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Fig. 1. Lightweight and lightspeed LBM smulation: We contribute a new kinetic solver for incompressible and single-phase fluid simulation interacting
with complex solids. By relying on only three moments per grid node instead of the usual 27-direction velocity discretization, we reduce memory usage
threefold and improve efficiency by an order of magnitude, with limited impact on accuracy. As a consequence, a high-quality visual simulation of a tractor in
a wind tunnel (with passively-advected colored particles to visualize the flow) can be achieved efficiently on a commodity GPU.

Kinetic solvers for incompressible fluid simulation were designed to run

efficiently on massively parallel architectures such as GPUs. While these

lattice Boltzmann solvers have recently proven much faster and more accu-

rate than the macroscopic Navier-Stokes-based solvers traditionally used

in graphics, it systematically comes at the price of a very large memory

requirement: a mesoscopic discretization of statistical mechanics requires

over an order of magnitude more variables per grid node than most fluid

solvers in graphics. In order to open up kinetic simulation to gaming and

simulation software packages on commodity hardware, we propose a High-

Order Moment-Encoded Lattice-Boltzmann-Method solver which we coined

HOME-LBM, requiring only the storage of a few moments per grid node,

with little to no loss of accuracy in the typical simulation scenarios en-

countered in graphics. We show that our lightweight and lightspeed fluid

solver requires three times less memory and runs ten times faster than

state-of-the-art kinetic solvers, for a nearly-identical visual output.
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1 INTRODUCTION
Lattice Boltzmann method (LBM) has become increasingly popular

for the visual simulation of turbulent incompressible flows [Li et al.

2003; Thürey and Rüde 2009; Li et al. 2020; Lyu et al. 2021; Li et al.

2022]. Contrary to most early fluid solvers used in computer graph-

ics [Foster and Metaxas 1996; Stam 1999; Mullen et al. 2009; Lentine

et al. 2010] which directly seek to integrate the Navier-Stokes equa-

tions, LBM is based instead on a kinetic formulation of the flow

derived from statistical mechanics: a mesoscopic description of the

fluid in time, space, and velocity components is advanced in time

through linear streaming (to handle advection) followed by collision

(performing a local relaxation towards kinetic equilibrium). The

massively-parallel nature of LBM has long been its most attractive

feature, as it naturally runs on modern GPUs [Li et al. 2003; Chen

et al. 2022] to offer unparalleled computational efficiency compared

to conventional solvers. Moreover, the development of accurate

collision models has recently led to more accurate results with less
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Fig. 2. Octopus: A complex object in the shape of an octopus with multiple serpentine grooves is placed in a turbulent wind field. A turbulent wake is formed.

dissipation and dispersion artifacts for complex flow behaviors [Li

et al. 2020], in particular for low-viscosity turbulent fluids.

However, all LBM methods in graphics face a steep memory

requirement: for a 27-direction velocity discretization as typically

needed for simulations of high Reynolds numbers in 3D, LBM solvers

often require at the very least 58 values per node (two sets of 27-

direction distribution values for time integration and the first two

macroscopic moments (density and linear momentum, plus tempo-

rary memory usage for conversion to moments), which prevents the

use of LBM on small GPU platforms. Although recent methods using

efficient swap operations can save 27 variables per node through a

more involved streaming process, the stubbornly-high memory size

for large simulations not only demands high-end GPUs, but also

hampers efficiency by requiring intensive memory access.

In this paper, we introduce a lightweight LBM solver which sig-

nificantly cuts down on memory size and improves efficiency com-

pared to previous methods, without incurring a noticeable drop in

accuracy for typical visual flow simulations. Our approach borrows

from recent advances on moment-representation LBM (MR-LBM)

to bypass the use of a fine directional velocity sampling, while also

remedying their compressibility issues at high Reynolds numbers

due to their low-order collision model. In addition, we also propose

a new moment-based boundary treatment for fast two-way cou-

pling. We demonstrate that the resulting lightspeed and lightweight

LBM solver ends up being three times smaller in memory footprint

and an order of magnitude faster than [Li et al. 2020] for the same

resolution and a nearly-identical visual output.

2 RELATED WORK AND MOTIVATION
While fluid simulation with fluid-solid coupling has been achieved

in both computer graphics (CG) and computational fluid dynamics

(CFD) in a variety of ways, we briefly review the most related works

to our contributions to single-phase flow simulation.

2.1 Navier-Stokes based fluid solvers
From early Eulerian grid discretiations [Foster and Metaxas 1996;

Stam 1999], fluid solvers in CG developed quickly. Advanced grid-

based approaches were designed [Losasso et al. 2004; Lentine et al.

2010; Zhu et al. 2013; Setaluri et al. 2014; Klingner et al. 2006; Mullen

et al. 2009; Ando et al. 2013] to improve accuracy and versatility.

Lagrangian particles have also offered a popular method to simulate

fluids [Desbrun and Gascuel 1996; Becker and Teschner 2007; Solen-

thaler and Pajarola 2009; Akinci et al. 2012; Ihmsen et al. 2014; Peer

et al. 2015], although simulating turbulence requires a large number

of particles. Driven by the need for more vortical details, a series of

vorticity-based methods [Park and Kim 2005; Golas et al. 2012; Selle

et al. 2005; Weißmann and Pinkall 2010; Brochu et al. 2012; Pfaff

et al. 2012; Zhang and Bridson 2014; Zhang et al. 2015] or hybrid

approaches [Zhu and Bridson 2005; Raveendran et al. 2011; Jiang

et al. 2015; Zhang et al. 2016] were later devised as well.

The ability to support fluid-solid coupling is also crucial to sim-

ulate complex fluid-solid interactions. Early coupling works in-

cluded voxelized boundary approximations [Takahashi et al. 2002;

Génevaux et al. 2003; Robinson-Mosher et al. 2008; Azevedo et al.

2016], a rigid-fluid approach [Carlson et al. 2004], a fully-Eulerian

method [Teng et al. 2016], or even coupling that can treat infinitesi-

mally thin and deformable solids [Guendelman et al. 2005] by en-

forcing proper solid-boundary conditions to keep the fluid incom-

pressible and get the correct interaction force between fluid and

solids. Cut-cell-based approaches [Roble et al. 2005; Batty et al. 2007;

Ng et al. 2009; Gibou and Min 2012; Weber et al. 2015; Edwards

and Bridson 2014; Azevedo et al. 2016; Tao et al. 2022] have also

been formulated to efficiently deal with thin structures and complex

geometry by subdividing them into boundary-conforming regions.

However, none of these methods have demonstrated stable cou-

pling in very turbulent flows. Particle-based solvers [Colagrossi

and Landrini 2003; Solenthaler and Pajarola 2008; Akinci et al. 2012;

Schechter and Bridson 2012; de Goes et al. 2015; Bender and Koschier

2016; Band et al. 2017; Koschier and Bender 2017; Becker et al. 2009;

Ihmsen et al. 2013; Fang et al. 2020] typically approximate solid

boundaries with a dense set of particles, but often face pressure in-

consistencies [Band et al. 2018], explaining why hybrid grid-particle

solvers [Zhang et al. 2016; Fei et al. 2018; Hu et al. 2018; Fei et al.

2021] usually treat boundary conditions via grid-based methods.

2.2 Boltzmann-based fluid solvers
LBM has recently been proven a great alternative to traditional

incompressible Navier-Stokes based solvers for both single [Li et al.

2020; Lyu et al. 2021] and multiphase [Li et al. 2021, 2022; Li and

Desbrun 2023] fluid simulation. While early works [Li et al. 2003;

Thürey and Rüde 2009] were based on the low-order BGK collision

model [Chen and Doolen 1998], LBM solvers in graphics signifi-

cantly improved their accuracy for turbulent flows by constructing

higher-order collision models. For instance, Li et al. [2020] proposed

a central-moment multiple-relaxation-time (MRT) collision model

where non-physical rates were optimized for reduced dispersion and

dissipation. Moreover, in order to improve computational efficiency

on GPU [Li et al. 2003], Chen et al. [2022] and Lehmann [2022] pro-

vided a number of detailed strategies to enable improved parallelism.

As a result, current methods have reached impressive capabilities
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Fig. 3. Delta wing. The airflow over a thin-shell delta wing is simulated
with HOME-LBM (left), exhibiting the stable spiral vortex structure near
the leading edge of the wing seen in experiments [Délery 2001] (right).

to simulate both laminar and turbulent flows, with both numerical

accuracy and efficiency surpassing even the most recent Navier-

Stokes solvers. Fluid/structure coupling was also tackled in previous

LBM works, using the immersed boundary method (IBM [Peskin

1972]) or the moving bounce-back boundary method (BBM [Ladd

1994]); Lyu et al. [2021] also suggested a velocity correction to allow

for thin obstacles and suppress the usual ringing artifacts of BBM.

