image.
This work has paved the way for accessible, low-cost, and effi-

cient 3D garment design and manipulation. However, there are still
several directions for future exploration and improvement.
First, while the proposed Sewformer demonstrates remarkable

performance, it is designed in a minimalistic style, and there is
still room for enhancing its capabilities. Further investigation could
focus on incorporating more advanced attention mechanisms [Liu
et al. 2021] to capture finer details in the sewing patterns, and/or
leveraging temporal information from image sequences to enhance
the reconstruction.
Second, expanding the SewFactory dataset and incorporating

more diverse garment styles, body shapes and poses, and higher
variations in rendering conditions would contribute to better gener-
alization and robustness of the model. Furthermore, considering the
interaction between garments and human bodies is an intriguing
direction for future work. While the proposed SMPL regularization
loss shows an effective exploration in this direction, it is possible to
take one step further to employ the human body information in a
more explicit way, e.g., directly modeling the connection between
body parts and panels.
Lastly, applying the proposed model and dataset in virtual and

augmented reality, such as personalized virtual try-on systems, vir-
tual fashion design platforms, or online shopping, could extend the
impact of this work into various domains.
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