
Topology Guaranteed B-Spline Surface/Surface Intersection
JIEYIN YANG, KLMM, Chinese Academy Of Sciences; University of Chinese Academy of Sciences, CHINA
XIAOHONG JIA∗, KLMM, Chinese Academy Of Sciences; University of Chinese Academy of Sciences, CHINA
DONG-MING YAN,MAIS, Institute of Automation, Chinese Academy of Sciences; School of AI, University of Chinese
Academy of Sciences, CHINA

Surfaces

Ours

ACIS

OCCT

(a) (b) (c) (d) (e) (f) (g)

NULL NULL NULL

NULL

Fig. 1. We proposed a topology guaranteed B-Spline surface intersection method that is robust toward various intersection topology, including (a) cross
intersections, (b) isolated contacts, (c)(d) intersections along boundaries, (e) contact in different intersection branches, (f) high-order contact along a whole
curve and (g) multiple isolated contacts. The intersection loci of our method are presented in red curves, while the results of ACIS and OCCT are presented in
yellow and green curves respectively. ‘NULL’ indicates that the result is an empty curve. The boxes with dashed boundary lines indicate wrong topology. Our
method provides correct intersection topology in all cases, while ACIS and OCCT sometimes fail.

The surface/surface intersection technique serves as one of the most funda-

mental functions in modern Computer Aided Design (CAD) systems. Despite

the long research history and successful applications of surface intersec-

tion algorithms in various CAD industrial software, challenges still exist in

balancing computational efficiency, accuracy, as well as topology correct-

ness. Specifically, most practical intersection algorithms fail to guarantee

the correct topology of the intersection curve(s) when two surfaces are in

near-critical positions, which brings instability to CAD systems. Even in

one of the most successfully used commercial geometry engines ACIS, such

complicated intersection topology can still be a tough nut to crack.

∗
Corresponding author.

Authors’ addresses: Jieyin Yang, KLMM, Chinese Academy Of Sciences; University of

Chinese Academy of Sciences, Beijing, CHINA, yangjieyin17@mails.ucas.ac.cn; Xiao-

hong Jia, KLMM, Chinese Academy Of Sciences; University of Chinese Academy of

Sciences, Beijing, CHINA, xhjia@amss.ac.cn; Dong-Ming Yan, MAIS, Institute of Au-

tomation, Chinese Academy of Sciences; School of AI, University of Chinese Academy

of Sciences, Beijing, CHINA, yandongming@gmail.com.

© 2023 Copyright held by the owner/author(s).

0730-0301/2023/12-ART211

https://doi.org/10.1145/3618349

In this paper, we present a practical topology guaranteed algorithm for

computing the intersection loci of two B-spline surfaces. Our algorithm

well treats all types of common and complicated intersection topology with

practical efficiency, including those intersections with multiple branches

or cross singularities, contacts in several isolated singular points or high-

order contacts along a curve, as well as intersections along boundary curves.

We present representative examples of these hard topology situations that

challenge not only the open-source geometry engine OCCT but also the

commercial engine ACIS. We compare our algorithm in both efficiency and

topology correctness on plenty of common and complicated models with

the open-source intersection package in SISL, OCCT, and the commercial

engine ACIS.

CCS Concepts: • Computing methodologies → Computer graphics;
Shape modeling; Parametric curve and surface models; Algebraic
algorithms.

Additional Key Words and Phrases: Surface intersection, B-Spline surface,

implicitization, boolean operation

ACM Reference Format:
Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan. 2023. Topology Guaranteed

B-Spline Surface/Surface Intersection. ACM Trans. Graph. 42, 6, Article 211
(December 2023), 16 pages. https://doi.org/10.1145/3618349

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

This work is licensed under a Creative Commons Attribution International 4.0 License.

HTTPS://ORCID.ORG/0009-0008-7882-0750
HTTPS://ORCID.ORG/0000-0001-6206-3216
HTTPS://ORCID.ORG/0000-0003-2209-2404
https://orcid.org/0009-0008-7882-0750
https://orcid.org/0000-0001-6206-3216
https://orcid.org/0000-0001-6206-3216
https://orcid.org/0000-0003-2209-2404
https://doi.org/10.1145/3618349
https://doi.org/10.1145/3618349
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618349&domain=pdf&date_stamp=2023-12-05

211:2 • Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan

1 INTRODUCTION
Surface/Surface intersection is a fundamental task in Computer

Aided Design (CAD) and geometric modeling systems. An efficient,

robust, and topology guaranteed surface/surface intersection al-

gorithm is highly desired in many modeling operations of CAD

systems, such as Boolean operations, mesh generation, and render-

ing. Given the prevalent utilization of surface/surface intersection in

CAD systems, research on this task extends beyond the single goal

of efficiency. Consequently, an algorithm that not only fulfills the

fundamental requirements but also exhibits robustness by adapting

to diverse scenarios is highly required. Additionally, the algorithm

must guarantee the topological correctness by effectively handling

intricate situations, such as small loops and tangential situations.

There exists extensive research on surface intersection algorithms

starting from the 1980s, during which several seminal algorithms

gained significant attention, i.e. the algebraic method, the marching

method, the lattice method, the subdivision method, and the hybrid

method that combines two of these methods. Algebraic methods usu-

ally convert the surface intersection problem into solving algebraic

equations, which can be challenging in certain complex scenarios.

The marching method computes a series of starting points and then

traces out the intersection locus using classic differential geometry

[Bajaj et al. 1988a; Barnhill and Kersey 1990; Kriezis et al. 1992].

Nevertheless, a full computation of starting points on all branches,

which directly determines the topology correctness of the intersec-

tion curve, is difficult to achieve. The lattice method decomposes

the surface/surface intersection problem into curve/surface intersec-

tion problems by discretizing the parametric domain of the surface

[Rossignac and Requicha 1987]. However, inadequate discretization

may result in the loss of small loops and isolated points in the inter-

section curve. The subdivision method keeps dividing the surfaces

into smaller patches and then converts the intersection problem into

the intersection of these near-planar patches [Patrikalakis 1993],

which may lead to the inaccurate calculation of tangential curves

with insufficient number of subdivisions. Hybrid methods combine

two of the above-discussed methods, for example, the algebraic

method and the marching method, or the subdivision method and

the marching method. Among all these methods, algebraic-related

methods possess the advantage of preserving the intersection topol-

ogy, which is difficult for the lattice or subdivision method. However,

the algebraic method is generally inefficient and depends heavily on

some other algebraic techniques, such as implicitization or solving

polynomial systems.

Although extensive exploration has been conducted on the sur-

face intersection problem, the existing methodologies can still be

improved in terms of implementation. For example, some algebraic

methods resort to surface implicitization or solving a system of poly-

nomial equations, which involve two key steps in an intersection

algorithm but are actually hard problems in algebraic geometry.

Over the past decades, the implicitization and the polynomial sys-

tem solving problems have been greatly developed in their own

community; nevertheless, these developments were seldom brought

back to the surface intersection literature [Hoffmann 1989; Sarraga

1983]. Additionally, records pertaining to the timing and topology

of intersection examples are few, and a limited number of works [Jia

et al. 2022; Lin et al. 2013] have performed comparative analyses to

evaluate the performance of different methods.

The surface/surface intersection problemhas not only beenwidely

studied in academic research but rapidly developed in the indus-

trial field. Many open-source and commercial software packages

containing intersection functions have been developed and exten-

sively employed in both research and industrial domains. Among

these packages, ACIS [2023] is a renowned 3D modeling kernel

that provides powerful capabilities for creating, manipulating, and

analyzing geometric models. ACIS has established itself as one of

the leading 3D modeling kernels in the CAD industry due to its ro-

bustness, versatility, and wide range of functionalities. The surface

intersection function in ACIS has also become one of the industry

standards due to its high robustness and efficiency. Nevertheless,

when confronted with scenarios involving high-order contact or

other complex intersection topology, the outcomes produced by

ACIS are sometimes unsatisfactory as illustrated in Fig. 1.

In this paper, we present a practical topology guaranteed algo-

rithm for computing the intersection of two B-Spline surfaces. The

proposed algorithm demonstrates topology correctness not only in

all common transversal examples of B-spline surface intersections

as in ACIS but also in challenging intersection topologies, such as

when the two surfaces are in high-order contact at some points or

along a curve.Wemainly adopt an algebraic routine in the algorithm

by bringing novel techniques or improvements to state-of-the-art

works in the key steps of implicitization, topology determination,

and redundant curve clipping. Ourmain contributions are as follows:

(1) The fast moving plane technique is introduced to the traditional

implicitization approach by Dixon matrices, which facilitates

the intersection process even in the presence of base points.

(2) The topology of the intersection curve in the parametric do-

main is pre-computed to ensure the correctness of the adjacency

relationships between critical points and boundary points, as

well as considering the intersection along the boundaries of the

parametric domain.

(3) A novel clipping method is proposed for the redundant part of

the intersection curve caused by implicitization. The method is

based on the inversion formula deduced from the Dixon matrix

and successfully restricts the intersection curve to its required

parametric domain.

2 RELATED WORK
Extensive research has been conducted on the problem of sur-

face/surface intersection, and most of the proposed methods or

approaches can be adapted to the B-Spline surface intersection prob-

lem [Bajaj et al. 1988b; Dokken 1997; Krishnan and Manocha 1997;

Manocha and Canny 1991; Patrikalakis 1993; Sederberg and Meyers

1988; Shen et al. 2016; Ventura and Guedes Soares 2012]. These tech-

niques can typically be classified into five categories: the algebraic

method, the marching method, the lattice method, the subdivision

method, and the hybrid method.

Algebraic methods. Given two B-Spline surfaces, algebraic meth-

ods typically convert one of them into its implicit equation and

then substitute the parametric form of the other surface into this

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

Topology Guaranteed B-Spline Surface/Surface Intersection • 211:3

implicit equation. This process results in an algebraic curve with

preserved algebraic characteristics [Manocha and Canny 1991; Sar-

raga 1983]. However, the implicitization of rational surfaces using

the traditional algebraic method is known to be challenging [Busé

et al. 2003]. Moreover, the parametric domain of the surface will be

omitted after the implicitization, which leads to undesired intersec-

tion curves outside the parametric domain of surfaces during the

intersection process. Sederberg and Chen [1995] were the first to dis-

cover the technique of moving surfaces for surface implicitization,

where they mentioned the Dixon matrix as a possible candidate

for implicitization. However, at that time, the Dixon matrix always

failed to provide implicitization when the surface contained base

points where the homogenous coordinates of the surface simulta-

neously vanish. Therefore, the technique they proposed was the

first to use blending functions to construct a series of moving sur-

faces for implicitization, which was a different and novel technique.

However, despite the disadvantage of the Dixon matrix of not be-

ing directly applicable to surfaces with base points, it remains the

simplest method for implicitization, because it has much smaller

matrix coefficients than other implicitization approaches.

Marching methods for surface intersection are widely used be-

cause of their generality and simplicity. Marching methods usually

have two main steps. First, a series of starting points are determined

on each branch of the intersection curves. Then, by using the local

differential geometry of surfaces, the intersection locus is traced

out from each starting point [Bajaj et al. 1988b; Barnhill and Kersey

1990; Patrikalakis 1993; Sederberg and Meyers 1988; Ventura and

Guedes Soares 2012]. However, this approach also has some limita-

tions, such as the necessity of identifying starting points, which can

be challenging in the presence of small loops, and the determination

of the tracing direction over singular points.

