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Fig. 1. SLANG.D is a shading language providing first-class automatic differentiation support that seamlessly interoperates with existing language features
such as generics, dynamic dispatch, and complex control-flow. This figure shows the propagated derivatives on the Zero Day scene w.r.t camera’s forward
translation at 1920×1080, computed by a differentiable path tracer in the Falcor framework using the warped-area reparameterization [Bangaru et al. 2020]
algorithm. SLANG.D allows reusing most of Falcor’s existing components (material, lighting, and other utilities, which consist of 5,000 lines of shader code), by
generating code that automatically propagates derivatives through these components. The generated derivative propagation code runs efficiently on an RTX
4090: the forward and reverse mode derivative propagation passes take 12ms and 54ms per sample. As a reference, the primal pass takes 2.4ms per sample.

We introduce SLANG.D, an extension to the Slang shading language that

incorporates first-class automatic differentiation support. The new shading

language allows us to transform a Direct3D-based path tracer to be fully

differentiable with minor modifications to existing code. SLANG.D enables a

shared ecosystem between machine learning frameworks and pre-existing
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graphics hardware API-based rendering systems, promoting the interchange

of components and ideas across these two domains.

Our contributions include a differentiable type system designed to ensure

type safety and semantic clarity in codebases that blend differentiable and

non-differentiable code, language primitives that automatically generate

both forward and reverse gradient propagation methods, and a compiler

architecture that generates efficient derivative propagation shader code for

graphics pipelines. Our compiler supports differentiating code that involves

arbitrary control-flow, dynamic dispatch, generics and higher-order differ-

entiation, while providing developers flexible control of checkpointing and

gradient aggregation strategies for best performance. Our system allows

us to differentiate an existing real-time path tracer, Falcor, with minimal

change to its shader code. We show that the compiler-generated derivative

kernels perform as efficiently as handwritten ones. In several benchmarks,

the SLANG.D code achieves significant speedup when compared to prior

automatic differentiation systems.

CCS Concepts: • Computing methodologies → Parallel programming

languages; Rendering; Graphics systems and interfaces.
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1 INTRODUCTION
Differentiable rendering pipelines have become increasingly impor-

tant in solving computer vision and image synthesis problems [Has-

selgren et al. 2022; Mildenhall et al. 2020; Zhang et al. 2022; Zhao

et al. 2021]. Currently, to implement a differentiable renderer that

runs on graphics hardware (GPU), a programmer faces two choices:

1) they can implement the renderer using a differentiable program-

ming language (e.g., JAX [Bradbury et al. 2018] or Dr. JIT [Jakob et al.

2022]) and apply automatic differentiation [Griewank and Walther

2008], or 2) they can implement the renderer using traditional shad-

ing languages (e.g., HLSL), which are designed for working well

with graphics hardware, and manually derive the derivatives. In

this paper, we aim to bridge the gap between the two approaches

by providing automatic differentiation for shading languages for

high-performance differentiable rendering.

Designing programming languages for a GPU-based forward

renderer already incorporates two main complexities. First, the re-

quirement for having high-performance real-time rendering has

led to graphics hardware that mixes both fixed-function and pro-

grammable components, such as vertex and fragment shaders in

a rasterization pipeline, or intersection shaders in a ray tracing

pipeline. Second, the shaders can consist of multiple subcompo-

nents with shared code; for example, production materials can have

hundreds of lines of code with shared parts between different ma-

terials. Moreover, when implementing a megakernel path tracer,

the whole path tracer needs to be implemented in a single shader.

Therefore, there is a strong demand for language features that make

shaders both modular and efficient (abstract type systems, dynamic

dispatch, generics, etc). Indeed, significant research effort has been

invested in modular shading languages [Foley and Hanrahan 2011;

He et al. 2018; Seitz Jr et al. 2019].

Designing automatic differentiation systems for shading lan-

guages further faces many unique challenges. Firstly, while shader

programs in rendering are often embarassingly parallel, the back-

propagation of them is not. For example, different pixels may need

to accumulate differential quantities to the same texel during dif-

ferentiation, causing race conditions. Secondly, GPUs have limited

capability to dynamically allocate memory inside a thread for stor-

ing intermediate values during backpropagation. Thirdly, a renderer

often contains components that are either not differentiable (e.g.,

an integer datatype), not required to be differentiated (e.g., the pro-

cedure for computing the probability of sampling a light [Zeltner

et al. 2021]), or not directly differentiable and requiring special treat-

ment (e.g., raycasting [Li et al. 2018a]). Finally, some differentiable

rendering algorithms require nested or higher-order differentia-

tion [Bangaru et al. 2020; Loubet et al. 2019].

These challenges make most existing automatic differentiation

systems unsuitable for differentiating shaders. They are often not

designed to run on a hardware graphics pipeline or exploit its fixed-

function stages. Furthermore, they often lack the language features

and type systems for writing efficient and modular shaders at the

large scale of production code. We lay out a taxonomy of auto-

matic differentiation systems and discuss it under the context of

differentiating shader code in Sec. 2 and Appendix C.2.

In this work, we address these challenges by taking an existing,

battle-tested shading language designed for high-performance and

modular shader code, and augmenting it with first-class automatic

differentiation support that can handle all features in the language,

while making sure we preserve high performance. We choose to

work with Slang [He et al. 2018] due to its first-class support for

dynamic dispatch and generics that enable modular and fast code,

and its compatibility with existing shading pipelines.

Following principles in hardware shading language design, an

important design decision we make is to provide sufficient flexibility

for users to write high-performance derivative code, while avoiding

unpredictably complex program analysis. We provide language con-

structs for users to specify and control how they want to accumulate

the derivatives, and to explore compute-memory trade-offs with

checkpointing. Our system does not automatically make arbitrary

backpropagation code race-condition-free. For example, while it is

possible to implement an image convolution in SLANG.D, our system
does not automatically recognize that the adjoint of the convolution

is a correlation to generate race-free derivative code [Hückelheim

and Hascoët 2022; Hückelheim et al. 2019; Li et al. 2018b]. Our sys-

tem similarly will not automatically parallelize the assembly of a

sparse Hessian matrix, or the matrix-vector product [Devito et al.

2017; Herholz et al. 2022; Schmidt et al. 2022]. However, the user can

implement such optimizations themselves, assisted by our system.

Concretely, in this paper:

(1) We propose SLANG.D, a set of extensions to the Slang

(Sec. 4) language. SLANG.D distinguishes differentiable and

non-differentiable code by extending Slang’s type system to

handle differentiable types. SLANG.D provides primitives to

instruct the compiler to initiate forward, reverse, and higher-

order differentiation on Slang functions, as well as language

mechanisms for user-defined derivative accumulation and

checkpointing for preserving efficiency.

(2) We describe the design of the extended Slang compiler (Sec. 5)

that computes derivatives of functions statically. Our compiler

supports all features in Slang, including dynamic dispatch,

specialization, control flow, and side effects. The compiler

builds on the Slang compiler and can emit backend code for

different stages of the shading pipeline.

(3) We evaluate our system by differentiating complex render-

ing systems and microbenchmarks (Sec. 6). In particular, we

show that we can differentiate a complex and efficient path

tracer in Falcor [Kallweit et al. 2022] by adding/modifying

only 300 lines, while reusing 3,000 lines of existing material-

related shader code and 252,000 lines of C++ host code. At

the same time, we preserve the efficiency of Falcor. SLANG.D
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also allows us to implement advanced differentiable render-

ing algorithms [Bangaru et al. 2020; Loubet et al. 2019] while

reusing Falcor’s code (Fig. 1).

2 RELATED WORK & BACKGROUND
We provide a brief taxonomy of automatic differentiation systems

and where we position our system, and an introduction to the Slang

shading language in this section. In Appendix C, we also provide

additional background to automatic differentiation (C.1), a more

complete discussion of automatic differentiation systems (C.2), and

more background on shading languages (C.3).

2.1 Design Space of Automatic Differentiation Systems
Frontends. An automatic differentiation system can be a domain-

specific language embedded in a host language with either shallow
embeddings that avoid materialization of an intermediate represen-

tation (IR), or deep embeddings that materializes an IR using host-

language constructs. Alternatively, it can be a standalone language

with its own syntax. Earlier operator-overloading-based automatic

differentiation systems are often shallow embeddings [Hogan 2014],

recent embedded systems have moved towards deep embeddings to

have more control over the IR construction [Bradbury et al. 2018;

Jakob et al. 2022; Paszke et al. 2019]. Deep embedding languages

often have to invent new syntax for describing loops and branches,

as the control flows in the host language have different seman-

tics than the control flows in the domain-specific language. Our

system belongs to the class of stand-alone languages [Moses and

Churavy 2020; Paszke et al. 2021]. This allows us to differentiate

shader code with minimal changes. The challenge is that our system

now needs to interact with all language features, including control

flows, generics, and polymorphism, in Slang.

Execution model. Many automatic differentiation systems rely on

tracing, where a host program is first run to produce an IR, and only

later executed [Bradbury et al. 2018; Jakob et al. 2022; Paszke et al.

2019]. Tracing is convienent to implement in a deep embedding

domain-specific language, however, it requires the programmer to

reason about the two execution stages. In our case, since we directly

build on the Slang language and compiler, we opt to not doing

tracing. Thanks to Slang’s generics language feature, our system

still allows specialization to a known type or value to generate high

performance code.

Intermediate representation. Automatic differentiation systems’

IRs can differ in a few ways: whether they represent control flows,

whether they contain type information for advanced language fea-

tures such as dynamic dispatch, generics, and checking differentia-

bility, and whether the IR is closed under differentiation for support

of higher-order derivatives. Earlier tape-based systems often unroll

the loops [Hogan 2014], whereas recent systems often incorpo-

rate loop representations (e.g., tf.while_loop and dr.cuda.Loop).
Most automatic differentiation IRs lack type information and has

limited support on language features. The ongoing Swift automatic

differentiation work [Vytiniotis et al. 2019; Wei et al. 2021] and

recent work on higher-order function differentiation [Huot et al.

2020; Krawiec et al. 2022]) addresses this. We incorporate the type

system and language features in Slang into the IR, taking a similar

approach to the Swift work, but applying it to shading languages.

Many automatic differentiation systems do not support higher-order

differentiation [Hu et al. 2020; Jakob et al. 2022], where our system

ensures that the IR is closed under differentiation.

Program optimization. Automatic differentiation systems opti-

mize their code based on the characteristic of the expected programs.

For example, deep learning systems [Abadi et al. 2015; Paszke et al.

2019] optimize for the use case where each layer (convolution/atten-

tion) has high arithmetic intensity, which is usually not the case for

shader programming. We follow the principle of shading language

compiler design: we avoid complex program analysis for global

optimization, while providing sufficient flexibility to the users to

achieve high performance.

2.2 Slang Shading Language
Derived fromHLSL, Slang is a shading language that supports modu-

lar development of complex rendering systems without compromis-

ing performance on GPUs [He et al. 2018]. As a result, Slang adopts

many modern language features such as inheritance and interfaces.

Slang is also a cross-platform language that targets Direct3D, Vulkan,

CUDA and CPU. Slang has been adopted by many rendering prod-

ucts including Omniverse [Foley 2022], RTXRemix [NVIDIA 2023],

Autodesk Aurora [Autodesk 2023], and Falcor [Kallweit et al. 2022].

The most important feature in Slang is the unification of shader

specialization and dynamic dispatch with generics and interfaces.

Slang’s interface construct, also known as type classes or type

traits in other languages, provides a natural way to express a type’s

capabilities. Listing 1 shows an exemplary IMaterial interface that
all material implementations in a render must conform to.

interface IMaterial {

float eval(float3 wi, float3 wo);

}

Listing 1. An Slang interface defines the requirements that all material
implementations in a renderer must conform to.

This code defines that any type conforming to the IMaterial
interface must provide a eval method for evaluating the material

given an incoming and outgoing direction. With this interface, ma-

terials supported by the renderer can then be implemented as dif-

ferent types. Listing 2 shows two material implementations defined

as struct types that inherits from the IMaterial interface.
The IMaterial interface allows developers to write code that

uses the material subsystem, without exposing its implementation:

float3 evalLighting(

IMaterial m, float3 L, float3 wi, float3 wo) {

return L * m.eval(wi, wo);

}

The same code can also be written in a flavor that uses generics:
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struct DiffuseMaterial : IMaterial {

// ...

float eval(float3 wi, float3 wo) { // ... }

}

struct RoughConductorMaterial : IMaterial {

// ...

float eval(float3 wi, float3 wo) { // ... }

}

Listing 2. Slang code showing different implementations of the IMaterial
interface defined as struct types that inherit from the interface.

float3 evalLighting<M : IMaterial>(

M m, float3 L, float3 wi, float3 wo) {

return L * m.eval(wi, wo);

}

which can be invoked with the angle-bracket syntax: evalLight-
ing<DiffuseMaterial>. In either flavor, if the Slang compiler can

determine the evalLighting method is being invoked with a stati-

cally known material type, the compiler will specialize the method

using the concrete type, enabling follow-up optimizations and poten-

tially reducing the register pressure of the resulting code. If the type

of m is only known at runtime, the compiler implements dynamic

dispatch by replacing the m.eval call with a switch statement dis-

patching to a known material type based on the runtime type of

m. Slang allows the developer to decouple how shader code gets

written from the choice of how to tradeoff between specialization

and dynamic dispatch.