2.3 Motivation and overview
The recent upending of Navier-Stokes fluid solvers due to the emer-

gence of high-order accurate LBM solvers has not yet permeated

the realm of video games or simulation software packages using

commodity hardware, because all current kinetic methods face a

huge memory cost: since a D3Q27 model (i.e., a discretization of

velocities in 27 directions) is needed to reliably handle turbulent

flows, a typical implementation requires a minimum of 58 distribu-

tion values per grid node [Li et al. 2020], including two copies of the

27-direction distribution values for time integration and the impor-

tant macroscopic quantities (density and velocity). While various

streaming strategies can remove up to 27 variables per node [Latt

2007], this still is eight to ten times more than a typical Navier-Stokes
solver, requiring high-end GPUs for detailed simulations with fine

grids. Very recently, Vardhan et al. [2019] and Ferrari et al. [2023]

proposed encoding a 27-direction distribution via only its few first
moments in order to replace the memory-hungry distribution-based

representation. This moment-representation LBM (MR-LBM) only

uses 10 variables per node, greatly reducing memory size require-

ments and inducing a performance uplift between 25% and 40% on

GPU due to far reduced memory access. However, this improve-

ment in efficiency and memory size comes with a severe limitation:

this lightweight approach can no longer support turbulent flows

(𝑅𝑒 ≥ 4000) reliably, due to limited accuracy.

This paper leverages the moment-based representation of LBM

initially proposed in [Vardhan et al. 2019; Ferrari et al. 2023], while

addressing its current limitations. We show that one can use a

lightweight moment representation to replace the large storage

of direction-based distributions used in current LBM methods in

graphics while enforcing a high-order accurate collision at low

computational cost. We also formulate a new fluid-solid coupling

scheme based on this moment-based LBM approach to generate

complex two-way phenomena. Reduced memory usage along with

fast moment-based collision and coupling result in a lightweight

and lightspeed kinetic solver with limited accuracy loss compared

to state-of-the-art LBM solvers.

3 BACKGROUND
Before introducing our new moment-based LBM scheme, we briefly

review current single-phase LBM methods in graphics, and intro-

duce existing moment-based representation LBM methods, while

pointing out their stability and accuracy issues.

3.1 Lattice Boltzmann method at a glance
Continuous Boltzmann equation. In statistical mechanics, fluid

dynamics is described by the time evolution of a mesoscopic dis-

tribution function 𝒇 (𝒗, 𝒙, 𝑡) representing the probability of particle

being at position 𝒙 at time 𝑡 and with velocity 𝒗. This is in sharp

contrast to typical NS-based method modeling the flow dynamics

with the time evolution of a macroscopic velocity 𝒖 (𝒙, 𝑡). In the

context of single-phase fluid dynamics, the governing kinetic equa-

tion for the evolution of the distribution function is known as the

Boltzmann equation [Shan et al. 2006]:

𝜕𝒇

𝜕𝑡
+ 𝒗 · ∇𝒇 = Ω(𝒇 ) + 𝑭 · ∇𝒗𝒇 , (1)

where 𝑭 represents external forces and Ω is the collision term which

relaxes the distribution function towards the local thermodynamic

equilibrium state 𝒇𝑒𝑞 [Coreixas et al. 2017] defined as

𝒇 eq =
𝜌

(2𝜋𝑟𝑇 )𝑑/2
exp

(
− ∥𝒗−𝒖∥

2

2𝑟𝑇

)
, (2)

where 𝑟 is a gas constant,𝑇 is the thermodynamic temperature and𝑑

is the spatial dimension (2, or 3). The macroscopic quantities such as

density 𝜌 , linear momentum 𝜌𝒖, and the rank-two tensor 𝑺 related
to the stress tensor can be recovered from the distribution through:

𝜌 =

∫
𝒇 d𝒗, 𝜌𝒖 =

∫
𝒗 𝒇 d𝒗, 𝜌𝑆𝛼𝛽 =

∫
(𝒗2 − 1

3

𝛿𝛼𝛽 ) 𝒇 d𝒗 , (3)

where the greek indices 𝛼 and 𝛽 refer to tensor coordinates, i.e.,

𝑺 = {𝑆𝛼𝛽 }𝛼,𝛽 for 𝛼, 𝛽 ∈ {𝑥,𝑦,𝑧}.
The original lattice Boltzmann method (LBM) used the Bhatnagar-

Gross-Krook (BGK) collision model Ω(𝒇 ) = −(𝒇 − 𝒇 eq)/𝜏 (where 𝜏
is the relaxation time determining how fast the equilibrium is being

reached, thus related to the kinematic viscosity 𝜈 via 𝜏 = 3𝜈 + 1

2
),

which preserves density and first-order momentum. Even with this

simplistic collision model, Eq. (1) was proven to recover Navier-

Stokes equation macroscopically [Shan et al. 2006].

Lattice Boltzmann equations. With time 𝑡 discretized through

regular timesteps, space 𝒙 discretized through a regular grid, and

the mesoscopic velocity 𝒗 discretized at each grid node through a

lattice structure with 𝑞 directions as shown in Fig. 4, one can turn

the continuous Eq. (1) into lattice Boltzmann equations (LBE) in

dimensionless units [Li et al. 2020] yielding:

𝑓𝑖 (𝒙 + 𝒄𝑖 , 𝑡 + 1) − 𝑓𝑖 (𝒙, 𝑡) = Ω𝑖 + 𝐹𝑖 , (4)

where 𝑓𝑖 (𝒙, 𝑡) encodes the distribution 𝑓 in the 𝑖-th direction at

position 𝒙 and time 𝑡 , 𝒄𝑖 is the discrete lattice velocity in the 𝑖-

th direction (Fig. 4), Ω𝑖 is the discretized collision operator, and 𝐹𝑖
results from external forces projected on distribution space. Through
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Fig. 4. Lattice structures: In LBM, distribution functions are often dis-
cretized on a D2Q9 lattice (left) or on a D3Q27 (right) in 3D, offering a
discretization of both space via grid nodes and velocity via (orange, blue,
and green) links which properly resolves turbulent flows.

operator splitting, Eqs. (4) can be solved in two steps: first, the

distribution values are advected via streaming by computing

𝑓 ∗𝑖 (𝒙, 𝑡) = 𝑓𝑖 (𝒙 − 𝒄𝑖 , 𝑡) , (5)

followed by a collision step expressed as

𝑓𝑖 (𝒙, 𝑡 + 1) = 𝑓 ∗𝑖 (𝒙, 𝑡) + Ω𝑖 + 𝐹𝑖 . (6)

Macroscopic quantities are then updated using discretized versions

of Eqs. (3), which, when incorporating external forces, read:

𝜌 =

𝑞−1∑︁
𝑖=0

𝑓𝑖 , 𝜌𝒖 =

𝑞−1∑︁
𝑖=0

𝒄𝑖 𝑓𝑖 +
1

2

𝑭 , 𝜌𝑆𝛼𝛽 =

𝑞−1∑︁
𝑖=0

(𝒄2𝑖 −
1

3

𝛿𝛼𝛽 ) 𝑓𝑖 . (7)

Collision models. While the BGK collision model described above

makes an LBM solver provably equivalent to the Navier-Stokes

equations for a fine enough discretization, its first-order nature was

recognized as a major limitation for a fixed grid size. In recent years,

many involved collision models have been formulated which offer

higher-order accuracy. In particular, the non-orthogonal central-

moment multiple-relaxation-time model (NOCM-MRT [De Rosis

2017; De Rosis and Luo 2019]) and the cumulant-based model (CU-

MRT [Geier et al. 2015, 2017]) have both been proven to be particu-

larly accurate collision models. For instance, Li et al. [2020] and Lyu

et al. [2021] leveraged a NOCM-MRT collision model where the

distribution function is mapped onto a central moment space and

each moment is relaxed at a different rate before reprojecting the

post-collision moments back into a distribution function; a further

optimization of higher-order (non-physical) relaxation rates can

also be added to offer low-diffusion and low-dispersion simulations.

Very recently, Lyu et al. [2023] show that a cumulant model, which

performs collision by mapping onto a cumulant space this time, can

provide even higher accuracy for very high Reynolds numbers if

higher-order cumulants are optimized to maximize entropy.

3.2 Towards lightweight LBM
However, all single-phase turbulent fluid simulations in computer

graphics thus far need to store two distribution functions for their

temporal update and the first two macroscopic quantities from

Eq. (7), leading to at least 58 variables per node — without consider-

ing extra temporary memory used, for instance, for the projection

from distribution to moment spaces in the evaluation of the collision

terms. While more complex in-place streaming methods (such as

the swap approach of Latt [2007] or the esoteric twist of Geier and

Schönherr [2017]) can remove a copy of the distribution function,

typical memory requirements for high-resolution simulations rule

out the use of consumer GPUs.