Lattice methods decompose the surface/surface intersection prob-

lem into multiple curve/surface intersection problems. In this ap-

proach, one of the surfaces is disintegrated into its isoparametric

curves, which are then intersected with the other surface to deter-

mine their intersection points. The ultimate intersection curve of

two surfaces is produced by linking the discrete intersection points

[Rossignac and Requicha 1987]. Owing to the discretization of the

lattice method, the inadequate sampling density of the isoparamet-

ric curves selected on the surface may result in missing isolated

intersection points or small loops.

Subdivision methods are a recursive approach that involves sub-

dividing the B-Spline surfaces into smaller patches until the inter-

section can be computed with sufficient accuracy. This approach

consists of two iterative steps. First, each B-Spline surface is divided

into a set of smaller patches by refining its control points. Then,

an intersection test is performed between the patches of the two

surfaces to determine possible intersections. The accuracy and effi-

ciency of subdivision methods heavily depend on the choice of sub-

division strategy and termination criteria [Lasser 1986; Sederberg

and Meyers 1988]. [De Figueiredo 1996] utilized affine arithmetic

to calculate the bounding box of small patches and then quickly

discarded the pairs of patches with no box intersection. [Lin et al.

2013] accelerated the affine arithmetic intersection algorithm using

a GPU, significantly enhancing its efficiency. Although subdivision

methods can obtain intersection curves at relatively high speed,

they may miss small loops and isolated intersection points, and the

topological correctness near singular points is not guaranteed under

this approach.

Hybrid methods pertain to the integration of two or more previ-

ously mentioned methods, with the objective of harnessing their

distinct advantages. A common example is to use the subdivision

method to find several starting points and then trace out the whole

intersection curve using the marching method in order to enhance

the efficiency of the intersection process [Barnhill and Kersey 1990;

Dokken 1997]. Another representative approach involves utilizing

algebraic methods to locate starting points, and subsequently em-

ploying marching methods to trace out the intersection curve from

these calculated starting points [Krishnan and Manocha 1997]. The

fusion of algebraic and tracing methods is frequently employed to

strike a balance between the efficiency and topological accuracy of

the intersection curve.

3 PRELIMINARIES
Before introducing the proposed intersection algorithm, we first

introduce some preliminaries about base points, moving planes, and

Dixon matrices.

3.1 Moving Planes
A parametric surface P in 3D space can be written in its homoge-

neous form

P(𝑢, 𝑣) = (𝑎(𝑢, 𝑣), 𝑏 (𝑢, 𝑣), 𝑐 (𝑢, 𝑣), 𝑑 (𝑢, 𝑣)),

where𝑎, 𝑏, 𝑐, 𝑑 are polynomials with gcd(𝑎, 𝑏, 𝑐, 𝑑) = 1, and

(
𝑎
𝑑
, 𝑏
𝑑
, 𝑐
𝑑

)
give the surface coordinates in R3

.

A parameter pair (𝑢0, 𝑣0) is called a base point of P(𝑢, 𝑣) if

𝑎(𝑢0, 𝑣0) = 𝑏 (𝑢0, 𝑣0) = 𝑐 (𝑢0, 𝑣0) = 𝑑 (𝑢0, 𝑣0) = 0. (1)

A moving plane is a family of planes with parameters (𝑢, 𝑣) in its

coefficients in 𝑥,𝑦, 𝑧,𝑤 written in the following form:

𝐿(X;𝑢, 𝑣) := 𝐴(𝑢, 𝑣)𝑥 + 𝐵(𝑢, 𝑣)𝑦 +𝐶 (𝑢, 𝑣)𝑧 + 𝐷 (𝑢, 𝑣)𝑤 = 0, (2)

where X = (𝑥,𝑦, 𝑧,𝑤) ∈ RP3
is the homogeneous coordinate, and

𝐴(𝑢, 𝑣), 𝐵(𝑢, 𝑣),𝐶 (𝑢, 𝑣), 𝐷 (𝑢, 𝑣) ∈ R[𝑢, 𝑣] are bivariate polynomials.

For each parameter value (𝑢0, 𝑣0), 𝐿(X;𝑢0, 𝑣0) = 0 gives a plane.

A moving plane 𝐿(X;𝑢, 𝑣) = 0 is said to follow the parametric

surface P(𝑢, 𝑣) if the following equation holds:

𝐿(P(𝑢, 𝑣);𝑢, 𝑣) ≡ 0. (3)

Geometrically, this indicates that for every parameter value (𝑢0, 𝑣0),
the plane 𝐿(X;𝑢0, 𝑣0) = 0 always passes through the point P(𝑢0, 𝑣0)
on the surface. For more basics on moving planes, readers can refer

to [Sederberg and Chen 1995].

3.2 Dixon Matrices
Given three bivariate polynomials of degree (𝑚,𝑛):

𝑓 (𝑢, 𝑣) =
𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑎𝑖,𝑗𝑢
𝑖 𝑣 𝑗 , 𝑔 (𝑢, 𝑣) =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑏𝑖,𝑗𝑢
𝑖 𝑣 𝑗 , ℎ (𝑢, 𝑣) =

𝑚∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑐𝑖,𝑗𝑢
𝑖 𝑣 𝑗 ,

(4)

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

211:4 • Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan

Box test Implicitization Topology Determination Curve Tracing Curve Clipping

Fig. 2. Overview of the proposed algorithm. Surface P is represented in blue and Surface Q is represented in orange. First, a fast collision detection of the
bounding boxes of the two surfaces is conducted. Then, if two bounding boxes collide with each other, Surface P is implicitized to 𝐹 (𝑥, 𝑦, 𝑧, 𝑤) using its
corresponding Dixon matrix 𝐷 (𝑥, 𝑦, 𝑧, 𝑤) . Subsequently, left helping points (red), right helping points (blue) and boundary points (green) are calculated to
determine the topology of the intersection curve. These helping points then serve as the starting points for locus computation. After tracing the intersection
curve in the parametric domain, we lift it to 3D space and employ the Dixon matrix to clip the 3D curve within the appropriate region.

the Dixon matrix 𝐷 (𝑓 , 𝑔, ℎ) is a 2𝑚𝑛 × 2𝑚𝑛 matrix given by the

following equation [Dixon et al. 1908]:

1

(𝑢 − 𝛼) (𝑣 − 𝛽)

������ 𝑓 (𝑢, 𝑣) 𝑔(𝑢, 𝑣) ℎ(𝑢, 𝑣)
𝑓 (𝑢, 𝛽) 𝑔(𝑢, 𝛽) ℎ(𝑢, 𝛽)
𝑓 (𝛼, 𝛽) 𝑔(𝛼, 𝛽) ℎ(𝛼, 𝛽)

������
= (1, 𝛼, 𝛽, · · · , 𝛼𝑚−1𝛽2𝑛−1)𝐷 (𝑓 , 𝑔, ℎ)

©«

1

𝑢

𝑣

.

.

.

𝑢2𝑚−1𝑣𝑛−1

ª®®®®®®¬
.

(5)

where 𝛼 and 𝛽 are two variables. The Dixon resultant of 𝑓 , 𝑔, ℎ is

defined by the determinant det (𝐷 (𝑓 , 𝑔, ℎ)) of the Dixon matrix.

4 B-SPLINE SURFACE INTERSECTIONS
A B-Spline surface of bi-degree (𝑚,𝑛) is defined by (𝑘 + 1) × (𝑙 + 1)
control points p𝑖, 𝑗 and two knot vectors Ū = {𝑢0, 𝑢1, · · · , 𝑢𝑚+𝑘 } and
V̄ = {𝑣0, 𝑣1, · · · , 𝑣𝑛+𝑙 } [Gordon and Riesenfeld 1974]. The parametric

representation of the B-Spline surface can be written as

R(𝑢, 𝑣) =
𝑘∑︁
𝑖=0

𝑙∑︁
𝑗=0

𝑁𝑖,𝑚 (𝑢)𝑁 𝑗,𝑛 (𝑣)p𝑖, 𝑗 , (6)

where 𝑁𝑖,𝑚 (𝑢) and 𝑁 𝑗,𝑛 (𝑣) are the spline basis functions that can
be derived by the Cox-de Boor recursion formula [de Boor 1971].

Given two B-Spline surfaces P and Q of bi-degrees (𝑚1, 𝑛1) and
(𝑚2, 𝑛2), with control points P̄, Q̄ and knot vectors Ū1,V̄1 and Ū2,V̄2:

P̄ = {p𝑖, 𝑗 ∈ R3 | 𝑖 = 0, 1, · · · , 𝑘1, 𝑗 = 0, 1, · · · , 𝑙1},
Ū1 = {𝑢1,0, 𝑢1,1, · · · , 𝑢1,𝑚1+𝑘1

} V̄1 = {𝑣1,0, 𝑣1,1, · · · , 𝑣1,𝑛1+𝑙1 },
Q̄ = {q𝑖, 𝑗 ∈ R3 | 𝑖 = 0, 1, · · · , 𝑘2, 𝑗 = 0, 1, · · · , 𝑙2},
Ū2 = {𝑢2,0, 𝑢2,1, · · · , 𝑢2,𝑚2+𝑘2

} V̄2 = {𝑣2,0, 𝑣2,1, · · · , 𝑣2,𝑛2+𝑙2 },

(7)

the general outline of computing the intersection of P and Q is as

follows, illustrated in Fig. 2.

(1) Fast decision of non-intersections using oriented bounding

boxes (Sec. 4.1);

(2) Fast implicitization of the parametric surface with lower degree

in each spline patch pairs (Sec. 4.2);

(3) Topology determination of the intersection curve in the para-

metric domain (Sec. 4.3);

(4) Computation of the intersection curve in 3D space (Sec. 4.4);

(5) Fast clipping of the intersection curve to adapt the parametric

domain (Sec. 4.4).

Several key steps in the above outline, for example, implicitization,

topology determination, and clipping are hard problems themselves

and have been developed in their own research field over the decades.

On one hand, these developments are seldom brought back to the

surface intersection algorithm; on the other hand, more exploration

is needed in these steps to give a detailed and practical algorithm of

intersection computation.

4.1 Fast Determination of Intersections
A fast and rough collision detection is performed between the two

given spline surfaces using their bounding boxes constructed from

control points. The separation of the two bounding boxes indicates

the separation of the two surfaces. Otherwise, the surfaces are fur-

ther split into Bézier patches and similar collision detection is taken

on each pair of the Bézier patches from the two splines.

The oriented bounding box (OBB) [Assarsson and Moller 2000] of

the control points of the B-Spline/Bézier surface is adopted, shown

in Fig. 3(a). The OBB for a given point set is the smallest rectangular

box that contains the point set with its axes not necessarily aligned

with the global coordinate system. Chang et al. [2011] presented a

fast algorithm for computing the OBB of the control points of B-

Spline surfaces. Compared to the axis-aligned bounding box (AABB)

in Fig. 3(b), OBB provides a tighter bound for the surface, hence is

more efficient in discarding the non-intersection patches.