We use the existing type system support for interfaces and gener-

ics to express the new logic for reasoning about differentiability.

Additionally, by figuring out how the new automatic differentiation

features interact with generics and interfaces, we can extend the

dynamic dispatch support and other modularity features to differ-

entiable code. Because Slang is compatible with most of existing

HLSL code, the new automatic differentiation features can easily be

adopted by both HLSL and Slang users.

3 OVERVIEW
Our goal is to design an automatic differentiation extension to Slang

that satisfies the following desiderata:

• Given code written in Slang without differentiation in mind,

our system should produce the derivatives of the code with

minimal changes of the forward code. This allows us to

inherit the language features in Slang and enable modularity.

• Our system should be able to distinguish between code that

needs to be differentiated, and code that cannot or ought to

not be differentiated. The system should report errors for

invalid mixes of differentiable and non-differentiable code.

• Our system should have enough flexibility to allow users to

achieve high performance derivative code that is at least

as fast as highly-optimized manually differentiated code.

• Our system should support higher-order differentiation,

whether for differentiating forward rendering methods that

already require derivatives (e.g., ray differentials [Igehy 1999],

or computing normals from neural signed distance fields), or

for differentiable rendering algorithms that require higher-

order derivatives [Bangaru et al. 2020; Loubet et al. 2019].

• Our system should interact well with external code that

produces the scenes or processes the images (e.g., a convolu-

tional neural network in PyTorch).

As a non-goal, our system will not perform complex program analy-

sis to automatically achieve high performance. Instead, we provide

sufficient flexibility for users to write fast code.

We achieve these goals by designing SLANG.D, a differentiable

language and compiler that includes all of the existing features in

Slang. This requires us to interact with Slang’s type system and ex-

tend it to distinguish between differentiable and non-differentiable

types, as well as handle higher-order differentiation. To achieve

high performance and flexibility, we allow users to define custom

derivatives for reverse-mode accumulation, which enables fast par-

allel reduction when multiple derivatives accumulate to the same

location. We also allow users to annotate loops and functions to tell

the compiler which checkpointing scheme to use.

Fig. 2 shows an overview of our system. The user code written

with the new automatic differentiation features is parsed by the

Slang compiler and checked with the extended type system (Sec. 4).

Next, we implement automatic differentiation as an additional pass

that is integrated into the code transformation loop in the Slang

compiler backend (Sec. 5). The Slang compiler then generates tar-

get code (e.g., HLSL, GLSL or CUDA), and invokes the platform’s

downstream compiler to generate final executable code.

4 SLANG.D LANGUAGE DESIGN
In this section we describe the features added to the Slang language

for automatic differentiation (AD). We also show how these features

provide the SLANG.D compiler backend with the required informa-

tion to perform automatic differentiation. In designing the language

features, we borrowed many ideas from the ongoing work of adding

automatic differentiation to Swift [Wei et al. 2021], and extended

the ideas to support high-order differentiation in SLANG.D.

4.1 Differentiable Type System
One challenge of designing a differentiable language for interoper-

ation with a traditional code-base is figuring out which parts have
to be differentiated, and which parts can be left alone. This is espe-

cially non-trivial for differentiable rendering pipelines which use

lots of components that are non-differentiable or have non-standard

semantics for their derivatives. As an example, samplers used for

estimating integrals are often not differentiated, or replaced with a

different sampler entirely [Zeltner et al. 2021]. To make things more

complicated, a single struct can have mixed values. In the example

below, the path payload (PathState) carries differentiable infor-

mation, such as throughput, but also undifferentiated information,

such as path length.

struct PathState {

float throughput; // requires grad

uint length; // no grad

}
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struct C : B{ /*...*/ }
struct D : A{ /*...*/ }

A_impl.slang

User Code

Checked
AST

Semantic
Analysis Auto Di�erentiation & Optimizations

IR Optimizations
(SSA, SCCP, DCE, Redundency Removal, ...)

Automatic Di�erentiation

Generic Specialization

A.cu

A.glsl

A.hlsl

Target Code
Generation

dxc

glslang

nvcc

Downstream
Compilation

SLANG.D

interface A{ /*...*/ }
interface B : IDifferentiable
     { /*...*/ }

A.slang

Fig. 2. An overview of the SLANG.D compilation pipeline. We extended Slang’s front-end for parsing and checking differentiable SLANG.D code, and implemented
automatic differentiation as an additional compilation pass that integrates into the backend’s optimization loop. The Slang compiler then takes care of
emitting target code and invoking downstream compiler for final executable code generation.

How do we infer which types are to be differentiated? What

should the differential type be?

A popular approach in tracing-based automatic differentiation

systems (e.g., Adept, PyTorch, and Dr. JIT) is to annotate differen-

tiability per-variable, rather than per-type, by writing var.req_-
grad=True. Another approach, sometimes adopted by static com-

piled systems (e.g., Tapenade, Enzyme), is to use a fixed set of differ-

entiable types (e.g., double is differentiable, int is not). This allows

them to be more agnostic to language features and reuse automatic

differentiation systems for different language frontends. Neither

of these approaches makes it clear whether (e.g.) the output of a

function ought to be differentiated. In the former case, code in an

arbitrarily different part of the program may control whether or not

differentiation happens (and require overriding via detaching the
output). In the latter case, a double output will be differentiated,

regardless of the programmer’s intent.

To facilitate type checking, we need to decouple data types (how

a type is stored) with semantic types (what a type means). Two
types can be stored the same way, yet have different semantics for

differentiation. Slang’s interface construct is a natural way to

express such semantic information.

SLANG.D
interface IDifferentiable {

associatedtype Differential: IDifferentiable,

where Differential.Differential==Differential;

Differential dzero();

Differential dadd(Differential a, Differential b);

Differential dmul<S:IScalar>(S s, Differential d);

}

Listing 3. The IDifferentiable interface defined in SLANG.D’s standard
library, specifying the requirements that a differentiable type must satisfy.

SLANG.D defines the IDifferentiable interface for objects that

can be differentiated. Listing 3 shows the full definition of IDif-
ferentiable in SLANG.D’s standard library. Our definition uses

the fact that a differential of any type is mathematically a vector
space. This is a fundamental property that is a consequence of the

linearity of differentiation, and holds no matter how complex the

original computation may be. This definition is also equivalent to

the Differentiable protocol in Swift.

The IDifferentiable interface defines requirements for the four

mathematical properties of a vector space:

(1) Differential. It defines the data type to use to represent

the differential. The Differential itself is required to be

differentiable, enabling our goal of higher-order derivatives.

(2) dzero() "Additive Identity". It defines the zero element for

the vector space.

(3) dadd() "Addition". It defines the sum of differentials, and is

assumed to be commutative and associative.

(4) dmul() "Scalar Multiplication". It defines the multiplication

of a scalar with a differential, and is assumed to be distributive

over dadd().

SLANG.D
struct PathState : IDifferentiable {

typealias Differential = float;

float dzero() { return 0; }

float dadd(float a, float b) { return a + b; }

float dmul<S:IScalar>(S s, float d) { return s * (S)d; }

float throughput;

uint length;

}

Listing 4. An example of a user-defined type that manually implements the
IDifferentiable interface requirements.

Listing 4 shows an example of implementing the IDifferen-
tiable requirements in a user defined type PathState, which uses

a single float to carry the differential data.

By allowing the user code to define explicit type conformance

to IDifferentiable, SLANG.D decouples the differentiability se-

mantics from actual storage types. The flexibility offered by this

decoupling can be useful in renderer code. For example, the Falcor

framework represents a ray-geometry intersection using a packed
type called PackedHitInfo where the primitive ID and barycentric

coordinates are marshalled into a 64-bit integer to reduce bandwidth

requirements. As such, it is incorrect to simply ’add’ two packed

data types. Thankfully, we can define the correct semantics for this

type using our type system:
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Fig. 3. Screenshot showing the SLANG.D plugin for Visual Studio Code
listing the members available in a synthesized Differential type.

SLANG.D
struct PackedHitInfo : IDifferentiable {

uint64 packed_primID_barycentricCoord;

HitInfo unpack() { //... }

typealias Differential = PackedHitInfo;

Differential dadd(Differential a, Differential b)

{ return (a.unpack() + b.unpack()).pack(); }

}

Automatic Type Synthesis. While it is useful to be able to man-

ually implement the IDifferentiable requirements for certain

user-defined types, we often simply want to recursively differenti-

ate all members of a struct type. Therefore, if a struct is marked as

IDifferentiable, but no implementation is supplied, we automat-

ically infer this default implementation. This is similar to Swift’s

@memberwise strategy.
To make it easier to work with types synthesized by the com-

piler in this way, the SLANG.D compiler synthesizes such IDif-
ferentiable implementations during semantic analysis (i.e., type-

checking), allowing for them to be surfaced through a code editor’s

language server plugin (a.k.a. intellisense). This enables develop-

ers to inspect synthesized types as they write code. Fig. 3 shows a

screenshot of SLANG.D’s Visual Studio Code plugin displaying the

members of the synthesized PathState.Differential type in the

previous example. Note that only the throughput field is included in
the Differential type since the length field is not differentiable.

4.2 AD Operators as Higher-Order Functions
The second concern for differentiable language design is how to

invoke derivative computation. Gradients of an expression can be

computed either

(1) by invoking backpropagation from a variable (e.g., PyTorch’s

x.backward()): immediately propagate derivatives to all de-

pendencies of the variable, or

(2) by invoking a higher-order function (e.g., JAX’s vjp(f)): gen-
erate a new function that computes the reverse derivative.

Neither approach is outright superior in terms of expressiveness,

but the variable-backpropagation approach is difficult to implement

in our static compilation scheme.

In SLANG.D, derivative computation is expressed statically as

higher-order function operations. Two built-in operators, fwd_-
diff(f) and bwd_diff(f) are used to call the forward or reverse

derivative (Appendix C.1) propagation method of f() respectively.

These operators can be viewed as higher-order functions that take

a primal function and return a derivative function as a result.

While the body of a derivative function is created by the compiler

(Sec. 5), we still need a convention for determining its type signature

so the user can call the derivative function with the correct argu-

ments. Consider a simple snippet: z = x * y. The forward-mode

derivative of this snippet is the pair: (z, dz) = (x * y, x * dy
+ dx * y), while the reverse-mode derivative would be (dx, dy)
= (dz * y, x * dz). For forward-mode, every input (x, y) needs
to be paired with an additional differential input (dx, dy), while for
reverse-mode, every input has a corresponding differential output,

and the differential of the output (z) is now an input (dz).
To represent with such pairings, we first define a generic pair

type (Sec. 4.2.1), we then incorporate it when deriving derivative

function signatures (Sec. 4.2.2).

4.2.1 Differential Pair Type. We provide a built-in generic type

(DifferentialPair) to represent a primal and differential value

pair and use it in both semantic checking and derivative code gen-

eration, defined as:

SLANG.D
struct DifferentialPair<T : IDifferentiable> :

IDifferentiable {

property T p;

property T.Differential d;

// Implementation of IDifferentiable requirements...

}

4.2.2 Derivative Function Signatures. We then define the rules for

deriving function signatures for both the forward and backward

derivative functions. Given an original function that has type

func(T, U) -> R

where both R and T conforms to IDifferentiable and U does not
conform to IDifferentiable, the forward derivative of f, fwd_-
diff(f), will have type

func(DifferentialPair<T>, U) -> DifferentialPair<R>

The differentiable inputs and outputs are both paired with their

differentials, and the non-differentiable parameters are left untouched.

On the other hand, the backward derivative bwd_diff(f)’s type
will be:

func(inout DifferentialPair<T>, U, R.Differential) -> void

We use the inoutmodifier to allow the the primal of the pair as an

input, and receive the differential back as an output. The derivative

of the output of f is passed in as the final input parameter.

The complete signature transformation rules that covers differen-

tiable and non-differential parameters that have in, out or inout
directions are documented in Appendix E. These rules can some-

times be cumbersome to follow, but we alleviate this by including

signature highlighting as a part of our Intellisense plugin.
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4.2.3 Marking Differentiable Methods. To ensure runtime perfor-

mance, SLANG.D requires the user to explicitly specify which func-

tions should be differentiated so that the compiler does not produce

unnecessary code that propagates derivatives through irrelevant

functions. Users are expected to mark functions with the [Dif-
ferentiable] attribute to make them available for differentiation.