A moment representation for LBM (MR-LBM [Vardhan et al. 2019;

Gounley et al. 2022; Ferrari et al. 2023]) has recently been formu-

lated. It requires far fewer variables per node, thus relaxing memory

requirements at least threefold compared to LBM solvers in graphics

such as [Li et al. 2020], seemingly ensuring its applicability to con-

sumer GPUs. The MR-LBM consists of three steps: (a) from the three

stored moments 𝜌, 𝜌𝒖, 𝜌𝑺 , a distribution function is reconstructed

via (we use Einstein notation to indicate tensor contraction):

𝑓𝑖 (𝒙, 𝑡) = 𝜌 (𝒙 − 𝒄𝑖 , 𝑡)𝑤𝑖

(
1 + 3𝒖 (𝒙 − 𝒄𝑖 , 𝑡) · 𝒄𝑖
+ 1

2𝑐𝑠
4
𝑆𝛼𝛽 (𝒙 − 𝒄𝑖 , 𝑡)𝐻

[2]
𝛼𝛽
(𝒄𝑖 )

)
, (8)

where 𝑤𝑖 are lattice weights and 𝑯 [2] = {𝐻 [2]
𝛼𝛽
}𝛼,𝛽 represents the

Hermite polynomials of order 2; (b) the reconstructed distribution

function is then streamed using Eq. (5); (c) the resulting distribution

is converted back to its three moments using Eqs. (7), and the BGK

collision model and external forces are incorporated (effectively

replacing Eq. (6)) by simply updating the current moments through:

𝜌𝑢𝛼 (𝒙, 𝑡 + 1) = 𝜌𝑢𝛼 (𝒙, 𝑡) +
(
1 − 1

2𝜏

)
𝐹𝛼 , (9)

𝜌𝑆𝛼𝛽 (𝒙, 𝑡 + 1) = (1 − 1

𝜏 )𝜌𝑆𝛼𝛽 (𝒙, 𝑡) +
1

𝜏 𝜌𝑢𝛼𝑢𝛽 (𝒙, 𝑡)
+
(
1 − 1

2𝜏

)
(𝐹𝛼𝑢𝛽 + 𝐹𝛽𝑢𝛼 ) (𝒙, 𝑡) . (10)

For simplicity, in this paper, we call the first step (a) the “distribution

reconstruction” step, the second step (b) “regular streaming” while

the third will be denoted by the “moment-based collision” step.

3.3 Discussion
While the MR-LBM uses about a third less memory than a tradi-

tional LBM and about 50% of the memory required by an in-place

implementation, it cannot handle flows with Reynolds numbers

above 4000. There are two reasons for this severe limitation. First,

in the distribution reconstruction step, a second-order reconstruc-
tion is used, which introduces truncation errors to macroscopic

moments for turbulent flows. Second, the moment-based collision

step assumes a BGK collision model which is well known to be very

limited as it is only first-order accurate, often bringing large errors

into macroscopic moments. As a result, the gain in memory size

comes with a stringent limitation on the viscosity of the fluid: one

cannot produce the high Reynolds number flows that a regular LBM

implementation is typically successful at generating.

4 HIGH-ORDER MOMENT-ENCODED LBM
We now introduce our High-Order Moment-Encoded LBM (HOME-

LBM) approach which removes most of the shortcomings of MR-

LBM by modifying its first and third steps to gain substantial accu-

racy and stability. In this section, we will assume a D3Q27 lattice

discretization in 3D (resp., D2Q9 in 2D) as typically recommended

for turbulent flows to ensure numerical accuracy.

4.1 Hermite polynomials expansion
Continuous expressions. As a reminder, distribution functions in

LBM are traditionally expressed through Hermite series expan-

sions [Shan et al. 2006]:

𝑓 (𝒗, 𝒙, 𝑡) = 𝜔 (𝒗)
𝑁∑︁
𝑛=0

1

𝑛!
𝑯 [𝑛] (𝒗) : 𝒂 [𝑛] (𝒙, 𝑡) , (11)
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where 𝑁 is the order of approximation; 𝜔 (𝒗) is a weighting func-

tion defined as 𝜔 (𝒗)=exp(−∥𝒗∥2/2)/(2𝜋)𝑑/2; the superscript “[𝑛]”
indicates a rank-𝑛 tensor; the operator “:” denotes full tensor con-

traction; and 𝑯 [𝑛] is the Hermite polynomial of order 𝑛, a 𝑛-th order

tensor defined as

𝑯 [𝑛] (𝒗) = (−1)
𝑛

𝜔 (𝒗) ∇
𝑛𝜔 (𝒗) . (12)

Since Hermite polynomials form an orthonormal basis (for the 𝐿2

inner product weighted by 𝜔), the coefficient 𝒂 [𝑛] (𝒙, 𝑡) of a given
distribution 𝑓 can be computed via a weighted inner product:

𝒂 [𝑛] (𝒙, 𝑡) =
∫

𝑓 (𝒗, 𝒙, 𝑡)
𝜔 (𝒗) 𝑯 [𝑛] (𝒗)d𝒗 . (13)

Note that the first three orders of coefficients coincide, in fact, with

the three first velocity moments from Eq. (3) since

𝒂 [0] = 𝜌 , 𝒂 [1] = 𝜌𝒖 , and 𝒂 [2] = 𝜌𝑺 . (14)

Discrete distributions. Now, when a lattice discretization of the

local velocity 𝒗 into 𝑞 discrete microscopic velocities {𝒄𝑖 }𝑞−1𝑖=0
(𝑞=9

in 2D, 𝑞=27 in 3D, see Fig. 4) is used and using the lattice weights𝑤𝑖

from Eq. 8 as quadrature weights, the discrete distribution function

corresponding to 𝑓 (·, 𝒙, 𝑡) are the 𝑞 values {𝑓𝑖 }𝑞−1𝑖=0
per node and per

timestep defined as:

𝑓𝑖 (𝒙, 𝑡) =
𝑤𝑖

𝜔 (𝒄𝑖 )
𝑓 (𝒄𝑖 , 𝒙, 𝑡), (15)

Eq. (13) is then evaluated through Gauss-Hermite quadrature as:

𝒂 [𝑛] (𝒙, 𝑡) =
𝑞−1∑︁
𝑖=0

𝑓𝑖 (𝒙, 𝑡)𝑯 [𝑛] (𝒄𝑖 ) . (16)

One can verify that the first three orders of coefficients 𝒂 [0] , 𝒂 [1] ,
and 𝒂 [2] corresponds to the discrete moments from Eqs. (7).

4.2 High-order distribution reconstruction
In the MR-LBM approach [Vardhan et al. 2019; Gounley et al. 2022;

Ferrari et al. 2023], discrete distribution functions are not stored on

the computational grid to avoid largememory footprint, but replaced

by only the first three velocity moments 𝜌 , 𝜌𝒖, and 𝜌𝑺 at each

grid node instead. From these moments, a second-order Hermite

approximation of the distribution of the form of Eq. (11) that matches

these velocity moments is derived by simply choosing only three

non-zero coefficients (𝒂 [0] , 𝒂 [1] , 𝒂 [2] ) in the Hermite expansion and

setting these coefficients to the three known moments (Eq. (14)).

This low-order reconstruction of the 27-direction values 𝑓𝑖 leads

to a very simple expression of the distribution function given in

Eq. (8) — and hence, a very cheap reconstruction — but introduces

significant truncation errors due to its particularly low-order in the

case of turbulent flows, making it ill-adapted to our needs.

Regularized distributions. Instead, we propose to leverage exist-
ing works to reconstruct a third-order Hermite approximation of

the distribution which will improve the precision and numerical

stability of our HOME-LBM. Latt and Chopard [2006] introduced

the concept of regularized distribution for standard LBM, which

stemmed from making sure that the BGK collision model leads to

the correct macroscopic equations in the hydrodynamic limit, by

filtering distribution functions after streaming and before collision

to remove unwanted oscillations (“ghost modes”) and instabilities

in the simulation. From the current distribution 𝒇 of a node, the

first three velocity moments 𝜌 , 𝒖, and 𝒂 [2] are evaluated, and a

particular choice of a second-order Hermite truncated series for

the off-equlibrium part 𝒇off (i.e., the original distribution minus the

equilibrium distribution 𝒇 eq (𝜌, 𝒖)) is chosen to ensure that the reg-

ularized distribution satisfies key symmetries. Malaspinas [2015]

proposed another regularization, now relying on a full sixth-order

Hermite series (in 3D), where the various coefficients 𝒂 [𝑛>2] are
recursively evaluated from 𝜌 , 𝒖, and 𝒂 [2] to remove the typical

numerical inaccuracies of high-order moments.

Third-order Hermite reconstruction. Compared to the previous

work mentioned above, we are not trying to filter an existing distri-
bution, but to reconstruct one instead — but we can use their approach

to turn our three velocity moments into a valid distribution function.

While regularizations are often based on second-order Hermite trun-

cations or full sixth-order hermite series, we opt for a third-order

Hermite truncation to offer a good balance between accuracy and

computational efficiency. Since the moment representation of LBM

stores 𝜌 (to which we set 𝒂 [0] ), 𝜌𝒖 (to which we set 𝒂 [1] ), and 𝜌𝑺
(to which we set 𝒂 [2] ), we can use the recursive computation of

third-order coefficients 𝒂 [3] from Malaspinas [2015] as is for our
reconstruction of a third-order Hermite approximation of the dis-

tribution. The advantages are obvious: due to their regularization

procedure, the reconstructed distribution is void of significant ghost

modes; but our truncation at the third term of the Hermite expansion

offers improved computational efficiency, obviously.