4.2 Fast Implicitization of Parametric Surfaces
Since we reduce the intersection of two B-spline surfaces into the

intersections of patch pairs from the two splines, we next focus

on computing the intersection of two Bezier patches. To do this,

we plug the parametric form of one patch into the implicit form of

the other. Next, we explore the implicitization technique of moving

planes.

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

Topology Guaranteed B-Spline Surface/Surface Intersection • 211:5

(a) OBB (b) AABB

Fig. 3. The OBB (a) and AABB (b) of a spline surface. The control points are
marked in red. The OBB is tighter than the AABB.

Given two parametric surfaces P(𝑢, 𝑣) and Q(𝑠, 𝑡) of bi-degree
(𝑚1, 𝑛1) and (𝑚2, 𝑛2) with the following homogeneous parametriza-

tion:

P(𝑢, 𝑣) = (𝑎1 (𝑢, 𝑣), 𝑏1 (𝑢, 𝑣), 𝑐1 (𝑢, 𝑣), 𝑑1 (𝑢, 𝑣))
Q(𝑠, 𝑡) = (𝑎2 (𝑠, 𝑡), 𝑏2 (𝑠, 𝑡), 𝑐2 (𝑠, 𝑡), 𝑑2 (𝑠, 𝑡)),

(8)

we convert one of the surfaces with the lower implicit degree
1
, say

P(𝑢, 𝑣), into its implicit equation 𝐹 (𝑥,𝑦, 𝑧,𝑤) = 0.

In order to implicitize P(𝑢, 𝑣), we define three moving planes

𝑓 := 𝑑1 (𝑢, 𝑣)𝑥 − 𝑎1 (𝑢, 𝑣)𝑤
𝑔 := 𝑑1 (𝑢, 𝑣)𝑦 − 𝑏1 (𝑢, 𝑣)𝑤
ℎ := 𝑑1 (𝑢, 𝑣)𝑧 − 𝑐1 (𝑢, 𝑣)𝑤.

(9)

Obviously, 𝑓 , 𝑔, ℎ all follow surface P(𝑢, 𝑣). We compute the Dixon

matrix of polynomials 𝑓 , 𝑔, ℎ with respect to variables (𝑢, 𝑣):

𝐷 (𝑥,𝑦, 𝑧,𝑤) := 𝐷𝑖𝑥𝑢,𝑣 (𝑓 , 𝑔, ℎ). (10)

Proposition 1. When the parametrization P(𝑢, 𝑣) has no base
points, rank(D) = 2m1n1, and the determinant of 𝐷 gives the im-
plicit equation of the surface [Sederberg et al. 1984]. Otherwise, if
the parametrization contains base points, rank(D) < 2m1n1, and
the implicit equation is a factor of the maximal nonzero minors of 𝐷
[Manocha and Canny 1992].

Remark 1. Since the rank 𝑟 of polynomial matrix 𝐷 is computa-
tionally expensive, a practical alternative strategy is to assign some
generic values of X𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ,𝑤𝑖), 𝑖 = 1, · · · , 𝑘 to matrix 𝐷 and
compute 𝑟𝑖 = rank(D(Xi)). According to the fact that set 𝐴 := {X0 =

(𝑥0, 𝑦0, 𝑧0,𝑤0) ∈ R4 |rank(D(X0)) < r} is a zero-measure set in R4,
most values of 𝑟𝑖 equal the rank of polynomial matrix 𝑟 . Once rank
𝑟 is determined, the implicit equation of the parametric surface can
be computed. Here a fast algorithm for computing the Dixon matrix
presented in [Chionh et al. 2002] is adopted.

For a parameter value (𝑢, 𝑣), we define the vector

U(𝑢, 𝑣) := [1, 𝑢, 𝑣, · · · , 𝑢2𝑚1−1𝑣𝑛1−1] .

Theorem 4.1. A point X0 = (𝑥0, 𝑦0, 𝑧0,𝑤0) with 𝑤0 ≠ 0 is a
point on the surface P(𝑢, 𝑣), i.e., P(𝑢∗, 𝑣∗) = _X0 for some nonzero
constant _ and parameter value (𝑢∗, 𝑣∗) if and only if 𝑓 (𝑢∗, 𝑣∗;X) =
0, 𝑔(𝑢∗, 𝑣∗;X) = 0, ℎ(𝑢∗, 𝑣∗;X) = 0 have one common solution X =

X0, which is also equivalent to 𝐷 (X0)U(𝑢∗, 𝑣∗) = 0.

1
The implicit degree of a rational surface of bi-degree (𝑚1, 𝑛1) is 2𝑚1𝑛1 − 𝑘 , where 𝑘

is an integer contributed by base points of the parametric surface.

Fig. 4. Difference between a parametric surface with Eq. 11 within the
domain (𝑢, 𝑣) ∈ [0, 1] × [0, 1] and its corresponding implicit surface. (a) is
the parametric surface; (b) is the implicit surface corresponding to (a); (c) is
the difference between (a) and (b).

Proof. ” ⇒ ”: If P(𝑢∗, 𝑣∗) = _X0, we have 𝑎1 (𝑢∗, 𝑣∗) = _𝑥0,

𝑏1 (𝑢∗, 𝑣∗) = _𝑦0, 𝑐1 (𝑢∗, 𝑣∗) = _𝑧0, 𝑑1 (𝑢∗, 𝑣∗) = _𝑤0. Substituting

𝑋0 into the equations, we obtain: 𝑓 (𝑢∗, 𝑣∗;X0) = 𝑑1 (𝑢∗, 𝑣∗)𝑥0 −
𝑎1 (𝑢∗, 𝑣∗)𝑤0 = _𝑤0 · 𝑥0 − _𝑥0 · 𝑤0 = 0. Similarly, 𝑔(𝑢∗, 𝑣∗;X0) =

0, ℎ(𝑢∗, 𝑣∗;X0) = 0. So X = X0 is a common solution of the three

equations.

” ⇐ ”: If 𝑓 (𝑢∗, 𝑣∗;X) = 0, 𝑔(𝑢∗, 𝑣∗;X) = 0, ℎ(𝑢∗, 𝑣∗;X) = 0 have

one common solution X0 = (𝑥0, 𝑦0, 𝑧0,𝑤0), we have

𝑑1 (𝑢∗, 𝑣∗)𝑥0 = 𝑎1 (𝑢∗, 𝑣∗)𝑤0

𝑑1 (𝑢∗, 𝑣∗)𝑦0 = 𝑏1 (𝑢∗, 𝑣∗)𝑤0

𝑑1 (𝑢∗, 𝑣∗)𝑧0 = 𝑐1 (𝑢∗, 𝑣∗)𝑤0 .

Let _ = 𝑑1 (𝑢∗, 𝑣∗)/𝑤0, we get P(𝑢∗, 𝑣∗) = _X0. Here, we can guaran-

tee that _ is a nonzero constant. If _ = 0, then𝑑1 (𝑢∗, 𝑣∗) = 0, we have

𝑎1 (𝑢∗, 𝑣∗) = 𝑏1 (𝑢∗, 𝑣∗) = 𝑐1 (𝑢∗, 𝑣∗) = 0. Then 𝑓 (𝑢∗, 𝑣∗;X), 𝑔(𝑢∗, 𝑣∗;X)
and ℎ(𝑢∗, 𝑣∗;X) are identical to 0, which is a contradiction to the

uniqueness of solution X. □

Remark 2. The parametric surface here is given within a para-
metric domain (𝑢, 𝑣) ∈ [𝑢0, 𝑢1] × [𝑣0, 𝑣1]; however, implicitization
itself has lost the restriction on this specific domain. See Fig. 4 for an
illustration. As is proved in Thm. 4.1, Dixon matrices can help us to get
the corresponding parameter value for any point X0 on the implicit
surface by solving 𝐷 (X0)U = 0 for (𝑢, 𝑣) as follows.
• If 𝐷 (X0)U = 0 has a solution (𝑢, 𝑣) ∈ [𝑢0, 𝑢1] × [𝑣0, 𝑣1], then the
point X0 is on the parametric surface within the parametric domain;

• If all real solutions of 𝐷 (X0)U = 0 are outside the region [𝑢0, 𝑢1] ×
[𝑣0, 𝑣1], then point X0 is outside the given parametric domain of
the surface P(𝑢, 𝑣).

Example 1. Consider a bi-cubic parametric surface P(𝑢, 𝑣) ∈ RP3

in (𝑢, 𝑣) ∈ [0, 1] × [0, 1] :

P(𝑢, 𝑣) = [− 32𝑢3 + 96𝑢𝑣2 + 48𝑢2 − 96𝑢𝑣 − 48𝑣2 + 6𝑢 + 48𝑣 − 11,

96𝑢2𝑣 − 32𝑣3 − 48𝑢2 − 96𝑢𝑣 + 48𝑣2 + 48𝑢 + 6𝑣 − 11,

24𝑢2 − 24𝑣2 − 24𝑢 + 24𝑣, 2] .
(11)

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

211:6 • Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan

(1) Implicitization. The Dixon matrix 𝐷 (𝑥,𝑦, 𝑧,𝑤) of P(𝑢, 𝑣) is:

𝐷 (𝑥, 𝑦, 𝑧, 𝑤) =

©«
5184(4𝑥 − 4𝑦 − 7𝑧) 10368(11𝑤 + 2𝑦 + 4𝑧) · · · 0 0

1152(99𝑤 − 32𝑥 + 50𝑦 + 92𝑧) −768(817𝑤 − 32𝑥 + 48𝑦 + 196𝑧) · · · 0 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · 0 0

ª®®®®¬
18×18

.

By Remark 1 we can quickly determine that rank(𝐷 (𝑥,𝑦, 𝑧,𝑤)) =
9. Since 9 < 2 × 3 × 3 = 18, according to Prop.1 the implicit
equation of the surface is given by the 9 × 9 minor of the Dixon
matrix 𝐷 (𝑥,𝑦, 𝑧,𝑤).

(2) Inversion formula.
For a given point X = (𝑥0, 𝑦0, 𝑧0, 1) satisfying 𝐹 (𝑥0, 𝑦0, 𝑧0, 1) =

0, we can determine whether this point is within the restricted
parametric domain as following examples.
• X1 := (−0.8660864938,−2.474813428, 1.846465226, 1). By solv-
ing 𝐷 (X1)U = 0, we get the parametric value (𝑢, 𝑣) =
(0.05514238183, 0.2901757920) ∈ [0, 1] × [0, 1] , which indi-
cates that point X1 is within the parametric domain of surface
P(𝑢, 𝑣).

• X2 := (0.1882746188,−2.534024645, 2.683854645, 1). By solv-
ing 𝐷 (X2)U = 0, we get the only parametric value (𝑢, 𝑣) =

(1.003407729, 0.3274752700) ∉ [0, 1] × [0, 1] , which indicates
that point X2 is on the surface but outside the given parametric
domain.

An illustration of these two points with respect to the parametric
surface is shown in Fig. 5.