Attempting to call fwd_diff or bwd_diff on a method without this

attribute will result in a compile-time error.

SLANG.D
[Differentiable]

float myPow(float x, int n) {

float result = 1;

for (int i = 0; i < n; i++)

result *= x;

return result;

}

Listing 5. A differentiable SLANG.D function that computes 𝑥𝑛 .

Calling a non-differentiable function from a differentiable func-

tion is possible in SLANG.D. For example, Listing 5 shows a valid dif-

ferentiable function that computes n-th power of x in SLANG.D. From
the type system’s point of view, the integer comparison i<n and

increment i++ are treated as function calls into non-differentiable

built-in intrinsic functions operator< and operator++. In this use

case, the mixture of non-differentiable operations and differentiable

operations presents no semantic ambiguity since the derivatives

never flow through any non-differentiable part of the code.

However, allowing mixing differentiable and non-differentiable

calls while requiring explicit Differentiable attributes on func-

tions at the same time can lead to surprises and unexpected results.

Consider this slightly modified version of myPow:

SLANG.D
// sqr is not marked as Differentiable and considered

// non-differentiable.

float sqr(float x) { return x*x; }

[Differentiable]

float myPow2(float x, int n) {

float rs = 1;

for (int i = 0; i < n; i++)

rs *= sqr(x); // Error: derivative will be 0.

return rs;

}

Since sqr is non-differentiable, its derivative is always zero. The

user who wrote this code most likely wanted the derivative to prop-

agate through the sqr function, but forgot to mark sqr as differ-

entiable. Our type checker will report an error whenever it finds a

call to a non-differentiable function in which some input arguments

are IDifferentiable or the output is used where an IDiffer-
entiable value is expected. If such a use of a non-differentiable

function is intentional, the user can suppress this error by annotat-

ing with the no_diff keyword:

SLANG.D
result *= no_diff sqr(x); // Accepted by the compiler.

4.2.4 Differentiating through Interface Methods. To facilitate modu-

larity, our higher-order functions fwd_diff(f) and back_diff(f)
support abstract function calls in which the correct code to dispatch

to cannot be statically resolved at compile time. As an example,

consider the IMaterial interface definition in Listing 1, and its im-

plementations in Listing 2. The member method eval of an abstract

object could be any IMaterial implementation. So if we wanted to

differentiate it, we would run into a problem:

IMaterial i = ... ;

// Cannot resolve i.eval statically

fwd_diff(i.eval)( ... );

In this example, i.eval could be either DiffuseMaterial.eval
or RoughConductorMaterial.eval, or some other IMaterial im-

plementation defined in a different, separately compiled module.

The key to supporting this scenario is to ensure that an implemen-

tation of IMaterial.eval always has a derivative function defined.

This is done by extending the [Differentiable] attribute to work
on interface methods. When the compiler sees an interface method

with the [Differentiable] attribute, it will add additional inter-

face methods to represent the forward and backward derivatives of

the [Differentiable] method. For example, given the following

interface definition

SLANG.D
interface IMaterial {

// All implementations must also be

// marked with [Differentiable]

[Differentiable] float eval(float3 wi, float3 wo);

}

the compiler will generate the full interface:

interface IMaterial {

...

float eval(float3 wi, float3 wo);

DifferentialPair<float> eval_fwd(

DifferentialPair<float3> wi,

DifferentialPair<float3> wo);

void eval_bwd(inout DifferentialPair<float3> wi,

inout DifferentialPair<float3> wo, float dOut);

}

With this interface, whenever the compiler needs to differentiate

a call to the eval method dispatched from the IMaterial inter-

face, it can simply emit a call to IMaterial.eval_fwd or IMate-
rial.eval_bwd without knowing which IMaterial is being called.
For types that implements the IMaterial interface, the compiler

will automatically derive the satisfying method for eval_fwd and
eval_bwd from the user provided eval method.

4.2.5 Higher-order Application of AD. Note that the Differen-
tialPair type described above is itself marked differentiable, al-

lowing a function generated by the AD pass to be differentiated

again. A very important detail that makes higher order differentia-

tion possible is the type constraint defined in Listing 3:

Differential.Differential=Differential

This constraint means that for any type D used as the Differen-
tial type of some type T, D’s own Differential type must be D
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itself. This is needed to ensure that the automatic generation of

IDifferentiable implementations can terminate without gener-

ating exponentially large amounts of code. We provide a detailed

example illustrating this concern in Appendix. F. More importantly,

this constraint is required for the SLANG.D compiler to synthesize

IDifferentiable implementations for generic types. Consider the

following type:

struct G<T:IDifferentiable> : IDifferentiable {

T field;

}

In this case, an eager type system implementation that attempts

to synthesize all Differential types for G may never terminate,

because the generic T type does not provide any information on the

length of the Differential type chain. Supporting this scenario

would require a type system that is capable of handling infinite

types. In contrast, by simply requiring that

T.Differential.Differential = T.Differential

the compiler can synthesize the differential type of G to be

struct G_Diff<T:IDifferentiable> : IDifferentiable {

T.Differential field;

typealias Differential = G_Diff;

}

Even if not mandated by the compiler, this constraint is almost

always satisfied in practice. Generally, types in a differentiable pro-

gram can be considered as a way to define the shape (dimension)

of data to be differentiated. Once we have a representation of a

differential value, differentiating it again will not change its shape,

and therefore the second-order differential can be stored in the same

type as the first-order differential.

4.3 Arbitrary User-Defined Derivatives
There are several situations where it is desirable to substitute a

user-defined implementation in place of an automatically generated

one. In differentiable rendering, there are two major reasons:

(1) Intrinsic operations. Primitives like sin(x), and hardware-

accelerated operations like interpolated texture sampling do

not have a function body to differentiate, and need hand-

coded derivatives or a reference implementation.

(2) Parallelism and computational efficiency. Shader programs

often need to read from global data structures representing

geometry, material parameters, lighting and camera setups,

texture data, etc. When such a shader is backward differen-

tiated, the resulting code needs to accumulate propagated

derivatives into these global memory locations. For the sake

of perforamnce, special care must be taken to minimize con-

tention when implementing these accumulations.

Listing 6 shows an example of a load from a global variable hold-

ing material data (left), and an example of naïvely reversing the

load to accumulate the reverse-mode derivatives (right). Since all

threads access the same data, the simplest way to accumulate the

derivatives is to use an atomic add. Unfortunately, if all threads

// Global data

MaterialData gMaterial;

// ...

float3 getAlbedo() {

// Per-thread read

return gMaterial.albedo;

}

// Global data

MaterialData.Differential

d_gMaterial;

// ...

void bwd_getAlbedo(

float3.Differential

d_albedo) {

// Naive reverse

// accumulation

atomicAdd(

d_gMaterial.albedo,

d_albedo);

}

Listing 6. An example shader code showing potential high write contention
when accumulating the propagated derivative into a material parameter.

(a)

102

103

104

105

106

(b)

Fig. 4. Non-uniform Access Patterns. (a) A Cornell box with a high-poly
bunny rendered using a 1 bounce path tracer (b) The average number
of times every face is accessed in a single iteration of a reparameterized
differentiable path tracer [Bangaru et al. 2020] for computing geometry
gradients. Note that the axis is in log-scale, and the larger triangles of
the box are accessed orders of magnitude (1000x) more than the smaller
triangles of the bunny mesh.

atomic write into the same memory location, this can result in a sig-

nificant slow-down in runtime as writes from different threads get

serialized by the hardware. Many solutions are available to alleviate

this performance issue. We can perform the aggregation within a

thread-group before accumulating to global memory. We can also

allocate a hash grid for each derivative output, have each thread

write to different locations based on a hash of the thread index, and

then aggregate the elements from the hash grid in a follow-up pass.

However, there is no "one size fits all" solution to the write-

contention problem. For example, Fig. 4 shows the order-of-magnitude

difference in number of memory accesses across different parts of

the scene during differentiable rendering. An optimal solution to

lower the accumulation overhead is to use different aggregation

strategies for different parts of the scene based on the access pattern,

but this is not something our compiler can decide trivially.

We therefore enforce that global memory access instructions are

non-differentiable by default, and prompt the user to implement

access wrappers with user-defined code for derivative aggregation.

SLANG.D features [ForwardDerivative] and [BackwardDeriva-
tive] attributes for providing a custom forward or backward de-

rivative propagation function. Listing 7 shows a custom backward

derivative function for the getAlbedo function originally defined in
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Listing 6. The custom backward derivative uses a wave-level reduc-

tion to aggregate derivatives across the current wave (thread-group)

and then accumulate the aggregated derivative value once per wave

— instead of having each thread perform its own global atomic write.

SLANG.D
MaterialData.Differential d_gMaterial; // Global data

[BackwardDerivative(bwd_getAlbedo)]

float3 getAlbedo() { // ... }

void bwd_getAlbedo(

float3.Differential d_albedo) {

var temp = WaveActiveSum(d_albedo);

if (WaveIsFirstLane())

atomicAdd(d_gMaterial.albedo, temp);

}

Listing 7. A custom backward derivative for getAlbedo in SLANG.D that
efficiently accumulates the propagated derivative into global memory.

These decorations are applied to the primal method, and contain

a reference to the derivative method. We also provide ’inverted’

attributes that decorate the derivative method instead, useful for

existing codebases (Appendix B.3)

Primal Substitutes for Intrinsics without Definitions. To allow prop-

agating derivatives through hardware intrinsics (such as texture

sampling) SLANG.D provides a primal subsitution mechanism. This

allows users to provide a reference implementation for the intrinsic

(e.g., a piece of SLANG.D code that performs tri-linear interpola-

tion), while still allowing the compiler to differentiate the reference

implementation and propagate derivatives.

This allows us to use high-performance intrinsics in the primal

computations, without deriving the intrinsic operation by hand.

Appendix D provides more details on how primal substitutes can be

used to propagate derivatives through texture sampling operations.

Discussion of Alternatives. Many automatic differentiation sys-

tems provide custom derivatives, but how they inject the custom

code back to the system are quite different. Deep learning systems

(e.g., PyTorch/JAX) allow users to replace an operator’s derivative

with a custom one, which requires the users to keep track of all

dependent variables of a function. Dr. JIT extends this idea to handle

global variables in the context of the tracing. It does so by automati-

cally tracking the dependent variables of a function, performing a

closure conversion, and automatically accumulating the derivatives

to the global buffers. However, neither systems allow users to spec-

ify how exactly they want to accumulate derivatives to the global

buffers, such as the wave-level reduction scheme in Listing 7. Our

approach is similar to other static AD systems (e.g., Enzyme), which

simply replace the call with the provided custom function. Custom

functions have all the flexibility of any other function in the source

language. This avoids the need to track dependencies.

4.4 Checkpointing Primitives
Reverse-mode derivative propagation requires the primal computa-

tion results. Therefore the values computed during primal execution

must be made available during backward propagation. There are

primarily two methods: Cache the values during the primal pass or

Recompute the expressions just before the primal value is used.
1

When differentiating shader code with loops, the decision of

which method to use is not trivial to make. Consider an example of

a megakernel path tracer’s main loop in a shader:

for (int i = 0; i < numBounces; ++i) {

// ...

Ray ray = sampleNextRay(... );

// ...

PackedHitInfo hitInfo = traceRay(... );

ShadingData sd = computeShadingData(... );

handleHit( ... );

// ...

}

The generated adjoint loop will run the computation backwards,

but in order to do so, it requires values generated in the primal loop.

Here, sd, hitInfo and ray are all values that were generated in the

primal loop, and required in the adjoint loop:

for (int i = numBounces - 1; i >= 0; ++i) {

// ...

bwd_handleHit( ... );

// ...

bwd_computeShadingData((sd, d_sd)... );

bwd_traceRay((hitInfo, d_hitInfo)... );

// ...

bwd_sampleNextRay((ray, d_Ray), ... );

}

The simplest solution is to store all of these values into separate

size-N arrays, but this easily overwhelms the small on-chip memory

available to each GPU thread. Instead, a more efficient approach is to

recompute some of the values (sd), and only store the light-weight

values that are slow to recompute (hitInfo). However, automat-

ically determining whether or not a value is slow to recompute

can be difficult. Therefore, instead of attempting to guess the best

answer, our compiler employs a light-weight heuristic and allows

the user to control the behavior using attributes.

The heuristic defaults to recomputing everything, except across

loop boundaries and function calls where recomputation may be

expensive. For functions, we allow the user to specify a preference

using a set of attributes: [PreferCheckpoint] and [PreferRecom-
pute]. For loops, the user can unroll using [ForceUnroll] or split

the loop index into two nested loops. The inner loop is unrolled,

effectively reducing the size of the checkpoint allocation.