Reconstruction in closed-form. While the recursive evaluation of

𝒂 [𝑛>2] from [Malaspinas 2015] can be used, we can also express

the resulting coefficients directly in closed form as a function of

the first three velocity moments 𝜌, 𝜌𝒖, and 𝜌𝑺, leading in 3D to the

following third-order Hermite reconstruction expression for each

of the distribution function 𝑓𝑖 :

𝑓𝑖 =𝜌𝑤𝑖

[
1 + 𝒄𝑖 · 𝒖

𝑐2𝑠
+ 𝑯 [2] (𝒄𝑖 ) : 𝑺

2𝑐4𝑠
(17)

+ 1

2𝑐6𝑠

(
𝐻
[3]
𝑥𝑥𝑦 (𝒄𝑖 ) (𝑆𝑥𝑥𝑢𝑦 + 2𝑆𝑥𝑦𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑢𝑦)

+ 𝐻 [3]𝑥𝑦𝑦 (𝒄𝑖 ) (𝑆𝑦𝑦𝑢𝑥 + 2𝑆𝑥𝑦𝑢𝑦 − 2𝑢𝑥𝑢𝑦𝑢𝑦)

+ 𝐻 [3]𝑥𝑥𝑧 (𝒄𝑖 ) (𝑆𝑥𝑥𝑢𝑧 + 2𝑆𝑥𝑧𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑢𝑧)

+ 𝐻 [3]𝑥𝑧𝑧 (𝒄𝑖 ) (𝑆𝑧𝑧𝑢𝑥 + 2𝑆𝑥𝑧𝑢𝑧 − 2𝑢𝑥𝑢𝑧𝑢𝑧)

+ 𝐻 [3]𝑦𝑧𝑧 (𝒄𝑖 ) (𝑆𝑧𝑧𝑢𝑦 + 2𝑆𝑦𝑧𝑢𝑧 − 2𝑢𝑦𝑢𝑧𝑢𝑧)

+ 𝐻 [3]𝑦𝑦𝑧 (𝒄𝑖 ) (𝑆𝑦𝑦𝑢𝑧 + 2𝑆𝑦𝑧𝑢𝑧 − 2𝑢𝑦𝑢𝑦𝑢𝑧)

+ 𝐻 [3]𝑥𝑦𝑧 (𝒄𝑖 ) (𝑆𝑥𝑧𝑢𝑦 + 𝑆𝑦𝑧𝑢𝑥 + 𝑆𝑥𝑦𝑢𝑧 − 2𝑢𝑥𝑢𝑦𝑢𝑧)
) ]
.

We also provide the formula for the 2D reconstruction of a distribu-

tion from the three moments in App. B (see Eq. (29)), as well as all the

expressions of the Hermite terms in App. A to ease implementation.

4.3 High-order collision model
The original MR-LBM relies on the BGK collision model, whose first-

order nature can only handle low Reynolds numbers. For turbulent

flows, one needs a higher-order collision model instead. Multiple re-

laxation time (MRT) models, which convert the distribution function

into a central-moment or cumulant space in which each component

gets relaxed towards its equilibrium with an individual rate before
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Fig. 5. Wind through a fern: A static 3D model of a fern is placed in a strong flow field, generating a complex wake (visualized with particles).

being converted back, have been successfully used in graphics in

recent years, be it for single-phase [Li et al. 2020; Lyu et al. 2021,

2023] or multi-phase [Li et al. 2021, 2022; Li and Desbrun 2023] flow

simulation. We incorporate an MRT moment-based collision step in

HOME-LBM too in order to ensure higher accuracy.

Central-moment collision in regular LBM. AnMRT-based approach

to collision, named NOCM-MRT, uses non-orthogonal central mo-

ments𝒎= {𝑚𝑖 }𝑖=0..26, which are derived from distribution functions

𝒇 = {𝑓𝑖 }𝑖=0..26 via a linear transform 𝒎=𝑴𝒇 , where 𝑴 is a matrix

known in closed form as a function of the macroscopic velocity

𝒖. By subtracting the equilibrium distribution projected into the

same central moment space, one gets the off-equilibrium central

moments 𝒎 −𝒎eq
, which are relaxed by individual rates 𝑟𝑖 , before

the result is converted back to a distribution by multiplying it by

𝑴−1, which provides the collision terms Ω𝑖 from Eq. (4) — see, for

instance, [Li et al. 2020]. If one also incorporates external forces, the

NOCM-MRT collision is expressed as:

ΩΩΩ = −𝑴−1
(
𝑹 (𝒎 −𝒎eq) + (𝑰 − 1

2
𝑹)𝑲

)
, (18)

where ΩΩΩ comprises all collision terms Ω𝑖 , 𝑹 is the diagonal matrix

containing all individual relaxation rates 𝑟𝑖 , and 𝑲 represents the

force terms projected into central-moment space.

Collision in HOME-LBM. In order to improve efficiency, we pro-

pose an alternate evaluation based on our velocity moments, still

affording a high-order collision evaluation. After streaming the

reconstructed distribution, we directly compute the three new mo-

ment 𝜌∗, 𝜌∗𝒖∗, and 𝜌∗𝑺∗ for each of the resulting distribution per

node based on Eq. (7) before the collision step. (The use of the super-
script asterisk indicates that these moments are temporary: they

will be altered by the collision.) Knowing 𝜌∗ and 𝒖∗ on a grid node

allows us to know the equilibrium distribution defined by Eq. (2).

The resulting central-moment 𝒎eq=𝑴𝒇 eq and the external force 𝑭
are then projected into the Hermite-based form of Eq. (11): follow-

ing [Li et al. 2020], we use a sixth-order Hermite expansion here,

leading to mostly zero terms except for:

𝑚
eq

0
=𝑚

eq

9
= 𝜌, 𝑚

eq

17
= 1

3
𝜌, 𝑚

eq

18
= 1

9
𝜌 , 𝑚

eq

26
= 1

27
𝜌 (19)

for the central moments, and, for the force-related terms,

𝐾1 = 𝐹𝑥 , 𝐾2 = 𝐹𝑦, 𝐾3 = 𝐹𝑧 ,

𝐾10 =
2

3
𝐹𝑥 , 𝐾11 =

2

3
𝐹𝑦, 𝐾12 =

2

3
𝐹𝑧 , (20)

𝐾23 =
1

9
𝐹𝑥 , 𝐾24 =

1

9
𝐹𝑦, 𝐾25 =

1

9
𝐹𝑧 .

To evaluate the actual post-streaming distribution 𝑓 from the up-

dated velocity moments, we chose a third-order Hermite expansion

to improve upon previous works (which all used a second-order

one) while keeping the collision evaluation simple. Indeed, the re-

sulting effect of the collision encoded by Eq. (18) ends up being

quite straightforward: the post-collision velocity moments do not

require the lengthy evaluation of (and multiplications by) matri-

ces 𝑴 and its inverse, as the closed-form expressions of the three

velocity moments (found with Matlab [Matlab 2023]) are

𝜌 (𝒙, 𝑡 + 1) = 𝜌∗ ; (21)

𝑢𝛼 (𝒙, 𝑡 + 1) = 𝑢∗𝛼 + 1

2𝜌∗ 𝐹𝛼 ; (22)

𝑆𝑥𝑦 (𝒙, 𝑡 + 1) = (1 − 1

𝜏 )𝑆
∗
𝑥𝑦 + 1

𝜏𝑢
∗
𝑥𝑢
∗
𝑦 + 2𝜏−1

2𝜏𝜌∗ (𝐹𝑥𝑢
∗
𝑦 + 𝐹𝑦𝑢∗𝑥 ) ; (23)

𝑆𝑥𝑥 (𝒙, 𝑡 + 1) = 𝜏−1
3𝜏 (2𝑆

∗
𝑥𝑥 − 𝑆∗𝑦𝑦 − 𝑆∗𝑧𝑧) + 1

3

(
𝑢∗𝑥

2 + 𝑢∗𝑦
2 + 𝑢∗𝑧

2

)
+ 1

3𝜏

(
2𝑢∗𝑥

2 − 𝑢∗𝑦
2 − 𝑢∗𝑧

2

)
+ 1

𝜌∗ 𝐹𝑥𝑢
∗
𝑥 + 𝜏−1

3𝜏𝜌∗ (2𝐹𝑥𝑢
∗
𝑥 −𝐹𝑦𝑢∗𝑦 −𝐹𝑧𝑢∗𝑧 ) ;

𝑆𝑦𝑦 (𝒙, 𝑡 + 1) = 𝜏−1
3𝜏 (2𝑆

∗
𝑦𝑦 − 𝑆∗𝑥𝑥 − 𝑆∗𝑧𝑧) + 1

3

(
𝑢∗𝑥

2 + 𝑢∗𝑦
2 + 𝑢∗𝑧

2

)
+ 1

3𝜏

(
2𝑢∗𝑦

2 − 𝑢∗𝑥
2 − 𝑢∗𝑧

2

)
+ 1

𝜌∗ 𝐹𝑦𝑢
∗
𝑦 + 𝜏−1

3𝜏𝜌∗ (2𝐹𝑦𝑢
∗
𝑦−𝐹𝑥𝑢∗𝑥 −𝐹𝑧𝑢∗𝑧 ) ;

𝑆𝑧𝑧 (𝒙, 𝑡 + 1) = 𝜏−1
3𝜏 (2𝑆

∗
𝑧𝑧 − 𝑆∗𝑥𝑥 − 𝑆∗𝑦𝑦) + 1

3

(
𝑢∗𝑥

2 + 𝑢∗𝑦
2 + 𝑢∗𝑧

2

)
+ 1

3𝜏

(
2𝑢∗𝑧

2 − 𝑢∗𝑥
2 − 𝑢∗𝑦

2

)
+ 1

𝜌∗ 𝐹𝑧𝑢
∗
𝑧 + 𝜏−1

3𝜏𝜌∗ (2𝐹𝑧𝑢
∗
𝑧 − 𝐹𝑥𝑢∗𝑥 − 𝐹𝑦𝑢∗𝑦) .