(a) (b)

Fig. 5. Examples of different points on the same implicitized surface
𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 0. Figure (a) presents points 𝑋1 and 𝑋2 in Example 1; figure
(b) illustrates the detail of the relative position of the points and the surface.
The figures show that the yellow point is within the required domain of
parametric surface P(𝑢, 𝑣) , while the red point lies outside the required
domain of the parametric surface.

Remark 3. When solving 𝐷 (X)U = 0, a practical way is to ran-
domly select two linearly independent rows �̄� of matrix 𝐷 (X) and
solve for �̄� (X)U = 0. This may result in redundant solutions, so we
treat these solutions as follows. If all real solutions are outside region
[𝑢0, 𝑢1] × [𝑣0, 𝑣1], the point X is not on the surface or not within the
required parametric domain; if some solutions (𝑢1, 𝑣1), · · · , (𝑢𝑟 , 𝑣𝑟)
are within parametric domain [𝑢0, 𝑢1] × [𝑣0, 𝑣1], we compute X𝑖 :=

P(𝑢𝑖 , 𝑣𝑖), 𝑖 = 1, · · · , 𝑟 . If the distance from X to X𝑖 is within a given
threshold 𝜖 , we take these (𝑢𝑖 , 𝑣𝑖) as the parameter values for point X.

4.3 Topology Determination of the Intersection Curve in
the Parametric Domain

Next we determine the topology of the intersection curve in the

parametric domain of the surface Q(𝑠, 𝑡). First, an implicit expres-

sion of the intersection curve in the parametric domain is computed;

Then, the characteristic points of the intersection curve are com-

puted; Finally, the connection of branches is determined, and the

topology of the intersection curve is computed.

Let 𝐹 (𝑋) = 0 be the implicit equation of the parametric sur-

face P(𝑢, 𝑣). To compute the intersection of P(𝑢, 𝑣) and Q(𝑠, 𝑡), we
substitute 𝑋 = Q(𝑠, 𝑡) into 𝐹 (𝑋) = 0:

𝜙 (𝑠, 𝑡) := 𝐹 (𝑎2 (𝑠, 𝑡), 𝑏2 (𝑠, 𝑡), 𝑐2 (𝑠, 𝑡), 𝑑2 (𝑠, 𝑡)) . (12)

We next determine the topology of the curveC := {(𝑠, 𝑡) ∈ R2 | 𝜙 (𝑠, 𝑡) =
0, (𝑠, 𝑡) ∈ [𝑠0, 𝑠1] × [𝑡0, 𝑡1]}.

We first compute two types of characteristic points: critical points

and boundary points. A critical point (𝑠, 𝑡) of C is where the tangent

line of C is parallel to the coordinate axes, i.e.,

𝜕𝜙

𝜕𝑠
(𝑠, 𝑡) = 0 (𝑡-critical point) 𝑜𝑟

𝜕𝜙

𝜕𝑡
(𝑠, 𝑡) = 0 (𝑠-critical point) .

(13)

A singular point (𝑠, 𝑡) of C is a special critical point that simultane-

ously satisfies

𝜕𝜙

𝜕𝑠
(𝑠, 𝑡) = 0 𝑎𝑛𝑑

𝜕𝜙

𝜕𝑡
(𝑠, 𝑡) = 0. (14)

A boundary point of C is an intersection point of curve C with the

boundary lines 𝑙 := {(𝑠, 𝑡) ∈ R2 | 𝑠 = 𝑠0 or 𝑠 = 𝑠1 or 𝑡 = 𝑡0 or 𝑡 = 𝑡1}
within domain (𝑠, 𝑡) ∈ [𝑠0, 𝑠1] × [𝑡0, 𝑡1].

Since boundary points are easy to compute, here we only address

the computation of s-critical points. To do this, we first compute

the resultant of 𝜙 and
𝜕𝜙
𝜕𝑡 with respect to 𝑡 :

𝑅(𝑠) := Res𝑡 (𝜙,
𝜕𝜙

𝜕𝑡
), (15)

and calculate the real roots 𝐴 := {𝛼1, 𝛼2, · · · , 𝛼𝑛} of 𝑅(𝑠) in the

region 𝑠 ∈ [𝑠0, 𝑠1]. Here we use exact computations to return small

intervals 𝐼𝑖 = [𝑎𝑖 , 𝑏𝑖] that isolate 𝛼𝑖 for each 𝑖 . Then, for the 𝑡-

coordinate corresponding to 𝑠 = 𝛼𝑖 , we proceed in the following

two different situations.

(1) if 𝑎𝑖 ≠ 𝑏𝑖 , then 𝐼𝑖 = [𝑎𝑖 , 𝑏𝑖] where 𝑎𝑖 and 𝑏𝑖 are distinct rational
numbers. We solve 𝜙𝑙𝑒 𝑓 𝑡 (𝑡) := 𝜙 (𝑎𝑖 , 𝑡) = 0 and 𝜙𝑟𝑖𝑔ℎ𝑡 (𝑡) :=

𝜙 (𝑏𝑖 , 𝑡) = 0 in 𝑡 ∈ [𝑡0, 𝑡1] respectively.
(2) if 𝑎𝑖 = 𝑏𝑖 , denoted as 𝑞𝑖 , then 𝐼𝑖 = [𝑞𝑖 , 𝑞𝑖]. Given a small pertur-

bation 𝜖 , we solve 𝜙𝑙𝑒 𝑓 𝑡 (𝑡) := 𝜙 (𝑞𝑖 − 𝜖, 𝑡) = 0 and 𝜙𝑟𝑖𝑔ℎ𝑡 (𝑡) :=

𝜙 (𝑞𝑖 + 𝜖, 𝑡) = 0 in 𝑡 ∈ [𝑡0, 𝑡1], respectively. The magnitude of 𝜖

can be adjusted based on the required level of precision. In our

experiment, we set 𝜖 = 1𝑒−6
.

For each 𝑖 = 1, · · · , 𝑛, we record the roots of 𝜙𝑙𝑒 𝑓 𝑡 (𝑡) = 0 and

𝜙𝑟𝑖𝑔ℎ𝑡 (𝑡) = 0 as:

𝐿𝑖 :={𝛽 ∈ [𝑡0, 𝑡1] | 𝜙𝑙𝑒 𝑓 𝑡 (𝛽) = 0} = {𝛽
𝑖,1
, 𝛽

𝑖,2
, · · · , 𝛽

𝑖,𝑙𝑖
}

𝑅𝑖 :={𝛽 ∈ [𝑡0, 𝑡1] | 𝜙𝑟𝑖𝑔ℎ𝑡 (𝛽) = 0} = {𝛽𝑖,1, 𝛽𝑖,2, · · · , 𝛽𝑖,𝑟𝑖 },
(16)

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

Topology Guaranteed B-Spline Surface/Surface Intersection • 211:7

0.3

0.4

Proj. to

-1

2

1

0
10

s

t

0

1

0

1
u

v

1.050.95 1

u

v

Fig. 6. The intersection curve C in 3D modeling space and its projection
onto the parametric domain (𝑠, 𝑡) and (𝑢, 𝑣) . The red part of C has shown
its corresponding parts in the (𝑠, 𝑡) domain and the (𝑢, 𝑣) domain. In (𝑠, 𝑡)
domain, the red part is within the required region (𝑠, 𝑡) ∈ [−1, 1] × [0, 2];
however, in (𝑢, 𝑣) domain, the red part is out of the required region (𝑢, 𝑣) ∈
[0, 1] × [0, 1].

and let

𝐿 :=

𝑛⋃
𝑖=1

𝐿𝑖 𝑅 :=

𝑛⋃
𝑖=1

𝑅𝑖 . (17)

Now two sets of points on the curve C are obtained:

𝑃𝑙 := {(𝑎𝑖 , 𝛽
𝑖, 𝑗
) ∈ 𝐴 × 𝐿 | 𝑖 = 1, 2, · · · , 𝑛, 𝑗 = 1, 2, · · · , 𝑙𝑖 },

𝑃𝑟 := {(𝑏𝑖 , 𝛽𝑖, 𝑗) ∈ 𝐴 × 𝑅 | 𝑖 = 1, 2, · · · , 𝑛, 𝑗 = 1, 2, · · · , 𝑟𝑖 },
(18)

which include all s-critical points and those points on C that have

the same s-coordinates as s-critical points. In the following context,

we call 𝑃𝑙 and 𝑃𝑟 left and right helping points, respectively. According
to [Jin and Cheng 2021], once these left and right helping points are

computed, the topology of the intersection curve in the parametric

domain (𝑠, 𝑡) is determined. Refer to Fig. 14 and the appendix for

the detailed example.

4.4 Tracing and Clipping the Intersection Curve
The advantage of the previous step in topology determination lies

in that it greatly simplifies the locus tracing of the intersection

curve 𝜙 (𝑠, 𝑡) = 0 in the parametric domain (𝑠, 𝑡), especially in the

neighborhood of singular points, where the standard tracing scheme

[Barnhill et al. 1987] tends to lose its direction. Starting from our

topology graph, tracing from a singular point, such as in Fig. 14(a)

in the appendix, is decomposed by tracing from some left helping

points or right helping points in a 𝜖-neighborhood of this singular

point along its related curve branches. For the choice of the tracing

direction and step length, one can refer to [Chen et al. 1997] and

the appendix.

Remark 4. Since the tracing is along C : 𝜙 (𝑠, 𝑡) = 0, when C is
mapped to the 3Dmodeling space, the 3D intersection locus ¯C naturally
falls within the required parametric region (𝑠, 𝑡) ∈ [𝑠0, 𝑠1] × [𝑡0, 𝑡1].

1

x

x

y

y

z

z

1

y

z x

t

-1

2

1

0
1 0

s

lifting

Fig. 7. Intersection curve lifting from 2D parametric domain (s,t) to 3D
space. Left is the intersection curve C with different local branches. Right is
the lifted intersection curve C with different viewpoints. Each local branch
in C is lifted from the local branch in C with the corresponding number.

Unfortunately, some part of ¯C may fall out of the required region
(𝑢, 𝑣) ∈ [𝑢0, 𝑢1] × [𝑣0, 𝑣1], since computing 𝜙 (𝑠, 𝑡) = 0 inherits the
implicitization of the other surface P(𝑢, 𝑣), and implicitization itself
has lost the restriction of the required parametric domain in (𝑢, 𝑣). See
Fig. 6 for an illustration.

In the following, we clip the obtained 3D intersection curve C
(Fig. 7) such that for every point X0 on C, its corresponding param-

eter values on P(𝑢, 𝑣) and Q(𝑠, 𝑡) are within [𝑢0, 𝑢1] × [𝑣0, 𝑣1] and
[𝑠0, 𝑠1] × [𝑡0, 𝑡1]. The strategy consists of two parts: 1. Split the so far
obtained C in Fig. 8(b) at its intersection points with the boundary

curve of the surface P(𝑢, 𝑣), as is presented in Fig. 8(c) and Fig. 8(d);

2. Clip C and select the part within (𝑢, 𝑣) ∈ [𝑢0, 𝑢1] × [𝑣0, 𝑣1], as is
presented in Fig. 8(e). The details are as follows.