Using these strategies, the user can find a configuration that

provides the best performance for their use-case: marking all the

methods in the loop body with [PreferRecompute]will cause only
the necessary loop state to be stored (the ray origin, direction and

RNG state), which would work for large number of bounces. On the

other hand, marking all methods with [PreferCheckpoint] will

cause all loop state to be stored, avoiding recomputation for shorter

loops whose checkpoints can fit into the L1 cache.

The 𝐴𝛿 [Yang et al. 2022] compiler tackles the issue of regis-

ter pressure using a custom Halide [2012] auto-scheduler to guide

1
There is a third option of inverting the primal computation (e.g., [Vicini et al. 2021]).

We leave a principled study of its use in general-purpose checkpointing as future work.
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checkpointing decisions. While SLANG.D currently leaves this up

to the user, the Slang reflection API allows external control over

function attributes, and can be used to interface with a custom

auto-scheduler if desired.

As a pure kernel language, SLANG.D is only concernedwithwithin-
kernel checkpointing, which is most impactful for megakernels that

contain most of the program. Systems that launch multiple kernels,

such as PyTorch and Dr. JIT, focus on across-kernel checkpoint-
ing [Kirisame et al. 2021], which is orthogonal to our work. Slang’s

API can be used by the across-kernel checkpointing system for

querying the checkpoint layout of the kernel entry points.

We further discuss the backend implementation of checkpointing

in Sec. 5.3.

5 SLANG.D COMPILER DESIGN
In the previous section, we discussed the user-facing language fea-

tures to cleanly implement and maintain differentiable graphics

components. The biggest challenge in supporting these language

features is to make sure automatic differentiation works with all

existing language features such as all forms of loops and arbitrary

nesting of control flows and function calls, while providing suffi-

cient user control on key decisions that affect runtime performance.

We choose to implement our compiler without introducing any ad-

ditional restrictions on user code to preserve the shading language’s

expressiveness for differentiable code. Our implementation is built

upon the existing Slang compiler, which includes a full parser, an in-

termediate representation, optimization passes and code generation

for a variety of targets.

In this section, we discuss the passes that had to be added to

support automatic differentiation. Specifically, we first apply a pre-

processing step that eliminates local variables to produce a single

static assignment (SSA) intermediate representation (IR), and then

brings the control flow graph to a reversible normal form. This

normalized form is then differentiated through the linearization &

transposition process [Radul et al. 2022], allowing both forward and

reverse mode derivatives to be generated with the same process,

and we apply a checkpointing pass to make primal values avail-

able during backward propagation even if the user code contains

nested control flows and function calls. We use the myPow function

in Listing 5 to illustrate the passes.

5.1 Preprocessing Pass
Our pre-processing steps are designed to bring the IR into a normal-
ized form, by eliminating address and pointer types and bringing the

control flow graph to a form that, upon inversion, can be expressed

as a valid shader program. We found that these steps significantly

simplify the design of the differentiation passes.

5.1.1 Address Aliasing Removal. The core logic to propagate deriva-
tives backwards through an instruction is to accumulate the trans-

posed derivative into the instruction’s input values. If the instruc-

tion’s input comes from a memory address that is updated several

times by the user code, the generated propagation code must ac-

cumulate the derivative to the value at the memory address at the

time the instruction was executed.

Fortunately, analyzing value identity at a memory address is eas-

ier in the Slang IR than in a general purpose programming language.

This is because Slang does not allow pointers in user code, and global

memory access are exposed through resource handles instead of

pointers. Therefore, the only case where a pointer value can appear

in the Slang IR is in accessing local variables or mutable function

parameters. By definition, two different local variables can never

alias. Additionally, since Slang inherits the copy-in, copy-out se-

mantics of inout parameters
2
from HLSL, two mutable parameters

in a function can never alias.

By leveraging these language characteristics, we can remove most

pointers from the IR by applying the static single assignment (SSA)

transform. However, the standard SSA pass in most compilers does

not convert pointers of composite types (e.g., arrays and structs)

into SSA values since in-place partial updates of large composite

values cannot be expressed in the SSA form. For example, consider

the following code that updates an array element:

A[i] = x

If we choose to turn A into an SSA value, the update operation

will be represented as:

A1 = update A0, i, x

Which has the semantic of creating a copy of the array A with

i-th element replaced with x. This can lead to performance issues if

the copy is still needed when we come out of the SSA form.

In SLANG.D, the only situation where address aliasing may occur

is when an array is being accessed with a dynamic index. While it

may be possible to handle this directly in the AD passes, we choose

to convert all local variables and parameters, including those of

composite types into SSA values for implementation simplicity. The

consequence is that the compiler must take additional care to avoid

introducing unnecessary copies of large composite values when

transforming out of the SSA form. To do so, the compiler tracks the

variable or parameter from which each SSA value is constructed

(in the above example, both A0 and A1 are originated from A), and
coalesce the SSA values back to the same variable if permitted by

the interference analysis after the AD passes.

5.1.2 Control Flow Normalization. Our decision to work in Slang

results in a small complication due to its choice to emit code that

is itself in a shading language (e.g., HLSL) rather than machine

code (e.g., SASS). On the one hand, this takes advantage of power-

ful downstream optimizations, with the caveat that our generated

derivative IR must be representable in the target language.

When it comes to control flow, shading languages only support

structured primitives like if-else branches, for/while loops and
switch statements. Arbitrary goto statements are not allowed in

most shading languages including Slang since they can create situa-

tions where diverged control flow never re-converge, breaking the

requirement assumed by many GPU architectures. Since reverse-

mode derivatives require inverting the control flow, we must make

2
When calling a function with an inout parameter in HLSL/Slang, a temporary variable

is created and initialized to the value of the argument before entering the callee. The

value of updated temporary variable after the call is written back to the argument.
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Instruction Computing Differential Values

Instruction Computing Primal Values

Instruction Computing Both (Mixed)

Invalid Use of a Primal Value (Out-of-Scope)

Block Computing Differential Values

Block Computing Primal Values

Block Computing Both (Mixed)

Clone Operation
Linearize Operation
Pair Type Operation

(b) Linearized IR (c) Unzipped IR(a) Primal IR

Fig. 5. Pseudo IR of the myPow function after the linearization and unzipping passes. (a) IR after the preprocessing pass. (b) IR after the linearization pass. The
result is a forward derivative propagation function that computes both the primal result 𝑥𝑛 and the propagated derivative result_d. (c) IR after the unzipping
pass. The function is separated into two parts, where the first part contains only the primal computations, and the second part contains only the derivative
propagation logic. All the blocks, including the loop, have been split into two to accommodate this transform. The result still propagates derivatives forwards.
The IR in this form is no longer a valid program (e.g., result1 is accessed out-of-scope), and will be legalized later during the checkpointing pass (Sec. 5.3).

sure that the resulting control flow is still representable with the

supported control flow primitives. Instead of tackling the general

problem of restructuring a reversed CFG into a structured form, the

SLANG.D compiler pre-processes the CFG to bring it into a trivially
reversible form, so that reversing can be done by simply flipping the

direction of edges in the CFG without breaking the overall control

flow structure. This is achieved using a control flow normalization

pass, detailed in Appendix G, that eliminates non-trivial control

instructions like break, continue & multiple return statements.

Fig. 5(a) shows the pseudo IR for myPow after the preprocessing
steps. For clarity, we omit the detailed basic block structure and

branching instructions in the listing and use the high level syntax

instead to illustrate the control flow.

5.2 Automatic Differentiation Pass
With the input code normalized, the compiler can proceed to run

a series of automatic differentiation passes to generate derivative

propagation code. Our differentiation passes are inspired by the

linearize-then-transpose idea [Radul et al. 2022], with modifications

for our imperative-style IR. The idea is to generate forward deriv-

ative first (linearization), if the backward derivative is requested,

we then further transform the forward derivative code (transposi-

tion). The AD passes are invoked ’on-demand’ when the compiler

encounters a call to fwd_diff or bwd_diff.

5.2.1 Linearization. The linearization step generates a forward-

mode derivative function by differentiating each instruction of a

differentiable type and inserting the derivative right after in the

original function. The differentiable types are obtained from the

front-end by checking which types inherit IDifferentiable.
Fig. 5(b) shows the generated code that propagates differentials

of the input (x.d) to the output (result.d), while also computing

the primal value itself (result). The linearization pass first trans-

forms all differentiable parameters into DifferentialPair type

so that the rest of the function can access both the primal value

and derivative from the input parameter. Next, the pass emits new

code right after each differentiable instruction that propagates the

derivatives from the input operands to the original instruction’s

output. In this case, the pass emits new instructions to compute

result_d0, result_d1, result_d2. This step operates locally on

each differentiable instruction, and does not require modifying the

control flow graph since both the primal and differential instruc-

tions flow in the same direction. See Radul et al.’s work [2022] for a

fuller explanation of linearization rules for each type of instruction.

If only forward derivative is requested, then the differentiation pass

is done and we return the resulting function.

5.2.2 Transposition. If the user is requesting the backward deriva-

tive, the compiler must continue the transformation by transposing

only the instructions that are computing differential values. The

transposition pass is broken down into three steps. The compiler

first unzips all blocks into primal & differential parts, transposes the

instructions in each differential block, and reverse the control flow.

Unzipping. This step is responsible for re-ordering all primal in-

structions to before the first differential instruction. Since our IR
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contains control flows, unzipping involves duplicating the control

flow graph. We create one copy of each block, and move all differ-

ential instructions to that block. Fig. 5(c) shows the myPow function

after the unzipping pass.

Transposition within each block. In the second step, all instruc-

tions in each differential block have their order reversed, and the

compiler transposes each derivative instruction in reverse order (last

instruction in a block is processed first) to propagate derivatives

backwards from the output differentials to the input differentials.

Due to the linearity of differentiation, there are only two funda-

mental rules for transposition: every multiplication da = c * db
becomes a multiply-accumulate: db += c * da, and an addition da
= b + c becomes two accumulations: db += da; dc += da. All
other rules are derived from these two [Radul et al. 2022].

Reversal of control flow. Finally, the control flow of all the differ-

ential blocks are reversed, and since the IR is in a normalized form,

the resulting graph is automatically valid. The only special case we

take care of is inverting the loop index computation in for loops,

for example for(i=0; i<N; i++) becomes for(i=N-1; i>=0;
i--). We also insert a counter variable for loops that do not have

an induction variable.

Fig. 6(d) shows the myPow function after the transposition pass.

5.3 Checkpointing Pass
In the transposed code, the differential blocks can reference values

generated in the primal blocks. For example, the instruction at

Fig. 6(d), line 23 references result1, which is computed in the

primal loop (line 7-15). This reference is invalid because result1
is no longer available at line 23. In other words, the definition of

result1 does not dominate the use site at line 23. In this case we

need to obtain the value of result1 computed at the same loop

iteration of the use site.

The checkpointing step legalizes these invalid references created

during the transposition pass by making the primal values available
for the differential instructions. As discussed in Sec. 4.4, we can

either choose to cache or recompute such primal values. We do

this in four steps: (1) classify values as ‘recompute’ or ‘cache’ using

a heuristic and user input, (2) store cached values into a static data

structure, (3) clone the recomputation logic into differential blocks

and (4) extract the primal checkpointing and reverse-mode logic

into separate functions.

5.3.1 Classification. The SLANG.D compiler implements an ab-

stract policy system that is given a global view-point of the call-

graph and transposed contents of every function in scope. The

policy is then responsible for classifying all primal instructions into

’cache’ or ’recompute’ sets. We currently implement a greedy pol-

icy that recomputes whatever is possible except for function calls

where we incorporate user input through the attributes specified in

Sec. 4.4. Additionally, our compiler enforces caching by default for

loop state variables regardless of the policy to avoid worsening the

computational complexity of the resulting derivative code.

5.3.2 Caching. Instructions marked for caching are placed into a

regular variable (or a fixed size array for values generated inside

loops) in the primal block and loads from it just before the use site.

Typically, we coalesce all such variables into a generated struct
type that we refer to as the intermediate context, which we place on

the thread-local memory by default.

Our static allocation approach is in contrast to most implementa-

tions of checkpointing that dynamically allocate a tape (e.g., malloc)
and resize as necessary [Moses et al. 2021], which is extremely slow

on GPUs. Crucially, dynamic allocation is disallowed by shading lan-

guages since it forms opaque barriers in compiler optimization. Our

approach allows the downstream compiler to inline and optimize

intermediate values, and determine the exact amount of register/L1

space required by each thread. The scheduler can then adjust occu-

pancy of the hardware units to fit all memory requirements onto

fast, low-latency on-chip memory (i.e., the L1 cache).

5.3.3 Recomputation. Instructions marked for recomputation are

cloned into their appropriate position in the differential blocks. The

cloning process is repeated for all operands of the instruction until

all dependencies are available in the differential blocks. For operands

that are control flow dependent (such as 𝜙 nodes), the necessary

control flow and blocks are themselves cloned, except for loops. This
is because cloning loops this way can create nested loops, turning an

𝑂 (𝑁 ) loop into an𝑂 (𝑁 2) loop. This only occurs when recomputing

loop state values, and is the reason why these are always cached.