Note that these expressions (except for the trivial Eqs. (21)-(22)

which just reflect density and linear momentum preservation of the

collision process) are far simpler than having to deal with matrix

𝑴 and its inverse in the usual LBM collision process: therefore, the

moment-encoded LBM provides a great boost in efficiency due to

these simple collision updates, see Fig. 12. For completeness, we

provide the expressions for the 2D case in App. C.

Cumulant-based collision model. We can also proceed similarly to

incorporate the cumulant-based collision model into our moment-

encoded solver; we provide the resulting closed-form expressions in

App. D. Due to the more involved nature of the cumulant model (i.e.,

its non-linear projection), the update rules are three times as long.

Therefore, all our results use the central-moment based collision

(Eqs. (21-23)), except for Fig. 8 where we test both models.

4.4 Moment-based single-node coupling
Now that we have addressed how to integrate the lattice Boltzmann

equations (Eqs. (6) ) in our moment-encoded LBM context, the last

issue to tackle is fluid-solid coupling. One of the simplest approaches

to coupling is the moving bounce-back method [Ladd 1994], which

alters the streaming process near a boundary by reversing the dis-

tribution function advection against the boundary and applying a

momentum exchange based on the velocity of the solid encountered.

However, its first-order nature often leads to spurious oscillations

especially in turbulent flows, which spurred the introduction of

a hybrid velocity-correction method [Lyu et al. 2021] to offer sta-

ble two-way coupling, at the cost of larger stencils. We favor a

more direct and local approach that requires less computations by

leveraging our high-order distribution reconstruction.
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Fig. 6. Propeller: A spinning propeller placed in a constant flow field going towards the right creates complex vortical patterns. In this simulation, passive
colored particles are emitted at the tips of the four blades purely for visualization purposes.

Streaming. Streaming is performed on all unobstructed links with-

out any change. Now if a link to a grid node 𝒙 intersects a solid

boundary (a case often called a “cut-cell link”), we alter streaming so

that an approximated distribution function from the solid boundary

is streamed to the grid node. Let 𝒑 be the

point of the intersected solid on the link

(see inset). Our approach simply amounts

to stream a reconstructed distribution

value 𝑓
𝒑
𝑖

to 𝒙 , as we detail next, so that

any type of obstacle geometry (even thin shells) can be handled.

Solid distribution. Given our three-velocity-moment setup, we can

approximate 𝑓
𝒑
𝑖
easily. First, since we are simulating a homoegenous

weakly-compressible fluid, 𝜌𝒑 =𝜌𝒙 . As for the velocity 𝒖𝒑 , we simply

pick it based on the motion of the solid boundary at 𝒑, which is

known exactly based on the linear velocity and angular velocity of

the solid. We thus just need to form an approximation of the rank-2

tensor 𝑺𝒑 . We know that the equilibrium tensor given the known

moments 𝜌𝒑 and 𝒖𝒑 would be 𝑆
𝒑,eq
𝛼𝛽

= 𝑢
𝒑
𝛼𝑢

𝒑
𝛽
, so we now need to

add an approximation of its off-equilibrium part. We simply use the

off-equilibrium moment of node 𝒙 , resulting in the expression:

𝑆
𝒑
𝛼𝛽

= 𝑢
𝒑
𝛼𝑢

𝒑
𝛽
+
(
𝑆𝒙
𝛼𝛽
− 𝑢𝒙𝛼𝑢𝒙𝛽

)
. (24)

This approximation is in fact tantamount to assuming ∇𝒖 |𝒙 = ∇𝒖 |𝒑
since we know that the off-equilibrium part of 𝑺 is proportional

to the local stress tensor [Malaspinas 2015]. While this may be

too coarse of an approximation for very high Reynolds number

(generating thin, fast varying boundary layers), we found it to be

sufficient for graphics purposes — and better approximations could

be derived from neighboring values of nodes on the same side of the

obstacle, albeit at a higher computational cost. Now that we have

the three velocity moments at 𝒑, we evaluate the outcoming value

𝑓
𝒑
𝑖

using Eq. (17) and stream it to 𝒙 .

Force on solids. In kinetic theory, momentum exchange is used

to calculate the resulting force on a solid when fluid particles hit it,

expressed in a Galilean-invariant way [Peng et al. 2016] as:

𝑭𝑑𝑡 = 𝑓in (𝒄in − 𝒖𝒑) − 𝑓out (𝒄out − 𝒖𝒑), (25)

where {in,out} refer to the velocity index of the cut link and its

opposite. One can thus evaluate the impact of the fluid motion onto

a solid by summing all the contributions for all nodes 𝒙 whose links

ℓ𝑘 intersect the solid to get the force 𝑭𝐵 and torque 𝝉𝐵 through:

𝑭𝐵 ≡
∑
𝒙

∑
ℓ𝑘 ∈𝐿𝒙

𝑓𝑘 ′ (𝒙, 𝑡) (𝒄𝑘 ′ −𝒖𝒑 (𝒙 ) ) − 𝑓𝑘 (𝒙, 𝑡 +1) (𝒄𝑘 −𝒖𝒑 (𝒙 ) ), (26)

𝝉𝐵 ≡
∑
𝒙
(𝒙 − 𝒙𝐶 ) ×

∑
ℓ𝑘 ∈𝐿𝒙 𝑓𝑘 ′ (𝒙, 𝑡) (𝒄𝑘 ′ − 𝒖𝒑 (𝒙 ) ) (27)

− 𝑓𝑘 (𝒙, 𝑡+1) (𝒄𝑘 − 𝒖𝒑 (𝒙 ) ),

where 𝑘′ is the opposite direction to 𝑘 , and we use 𝒑(𝒙) to denote

the solid point 𝒑 on the link associated to grid node 𝒙 , and 𝒙𝐶 to

denote the barycenter of the solid. As force and torque expressions

are in LBM space, we further map them to physical space before

sending them to the rigid-body integrator, as in [Li et al. 2020].

5 RESULTS
We now evaluate of our HOME-LBM approach by discussing a

few implementation details first, then presenting a number of tests,

simulations, and comparisons to previous work. All results were

run on a workstation (AMD Ryzen 9 7900X3D 12-core processor)

equipped with an NVIDIA GeForce RTX 4090 with 24GB of GPU

memory. We also provide all relevant statistics in Tab. 1, obtained

with NVIDIA Nsight to profile kernel time.

Table 1. Statistics. All examples timed on a NVIDIA GeForce RTX GPU.
Figure Resolution 𝜈 ms/iter #integration steps total time (min.)

1 1200×400×400 0.0002 246 11, 500 47.2
2 600×300×300 0.0001 38 8, 280 5.3
3 660×250×330 0.003 37 10, 800 6.6
5 720×360×360 0.0001 39 6, 000 4.0
6 1170×390×624 0.0004 132 13, 500 30.0
13 250×300×250 0.0001 36 4, 800 2.9
15 900×210×480 0.0002 71 6, 000 7.1
16 400×200×400 0.0001 31 41, 600 21.5
17 400×200×400 0.00001 27 21, 200 9.5

5.1 Implementation details
We implemented our approach (see pseudocode in Alg. 1) in C++

and CUDA, using a structure-of-arrays (SOA) data structure to store

20 variables per grid node: 10 per grid node to store the velocity

moments, with two copies to facilitate the time update. For our solid

boundary treatment, we follow the approach of Li and Desbrun

[2023] by first constructing a bounding volume hierarchy tree struc-

ture for the 3D mesh model on the GPU; for dynamic objects, we use

cut-cell flags and bounding boxes to accelerate link-mesh intersec-

tion. Given the low peak memory and efficiency of our HOME-LBM

scheme, turbulent flow simulation with static objects is achieved

with only one GPU kernel pass which contains streaming, bound-

ary treatment (link-mesh intersection) and collision. Though not

limited to such a choice, we use 8×4×4 blocks and assign each node

to one CUDA thread. To speed up the computation, we load the

node data, save the reconstructed 27 distribution function values

into shared memory, and fetch the data when required for the fol-

lowing step within the kernel. Since the streaming step requires

accessing neighboring nodes, we also store one halo layer of nodes

around the block in our shared memory to further accelerate GPU

data access. For simulations involving dynamic objects, we use two

kernel passes to improve performance, the additional one focusing
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on cut-cell flag update. When realtime performance and memory

size are particularly pressing requirements, we also follow [Geier

et al. 2017] to improve floating-point precision by replacing 𝑓𝑖 with

𝑓𝑖 −𝑤𝑖 , which slightly changes the computation of 𝜌 (we need to

add

∑
𝑖 𝑤𝑖 =1back). This trick, allowing for greater off-equilibrium

components, lets us use 16-bit floats (instead of 32-bit floats) without

stability or visual consequences; our realtime session from Fig. 14

was achieved with this variant, where we gained another factor two

in memory and a speedup factor of 1.3 using 8×8×4 blocks this time.