(1) Split ¯C: We sample (𝑢, 𝑣) on the four boundary lines of surface

P in [𝑢0, 𝑢1] × [𝑣0, 𝑣1] with a step size of 1/𝑁 , as is shown in

Fig. 9(a), and then obtain a series of approximate intersection

points p𝑖 , 𝑖 = 1, · · · , 𝑙 of ¯C with these four boundary lines. These

points are called splitting points, which are marked with red

asterisks in Fig. 9(b). Split
¯C at p𝑖 , 𝑖 = 1, · · · , 𝑙 into branches

𝐶1,𝐶2, · · · ,𝐶𝛾 . See Fig. 8(d).
(2) Clip ¯C: For each split branch 𝐶𝑖 , 𝑖 = 1, 2, · · · , 𝛾 , a random rep-

resentative point q𝑖 on 𝐶𝑖 is selected as shown in Fig. 9(c). We

decide whether to discard or keep 𝐶𝑖 based on the behavior of

q𝑖 : Compute the parameters (𝑢, 𝑣) for q𝑖 by solving 𝐷 (q𝑖)U = 0

for (𝑢, 𝑣). According to Remark 2, if there is one solution in

(𝑢, 𝑣) ∈ [𝑢0, 𝑢1] × [𝑣0, 𝑣1], the branch 𝐶𝑖 is retained; otherwise,
it is discarded. Then

¯C is clipped within the (𝑢, 𝑣) domain, see

Fig. 9(d).

It is worth mentioning that after we split the original branches at

the surface boundaries, a representative point of each split branch

lies on the surface if and only if all points on the split branch lie on

the surface. Hence, we focus only on those representative points.

5 EVALUATIONS AND COMPARISON
We implemented our algorithm and performed comparisons with

the discrete intersection algorithm for mesh Booleans [Cherchi et al.

2022], the affine arithmetic-based intersection method with GPU

acceleration [Lin et al. 2013], the intersection packages provided by

two representative open-source software: OCCT [2023] and SISL

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

211:8 • Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan

(a) (b) (c) (d) (e) (f)

Fig. 8. Clip a 3D intersection curve to adapt the required parametric domain. (a) is the 3D intersection curve ¯C before clipping; (b) presents different intersection
branches in the parametric domain (𝑠, 𝑡) by distinct colors; (c) illustrates the sample points of boundary curves of the surface P; (d) shows the splitting points
in red asterisks; (e) is the selected branches after clipping; (f) depicts the final intersection curve of two surfaces in the required parametric domain.

(a) details of sampled boundary lines (b) details of splitting points (c) Points selected on each branch (d) Selected branch using Dixon matrix

Fig. 9. Curve clipping detail. (a) marks the sample points on boundary lines in magenta; (b) shows the splitting points with red asterisks, which are composed
of the points on the intersection branches that are close enough to the sample points in (a); (c) records the selected points (black point and red triangle) on
each split branch, which are used to determine whether the branch needs to be abandoned. The black ones are the branches to be remained while the red ones
are to be abandoned. (d) represents the final selected branches.

Table 1. The compared methods and their parameter settings in experi-
ments.

Methods Parameters

AA-GPU maximum grid density=500

Mesh grid density=50

OCCT parameter tolerance=1e-7

SISL geometric tolerance=1e-6

ACIS fitting tolerance=1e-6

Ours geometric tolerance=1e-6

[2021], and also with the commercial 3D modeler, ACIS [2023]. The

parametric settings of these competitors are listed in Table 1. All

experiments are executed on a PC with 3.20 GHz AMD Ryzen 7

5800H and 16 GB RAM.

5.1 Topology correctness
We first focus on the topology correctness of the intersection of

two general B-spline surfaces, and compare our results with the

open-source geometry kernel OCCT and the commercial engine

ACIS. Plenty of experiments show that when the two surfaces in-

tersect transversely, all three algorithms give the correct results.

However, when the two surfaces are in certain tangential or spe-

cial intersection topology, our algorithm performs most robustly in

these challenging situations, while OCCT and even ACIS sometimes

fail. Fig. 1 shows representative examples with different intersection

topologies.

In Fig. 1(a), the intersection curve contains two loops that are

crossing at two common points. Our algorithm, OCCT and ACIS all

give the correct intersection result; in (b), the two surfaces intersect

at two separate curve branches and are in contact at an isolated

point. OCCT loses this isolated contact point and gives only the two

separate intersection curves, while our algorithm and ACIS give the

correct result. The omission of tangent points in the OCCT inter-

section algorithm stems from its reliance on a discrete method for

the initial point search. By contrast, our proposed algorithm utilizes

polynomial root solving to guarantee the inclusion of all tangent

points; in (c), the two surfaces are very close to each other in the

triangular domain, and the intersection curve is a curved triangle,

two edges of which are the boundary curves of the two surfaces and

the left edge is a regular intersection curve. OCCT loses the two

common boundary curves, while both our algorithm and ACIS give

the complete result; in (d), the two surfaces are again very close to

each other, and their intersection is even more complex than (c), that

is, the intersection contains two quadrilaterals sharing one edge.

The two surfaces are in contact along the common edge of the two

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

Topology Guaranteed B-Spline Surface/Surface Intersection • 211:9

quadrilaterals, and intersect transversely at the other six curved

edges of the two quadrilaterals, which are also the boundaries of

the surfaces. OCCT returns three of the six edges of the two quadri-

laterals, but has lost the contact curve in the middle and the other

three boundary curves, while both our algorithm and ACIS give the

complete result. Examples (c) and (d) illustrate the limitations of the

OCCT intersection algorithm when computing intersection curves

at surface boundaries. The omission of intersection curves along the

boundaries might result from improper termination criteria during

the tracing process. Our proposed algorithm addresses this issue by

incorporating specific handling for boundary intersection curves,

thereby preventing the occurrence of this problem; in (e), the inter-

section curve contains two loops that are contact at one common

point. OCCT fails to return any intersection point, while both our al-

gorithm and ACIS give the correct result; in (f), the two surfaces are

in high-order contact along a line. Neither OCCT nor ACIS returns

any intersection point, while ours correctly returns the contact line.

The failures of OCCT in examples (e) and (f), as well as ACIS in

example (f), demonstrate that when two surfaces are tangent or in

high-order contact, their normals at the tangent curves are the same.

Existing algorithms exhibit deficiencies in calculating the march-

ing direction during the tracing process. In contrast, our proposed

algorithm performs curve tracing on planar polynomial curves in

the parametric domain, thereby enabling the easy determination

of the tracing direction; in (g), the two surfaces are in contact at

three isolated points. Neither OCCT nor ACIS provides a complete

set of contact points, while our algorithm ensures the detection of

all three points of contact. The reason for the missing intersection

points in the OCCT intersection algorithm is analogous to example

(b), both are attributed to the discrete algorithm of the initial point

detection. As for ACIS, the cause of losing one of the intersection

points may be linked to the fact that this particular point also serves

as a self-intersection point for the surfaces. The ACIS algorithm

demonstrates shortcomings in handling such intricate intersection

points.

Overall speaking, our algorithm performs most robustly in all

these challenging situations in topology. ACIS outperforms OCCT,

and gives the correct results in most situations, but fails at examples

with high-order contact curves or multiple isolated contact points.

The topological robustness of our algorithm lies in our algebraic

treatment of the implicitization and the topology analysis of the

intersection curve. On one hand, although traditional implicitiza-

tion methods such as resultants and Gröbner basis computation

are not very practical in both efficiency and numerical computa-

tions, the technique of moving planes, which we have adopted, has

overcome these difficulties and paved the way for the application

of implicitization to many geometry problems. On the other hand,

the topological analysis and clipping method ensure topological

correctness, especially for those tangential intersections or isolated

contact points, which are really difficult to capture through the

discrete techniques adopted by most software.

5.2 Comprehensive performance comparison
Wehave performed plenty of experiments on bi-cubic or bi-quadratic

B-Spline surfaces, and parts of them are shown in Table 2. Since for

practical use in CAD systems, efficiency is one of the most important

factors in evaluating the intersection algorithm, we compare our

algorithm with efficient and practical state-of-the-art intersection

methods, including the affine arithmetic-based intersection method

with GPU acceleration (AA-GPU), the mesh intersection approach

(Mesh Booleans), the open source intersection packages in OCCT

and SISL, and the commercial 3D ACIS modeler (ACIS), from the

perspective of the computation accuracy, topology correctness and

efficiency. We claim that our algorithm has the most robust topology

correctness and comparable practical efficiency with the existing

methods or packages.

In Table 2, six examples of B-Spline surface intersections are pro-

vided, in which our method always gives the correct topology, while

the other five algorithms either fail or give the undesired intersection

topology. The results are illustrated for every method, where ‘NULL’

means that the computation result returns as no intersections. The

intersection results show that tangential intersections or isolated

singular points are very challenging for all competitors. Our algo-

rithm is particularly designed based on topology determination and

inversion formulas, so tangential intersections can always be treated

well. The Mesh Booleans method can obtain relatively smooth in-

tersection curves when dealing with the transversal intersection

of surfaces. However, this method tends to give a 2D grid region

instead of a 1D curve along the tangential intersection curve or the

isolated point. A 2D grid-like intersection is generated because the

triangular meshes corresponding to the two surfaces cannot guar-

antee to pass the tangential curve or isolated point simultaneously,

resulting in significant errors in the intersection lines of the meshes

near these tangential curves or isolated points. AA-GPU fails to get

correct results in examples (1∼5) when the intersection is tangential

or near boundaries, and gives partial results in example (6) when the

intersection has an isolated point. Since the two surfaces are very

close to each other near the tangential curves, the overestimation

of the bounding boxes with the affine arithmetic may contribute

to the very thick strips of intersection grids on parametric regions.

Thus, the undesired results may be attributed to the phenomenon

in which the required accuracy near the boundary and tangential

curves exceed the maximum subdivision accuracy during the subdi-

vision of the parametric regions of B-Spline surfaces. OCCT fails to

give the intersection result in examples (1)(2)(4), and gives partial

intersection results but loses a whole branch in examples (3)(5)(6);

SISL fails on all the six examples; even ACIS only returns several

intersection points in examples (1)(2), returns no result in example

(4), loses a whole branch in examples (3)(5), and loses the isolated

singular point in example (6). The loss of the tangential curve in

OCCT, SISL, and ACIS may be caused by the fact that the normal

vectors of the two surfaces are parallel at every point on the tan-

gential curve, which results in the inability of the 3D tracing step to

track the entire intersection curve. Meanwhile, the omission of the

isolated point may be caused by the use of some discrete methods in

the search for the starting point, which results in the isolated point

being ignored during the discretization process.

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

211:10 • Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan

Table 2. Intersections of two B-Spline Surfaces. The first column shows the surfaces and their bi-degrees. The remaining columns represent the intersection
results and the consuming times (in seconds) of different algorithms. AA-GPU refers to the affine arithmetic-based B-Spline surface intersection method
with GPU acceleration. Mesh Booleans refers to the interactive and robust mesh boolean algorithm. OCCT refers to the intersection algorithm in the Open
CASCADE Technology. SISL refers to the intersection algorithm in the SINTEF Spline Library. ACIS refers to the intersection algorithm in 3D ACIS Modeler. In
the first column, the blue and orange surfaces depict the two surfaces to be intersected, and the red curve represents the intersection result of our method.
The second column displays two surfaces in blue and red, with the intersection result of the AA method represented in green. N/A indicates that the program
reported an error in this example, and the ‘NULL’ in the image indicates that the result obtained by this method is no intersection.