Fig. 6(e) shows the IR code for myPow after the checkpointing pass.
The pass detects that the derivative propagation logic uses result1
and i1 computed in the primal blocks. Since both of them are loop

state values, the classification step chooses the caching strategy to

make them available for the differential blocks.

To implement the caching strategy, the compiler generates the

myPow_Context type (line 1) to hold the values of result1 at each

iteration of the loop. Following our static allocation approach, we

allocated a static array of size MAX_ITERS to store the values of re-
sult1 at each iteration of the loop. Users can specify MAX_ITERS
by decorating the loops with a [MaxIters(n)] attribute. In fact,

the front-end will enforce that every loop in a differentiable func-

tion must either be marked as [ForceUnroll], to unroll the loop at

compile-time, or have a [MaxIters(n)]3 decoration that the com-

piler can use as the size for intermediate allocations. Since i1 is

used as loop counter, the compiler optimizes the storage by storing

only the last value instead of a full array of i1 at every iteration.

With the intermediate context type defined, the compiler inserts

writes to the context after each value is computed in the primal

blocks (line 14,15), and inserts reads from the context to replace the

illegal references at line 25,30. After the checkpointing pass, Fig. 6(e)

is a valid program that correctly propagates derivatives backwards.

5.3.4 Extraction. After the checkpointing pass, the differential in-

structions are no longer directly referencing any values computed

by the primal instructions: a primal value is either recomputed in

the differential blocks, or stored into a context. This allows the com-

piler to separate the checkpointed function into two functions: one

that contains the primal code and stores values into the interme-

diate context, and one that consumes the intermediate context to

3
Currently, if the loop exceeds the specified maximum at run-time, it can result in unde-

fined behavior due to out-of-bounds memory accesses, although often the downstream

compiler can detect and produce a warning on such cases.
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//////// LINE SKIP ////////

Instruction Computing Differential ValuesInstruction Computing Primal Values

Transposition Operation Inversion Operation

Checkpoint Load/Store Operation

Instruction Computing Both Invalid Use of an Primal Value (Out-of-Scope)

(c) Unzipped IR (d) Transposed IR (e) Checkpointed IR

Fig. 6. Pseudo IR of the myPow function after transposition and checkpointing passes. (c) The IR after unzipping pass, duplicate of Fig. 5(c). (d) IR after the
transposition pass. The instructions in differential blocks are reversed and transposed to accumulate propagated derivatives into their operands. Note the
inversion of the loop index & condition to enable the loop to run backwards, and the allocation of intermediate variables to hold the accumulated derivatives.
(e) IR after the checkpointing pass. An explicit context is created to hold the cached primal values, and context writes and reads are inserted into the program.

1 func myPow_makeCheckpoint:

2 param x : float

3 param n : int

4 param ctx : out myPow_Context

5 // ... (Fig. 6(e) Lines 5-15)

6

7 func myPow_bwd:

8 param x : inout DifferentialPair<float>

9 param n : int

10 param result_d : float

11 param ctx : myPow_Context

12 // ... (Fig. 6(e) Lines 23-36)

Listing 8. Pseudo IR for the myPow function after the extraction pass. The
checkpointed function is separated into two functions, one that computes
the primal values and store them into the intermediate context, and one
that uses the intermediate context to propagate derivative backwards.

propagate the derivatives backwards. This is done by extracting the

primal code into its own function.

Listing 8 shows the transformed code of myPow after the extraction
pass. The myPow_checkpointed function in Fig. 6(e) is split into two
functions: myPow_makeCheckpoint, which contains all the primal

code and the context writes to store the required primal values into

the ctx output parameter, and myPow_bwd, which contains all the

backward propagation code that reads the required primal values

from the input ctx parameter.

The separation of checkpointed function into makeCheckpoint
and bwd functions allows the caller of myPow to decide whether

or not to cache or recompute the intermediate context of myPow.
Consider a caller function mySqr that simply wraps a call to myPow:

float mySqr(float x) { return myPow(x, 2); }

Differentiating mySqr results in the following IR:

func mySqr_checkpointed:

param x : inout DifferentialPair<float>

param dOut : float

var myPowCtx : myPow_Context

myPow_makeCheckpoint(x.p, 2, out myPowCtx)

myPow_bwd(inout x, 2, dOut, myPowCtx)

return

In this code, the call to myPow_makeCheckpoint is a primal in-

struction that computes the primal value of myPowCtx, and the

call to myPow_bwd is a differential instruction that consumes my-
PowCtx. The compiler can continue to make a decision on whether

to cache or to recompute myPowCtx. As discussed in Sec. 4.4, we pro-

vide [PreferCheckpoint] and [PreferRecompute] decorations

to control whether calls to a function should be recomputed or

checkpointed. If myPow is marked as [PreferCheckpoint], then
the compiler will transitively store myPowCtx in the intermediate
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context of mySqr, resulting the final make-checkpoint and backward

propagation functions shown in Listing 9.

1 struct mySqr_Context:

2 myPowCtx : myPow_Context

3

4 func mySqr_makeCheckpoint:

5 param x : float

6 param dOut : float

7 param mySqrCtx : out mySqr_Context

8 rs = myPow_makeCheckpoint(x.p, 2, out

mySqrCtx.myPowCtx)

9 return rs

10

11 func mySqr_bwd:

12 param x : inout DifferentialPair<float>

13 param dOut : float

14 param mySqrCtx : mySqr_Context

15 myPow_bwd(x, 2, mySqrCtx.myPowCtx)

16 return

Listing 9. Pseudo IR for the mySqr function after the extraction pass, after
applying [PreferCheckpoint] strategy for the call to myPow. The interme-
diate context for myPow is transitively included in the intermediate context
of mySqr (mySqrCtx.myPowCtx).

5.4 Higher-Order Differentiation
By implementing automatic differentiation as static code transfor-

mation passes, the generated forward or backward propagation

functions are no different from other user defined functions in IR.

Therefore higher-order differentiation can be trivially supported by

applying the AD passes repeatedly until we run out of fwd_diff or
bwd_diff operations to process. For example, given the following

function that initiates a higher-order differentiation:

void f(inout DifferentialPair<float> x) {

bwd_diff(fwd_diff(mySqr))(x, 1.0);

}

After running the automatic differentiation passes once, the com-

piler will generate a function mySqr_fwd and f becomes:

void f(inout DifferentialPair<float> x) {

bwd_diff(mySqr_fwd)(x, 1.0);

}

Since there is still a bwd_diff operation remaining, the compiler

will run automatic differentiation one more time, and differentiate

the previously generated mySqr_fwd function:

void f(inout DifferentialPair<float> x) {

mySqr_fwd_bwd_Context ctx;

mySqr_fwd_makeCheckpoint(x.p, 1.0, out ctx);

mySqr_fwd_bwd(x, 1.0, ctx);

}

6 EVALUATION AND DISCUSSIONS
We evaluate whether SLANG.D achieves its goals (Sec. 3) using three
case studies (Sec. 6.1) and two microbenchmarks (Sec. 6.2), while

comparing to other systems that have been used for differentiable

rendering before (Dr. JIT [Jakob et al. 2022] and Enzyme [Moses and

Churavy 2020; Moses et al. 2021; Yu et al. 2022]). The case studies are

larger applications of our system to differentiate complex rendering

systems and implement involved differentiable rendering algorithms.

The microbenchmarks are designed to show the effectiveness of

writing derivative code in our system, showing that it achieves high-

performance by providing sufficient flexibility to the user. At the

time of writing, all SLANG.D extensions have been merged into the

main Slang development branch and become a core Slang language

feature. Performance numbers are evaluated using Slang release

v2023.4.0, and on an NVIDIA RTX 4090 unless otherwise stated.

Ease-of-Use. Additionally, Appendices A& B lays out reasons why

SLANG.D provides a better programming & debugging experience.

We show that the single-instructionmultiple-threads (SIMT) model is

a much better fit for the fine control-flow of shader programs, unlike

the N-dimensional-array (NDArray) model employed by alternative

systems intended for specifying neural networks. We also elaborate

on practical features like PyTorch interoperability (Appendix B.1),

and debugging through print() intrinsics (Appendix B.2).

6.1 Case Studies
In Sec. 6.1.1, we first show that SLANG.D allows us to differentiate

an entire path tracer and its material system in Falcor [Kallweit

et al. 2022], with minimal change in code. We show that SLANG.D
interacts well with the language features in Slang and scales well

with the number of material instances.

Next, in Sec. 6.1.2 we show that we can concisely implement an

advanced differentiable rendering algorithm named “Warped-Area

Reparameterization” [Bangaru et al. 2020; Loubet et al. 2019] for

addressing discontinuities in SLANG.D. The method is traditionally

difficult to implement, partly due to its need for nested differentia-

tion, which is not supported by existing systems.

Then, in Sec. 6.1.3, we use SLANG.D to replace the hand-written

CUDA kernels in two complex inverse rendering pipelines that

incorporate deferred-shading-based differentiable rasterizers [Has-

selgren et al. 2021; Munkberg et al. 2022], showing that our system

interacts well with external code. In all the case studies, our system

is able to retain the high performance of the primal code, matching

highly-optimized hand-written kernels.

6.1.1 Differentiating Falcor’s Path Tracer and Material System. The
Falcor real-time renderer, implemented in Slang and supports both

Direct3D and Vulkan, provides a library of path tracers, materials,

lights, samplers, and more by relying on Slang’s generics and in-

terfaces to abstract the complexity of each component. Building a

differentiable renderer on top of Falcor means that we can lever-

age the state-of-the-art real-time rendering technology to speedup

differentiable rendering, and vice versa.

We only need minimal modification to Falcor’s code to make

it differentiable (we address discontinuities Sec. 6.1.2). We make

Falcor’s material system differentiable by marking the material in-

terfaces and implementations with [Differentiable] and using

custom derivatives to provide optimized accumulation logic to prop-

agate derivatives backwards into the material parameter buffer. We

then invoke reverse-mode differentiation on the full renderer by
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(a) Target (b) Iter #0 (initial) (c) Iter #30 (d) Optimized

MSE 0.212 0.079 0.001

Fig. 7. Inverse-rendering result that optimizes thousands of material parameters simultaneously. This scene contains a 73 array of spheres and each of them
has a unique material. At each iteration, our differentiable path tracer implemented with SLANG.D renders the scene at a resolution of 768 × 432, using 32
samples per pixel with 5 bounces.
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Fig. 8. We compare running times per iteration between our SLANG.D dif-
ferentiable path tracer and Mitsuba3 on the material inverse-rendering
optimization example shown in Fig. 7. As the number of materials increases,
the running time of our implementation keeps constantly low because the
differentiated SLANG.D shaders are compiled only once at the beginning
of the optimization and can run very efficiently on the GPU. In constrast,
Mitsuba3 has to re-trace and re-generate kernels at each iteration, leading
to an increasing running time scaled with the number of materials.

calling bwd_diff() on the main rendering loop method. All modifi-

cations to the Falcor codebase are local, and most of the function

implementations are kept unchanged.

Overall, we added and modified only 200 lines of shader code in

Falcor’s material system and an additional 100 lines for accumulating

derivatives into global buffers, while reusing 3,000 lines of existing

material-related shader code. Most of the existing host-side code

(about 252,000 lines in C++) remains unmodified.

Our derivative code preserves the extreme high performance of

Falcor
4
, and interact well with the dynamic dispatch mechanism

in Slang. We use the scene in Fig. 7 to test our system. The scene,

depending on setting, contains one-to-three material types (a diffuse

BRDF, a microfacet material [Cook and Torrance 1982], and Disney

BSDF [Burley 2012, 2015]). Using the scene in Fig. 7, if we assign

only a single material instance (Disney BSDF) to all objects in the

scene, for an image resolution of 768×432 with 32 samples per pixel

and 5 bounces, Falcor’s primal rendering pass takes 58ms, while

our reverse-mode pass takes 176ms. If we assign different material

instances to all 343 objects in the scene (with all threematerial types),

Falcor’s primal rendering pass takes 68ms, while our reverse-mode

pass takes 201ms. This is close to optimal in the compute-bound

case: classical analysis [Griewank and Walther 2008] shows that

4
We build on the version from Clarberg et al. [2022], which is able to path trace dynamic

scenes with billions of triangles at 1080p in real-time.

the number of operations in reverse mode is bounded by 3 − 4× of

the primal pass. In practice, however, the memory traffic makes the

bound unrealiable and complicates performance analysis.

We also compare our system’s scalability with the number of ma-

terial instances against Mitsuba3 (implementation based on Dr. JIT)

using the same scene. We compare our system’s performance with

Mitsuba3’s path replay backpropagation (prb) integrator [Vicini
et al. 2021]. Fig. 8 shows the result. We note that it is not meaningful

to directly compare the running times between Falcor andMitsuba3

due to several implementation differences between the two systems

(different underlying platforms, different scene representations, etc.)