Finally, we can advect particles along the macroscopic velocity field

with a RK3 method [Ralston 1962] for visualization purposes.

5.2 Accuracy and efficiency evaluations
3D Taylor-Green vortex. We first test our solver’s numerical accu-

racy using the three dimensional Taylor-Green vortex (TGV) case,

as in [De Rosis and Luo 2019], for a Mach number 𝑀𝑎 = 0.2𝑐𝑠 . In

a cubic periodic domain of resolution 𝐷×𝐷×𝐷 , we initialize the
density with 𝜌 =1 and the velocity field 𝒖 with:

𝑢𝑥 (x, 0) = 𝑈0 cos(2𝜋𝑥/𝐷) sin(2𝜋𝑦/𝐷) sin(2𝜋𝑧/𝐷),
𝑢𝑦 (x, 0) = −𝑈0 sin(2𝜋𝑥/𝐷) cos(2𝜋𝑦/𝐷) sin(2𝜋𝑧/𝐷)/2,
𝑢𝑧 (x, 0) = −𝑈0 sin(2𝜋𝑥/𝐷) sin(2𝜋𝑦/𝐷) cos(2𝜋𝑧/𝐷)/2.

(28)

where 𝑈0=0.2, 𝐷 =128, and 𝐿0=𝐷/(2𝜋), and simulate the vortical

flow for a duration of 100𝐿0/𝑈0. By testing different Reynolds num-

bers 𝑅𝑒 , we effectively vary the viscosity 𝜈 of the flow since 𝝂 =

𝑈0𝐿0/𝑅𝑒 . Fig. 7 shows the normalized kinetic energy for 𝑅𝑒 =2, 000

and 𝑅𝑒 =20, 000 for different solvers. Our HOME-LBM results match

the most accurate cumulant-based solver, improving drastically over

the original MR-LBM for high Reynolds numbers.

Fig. 7. Taylor-Green vortex: For a simulation of the Taylor-Green vortex
at two different Reynolds numbers (left: 𝑅𝑒 = 2, 000, right: 𝑅𝑒 = 20, 000), we
measure the (log of the) normalized kinetic energy in time for four different
collisionmodels: themoment representationmethod (MR-LBM [Ferrari et al.
2023]), the central-moment model (NOCM [Li et al. 2020]), the cumulant-
based model (CU-LBM [Geier et al. 2017]), and ours (using the central-
moment based model). HOME-LBM matches the state-of-the-art cumulant
model, and drastically improves upon MR-LBM.

Flow past a sphere. We also evaluated our solver in Fig. 8 with

different LBM-based solvers for the simulation of a flow past a

spherical obstacle at a very high Reynolds number 𝑅𝑒 = 800, 000

using a computational grid of 200×400×200. While the original MR-

LBM [Ferrari et al. 2023] (a) crashes early, we see that the approach

of [Li et al. 2020] which optimizes the high-order parameters of the

central-moment based collision model (c) outperforms the collision

model where all non-physical high-order parameters are set to 1

(generating overly smooth flow, (b)) — but ringing artifacts start

creeping in at such a large𝑅𝑒 . The state-of-the-art cumulant collision

model [Geier et al. 2017], instead, is free of ringing artifacts (d).

HOME-LBM, shown in (e) using the cumulant-based model and

in (f) using the central-moment-based collision, approximates the

ALGORITHM 1: Pseudocode of our kinetic single-phase fluid solver.

𝑡 ← 0;

Initialize 𝜌 , 𝒖 and 𝑺;

while 𝑡 < 𝑇 do
For all fluid nodes in GPU kernels, reconstruct distribution

function 𝒇 by Eq. (17) into shared Memory ; // Sec. 4.2

for each node 𝒙 do
for each direction 𝑖 do

if no intersection between node 𝒙 and node 𝒙 − 𝒄𝑖 then
Stream 𝑓𝑖 to neighboring node 𝒙 − 𝒄𝑖 ;

else
Apply solid boundary condition ; // Sec. 4.4

end
end

end
Evaluate new 𝜌 , 𝒖 and 𝑺 with Eq. (7) ; // Sec. 3

Perform moment-based collision ; // Sec. 4.3
𝑡 ← 𝑡 + 1

end

Fig. 8. Comparisons. For a strong flow past a sphere, we run various LBM
solvers based on different collision models: (a) MR-LBM [Ferrari et al. 2023]
which blows up at an early frame, (b) original NOCM-MRT [De Rosis 2017],
(c) optimized NOCM-MRT [Li et al. 2020], (d) CU-MRT [iRMB 2023], fol-
lowed by HOME-LBM with cumulant-based (e) and central-moment-based
(f) collisions. While our approach does not capture exactly the high-order
cumulant collision model (e), both our options behave similarly, without
the ringing artifacts of (c) or the clear oversmoothing of (b) as exhibited by
a cross-section of flow field indicating the velocity magnitude.

results of the full-LBM cumulant-based model well despite its only

third-order nature, and does not exhibit ringing artifacts either.

Accuracy and robustness analysis. We also performed experiments

to evaluate our solver’s accuracy.We first test the accuracy of HOME-

LBM using the 2D Taylor-Green vortex example (for which a closed-

form solution is known) proposed in [Zehnder et al. 2018] and used

in the NOCM-MRT work of [Li et al. 2020]. Compared to these two

state-of-the-art Navier-Stokes vs. LBM solvers for different time

steps and grid sizes, Fig. 9 demonstrates that our compression of

the distribution to its first three velocity moments does not affect

Fig. 9. 2D Taylor-Green vortex test.We compare the reflection-advection
(MC+R) [Zehnder et al. 2018], NOCM-MRT LBM [Li et al. 2020] and HOME-
LBM solvers for (a) different time step sizes and (b) spatial grid sizes on the
2D Taylor-Green vortex simulation. The velocity root-mean-square error is
computed based on the known analytical solution.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.
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Fig. 10. Reconstruction error. To test second- vs. third-order Hermite
reconstructions from {a[0], a[1], a[2]} (Eq. (8) vs. (17)), we measure the 𝐿2
error in the reconstructed third-order moments a[3] w.r.t. the original ones
throughout the simulation from Fig. 8 [Li et al. 2020] .

the resulting accuracy of the solver as we almost systematically

match the results of [Li et al. 2020], with roughly two orders of

magnitude smaller velocity root-mean-square error than [Zehnder

et al. 2018] — exemplifying the current superiority of LBM solvers.

Note that this result using a D2Q9 discretization is likely to be bet-

ter than the actual reconstruction error generated by HOME-LBM

for a D3Q27 discretization, but it provides clear evidence of the

advantage that our moment-encoded approach has over common

Navier-Stokes solvers. We then use a neutral LBM simulation (we

picked the NOCM-MRT simulation [Li et al. 2020] of the jet flow

past a sphere from Fig. 8) to test the difference between a second-

order vs. a third-order Hermite reconstruction method (i.e., Eq. (8)

vs. Eq. (17)): for each frame of the animation, we pick all the distribu-

tion functions, compute their first three velocity-moments, then use

either Eq. (8) or Eq. (17) to reconstruct them. When we measure the

𝐿2 error of the third-order moment from the reconstructions com-

pared to the third-order moment of the original distributions, we see

around one to two orders of improvement in the third-order Hermite

reconstruction (Fig. 10). Finally, we prove in Fig. 11 that both our

high-order distribution reconstruction and moment-based collision

model are important: substituting one of these contributions with a

lower-order approximation leads to blowups.

Performance comparison. To show our solver’s efficiency, we com-

pare the timing cost per iteration for an identical simulation, chosen

to be the one from Fig. 8. We use the optimized version of NOCM-

MRT from [Lyu et al. 2021] which employs LU decomposition and

shared memory to accelerate the approach of [Li et al. 2020], and the

GPU-based cumulant collision model from [iRMB 2023]. We run the

low-order reconstruction,

high-order collision

high-order reconstruction,

low-order collision

Fig. 11. Ablation study. To test the individual effects of the high-order
distribution reconstruction and high-order collision model, we run the sim-
ulation scenario from Fig. 8 with (left) low-order reconstruction and high-
order collision, vs. (right) high-order reconstruction and low-order collision.
Both cases blow up (yellow regions indicate NaN at time of blow-up), with
low-order distribution reconstruction stopping very early on.