Surfaces AA-GPU Mesh Booleans OCCT SISL ACIS Ours

example 1 a tangent line

(3,3) 1.451 0.011 0.003 N/A 0.003 0.036

example 2 a tangential curve

(3,3) 1.775 0.038 0.003 N/A 0.005 0.082

example 3 a loop and two curves

(3,3) 1.836 0.008 0.076 3.612 0.074 0.054

example 4 a tangential curve

(3,3) 0.388 0.013 0.002 N/A 0.003 0.019

example 5 two loops

(3,3) 0.532 0.021 0.040 N/A 0.054 0.103

example 6 a loop and a point

(2,2) 0.254 0.012 0.023 0.288 0.008 0.514

5.3 Intersection of Surfaces with Special Geometry
According to our method, given two parametric surfaces or spline

surfaces, we transform one of them into its implicit expression.

However, for specific surface types, such as quadrics, tori, cyclides,

and surfaces of revolution, the implicit equations can be directly

derived from their shape parameters, eliminating the need for the

implicitization step. Consequently, our algorithm simplifies the in-

tersection of these surfaces by directly deriving the implicit equation

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

Topology Guaranteed B-Spline Surface/Surface Intersection • 211:11

Table 3. Intersections of torus and ellipsoid. The first column provides the
parameters of the torus and the ellipsoid for each example; the second
column displays two surfaces; the third column represents the intersection
results; the remaining columns illustrate the time cost (in seconds) for both
ACIS and our method. Given the absence of the ellipsoid class in ACIS, we
represent the ellipsoids as piece-wise spline surfaces and intersect them
with the torus. Bold fonts indicate better performance.

Paras 4 Surfaces Intersection Time cost

ACIS Ours

example 1 0.031 0.039

example 2 0.026 0.058

example 3 0.168 0.039

example 4 0.078 0.042

example 5 0.154 0.053

from the shape parameters. This streamlined approach replaces the

conventional implicitization step in our implementation.

Table 3 shows the comparison of our method with ACIS in the

intersection of an ellipsoid and a torus, where the implicit equation

of the ellipsoid is directly written down (note that here we prefer

to select the implicit equation of the surface with lower implicit

degree). A comparison is made in the geometry of the intersection

curve and the time cost. The shape parameters of the torus and

ellipsoid of the corresponding examples are listed in Table 4.

It is worth mentioning that when dealing with surface intersec-

tions, ACIS classifies all surface types into planes, spheres, cones,

tori, and splines. Ellipsoids are converted to spline surfaces in ACIS

before the intersection computation.

Our extensive testing of intersections between ellipsoids and tori

indicates that our method always achieves the same correct intersec-

tion geometry as ACIS. Table 3 shows only several representative

examples. In terms of efficiency, if the intersection curve contains

cross singular points, which are marked with red dots, our method

Table 4. The parameters of torus and ellipsoid. In the Torus column, ‘Center’
represents the center of the torus, ‘Normal’ the normal of torus, ‘R’ the
major radius and ‘r’ the minor radius. In the Ellipsoid column, ‘Center’
represents the center of the ellipsoid, ‘x-axis’ and ‘y-axis’ define a Cartesian
coordinates frame, ‘a’, ‘b’ and ‘c’ are the length of the semi-axes.

Torus Ellipsoid

Center Normal R r Center x-axis y-axis a b c

example 1 [0,0,0] [0,0,1] 4 1 [0,0,0] [1,0,0] [0,1,0] 1 5 2

example 2 [1,0,0] [0,0,1] 3 1 [0,0,0] [0,1,0] [0,0,1] 3 4 2

example 3 [0,0,0] [0,0,1] 3 1 [0,0,0] [0,1,0] [0,0,1] 4 3 2

example 4 [0,0,0] [0,0,1] 2 1 [1,0,0] [1,0,0] [0,1,0] 2 2 1

example 5 [0,0,0] [0,0,1] 3 1 [0,0,0] [0,1,0] [0,0,1] 3 4 2

is usually faster than ACIS; if the intersection curve contains only

simple loops, ACIS can be slightly faster than our method due to its

highly-optimized implementation.

5.4 Accelerating Tracing with TBB
During the process of tracing, the computation of each local branch

(Fig. 7) is independent and uniquely determined by the starting point,

the ending point, and the implicit equation, which have been calcu-

lated in the implicitization and topology determination steps. Con-

sequently, in order to accelerate the tracing process, we employed

the threading building blocks (TBB) library function, parallel_for,
in the tracing step of local branches.

Table 5 illustrates the comparison of the average time cost of the

above-mentioned examples before and after TBB acceleration. Based

on the obtained results, it can be inferred that when the intersec-

tion curve has only a single branch within the parametric domain

(e.g. examples (1)(2)(4) in B-Spline surfaces), the employment of

TBB doesn’t improve the efficiency of our algorithm. Nevertheless,

in cases where the intersection curve has multiple local branches

within the parametric domain, the utilization of TBB enables simul-

taneous tracing of these local branches. This capability leads to a

substantial reduction in algorithmic computation time, up to 2-3

times faster than the original calculation time. See Fig. 10 for an

illustration of the local branches in the parametric domain.

Fig. 10. Two examples of the intersection curve of B-Spline surfaces in the
parametric domain (s,t). The figure on the left represents example (1), while
the figure on the right represents example (5). Example (1) has only one
local branch while example (5) has several local branches.

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

211:12 • Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan

Table 5. Time cost comparison (in seconds) before and after employing TBB parallelism for the above-mentioned examples. The first six examples are B-spline
surface intersection cases, while the last five examples are special surface intersection cases.

B-Spline surface examples Special surface examples

example 1 example 2 example 3 example 4 example 5 example 6 example 1 example 2 example 3 example 4 example 5

before 0.036 0.082 0.140 0.020 0.280 1.241 0.083 0.131 0.094 0.073 0.087

after 0.036 0.082 0.054 0.019 0.103 0.514 0.039 0.058 0.039 0.042 0.053

(a) (b) (c) (d)

Fig. 11. Four cases when there are no left helping points and right helping
points corresponding to root 𝛼 . (a) represents that all roots are outside
the parametric domain, but the intersection curve crosses through the
domain; (b) indicates that all roots are outside the parametric domain,
and the intersection curve does not pass through it; (c) represents that the
intersection line is perpendicular to the s-axis; (d) shows that the intersection
is an isolated point. The vertical dashed lines show the small isolation
intervals for 𝛼 , and the green points are the intersection points between
the vertical lines and the curve. The black box represents the rectangular
parametric domain [𝑠, 𝑡] ∈ [𝑠0, 𝑠1] × [𝑡0, 𝑡1].

5.5 Special Cases in Topology Determination
In the topology determination step of our algorithm, it is possible

to encounter situations where the left polynomial 𝜙𝑙𝑒 𝑓 𝑡 (𝑡) and the

right polynomial 𝜙𝑟𝑖𝑔ℎ𝑡 (𝑡) corresponding to 𝛼 have no roots in the

parametric domain 𝑡 ∈ [𝑡0, 𝑡1], which indicates there are no left

helping points and right helping points corresponding to the root 𝛼 .

As is shown in Fig. 11, we categorize this situation into four distinct

cases and discuss each of them individually.

(a) If the roots of 𝜙𝑙𝑒 𝑓 𝑡 (𝑡) and 𝜙𝑟𝑖𝑔ℎ𝑡 (𝑡) are outside the parametric

domain 𝑡 ∈ [𝑡0, 𝑡1] but the curve traverses the region [𝑠0, 𝑠1] ×
[𝑡0, 𝑡1], we can get the curve through boundary point tracing.

(b) If the roots of 𝜙𝑙𝑒 𝑓 𝑡 (𝑡) and 𝜙𝑟𝑖𝑔ℎ𝑡 (𝑡) are outside the paramet-

ric domain 𝑡 ∈ [𝑡0, 𝑡1] and the curve does not fall within the

parametric domain, we just ignore this curve.

(c) If the curve is a vertical line 𝑠 = 𝛼 , we can detect it by substituting

𝑠 = 𝛼 into the polynomial 𝜙 (𝑠, 𝑡) in Eq. 12 and determining if

𝜙 (𝛼, 𝑡) is a zero polynomial.

(d) If the intersection is an isolated point, we can find the point

by substituting 𝑠 = 𝛼 into the polynomial 𝜙 (𝑠, 𝑡) and solve

𝜙 (𝛼, 𝑡) = 0 in the parametric domain 𝑡 ∈ [𝑡0, 𝑡1].
To sum up, when 𝜙𝑙𝑒 𝑓 𝑡 (𝑡) and 𝜙𝑟𝑖𝑔ℎ𝑡 (𝑡) have no roots in the

parametric domain 𝑡 ∈ [𝑡0, 𝑡1], we substitute 𝑠 = 𝛼 into the polyno-

mial 𝜙 (𝑠, 𝑡) to get polynomial 𝜙 (𝛼, 𝑡). If 𝜙 (𝛼, 𝑡) is a zero polynomial,

then we uniformly sample 𝑠 = 𝛼 in 𝑡 ∈ [𝑡0, 𝑡1] to get the vertical

intersection line in the parametric domain. If 𝜙 (𝛼, 𝑡) is a nonzero

polynomial, we solve 𝜙 (𝛼, 𝑡) = 0 in 𝑡 ∈ [𝑡0, 𝑡1] to get the possible

isolated intersection point.

Our algorithm also provides dedicated treatment for the inter-

section topology along the boundaries of the parametric domain.

We first detect whether the boundary lines of the domain (𝑠, 𝑡) ∈
[𝑠0, 𝑠1] × [𝑡0, 𝑡1] are intersection curves of the two surfaces as fol-

lows. We substitute 𝑠 = 𝑠0 into the polynomial 𝜙 (𝑠, 𝑡) to get 𝜙𝑠0
(𝑡).

If the 𝜙𝑠0
(𝑡) is a zero polynomial, it indicates that the boundary

line 𝑙𝑠0
:= {(𝑠, 𝑡) ∈ R2 | 𝑠 = 𝑠0, 𝑡 ∈ [𝑡0, 𝑡1]} corresponds to an in-

tersection of the two surfaces. Similarly for the other boundary

lines 𝑠 = 𝑠1, 𝑡 = 𝑡0, and 𝑡 = 𝑡1. Then we uniformly sample the

boundary intersection lines and map them to the 3D space to get

the corresponding boundary intersection curves in R3
.

5.6 Applications
The intersection algorithm is crucial in the Boolean operations of

solids. By computing the intersection curves of B-Spline patches in

B-Rep solids, we can get different Boolean operation results such as

union, intersection and subtraction. Fig. 12 shows the Boolean oper-

ation results of two hummingbirds using our intersection algorithm.

We apply our algorithm to the Boolean operations of complex CAD

models, and perform comparisons with OCCT and ACIS. When the

adjacent surfaces in the CAD models intersect transversely, our

solid A solid B

A B A B A B

Fig. 12. Boolean operation results of two hummingbird models. The hum-
mingbirdmodel consists of 312 bi-cubic B-Spline patches, with each B-Spline
patch containing 6×6 control points. Our method has detected 99 pairs of
intersecting patches. Union, intersection and subtraction are performed
after computing the intersection curves of two surfaces.