The more important conclusion is that Falcor’s performance re-

mains mostly constant as the number of material instances increases,

while Mitsuba3’s running time grows linearly with the material

instance count. This is because Dr. JIT needs to re-run the tracing

and kernel generation steps at each iteration since the kernel com-

putation logic is not known until the Python code that defines the

optimization is executed. Dr. JIT’s kernel caching does not help

here because the kernel needs to be generated
5
(running the Python

code that defines the computation) before the cache can be queried.

This step can take up to 60% of total iteration time as the number

of material instances increases. By contrast, with SLANG.D, Falcor
always compile and cache a static shader during initialization & this

shader works for any number of material instances.

The first half of Table 1 shows the total compilation time for the

shaders used in primal rendering and the backward propagation

pass. The compilation time is broken down into the time spent in the

SLANG.D compiler and in the downstream DXC compiler. The com-

pilation time increases from one material instance to 50 instances

because in the one-instance case, only one material type is present

in the shader, while the 50-instances case include code for all three

material types. The shaders SLANG.D generated for 50-instances and
343-instances are exactly the same.

6.1.2 Warped-Area Reparameterized Path Tracer. We show that

we can implement an advanced differentiable rendering algorithm

using SLANG.D. The warped-area reparameterization (WAR) algo-

rithm, proposed by Loubet et al. [2019] and extended by Bangaru

et al. [2020], aims to address discontinuities in differentaible ren-

dering. To differentiate an integral (commonly occurs in rendering)∫
𝐷
𝑓 (x, 𝜃 )dx with respect to some parameter 𝜃 , where 𝑓 can have

discontinuities (e.g., visibility), the method applies a specific change-

of-variable x = 𝑇 (u, 𝜃 ) to remove the discontinuities (see Appendix

5
This is reported in Dr. JIT’s log output as codegen_time.
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Table 1. Breakdown of our compilation time on the material inverse-
rendering example (Fig. 7) and the warped-area reparameterization (WAR)
example (Fig. 9). We separately measure the time for the SLANG.D compila-
tion stage and the downstream (DXC) compilation stage. For the material
example, we compare the compilation times when the scene contains differ-
ent number of materials. For theWAR example, we compare the compilation
times spent on the original undifferentiated shaders (primal) and automatic
differentiated shaders using the forward-mode (fwd), the reverse-mode with
the [PreferCheckpoint] strategy (rev, C), and the reverse-mode with the
[PreferRecompute] strategy (rev, R). Times are measured on a machine
with an AMD Ryzen 5950X CPU and 128GB DDR4 Memory.

Application Section SLANG.D DXC Total

Material (1 instance) 6.1.1 6.02 s 2.31 s 8.33 s

Material (50 instances) 6.1.1 8.23 s 4.55 s 12.78 s

Material (343 instances) 6.1.1 8.28 s 4.58 s 12.86 s

WAR path tracer (primal) 6.1.2 2.07 s 0.52 s 2.59 s

WAR path tracer (fwd) 6.1.2 2.29 s 2.10 s 4.39 s

WAR path tracer (rev, C) 6.1.2 3.61 s 9.81 s 13.42 s

WAR path tracer (rev, R) 6.1.2 3.45 s 8.92 s 12.37 s

B of Bangaru et al. [2020] for how 𝑇 is defined):

𝜕𝜃

∫
𝐷

𝑓 (x, 𝜃 )dx =

∫
𝐷

𝜕𝜃 (𝑓 (𝑇 (u, 𝜃 )) (det (𝜕u𝑇 (u, 𝜃 )))) du.

The equation above now has nested differentiation: we need to

first differentiate the change of variable 𝑇 , then differentiate the

reparameterized integrand with scene parameter 𝜃 . Pseudo-code

demonstrating this process is provided in Listing 10, with the com-

plexity hidden behind the reparameterize() function. We are able

to reuse 5,000 lines of existing shader code to build the WAR path

tracer (we calculate the line numbers by summing up all falcor

shader modules that are actually used in the example). The core

WAR algorithm is implemented in 600 lines of SLANG.D code, and
an additional 100 lines of custom derivative code is needed for accu-

mulating derivatives into global buffers.

// Standard main loop

while (!path.is_terminated) {

Ray ray =

sampleNextRay(...);

Intersection is =

intersect(ray);

//...

path.radiance +=

shade(ray, is);

//...

}

// Reparameterized main loop

while (!path.is_terminated) {

Ray ray =

sampleNextRay(...);

// Apply WAR

ray = reparameterize(ray);

Intersection is =

intersect(ray);

//...

path.radiance +=

shade(ray, is);

//...

}

Listing 10. Reparameterizing an existing path tracer with WAR.

reparameterize() has a particularly complex implementation

involving (i) tracing several additional rays (called auxiliary rays), (ii)
computing the weighted mean of the projection of each intersection

(called the warp), and (iii) computing the Jacobian determinant of

this warp. Because of this complexity, existing systems such as Mit-

suba3 and Redner [Li 2018], have chosen to implement it entirely

by hand in the reverse-mode passes, making the implementation

difficult to extend, modify and debug.

Since SLANG.D supports nested higher-order differentiation, our

implementation comprises only the primal definition of the warp
function, and uses the fwd_diff(warp) operator in the reparame-
terize() function to compute the divergence terms. The reparam-
eterize() function is then automatically differentiated, effectively

differentiating the warp function twice, eliminating the need for

handwritten derivatives (Appendix H shows snippets of higher-

order differentiation in action).

We found that WAR is also simpler to implement
6
in SLANG.D

because we can use fwd_diff for debugging one parameter at a

time, before switching to bwd_diff for optimizations, thus building

confidence in the correctness of derivatives since both derivative

functions are generated from the same primal code. On top of this,

the reverse-mode code generated by SLANG.D performs efficiently,

as shown in Table 2, which uses Mitsuba3’s direct_reparam inte-

grator
7
as a reference.

We also validate the generated differentiable renderer against

finite differences and Mitsuba3’s implementation, see Fig. 9.

Discussion. Many optimization passes of our compiler work to-

gether to ensure that the differentiated code is efficient. The SSA

data-flow analysis and our checkpointing policy determine that the

loop tracing auxiliary rays does not have to store any state, allowing

the reverse-mode loop to be very efficient. Further, Slang’s arith-

metic optimization and dead-code elimination passes automatically

determine that reparameterize() has no effect in the forward pass,
and eliminate the call to avoid tracing unnecessary rays.

Storing excessive state during backward propagation can lead to

poor performance due to increased register pressure.We can achieve

a significant speedup by marking everything within the main path-

tracing loop as ‘recompute’, effectively causing SLANG.D to only

store the minimum set of loop state variables and intersection re-

sults (124 bytes per ray, per bounce), and recomputing everything

else during the reverse pass. Table 2 shows the running time dif-

ferences when most of the intermediate terms are being stored

(SLANG.D(C)) or recomputed (SLANG.D(R)). We also provided the

runtime performance of Mitsuba3 as a reference.

6.1.3 Replacing Hand-Coded CUDA Kernels in Differentiable Ras-
terization Pipelines. Many differentiable rendering pipelines need

to interact with machine learning frameworks such as PyTorch. For

example, some methods rely on differentiable meshing procedures

to convert scene representations [Hasselgren et al. 2022], and some

methods need to process the rendered images with deep learning

architectures [Liu et al. 2018]. However, PyTorch is not suitable

for implementing high-performance rendering code. As a result,

practitioners usually implement hand-coded CUDA kernels with

manually-derived derivatives and wrap them as PyTorch operators.

Here, we show that our system allows us to replace those hand-

coded CUDA kernels and derivatives using SLANG.D code, and our

compiler generates code that is equally efficient to highly-optimized

6
Code available in the supplementary as "ReparameterizeRay.slang"

7
We stress that Mitsuba3 and Falcor use different libraries and APIs. While we took

precautions to match our implementation with Mitsuba3’s, these numbers should be

treated as a reference point and not as an exhaustive comparison.
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(a) Primal image (b) SLANG.D

(c) Mitsuba3 (d) Finite differences

Fig. 9. Scene derivative with respect to the bunny’s translation in the y-axis.
(a) Primal image rendered with Falcor’s path tracer written in Slang. (b)
We extend the path tracer by implementing the warped-area reparameter-
ization algorithm with SLANG.D and generate the derivative image using
the forward-mode automatic differentiation. Our derivative visualization
matches references generated by (c) Mitsuba3 and (d) finite differences.

Table 2. Performance measurements for the warped-area reparameteriza-
tion results in Fig. 9. The primal and derivative images have a resolution
of 10242, rendered with 1024 samples per pixel. We measure the wall-clock
time used for running primal rendering, the forward-mode, and the reverse-
mode automatic differentiation, respectively. Our implementation using
SLANG.D with the [PreferRecompute] strategy, i.e., SLANG.D(R), is more
efficient than the reference in Mitsuba3 and the SLANG.D(C) variant using
the [PreferCheckpoint] strategy.

Mitsuba3 SLANG.D(C) SLANG.D(R)

Primal 1.16 s 0.54 s 0.54 s

Forward-mode 11.04 s 2.82 s 2.82 s

Reverse-mode 23.11 s 79.85 s 9.33 s

hand-written derivative code. In Appendix A, we further discuss

our PyTorch interoperation that enables the drop-in replacement.

We first adapt the nvdiffmodeling inverse rendering system,

that employs a deferred shading based differentiable rasterizer [Laine

et al. 2020] with handwritten CUDA kernels
8
for differentiable

physically-based shading. We rewrite the handwritten CUDA ker-

nels using both SLANG.D and EnzymeCUDA [Moses et al. 2021].

Table 3 compares our performancewith PyTorch,manually-written

CUDAderivatives, and EnzymeCUDA.Our system and EnzymeCUDA

8
Code is available here: https://github.com/NVlabs/nvdiffmodeling

Table 3. Performance measurements for the differentiable physically-based
shading kernel from nvdiffmodeling [Hasselgren et al. 2021], measured on
a launch size of [8,1024,1024] on a V100 GPU. The reported numbers are
averages over 1000 iterations.

PyTorch Cuda EnzymeCuda SLANG.D

Primal pass 15.10 ms 1.07 ms 1.09 ms 1.18 ms

Primal+Bwd pass 55.64 ms 6.40 ms 6.83 ms 6.18 ms

are equally efficient to the manually-written CUDA code, while be-

ing much faster than PyTorch due to less memory traffic.

Next, we ported all custom CUDA kernels
9
from nvdiffrec, a

larger inverse rendering pipeline for joint shape, material, and light-

ing optimization [Munkberg et al. 2022].

The kernels perform loss computation (log-sRGB mapping and

warp-wide reduction), tangent space normal mapping, vertex trans-

form (multiplication of a vertex array with a batch of 4×4 matri-

ces), and cube map pre-filtering (for the split-sum shading model).

SLANG.D achieves the same performance as the handwritten CUDA

code (Table 4), and reduces the number of lines of code by approx-

imately 3×. We did not succeed in compiling these kernels with

EnzymeCuda, due to the lack of support for warp-wide intrinsics.

Table 4. Performance measurements for all custom CUDA kernels from
nvdiffrec [Munkberg et al. 2022]. We measure the time of the primal
and backward pass on a launch size of [8,1024,1024] on an A6000 GPU.
The reported numbers are averages over 1000 iterations. The cube map
pre-integration kernels do not have equivalent PyTorch versions, and were
measured on cube maps of size [6,64,64].

Kernel PyTorch Cuda SLANG.D

Loss 18.26 ms 2.46 ms 2.50 ms

Transform 6.19 ms 1.93 ms 1.92 ms

Normal 46.56 ms 6.04 ms 6.04 ms

Cubemap diffuse - 86.38 ms 86.16 ms

Cubemap specular - 21.99 ms 22.01 ms

6.2 Micro-Benchmarks
We design micro-benchmarks to test two of our core features: cus-

tom reverse-mode accumulation (Sec. 4.3) and checkpointing primi-

tives (Secs. 4.4 and 5.3). We show that they achieve the desired high

performance by providing sufficient flexibility to the programmer.

The flexibility allows our system to produce code that is significantly

faster than prior systems, and also differentiate code that was not

allowed previously.

6.2.1 Long Loops: Effect of Checkpointing. We test the effect of

checkpointing on performance using the following loop that is

partially unrolled:

9
Code is available here: https://github.com/NVlabs/nvdiffrec
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// This is a Taylor series approximation of sin(x)

float sum = 0;

float term = x;

for (int i = 1; i < N; i+=UNROLL_AMT)

[ForceUnroll]

for (int j = i; j < i + UNROLL_AMT; j++) {

sum += term;

term *= -x * x * (1.0 / (2 * j) * (2 * j + 1));

}

return sum;

The reverse-mode loop must remember/recompute the value of

term at each iteration.