Fig. 12. Efficiency of LBM methods: By running the same “flow past
sphere” example with three implementations (CU-LBM [iRMB 2023],
NOCM-MRT [Lyu et al. 2021], and our HOME-LBM), we compare the
different average times per iteration of these solvers. HOME-LBM is on
average 5 times more efficient than NOCM-MRT and 10 times more efficient
than CU-LBM. Moreover, our smaller memory footprint allows us to reach
fine grid sizes for which the two other methods run out of memory. In
particular, our moment-based collision is a key factor in our timing gains.

same simulation for 2000 iterations, count the computational time

using the clock() function, and deduce the mean time per iteration

for each method. Results are shown in Fig. 12: HOME-LBM ends up

about five times faster than NOCM-MRT (in particular because ours

only needs one kernel pass and significantly less memory, which

significantly reduces data read/write and boosts performance) and

over an order of magnitude faster than cumulant collision model;

moreover, on a GPU with 24GB memory, HOME-LBM can support

resolutions of up to 500×1000×500, while the two others only go

up to 350×700×350 before running out of memory. Note that in

particular, our novel moment-based collision is an important factor

in our timing gains since using the NOCM-MRT model from [Lyu

et al. 2021] on the distribution function right after streaming instead

ends up being four times slower.

5.3 Offline simulations
Now, we go over different test results that we ran to illustrate our

solver ability. Note that we employed Bullet [Coumans and Bai

2021] as our rigid-body solver, and final results were rendered using

the GPU-accelerated 3D renderer Redshift [Maxon 2023]

3D coupling with static objects. In Fig. 1, we demonstrate a flow

past a detailed mesh of a tractor. Five different colored smoke injec-

tions are used to visualize the details of the flow and wake. In Fig. 2,

an octopus mesh with intricate topology (as it contains several ser-

pentine grooves) is placed in a turbulent wind field. Smoke flowing

through the complex obstacle exhibits a variety of vortex details.

Fig. 5 shows a complex wake created by a fern in the wind.

3D coupling with dynamic objects. Fig. 6 shows a rotating aircraft

propeller in a wind field. In this one-way coupling example, the

Fig. 13. Leaves blown by a jet: Several leaves of different weights are
dropped on a jet flow, demonstrating two-way coupling effects.
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wind entrains the vortices generated by the propeller’s dynamics

to the right of the frame. In order to visualize the flow details, we

insert four passive smoke injectors at the tips of the four blades.

Fig. 15 shows the motion of a hair comb creating fine vortices. We

also demonstrate two-way coupling examples. Fig. 13 shows leaves

of different weights being dropped on top of a jet flow and falling

under the action of gravity. Fig. 16 shows a rotor of 2kg and 3.75m

of diameter, where a torque is applied to make it rotate at 19 rad/s.

This makes it lift off, but as soon as the torque stops, it falls back

onto the floor. Finally, in Fig. 17, two car models of widely different

weights are dropped to the floor. Due to air resistance, the cars end

up with different terminal speeds and hit the ground at different

times, resulting in different effects on the surrounding smoke.

5.4 Real-time simulation
We also present a realtime session entirely run on an NVIDIA

GeForce RTX 4090 GPU card in Fig. 14. With this single GPU, we

were able to manipulate interactively the displacement of a rigid

body (a bowl in this case) and run our HOME-LBM simulator with

a 196×196×196 grid, as well as an in-house volume renderer. Note

that graphics fluid solvers are also able to achieve realtime through

the use of large time steps and/or multigrid pressure solves, but as

argued in [Li et al. 2020], the visual quality and accuracy of LBM

simulation (and in particular, its ability to handle nearly inviscid

fluids) are significantly higher, thus resulting in improved realism.

Fig. 14. Real time demo: a real-time session where a user moves around
an object (here, a bowl) which interacts with a jet flow is entirely done on a
single GPU card, volumetric rendering included.

5.5 Matching real experiments
Finally, we simulated the airflow over a delta wing with a 75

◦
-sweep

angle for an angle of attack of 20
◦
. As Fig. 3 demonstrates, our sim-

ulation reproduces the stable spiral vortices above the wing which

are responsible for aerodynamic lift, matching the experimental

visualization from [Délery 2001].

6 CONCLUSION
In this paper we introduced HOME-LBM, a lightweight, yet light-

speed simulator of fluid turbulent flows and rigid body coupling

based on high-order moment-encoded LBM solver. It offers a fresh

perspective on the LBM method: while all previous graphics ap-

proaches using kinetic solvers had distribution functions as their

main variables, we show that keeping only the first three velocity

moments leads to a smaller memory footprint and a far improved

computational efficiency. Compared to other computational fluid

dynamics approaches using the same moments to encode the ki-

netic variables, we introduce a higher-order reconstruction of the

distribution function for the streaming step, and show that the col-

lision step can be done with a simple closed-form update rule of the

moments, improving the efficiency of the solver while offering an

accuracy close to the full-blown distribution-based solvers.

This new type of solver opens up a number of possible research

directions. First, our third-order Hermite-based collisionmodel leads

to relatively simple update rules for the central moment version, but

the cumulant-based version (which we provide in App. D) is slightly

more involved; it would be useful to see if simpler rules could be

found, still ensuring at least a third-order approximation. Note that

if more moments are stored, one could also go up in order — but we

believe that third-order offers a good compromise for graphics as

it suffices for most typical scenarios of visual fluid simulation and

offers particularly simple computations for the case of single-phase

fluid simulation. Moreover, the efficiency and memory footprint

that we now reach gives hope that one could treat compressible and

thermal flows with a kinetic solver with significantly less memory

than the current𝐷3𝑄103 lattice structures used in compressible LBM

works in CFD [Coreixas et al. 2017]. It could require the addition of

other macroscopic variables such as temperature terms, and maybe

higher-order reconstruction and collision. Furthermore, extending

our moment-based approach to LBM multiphase solvers would be

an equally promising direction for future research.
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Fig. 16. Rotor lift: Spinning a rotor (2 kilograms, span of 3.75 meters) at 19 rad/s makes it lift off; once the applied torque stops, it falls back onto the floor.
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A HERMITE POLYNOMIALS
The explicit second-order Hermite tensor values we need are:

𝐻
[2]
𝛼,𝛽
(𝒄𝑖 ) = 𝑐𝑖,𝛼𝑐𝑖,𝛽 − 1

3
𝛿𝛼𝛽 ,

while the third-order Hermite tensor values are:

𝐻
[3]
𝛼,𝛽,𝛾
(𝒄𝑖 ) = 𝑐𝑖,𝛼𝑐𝑖,𝛽𝑐𝑖,𝛾 − 1

3

(
𝑐𝑖,𝛼𝛿𝛽𝛾 + 𝑐𝑖,𝛽𝛿𝛼𝛾 + 𝑐𝑖,𝛾𝛿𝛼𝛽

)
.

B 2D MOMENT-BASED RECONSTRUCTION
For the reader’s convenience, we also provide the 2D reconstruction

of a distribution from its three velocity moments 𝜌 , 𝜌𝒖, and 𝜌𝑺 , in
order to complement the 3D expression from Eq. (17):

𝑓𝑖 =𝜌𝑤𝑖

[
1 + 𝒄𝑖 · u

𝑐2𝑠
+ 𝑯 [2] (𝒄𝑖 ) : S

2𝑐4𝑠
(29)

+ 1

2𝑐6𝑠

(
𝐻
[3]
𝑥𝑥𝑦 (𝒄𝑖 ) (𝑆𝑥𝑥𝑢𝑦 + 2𝑆𝑥𝑦𝑢𝑥 − 2𝑢𝑥𝑢𝑥𝑢𝑦)

+ 𝐻 [3]𝑥𝑦𝑦 (𝒄𝑖 ) (𝑆𝑦𝑦𝑢𝑥 + 2𝑆𝑥𝑦𝑢𝑦 − 2𝑢𝑥𝑢𝑦𝑢𝑦)
) ]
.

C 2D CENTRAL-MOMENT-BASED COLLISION
To complement the 3D expressions from Sec. 4.3, we also provide

the 2D expressions of our central-moment-based collision model.

The projections into the Hermite-based form of Eq. (11) of 𝒎eq
and

the force-related term lead to mostly zero terms, except for:

𝑚
eq

0
= 𝜌, 𝑚

eq

3
= 2𝜌/3, 𝑚

eq

8
= 𝜌/9

and

𝐾1 = 𝐹𝑥 , 𝐾2 = 𝐹𝑦, 𝐾6 =
1

3
𝐹𝑦, 𝐾7 =

1

3
𝐹𝑥 ;

The updates then become:

𝜌 (𝒙, 𝑡 + 1) = 𝜌∗ ;
𝑢𝛼 (𝒙, 𝑡 + 1) = 𝑢∗𝛼 + 1

2𝜌∗ 𝐹𝛼 ;

𝑆𝑥𝑦 (𝒙, 𝑡 + 1) = (1 − 1

𝜏 )𝑆
∗
𝑥𝑦 + 1

𝜏𝑢
∗
𝑥𝑢
∗
𝑦 + 2𝜏−1

2𝜏𝜌∗ (𝐹𝑥𝑢
∗
𝑦 + 𝐹𝑦𝑢∗𝑥 ) ;

𝑆𝑥𝑥 (𝒙, 𝑡 + 1) = 𝜏−1
2𝜏 (𝑆

∗
𝑥𝑥 − 𝑆∗𝑦𝑦) + 𝜏+1

2𝜏 𝑢
∗
𝑥
2

+ 𝜏−1
2𝜏 𝑢

∗
𝑦
2 + 1

𝜌∗ 𝐹𝑥𝑢
∗
𝑥 + 𝜏−1

2𝜏𝜌∗ (𝐹𝑥𝑢
∗
𝑥 − 𝐹𝑦𝑢∗𝑦) ;

𝑆𝑦𝑦 (𝒙, 𝑡 + 1) = 𝜏−1
2𝜏 (𝑆

∗
𝑦𝑦 − 𝑆∗𝑥𝑥 ) + 𝜏+1

2𝜏 𝑢
∗
𝑦
2

+ 𝜏−1
2𝜏 𝑢

∗
𝑥
2 + 1

𝜌∗ 𝐹𝑦𝑢
𝑡
𝑦 + 𝜏−1

2𝜏𝜌∗ (𝐹𝑦𝑢
∗
𝑦 − 𝐹𝑥𝑢∗𝑥 ) .