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

Topology Guaranteed B-Spline Surface/Surface Intersection • 211:13

OCCT

ACIS

Ours

A B A ∩ B A \ B

solid A solid B

OCCT

ACIS

Ours

solid A solid B

Fig. 13. Two examples of Boolean operations. We compared the results of Boolean operations based on the intersection curves generated by OCCT, ACIS, and
our method. The intersection curves of OCCT and ACIS are represented in green and yellow respectively. Intersection curves of our method are represented in
red and the tangential intersection in example 1 is highlighted in blue. Incorrect parts in Boolean operations are highlighted with the blue boxes.

algorithm gives the same Boolean operation results as OCCT and

ACIS; nevertheless, when the adjacent surfaces are in high-order

contact or intersect along their parametric boundaries, OCCT and

ACIS sometimes provide incorrect results. Fig. 13 shows two such

examples.

In the first example, we test the Boolean operations on two Cardan

joint models. The intersection curves of OCCT are represented

in green, where part of the intersection branch in the lower-left

region and a tangential line in the middle region are missing. The

miscalculation of the intersection curves leads to an error in the

Boolean intersection performed by OCCT. The incorrect parts are

highlighted within a blue box. Meanwhile, the incorrect Boolean

subtraction results in OCCT arise from the inaccurate intersection

calculation and the erroneous discarding of surface portions of solid

A. The intersection curves of ACIS are represented in yellow. ACIS

returns the transversal intersecting curves, but misses the tangential

intersection curve, which is highlighted in blue in our corresponding

intersection result. The missing tangential curve leads to the wrong

omission of surfaces in the Boolean intersection results and the

failure to subtract the portions of solid A that lie within solid B

in Boolean subtraction results. The missing surface in the Boolean

intersection is shown in the blue box, while the surface that is not

properly trimmed in the Boolean subtraction is represented in green.

In the second example, we conduct Boolean operations on an

additional pair of mechanical component models. OCCT mistakenly

calculates two extra intersecting lines near the tangential intersec-

tion, which leads to inaccuracies of surfaces near the tangent region

in both Boolean union and Boolean intersection results. The surplus

intersections also lead to an erroneous trimming of a surface in solid

A in the Boolean subtraction outcome. The intersection result of

ACIS fails to capture a tangent intersection, subsequently impact-

ing the surface classification process within the Boolean union and

Boolean intersection outcomes, leading to a partial omission in the

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

211:14 • Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan

Boolean union and an excessive portion in the Boolean intersection.

The Boolean subtraction result of ACIS also leads to errors due

to the same reason. Contrary to OCCT and ACIS, our algorithm

accurately calculates the intersection curves of the tangential and

boundary regions of surfaces, resulting in the correct Boolean union,

intersection, and subtraction outcomes.

6 CONCLUSIONS AND FUTURE WORK
We present a topology guaranteed algorithm for computing the

intersection of two B-Spline surfaces. The algorithm begins by per-

forming fast collision detection using the oriented bounding boxes

to eliminate non-intersection patch pairs. Subsequently, the im-

plicitization for one Bézier surface within each Bézier patch pair

is computed efficiently using the Dixon matrix of moving planes.

Following this, a topology determination strategy is applied to the

intersection curve in the parametric domain and the helping points

on the curve are calculated for topology guaranteed tracing. Finally,

a clipping method based on the inversion formula of the Dixon

matrix is demonstrated to restrict the intersection curve within the

parametric domain of two surfaces. We have illustrated the topolog-

ical correctness of our method with various examples of B-Spline

surface intersection with different topologies. Furthermore, a de-

tailed comparison of the efficiency and topology correctness of our

algorithm with the affine arithmetic-based method, mesh-to-mesh

intersection algorithm and intersection commands in OCCT, SISL

and ACIS is presented, which indicates that our method can main-

tain topology correctness even when two surfaces are under special

relative position.

In the proposed method, we derive the implicit equation of the

parametric surface from its Dixon matrix and then use it to deter-

mine the critical points of the intersection curves. However, the

Dixon matrix contains all the necessary surface information re-

quired for performing intersection computations. Thus, our future

research will focus on simplifying this process by directly comput-

ing the critical points of the intersection using the Dixon matrix,

thereby enhancing the efficiency of our algorithm. Moreover, in

our current work, we convert two B-Spline surfaces into multiple

pairs of parametric surfaces to perform surface intersection within

these pairs. However, this conversion step introduces an additional

computational overhead. To address this limitation, future studies

should explore ways to exploit the geometric properties of B-Spline

surfaces. By making full use of these properties, we can further

accelerate our algorithm and improve its performance.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of

China (2021YFB1715900), the National Natural Science Founda-

tion of China for Outstanding Young Scholars (12022117), the Na-

tional Natural Science Foundation of China (62172415), and the CAS

Project for Young Scientists in Basic Research (Grant No. YSBR-034).

REFERENCES
Ulf Assarsson and Tomas Moller. 2000. Optimized view frustum culling algorithms for

bounding boxes. Journal of Graphics Tools 5, 1 (2000), 9–22.
C.L. Bajaj, C.M. Hoffmann, R.E. Lynch, and J.E.H. Hopcroft. 1988a. Tracing surface

intersections. Computer Aided Geometric Design 5, 4 (1988), 285–307.

Chandrajit L Bajaj, Christoph M Hoffmann, Robert E Lynch, and JEH Hopcroft. 1988b.

Tracing surface intersections. Computer Aided Geometric Design 5, 4 (1988), 285–307.
Robert E Barnhill, Gerald Farin, M Jordan, and Bruce R Piper. 1987. Surface/surface

intersection. Computer Aided Geometric Design 4, 1-2 (1987), 3–16.

Robert E Barnhill and Scott N Kersey. 1990. A marching method for parametric sur-

face/surface intersection. Computer Aided Geometric Design 7, 1-4 (1990), 257–280.

Laurent Busé, David Cox, and Carlos d’Andrea. 2003. Implicitization of surfaces in P3

in the presence of base points. Journal of Algebra and its Applications 2, 02 (2003),
189–214.

Chia-Tche Chang, Bastien Gorissen, and Samuel Melchior. 2011. Fast oriented bounding

box optimization on the rotation group SO (3, R). ACM Transactions on Graphics
(TOG) 30, 5 (2011), 1–16.

Falai Chen, Yuyu Feng, and Kozak Jerenj. 1997. Tracing a planar algebraic curve. Applied
Mathematics-A Journal of Chinese Universities 12, 1 (1997), 15–24.

Gianmarco Cherchi, Fabio Pellacini, Marco Attene, and Marco Livesu. 2022. Interactive

and Robust Mesh Booleans. ACM Transactions on Graphics (TOG) 41, 6 (2022).
Eng-Wee Chionh, Ming Zhang, and Ronald N Goldman. 2002. Fast computation of the

Bezout and Dixon resultant matrices. Journal of Symbolic Computation 33, 1 (2002),

13–29.

Carl de Boor. 1971. SUBROUTINE PACKAGE FOR CALCULATING WITH B-SPLINES.
Technical Report. Los AlamosNational Lab.(LANL), Los Alamos, NM (United States).

Luiz Henrique De Figueiredo. 1996. Surface intersection using a ne arithmetic. In

Proceedings of graphics interface, Vol. 96. Citeseer, 168–175.
SINTEF Digital. 2021. The SINTEF Spline Library. https://www.sintef.no/en/software/

software-applied-mathematics/sisl/.

Albert L Dixon et al. 1908. The eliminant of three quantics in two independent variables.

Proceedings of London Mathematical Society 6, 4969 (1908), 209236.

Tor Dokken. 1997. Aspects of intersection algorithms and approximation. Doctor thesis
(1997).

William J Gordon and Richard F Riesenfeld. 1974. B-spline curves and surfaces. In

Computer Aided Geometric Design. Elsevier, 95–126.
Christoph Martin Hoffmann. 1989. Geometric and Solid Modeling. (1989).

Xiaohong Jia, Kai Li, and Jinsan Cheng. 2022. Computing the Intersection of Two

Rational Surfaces Using Matrix Representations. Computer-Aided Design 150 (2022),

103303.

Kai Jin and Jinsan Cheng. 2021. On the complexity of computing the topology of

real algebraic space curves. Journal of Systems Science and Complexity 34 (2021),

809–826.

George A Kriezis, Nicholas M Patrikalakis, and F-E Wolter. 1992. Topological and

differential-equation methods for surface intersections. Computer-Aided Design 24,

1 (1992), 41–55.

Shankar Krishnan and Dinesh Manocha. 1997. An efficient surface intersection al-

gorithm based on lower-dimensional formulation. ACM Transactions on Graphics
(TOG) 16, 1 (1997), 74–106.

Dieter Lasser. 1986. Intersection of parametric surfaces in the Bernstein-Bezier repre-

sentation. Computer-Aided Design 18, 4 (1986), 186–192.

Hongwei Lin, Yang Qin, Hongwei Liao, and Yunyang Xiong. 2013. Affine arithmetic-

based B-Spline surface intersection with GPU acceleration. IEEE transactions on
visualization and computer graphics 20, 2 (2013), 172–181.

Dinesh Manocha and John Canny. 1991. A new approach for surface intersection. In

Proceedings of the first ACM symposium on Solid modeling foundations and CAD/CAM
applications. 209–219.

Dinesh Manocha and John F Canny. 1992. Implicit representation of rational parametric

surfaces. Journal of Symbolic Computation 13, 5 (1992), 485–510.

Nicholas M Patrikalakis. 1993. Surface-to-surface intersections. IEEE Computer Graphics
and Applications 13, 1 (1993), 89–95.

Jaroslaw R Rossignac and Aristides AG Requicha. 1987. Piecewise-circular curves for

geometric modeling. IBM Journal of Research and Development 31, 3 (1987), 296–313.
Ramon F Sarraga. 1983. Algebraic methods for intersections of quadric surfaces in

GMSOLID. Computer Vision, Graphics, and Image Processing 22, 2 (1983), 222–238.

Open Cascade SAS. 2023. Open CASCADE Technology. https://dev.opencascade.org/.

Thomas W Sederberg, David C Anderson, and Ronald N Goldman. 1984. Implicit

representation of parametric curves and surfaces. Computer Vision, Graphics, and
Image Processing 28, 1 (1984), 72–84.

Thomas W Sederberg and Falai Chen. 1995. Implicitization using moving curves and

surfaces. In Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques. 301–308.

Thomas W Sederberg and Ray J Meyers. 1988. Loop detection in surface patch inter-

sections. Computer Aided Geometric Design 5, 2 (1988), 161–171.

Jingjing Shen, Laurent Busé, Pierre Alliez, and Neil Dodgson. 2016. A line/trimmed

NURBS surface intersection algorithm using matrix representations. Computer
Aided Geometric Design 48 (2016), 1–16.

Spatial Team. 2023. 3D ACIS Modeler. https://www.spatial.com/products/3d-acis-

modeling.