Since the inner loop is unrolled, only the outer loop’s state needs

to be checkpointed and the number of outer loop iterations can

be controlled by changing UNROLL_AMT, which we treat as a shader

specialization parameter. The unrolled instructions of the inner loop

get recomputed at each iteration, adding redundant computation,

but reducing the number of reads and writes that could potentially

spill to global memory.

By changing the unroll amount, we can control the tradeoff be-

tween memory accesses and computations. Fig. 10 shows the effect.

By picking an optimal unrolling factor (of 32), we see an order of

magnitude speedup over checkpointing every iteration. Similar re-

sult is likely to show up in more complex loops such as the ones in

differentiable renderers.

We implemented the same loop in Dr. JIT and EnzymeCUDA.

Table 5 shows the performance comparison. Unfortunately, we ran

into issues in both prior systems with this loop benchmark. Dr.

JIT cannot differentiate recorded loops where the derivatives are

propagating through a loop state variable that is being updated

in each iteration (sum and term). While EnzymeCUDA is able to

compile the loop, the generated derivative kernel crashes on larger

iteration counts. A close inspection revealed that the crashes occurs

when the iteration count exceeds the threshold upon which LLVM

no longer unrolls the loop, suggesting potential issues related to

memory allocations for the checkpointing state.

In contrast, SLANG.D’s static-allocation checkpointing unloads

the memory management to the downstream compiler, enabling

supports for loops without the need for unrolling. The resulting

code scales well to both large and small workloads. Since this kind

of loop is not supported by Dr. JIT, we only include the performance

numbers for a fully unrolled version of the program that assumed

a statically-known loop count. The fully unrolled version is still

slightly slower than the unrolling version written in SLANG.D. We

attribute this to Dr. JIT launching additional kernels for deriva-

tive aggregation, and SLANG.D handles derivative computation and

aggregation within the same kernel.

6.2.2 Shapes-2D: Derivative Aggregation & Dynamic Dispatch. Our
second micro-benchmark demonstrates the performance impact of

different strategies to accumulate derivatives into input parameters

(Sec. 4.3), showing the value of giving user the control of this process.

The Shapes-2D benchmark is a simple kernel that renders many 2D

shapes using signed distance fields. The kernel is launched with one

10
We used #pragma unroll for unrolling loops, but it appears that LLVM does not

completely unroll the loop, causing Enzyme to crash on higher iteration counts

Table 5. Long Loops Micro-Benchmark. Performance comparison of
reverse-mode AD on the sine-approximation loop for 109 elements, mea-
sured on an RTX 4090. We has to use statically known iteration counts for
both Dr.JIT and Enzyme since the former cannot differentiate loop state,
and the latter crashed when we used a dynamic iteration count, due to
its heap-based checkpointing approach. On static loop counts, SLANG.D is
faster than Dr.JIT because our method can handle gradient computation
and aggregation within the same kernel, while Dr.JIT launches additional
kernels for the latter. We also show how SLANG.D’s dynamic versions com-
pare here, with partial-16 unrolling performing the best. We conclude that
SLANG.D is robust, scales proportional to the workload, and specializes well
with statically known constants.

Iteration Count→ 16 32 64 128

Static Iter Count

Dr.JIT (unroll) 18.8ms 18.8ms 26.4ms 52.8ms

EnzymeCUDA (unroll
10
) 39.7ms 74.3ms CRASH CRASH

EnzymeCUDA (static) 137.2ms 280.8ms CRASH CRASH
SLANG.D (unroll) 7.2ms 7.6ms 9.9ms 22.2ms

Dynamic Iter Count

SLANG.D (partial-16) 69.2ms 72.2ms 81.5ms 137.0ms

SLANG.D (no-unroll) 3859.1ms 4117.8ms 4376.5ms 4956.1ms

1 2 4 8 16 32 64
Partial Unroll Factor

0

1000

2000

3000

4000

5000

R
u

nt
im

e
(m

s)

Fig. 10. The runtimes of the reverse-mode kernel generated by SLANG.D for
the long-loop example, running the loop for 128 iterations on 10

9 elements
of x. This plot illustrates the effect of checkpoint size, and consequently the
register/memory pressure on the execution times of the simple long-loop
benchmark. Checkpoint size is changed through partially unrolling the loop
every𝑈 = 1, 2, 4, 8, 16, 32, and 64 iterations. Since the outer loop only runs
𝑁
𝑈

times, the checkpoint size also decreases proportionally. We observe that
in this benchmark example, the execution time sharply decreases with the
checkpoint size and hits diminishing returns at around𝑈 = 32.

thread per pixel, where each thread loops over a list of two different

types of shapes (squares and circles), accumulating a total color

for the pixel through additive blending. For simplicity, we did not

implement any culling algorithms and the program has an 𝑂 (𝑁𝑀)
complexity where 𝑁 is the number of pixels and𝑀 is the number

of shapes. We measure the runtime performance of a reverse-mode

kernel that computes the derivative of output color with regard

to all the input shape parameters (position, size and color). This

benchmark also tests the performance of differentiation through

dynamically dispatched methods, by defining an IShape interface
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and provide the signed distance field function for different shapes

as separate types that implement this interface.

Since all pixels in the primal program reads from the same set of

shape parameters at each loop iteration, the reverse-mode kernel can

suffer from severe write contention when accumulating the deriva-

tives. We compare the performance of three different derivative

aggregation approaches: Naive atomic add, which simply performs

a global atomicAdd whenever the derivative is propagated into a

shape parameter and thus has the most contention, HashGrid-k

which reduces contention by writing into a gradient buffer that is k

times larger, randomly hashing the pixel ID to pick an offset into

the buffer. This buffer is then manually aggregated in a follow-up

kernel. Finally, since custom derivative functions can be any shader

code, the WaveSum strategy uses warp-reduce intrinsics (e.g., Wave-
ActiveSum in HLSL) to perform a single write per warp. WaveSum

vastly reduces contention, but can only be applied if all threads in

the warp are accumulating gradients of the same parameter. The

assumption is true in this benchmark but not so in general programs

and therefore cannot be assumed in a one-size-fits-all solution.

Our results in Fig. 11 show that Naive aggregation is an order of

magnitude slower than WaveSum, highlighting the importance of

control over aggregation methods to combat contention. Fig. 11 also

compares SLANG.D’s performance using WaveSum strategy against

Dr. JIT’s fixed strategy of launching an additional atomic-scatter-

add kernel to handle the aggregation. Because the SLANG.D code

is able to take advantage of the special execution pattern in this

benchmark, we are able to achieve an over 6x speedup over Dr. JIT.

7 LIMITATIONS
Across-kernel differentiation. Being derived from the Slang shad-

ing language, SLANG.D inherits its limitations in terms of application

scope and expressiveness. SLANG.D is intended for authoring dif-

ferentiable shaders or compute kernels, and cannot differentiate

programs that span multiple render passes or kernel launches. By

contrast, systems like Dr. JIT and PyTorch that can generate mul-

tiple kernel launches from a single user function. This is because

shader invocation is external to shader code, and is defined by the

host code, driver and API. SLANG.D can be used to differentiate each

stage, and write differentiable versions of the fixed-function units

(e.g., rasterization), but the host code is responsible for invoking

them in the right order & allocating the intermediate buffers.

Sub-optimal handling of local arrays. The SLANG.D compiler’s

implementation may currently generate suboptimal derivative ac-

cumulation code when the user code is updating a local array itera-

tively in a loop. However, this case is rare since large thread-local

arrays are known to impose high register pressure and are gener-

ally avoided (neither the Falcor nor the nvdiffrec codebase use

such arrays). We consider this an implementation limitation, rather

than a fundamental one, that can be fixed if necessary by applying

existing approaches (e.g., Dex [Paszke et al. 2021]).

8 CONCLUSION
We present SLANG.D, an extension that turns Slang into a fully dif-

ferentiable shading language. Shading languages provide a natural

imperative, per-thread programming model that fits well with the
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Fig. 11. Shapes-2D Dynamic Dispatch Micro-Benchmark (Top) Perfor-
mance comparison of the primal and backward derivative propagation
kernels for the Shapes-2D benchmark. The performance of the SLANG.D
kernel that uses the fastest custom aggregation method (WaveSum) is com-
pared against the equivalent code written in Dr. JIT. Both compilers were
set up to target CUDA. The 4096 × 4096 image rendered by primal code is
shown in the top-left corner. Two types of shapes are implemented: circles
and rectangles. Each circle has 6 parameters (2 for position, 1 for radius,
and 3 for color), and each rectangle has 7 parameters (4 for position and
size and 3 for color.) The SLANG.D kernel is faster, and has lower overhead
over the primal pass. This gap can likely be attributed to Dr. JIT’s use of
function pointers for dynamic dispatch (instead of control flow), and a fixed
derivative aggregation method (atomic-scatter-add). (Bottom) Ablation
study of different aggregation methods. The order of magnitude difference
between the best (WaveSum) and worst (Naive) approach highlights the
effect of aggregation methods on performance.

rendering logic. The integration of automatic differentiation (AD)

into a shading language allows programmers to efficiently develop

new differentiable renderers within their preferred programming

model. Additionally, they can seamlessly transform an existing ren-

derer targeting hardware graphics APIs into a differentiable one, by

leveraging hundreds of thousands of lines of pre-existing shader

and system code.

SLANG.D demonstrates that by treating AD as a first-class lan-

guage feature, and by conducting a holistic co-design of language

features and compiler backend, we can achieve a substantial ad-

vancement in expressiveness, performance and usability of an AD

system. We believe that SLANG.D can serve as the bridge to connect

machine learning and traditional rendering by lowering the effort

required to integrate powerful rendering systems into a machine

learning workflow. We hope that the method we have adopted to

create SLANG.D can provide useful insights for incorporating AD to

languages and tools in other domains.
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A CODE STYLE COMPARISON: SIMT MODEL VS.
NDARRAY MODEL

We use the snippet from the WAR algorithm in Fig. 12 to argue that

the SIMT programming model is a better fit for differentiable render-

ing, compared the NDArray model employed by PyTorch and Dr.

JIT. The NDArray model was originally proposed to express inter-
dependent array operations (also referred to as "bulk-synchronous"

operations) such as large matrix multiplications that cannot be con-

cisely expressed in the SIMT style. However, this convenience comes

at the expense of losing divergent branching for different elements,

which must be now expressed through divergent data-flow with

masks and select operators. Loops also need to be expressed with

side-band constructs that explicitly declares loop state. As a result,

authoring a differentiable renderer in the NDArray programming

model is not as straightforward.

Renderers overwhelmingly use independent per-element opera-

tions with intricate control-flow and rarely need to synchronize their

computation across the full image/data. We therefore argue, using

Fig. 12 as an example, that the SIMT style is a better fit for writing

differentiable renderers, allowing natural expression of control-flow

without working with masks or side-band constructs. Further, the

SIMT provides fine-grained synchronization features to exchange

or reduce data at the thread-group level, which is more valuable for

differentiable renderers than global synchronization over all threads.

As an example: Sec. 6.2 takes advantage of SIMT features by using

WaveActiveSum to speed up gradient aggregation without resorting

to a separate kernel launch.

B SLANG.D EASE-OF-USE FEATURES

B.1 PyTorch Interoperation using slangpy
Many applications need to interact with deep learning systems. We

created the slangpy python package that can create a PyTorch-

compatible module from SLANG.D code with only a few lines:

import slangpy

shader = slangpy.loadModule(

'mydiffshader.slang', # Module name

defines={'MY_PARAM': 2}) # Specialization parameters

output = shader.myfunc(myTorchTensor)

Where myfunc is a SLANG.D function defined in the mydiff-
shader file. This Python package uses the SLANG.D compiler to emit

both CUDA and C++ binding code from a Slang module, and feeds

the generated source into PyTorch’s plugin system. To interop with

PyTorch’s tensor objects, SLANG.D provides a TensorView type that
works directly with a PyTorch tensor’s memory buffer, independent

of the layout. This is in contrast to memory-managed AD systems

like Dr. JIT that require the tensors to be formatted into a structure
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// Every value is an array, including the index

idx = UInt32(0)

// Must explicitly define loop condition and state

// in a side-band structure.

loop = Loop("myloop", idx < 8,

lambda: idx, wt, wtDir)

while (loop):

auxRay = sampleAuxRay(ray);

auxRayF = reflect(ray, auxRay);

auxRay = select(idx % 2 == 0, auxRay, auxRayF)

isect = traceRay(auxRay)

// 'if' conditions emulated using masks

mask = dr.and(isect.isValid(), mask)

// Compute wt_i, wtDir_i ...

wt = wt + select(mask, wt_i, 0)

wtDir = wtDir + select(mask, wtDir_i, 0)

idx = idx + 1

//...