D 3D CUMULANT-MOMENT-BASED COLLISION
Finally, we also provide the closed-form expressions one gets when

using the cumulant-based approach from [Geier et al. 2017] in our

moment-encoded context:

𝜌 (𝒙, 𝑡 + 1) = 𝜌∗ ;
𝑢𝛼 (𝒙, 𝑡 + 1) = 𝑢∗𝛼 + 1

2𝜌∗ 𝐹𝛼 ;

𝑆𝑥𝑦 (𝒙, 𝑡 + 1) = (1 − 1

𝜏 )𝑆
∗
𝑥𝑦 + 1

𝜏𝑢
∗
𝑥𝑢
∗
𝑦 + 2𝜏−1

2𝜏𝜌∗ (𝐹𝑥𝑢
∗
𝑦 + 𝐹𝑦𝑢∗𝑥 ) ;

𝑆𝑥𝑧 (𝒙, 𝑡 + 1) = (1 − 1

𝜏 )𝑆
∗
𝑥𝑧 + 1

𝜏𝑢
∗
𝑥𝑢
∗
𝑧 + 2𝜏−1

2𝜏𝜌∗ (𝐹𝑥𝑢
∗
𝑧 + 𝐹𝑧𝑢∗𝑥 ) ;

𝑆𝑦𝑧 (𝒙, 𝑡 + 1) = (1 − 1

𝜏 )𝑆
∗
𝑦𝑧 + 1

𝜏𝑢
∗
𝑦𝑢
∗
𝑧 + 2𝜏−1

2𝜏𝜌∗ (𝐹𝑧𝑢
∗
𝑦 + 𝐹𝑦𝑢∗𝑧 ) ;
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Fig. 17. Falling cars. In this two-way coupling example of a very light car (top) and of a heavier car (bottom) dropped on the floor from a height, the car’s
terminal speed ends up being very different for each case, and its wake disturbs a static smoke ring.
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3
𝑢∗𝑦) + 1

𝜌∗ 𝐹𝑥 (−
1

4
𝑢∗𝑥

3 + 5

4
𝑢∗𝑦

2

𝑢∗𝑥 − 1

4
𝑢∗𝑥𝑢
∗
𝑧
2 − 1

3
𝑢∗𝑥 )

+ 1

𝜌∗ 𝐹𝑧 (−
1

4
𝑢∗𝑧

3 + 5

4
𝑢∗𝑦

2

𝑢∗𝑧 − 1

4
𝑢∗𝑧𝑢
∗
𝑥
2 − 1

3
𝑢∗𝑧 ) ;

𝑆𝑧𝑧 (𝒙, 𝑡 + 1) = 1

𝜏2

(
𝑢∗𝑧

4 − 1

2
𝑢∗𝑦

4 − 1

2
𝑢∗𝑥

4 − 1

4
𝑢∗𝑧

2

𝑢∗𝑦
2 − 1

4
𝑢∗𝑧

2

𝑢∗𝑥
2 + 1

2
𝑢∗𝑦

2

𝑢∗𝑥
2 − 1

2
𝑢∗𝑧

2 (2𝑆∗𝑧𝑧 − 𝑆∗𝑦𝑦 − 𝑆∗𝑥𝑥 ) + 1

4
𝑢∗𝑦

2 (2𝑆∗𝑦𝑦 − 𝑆∗𝑧𝑧 − 𝑆∗𝑥𝑥 )

+ 1

4
𝑢∗𝑥

2 (2𝑆∗𝑥𝑥 − 𝑆∗𝑧𝑧 − 𝑆∗𝑦𝑦) + 1

𝜌∗ 𝐹𝑧 (−𝑢
∗
𝑧
3 − 1

4
𝑢∗𝑧𝑢
∗
𝑦
2 − 1

4
𝑢∗𝑧𝑢
∗
𝑥
2) + 1

𝜌∗ 𝐹𝑦 (
1

2
𝑢∗𝑦

3 + 1

2
𝑢∗𝑧

2

𝑢∗𝑦 − 1

4
𝑢∗𝑦𝑢
∗
𝑥
2) + 1

𝜌∗ 𝐹𝑥 (
1

2
𝑢∗𝑥

3 + 1

2
𝑢∗𝑧

2

𝑢∗𝑥 − 1

4
𝑢∗𝑥𝑢
∗
𝑦
2)
)

+ 1

𝜏

(
−2𝑢∗𝑧

4 + 1

4
𝑢∗𝑦

4 + 1

4
𝑢∗𝑥

4 + 5

4
𝑢∗𝑧

2

𝑢∗𝑦
2 + 5

4
𝑢∗𝑧

2

𝑢∗𝑥
2 − 𝑢∗𝑦

2

𝑢∗𝑥
2 + 2

3
𝑢∗𝑧

2 − 1

3
𝑢∗𝑦

2 − 1

3
𝑢∗𝑥

2 + 1

4
𝑢∗𝑧

2 (8𝑆∗𝑧𝑧 − 7𝑆∗𝑦𝑦 − 7𝑆∗𝑥𝑥 )

+ 1

4
𝑢∗𝑦

2 (2𝑆∗𝑧𝑧 − 𝑆∗𝑦𝑦 + 2𝑆∗𝑥𝑥 ) + 1

4
𝑢∗𝑥

2 (2𝑆∗𝑧𝑧 + 2𝑆∗𝑦𝑦 − 𝑆∗𝑥𝑥 ) − 1

3
(2𝑆∗𝑧𝑧 − 𝑆∗𝑦𝑦 − 𝑆∗𝑥𝑥 ) + 1

𝜌∗ 𝐹𝑧 (2𝑢
∗
𝑧
3 + 1

2
𝑢∗𝑧𝑢
∗
𝑦
2 + 1

2
𝑢∗𝑧𝑢
∗
𝑥
2 − 2

3
𝑢∗𝑧 )

+ 1

𝜌∗ 𝐹𝑦 (−
3

4
𝑢∗𝑦

3 − 7

4
𝑢∗𝑧

2

𝑢∗𝑦 + 1

2
𝑢∗𝑦𝑢
∗
𝑥
2 + 1

3
𝑢∗𝑦) + 1

𝜌∗ 𝐹𝑥 (−
3

4
𝑢∗𝑥

3 − 7

4
𝑢∗𝑧

2

𝑢∗𝑥 + 1

2
𝑢∗𝑥𝑢
∗
𝑦
2 + 1

3
𝑢∗𝑥 )

)
− 5

4
𝑢∗𝑧

4 + 1

4
𝑢∗𝑦

4 + 1

4
𝑢∗𝑥

4 − 𝑢∗𝑧
2

𝑢∗𝑦
2 − 𝑢∗𝑧

2

𝑢∗𝑥
2 + 1

2
𝑢∗𝑦

2

𝑢∗𝑥
2 + 1

3
𝑢∗𝑧

2 + 1

3
𝑢∗𝑦

2 + 1

3
𝑢∗𝑥

2 + ( 5
4
𝑢∗𝑧

2 − 1

4
𝑢∗𝑦

2 − 1

4
𝑢∗𝑥

2) (𝑆∗𝑧𝑧 + 𝑆∗𝑦𝑦 + 𝑆∗𝑥𝑥 )

+ 1

3
(2𝑆∗𝑧𝑧 − 𝑆∗𝑦𝑦 − 𝑆∗𝑥𝑥 ) + 1

𝜌∗ 𝐹𝑧𝑢
∗
𝑧 + 1

𝜌∗ 𝐹𝑧 (
5

4
𝑢∗𝑧

3 − 1

4
𝑢∗𝑧𝑢
∗
𝑦
2 − 1

4
𝑢∗𝑧𝑢
∗
𝑥
2 − 1

3
𝑢∗𝑧 ) + 1

𝜌∗ 𝐹𝑦 (−
1

4
𝑢∗𝑦

3 + 5

4
𝑢∗𝑧

2

𝑢∗𝑦 − 1

4
𝑢∗𝑦𝑢
∗
𝑥
2 − 1

3
𝑢∗𝑦)

+ 1

𝜌∗ 𝐹𝑥 (−
1

4
𝑢∗𝑥

3 + 5

4
𝑢∗𝑧

2

𝑢∗𝑥 − 1

4
𝑢∗𝑥𝑢
∗
𝑦
2 − 1

3
𝑢∗𝑥 ) .
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