Manuel Ventura and C Guedes Soares. 2012. Surface intersection in geometric modeling

of ship hulls. Journal of Marine Science and Technology 17 (2012), 114–124.

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

https://www.sintef.no/en/software/software-applied-mathematics/sisl/
https://www.sintef.no/en/software/software-applied-mathematics/sisl/
https://dev.opencascade.org/
https://www.spatial.com/products/3d-acis-modeling
https://www.spatial.com/products/3d-acis-modeling

Topology Guaranteed B-Spline Surface/Surface Intersection • 211:15

A EXAMPLE FOR TOPOLOGY DETERMINATION
See the following example for an illustration of the topology deter-

mination of curves within the parametric domain.

Example 2. Consider the intersection of the cubic surface P(𝑢, 𝑣)
given in Example 1 with another cubic surface Q(𝑠, 𝑡), in the domain
(𝑢, 𝑣) ∈ [0, 1] × [0, 1], (𝑠, 𝑡) ∈ [−1, 1] × [0, 2]:

Q(𝑠, 𝑡) := [2𝑠𝑡2 + 2𝑠,−𝑠2𝑡3 + 𝑠2 − 3𝑡3 + 3, 2𝑠3𝑡 + 6𝑡, 𝑠2𝑡2 + 𝑠2 + 𝑡2 + 1] .

Substituting 𝑋 = Q(𝑠, 𝑡) into the implicit equation 𝐹 (𝑥,𝑦, 𝑧,𝑤) = 0

computed in Example 1, we get

𝜙 (𝑠, 𝑡) = (𝑠18 + 21𝑠16 + 192𝑠14 + 1000𝑠12 + 3258𝑠10 + 6858𝑠8 + 9288𝑠6

+ 7776𝑠4 + 3645𝑠2 + 729)𝑡24 + (3𝑠18 + 51𝑠16 + 396𝑠14 + 1884𝑠12

+ 6090𝑠10 + 13626𝑠8 + 20412𝑠6 + 19116𝑠4 + 9963𝑠2 + 2187)𝑡22

+ · · · + (𝑠18 + 9𝑠16 + 60𝑠14 + 252𝑠12 + 822𝑠10 + 1926𝑠8 + 3356𝑠6

+ 3996𝑠4 + 2673𝑠2 + 729) .

Compute the resultant 𝑅(𝑠) := Res𝑡 (𝜙, 𝜕𝜙𝜕𝑡). By solving 𝑅(𝑠) = 0 we
get three real roots 𝛼1, 𝛼2, 𝛼3 in 𝑠 ∈ [−1, 1], as shown in Fig. 14. Here,
𝛼2 is rational while 𝛼1, 𝛼3 are irrational. Hence their corresponding
isolation intervals 𝐼𝑖 , 𝑖 = 1, 2, 3 are:

𝛼1 ∈ [−942370651714277

4503599627370496

,
−15077930427428431

72057594037927936

],

𝛼2 ∈ [0, 0],

𝛼3 ∈ [3860892779556277

18014398509481984

,
15443571118225109

72057594037927936

] .

From these isolated intervals, we get the following sets of left helping
points and the right helping points in R2:
𝑃𝑙 :=

{
𝑃1

𝑙
:= { [−0.2092483191, 0.4824088532], [−0.2092483191, 1.655782000] },

𝑃2

𝑙
:= { [−0.000001, 0.5915023911], [−0.000001, 0.5915169779],

[−0.000001, 1.496790140], [−0.000001, 1.496826202] },
𝑃3

𝑙
:= { [0.2143226030, 0.4773526276], [0.2143226030, 0.9999999967],

[0.2143226030, 1.000000003], [0.2143226030, 1.665001610] }
}
,

𝑃𝑟 :=
{
𝑃1

𝑟 := { [−0.2092483191, 0.4824088532], [−0.2092483191, 0.9999999994],
[−0.2092483191, 1.000000001], [−0.2092483191, 1.655782000] },

𝑃2

𝑟 := { [0.000001, 0.5915016720], [0.000001, 0.5915176969],
[0.000001, 1.496790139], [0.000001, 1.496826203] },

𝑃3

𝑟 := { [0.2143226030, 0.4773526276], [0.2143226030, 1.665001610] }
}
.

From these helping points, we immediately get the topology graph of
the intersection curve in the parametric domain (𝑠, 𝑡), as shown in
Fig. 14.

B TRACING PROCEDURE
We fix the starting point as p := (𝑏𝑖 , 𝛽𝑖, 𝑗), and the ending point as

q := (𝑎𝑖+1, 𝛽
𝑖+1, 𝑗

). Tracing is started from point p and stopped when
meeting point q or the boundaries.

Two main steps are executed alternatively to generate a set of

points on curve C:

P := {p0 = p, p1, · · · , p𝑘 } (19)

• Initial estimation. Denote p𝑙 = (𝑠, 𝑡), and the curve C satisfies

𝜙 (𝑠, 𝑡) = 0. The initial estimation of next point is (𝑠 + Δ𝑠 (0) , 𝑡 +

Fig. 14. The image of the curve 𝜙 (𝑠, 𝑡) = 0 in parametric domain [−1, 1] ×
[0, 2]. In the left figure, 𝛼𝑖 , 𝑖 = 1, 2, 3 are the 𝑠-coordinates of 𝑠-critical points
in the domain [−1, 1] × [−∞, +∞]. The vertical dashed lines show the small
isolation intervals for 𝛼𝑖 , 𝑖 = 1, 2, 3. The intersection points of the vertical
dashed lines with the curve 𝜙 (𝑠, 𝑡) = 0 give all left helping points 𝑃𝑖,𝑗

𝑙
and

right helping points 𝑃𝑖′, 𝑗 ′
𝑟 , marked in the right figure. Note that around the

singular point of 𝜙 (𝑠, 𝑡) = 0 shown in the left figure, there can be more
than one left helping point or right helping point.

Δ𝑡 (0)) that(
Δ𝑠 (0)

Δ𝑡 (0)

)
= 𝑠𝑖𝑔𝑛 · ℎ√︃

𝜙2

𝑠 (𝑠, 𝑡) + 𝜙2

𝑡 (𝑠, 𝑡)

(
−𝜙𝑡 (𝑠, 𝑡)
𝜙𝑠 (𝑠, 𝑡)

)
𝑠𝑖𝑔𝑛 =

{
−1 − 𝜙𝑡 (𝑠, 𝑡) < 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(20)

where ℎ is a given step length.

• Iteration with Newton method. Suppose we have (Δ𝑠 (𝑗) ,Δ𝑡 (𝑗)),
then (

Δ𝑠 (𝑗+1)

Δ𝑡 (𝑗+1)

)
=

(
cos𝜔 (𝑗)

sin𝜔 (𝑗)

− sin𝜔 (𝑗)
cos𝜔 (𝑗)

) (
Δ𝑠 (𝑗)

Δ𝑡 (𝑗)

)
𝑤 (𝑗)

:=
𝜙√︃

(−Δ𝑡 (𝑗)𝜙𝑠 + Δ𝑠 (𝑗)𝜙𝑡

(21)

The two steps repeat recursively until the distance of (Δ𝑠 (𝑗) ,Δ𝑡 (𝑗))
and (Δ𝑠 (𝑗+1) ,Δ𝑡 (𝑗+1)) are smaller than a given 𝜖 in 𝑙2 norm. Then

the next point of p𝑙 is defined as p𝑙+1
= (𝑠 + Δ𝑠 (𝑗) , 𝑡 + Δ𝑡 (𝑗)). We

set p𝑙+1
as starting point and repeat the above two steps.

The whole tracing step from p ends when the points are stepping

to q or the parameter boundaries.

C ADDITIONAL EXPERIMENTAL RESULTS
More experimental results about B-Spline surface intersection are

listed in Table 6.

Based on the obtained results, it can be inferred that AA-GPU

demonstrates efficient computation of the interior of tangential

curves with lower orders; however, its performance deteriorates at

the boundary of the curves in examples (1)(2); when the intersection

curves are situated at the boundaries of the surfaces in examples

(5)(6), or when they possess cross point as depicted in example (3),

AA-GPU tends to yield incomplete outcomes. The Mesh Booleans

method has a poor performance near cross points or cusps in exam-

ples (3)(5)(6); when facing tangential situations in examples (1)(2)(4),

it obtains two paralleled lines or a 2D grid region. OCCT tends

to neglect isolated intersection points in example (4) and fails to

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

211:16 • Jieyin Yang, Xiaohong Jia, and Dong-Ming Yan

Table 6. Comparison of the intersections of two B-Spline Surfaces. The first column shows the surfaces and their bi-degrees. The remaining columns represent
the intersection results and the consuming times (in seconds) of different algorithms. AA-GPU refers to the affine arithmetic-based B-Spline surface intersection
method with GPU acceleration. Mesh Booleans refers to the interactive and robust mesh boolean algorithm. OCCT refers to the intersection algorithm in the
Open CASCADE Technology. SISL refers to the intersection algorithm in the SINTEF Spline Library. ACIS refers to the intersection algorithm in 3D ACIS
Modeler. N/A indicates that the program reported an error in this example, and the ‘NULL’ indicates that the result obtained by this method is no intersection.

Surfaces AA-GPU Mesh Booleans OCCT SISL ACIS Ours

example (1) a tangent line

(3,1) 1.355 0.012 0.280 0.001 0.012 0.006

example (2) a tangential curve

(2,2) 0.427 0.016 0.003 0.260 0.016 0.015

example (3) two intersect curves

(2,2) 0.042 0.013 0.026 0.686 0.008 0.027

example (4) a tangential point

(2,2) 0.004 0.008 0.002 0.205 0.001 0.014

example (5) four boundary curves

(2,2) 0.226 0.008 0.043 2.82 0.001 0.014

example (6) four boundary curves

(2,2) 0.173 0.017 0.030 N/A 0.046 0.026

accurately capture certain boundary intersections in example (5);

additionally, it fails to address the tangential conditions in examples

(1)(2). SISL gets a bunch of intersection points near tangential line

and tangential point in examples (1)(4), and it obtains unsatisfactory

result near cross point in example (3); besides, it returns errors in

the cases that two surfaces intersect at their boundaries in exam-

ples (5)(6). ACIS can accurately calculate the intersections in most

quadratic cases, but still miss the tangential line in example (1).

Among all experiments, our method can guarantee the topology of

intersections and calculate them within an acceptable time, which

is comparable to the computation time of ACIS in correct cases.

ACM Trans. Graph., Vol. 42, No. 6, Article 211. Publication date: December 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Moving Planes
	3.2 Dixon Matrices

	4 B-Spline Surface Intersections
	4.1 Fast Determination of Intersections
	4.2 Fast Implicitization of Parametric Surfaces
	4.3 Topology Determination of the Intersection Curve in the Parametric Domain
	4.4 Tracing and Clipping the Intersection Curve

	5 Evaluations and Comparison
	5.1 Topology correctness
	5.2 Comprehensive performance comparison
	5.3 Intersection of Surfaces with Special Geometry
	5.4 Accelerating Tracing with TBB
	5.5 Special Cases in Topology Determination
	5.6 Applications

	6 Conclusions and Future Work
	References
	A Example for Topology Determination
	B Tracing Procedure
	C Additional Experimental Results