Embedded NDArray Programming Model (PyTorch, Dr. JIT)

// Loop state is obtained by data-flow analysis,

// therefore no additional annotations required.

for (uint idx = 0; idx < 8; idx++) {

// Values are per-thread, not nd-array

Ray auxRay = sampleAuxRay(ray);

// Since all values are per-thread,

// we can use if conditions and breaks

if (idx % 2 == 0)

auxRay = reflect(ray, auxRay);

Intersection isect = traceRay(auxRay);

if (!isect.isValid()) break;

// Compute wt_i, wtDir_i ...

wt += wt_i;

wtDir += wtDir_i;

}

//...

Shader SIMT Programming Model (SLANG.D)

Fig. 12. Coding Style Comparison We compare code style and quality by showing an example snippet from the WAR algorithm implemented in the NDArray
programming style (left) and in the SIMT style (right). We argue that the NDArray model was originally proposed to express inter-dependent array operations
such as large matrix multiplications that cannot be concisely expressed in the SIMT style. This comes at the expense of per-element control flow, which must
be expressed using masks. However, differentiable renderers overwhelmingly use independent computation, containing much more intricate control-flow and
rarely ever need to synchronize across threads. We show through this snippet that the SIMT style is a better fit for writing differentiable renderers, avoiding
masks, explicit loop state, and more.

of arrays (SoA) format. Differentiable renderers written in SLANG.D
can use its custom derivative primitives (Sec. 4.3) to load/store data

in any layout and avoid the overhead of data marshalling.

slangpy enabled us to create both micro-benchmarks in Sec. 6.2

within an hour. We also used slangpy to port the kernels in nvd-

iffmodeling and nvdiffrec discussed in Sec. 6.1.3.

B.2 Debugging Differentiable Shaders with Custom
Derivatives

Many GPU-based languages offer some way to debug code through

some per-thread version of C’s printf. Slang also offers a print()
function on targets that support it (e.g., HLSL, CUDA). Being able to

debug code is especially important when writing large scale render-

ers with many components, and the same is true for differentiable

ones. We used SLANG.D’s support for arbitrary custom derivatives

to our advantage by using them to print derivatives.

Here is a snippet demonstrating derivative print functions:

[ForwardDerivative(fwd_myPrint)]

void myPrint(String msg, float val) {

print(msg, val);

}

void fwd_myPrint(

String msg,

DifferentialPair<float> val) {

print(msg, val.d);

}

Calling myPrint("%f", x) will print the value of x in the primal

function and the value of x.d in the derivative propagation function.
The derivative printing method fwd_myPrint can be provided

another custom gradient to debug higher-order derivatives of val
which was pivotal to our debugging process for the reparameterized

differentiable renderer in Sec. 6.1.2.

B.3 Inverted Custom Derivative Attributes for Integration
with Existing Codebases

Integrating a differentiable renderer into a traditional codebase

requires sharing common code that needs user-defined derivatives.

However our [ForwardDerivative] and [BackwardDerivative]
attributes are annotated on the primal functions (referencing the

derivatives). This pattern of annotation would require modifying

large portions of the code shared between the differentiable and

traditional parts of the codebase.

Instead, we found it cleaner to provide a second set of attributes:

[ForwardDerivativeOf] and [BackwardDerivativeOf], which
establish the same relationship — only by annotating the derivative,

rather than primal function.

We understand that this could be seen as an anti-pattern. (via

non-obvious overrides that can come from a different file entirely) In

practice, the benefits of the separation of concerns outweighed the

downsides, which we mitigated by augmenting Slang’s Intellisense

extension to highlight such overridden derivatives.

ACM Trans. Graph., Vol. 42, No. 6, Article 264. Publication date: December 2023.



SLANG.D: Fast, Modular and Differentiable Shader Programming • 264:23

C ADDITIONAL BACKGROUND

C.1 Automatic Differentiation
We review some common terminology in automatic differentiation

and refer the readers to Griewank and Walther [2008] for a compre-

hensive treatment of automatic differentiation techniques.

Automatic differentiation applies the chain rule to propagate

derivatives in programs. Crucially, it propagates derivatives while

creating necessary intermediate variables, so that the computation

time remains efficient. The two popular differentiation methods,

forward-mode and reverse-mode differentiation correspond to a func-

tion’s derivative and its adjoint. Computationally, they differ in the

way they traverse the program and cache intermediate variables.

Forward-mode differentiation. Given a function y = 𝑓 (x) : R𝑛 →
R𝑚 , forward-mode differentiation produces a total derivative func-
tion dy = 𝐷𝑓 (x, dx) : R𝑛 × R𝑛 → R𝑚 , such that y + dy is the

closest linear approximation to 𝑓 (x + dx). Forward mode associates

each scalar variable with a scalar differential, and propagates the

differential dx from inputs to outputs using standard differentiation

rules. The time and space complexity of the total derivative 𝐷𝑓 are

the same as the primal function 𝑓 .

Reverse-mode differentiation. Differential operators like the gra-
dient are more naturally expressed as the transpose (aka. adjoint)

of the total derivative. (∇x 𝑓 = 𝐷𝑇 𝑓 (x, 1)) Reverse mode instead

computes a function dx = 𝐷𝑇 𝑓 (x, dy) : R𝑛 × R𝑚 → R𝑛 , where this
adjoint derivative 𝐷𝑇 𝑓 now takes the differentials of the output dy
and emits the differentials of the input dx. Computationally, this

requires running the program first forwards and then backwards (the
transpose), reversing all control flow in the process. Reverse mode

preserves the time complexity of the primal function, but requires

as much space as the original function took time—which may be a

very large increase in space usage.

Checkpointing. A commonly used remedy for the reverse-mode

space blowup is checkpointing [Volin and Ostrovskii 1985]: instead

of remembering all intermediate values, we can recompute some of

the forward computation results on-the-fly as we run the function

backwards. Checkpointing trades between memory and time by de-

ciding how much of the forward computation should be memoized.

C.2 Design Space of Automatic Differentiation Systems
We mainly focus on systems that support massive parallelism and

omit the more traditional serial systems (e.g., [Andersson et al. 2019;

Bell 2003; Griewank et al. 1996; Hascoet and Pascual 2013; Hogan

2014; Pearlmutter and Siskind 2008; Utke et al. 2008]) and the re-

cent theoretical endeavors of the semantics (e.g., [Elliott 2018, 2009;

Krawiec et al. 2022; Sherman et al. 2021]).

Automatic differentiation systems can be broadly seen as compil-

ers/interpreters that transform/interpret code into its derivatives.

Specifically, they act as domain-specific languages (DSLs) that special-
ize at computing derivatives. Imagine putatively adding automatic

differentiation to an existing general-purpose language. Doing so

requires visible extensions to allow user direction of which code to

differentiate. Furthermore, automatic differentiation subtly changes

the semantics of a language, necessitating decisions about how

differentiation interacts with existing langauge features.

Front-end strategy. One way to classify DSLs is loosely, based

on how they design their frontends — i.e., the syntax rather than

execution model. A DSL can be stand-alone with its own syntax, or

it can be embedded in a host language. Shallow-embeddings avoid
materializing an intermediate representation (IR). Many forward-

mode automatic differentiation systems are implemented this way,

by eagerly computing differentials along with the primal values

(e.g., via operator overloading). By contrast, Deep-embeddings use
host-language constructs to construct and materialize an IR of the

DSL program. For example, PyTorch [Paszke et al. 2019] embeds

itself in Python as classes and functions, and obtains an IR – the

computational graph – by tracing through these classes/functions.

Most automatic differentiation systems are either stand-alone

DSLs (e.g., Enzyme [Moses and Churavy 2020; Moses et al. 2021,

2022], Dex [Paszke et al. 2021]) or deeply-embedded in a host lan-

guage (e.g., PyTorch, JAX [Bradbury et al. 2018], Dr. JIT [Jakob et al.

2022], DiffTaichi [Hu et al. 2020]). Shallow embedding is easy to

implement, but implementers quickly find out that they will need a

non-trivial data structure to manipulate derivative computation. For

example, many classical operator-overloading based automatic dif-

ferentiation systems (e.g., CppAD [Bell 2003] or ADOL-C [Griewank

et al. 1996]) maintain a tape of instructions as their IR.

A challenge for deep-embedding DSL is to capture complex pro-

gram structures, such as loops and branches [Brahmakshatriya and

Amarasinghe 2021]. These systems often have to invent new syntax

for describing loops and branches, as the control flows in the host

language has different semantics than the control flows in the DSL.

Our system belongs to the class of stand-alone DSLs. Even though

we build on an existing language (Slang), wemodify Slang’s compiler

to compile our new language. This allows us to differentiate shader

code with minimal changes. The challenge is that our system now

needs to interact with all language features, including control flows,

generics, and polymorphism, in Slang.

Notably, Dressi-AD [Takimoto et al. 2022], while building their

system on top of GLSL, focuses on deferred shading with rasteriza-

tion and does not describe the handling of language features such

as the ones mentioned above.

Staged execution. A common strategy for compiling embedded

DSLs is to make use of staged execution, aka. partial evaluation, aka.
specialization [Jørring and Scherlis 1986; Taha 2004]. Given a func-

tion f(x, y) and a specific value x0, partial evaluation produces

a (potentially optimized) function g(y) such that g(y)=f(x0, y).
Compilers can be described as specialization of an interpreter in-
terp(prog, input) to a particular program prog0 – a two-stage ex-
ecution. However, embedded DSLs often make use of non-standard

or additional stages.

For example, many automatic differentiation sytems rely on trac-
ing, where (stage 1) a host-program is run to produce a DSL IR,

and only later executed (stage 2). Describing the behavior of a pro-

gram written in such a system requires clarifying whether or not

a variable is specialized (i.e., evaluated) during tracing (a stage 1

variable) or as part of the traced program (a stage 2 variable). Simi-

larly, if the DSL/tracing system seeks to capture control flow (loops,

ACM Trans. Graph., Vol. 42, No. 6, Article 264. Publication date: December 2023.



264:24 • Sai Praveen Bangaru, Lifan Wu, Tzu-Mao Li, Jacob Munkberg, Gilbert Bernstein, Jonathan Ragan-Kelley, Frédo Durand, Aaron Lefohn, and Yong He

if-statements, dynamic dispatch), then new (stage 2) versions of host

(stage 1) language constructs have to be added. As a result, users

of tracing-based automatic differentiation systems must learn to

perform a limited form of meta-programming when they reason

about such distinctions. We avoid this approach in part because it

is more complicated for programmers to reason about.

When the tracing of a host metaprogram executes through loops

and branches in the host language it produces a specialized, unrolled

compute graph, i.e., the DSL program. This DSL program then must

be evaluated. While the “forward evaluation” of the DSL program

and the host program are often interleaved (as in the case of default

PyTorch and Dr. JIT), they need not be. For example, the AOT auto-

grad
11

module in PyTorch allows one to generate the DSL program

“ahead-of-time” and execute it separtely from the host program.

Thus, even in the context of tracing, static compilation vs. dy-

namic interpretation is just a question of staging. It is even possible

to support multiple stages. For example, CUDA programs are often

“compiled” statically to PTX virtual assembly, and then “JIT com-

piled” to the binary code of the target architecture by the CUDA

driver. Finally, they are executed.

Specialization for the purposes of optimization is hence not ex-

clusive to tracing. Staging [He et al. 2018; Pérard-Gayot et al. 2019;

Seitz Jr et al. 2019; Zheng et al. 2022] allows us to specialize a shader

program to a specific type or values even before any tracing hap-

pens, by statically compiling an abstract program supplied with a

concrete type or input. Tracing is also not limited to low-cost com-

piler optimization, as the execution of the partial evaluated function

can be separated from the host code.

In our setting, since we directly build on the Slang language and

compiler, we opt to not doing tracing. However, thanks to Slang’s

generics language feature, our system still allows specialization to a

known type or value. For example, we can specialize a “Uber BRDF”

and its derivatives into one of its component, say, a diffuse BRDF.

Intermediate representation. The central decision of a language is

how it chooses to represent programs. For example, one of the sim-

plest representations of a program is a sequential tape that records
the instructions and their arguments (e.g., sin(x) or a + b).
One major axis of variation in automatic differentiation IRs is

whether or not control flow is captured and represented. One op-

tion is to simply capture loops and branches (if-statements) directly.

Another is to omit control flow from the IR altogether (e.g., when

the IR is merely a tape). Many tracing systems that started by omit-

ting control flow from IRs often have to retroactively add it back in

(e.g., tf.while_loop and dr.cuda.Loop). The client programmers

must now learn to distinguish between host-language vs. DSL-level

control flow constructs (one of which executes during the metapro-

gramming stage and the other during the DSL execution stage).

Another major axis of variation is how side-effects are handled. In

particular, there has been much concern in recent years over trying

to find functional IRs, that are completelywithout side effects orwith

well-controlled ones, to support efficient AD [Bernstein et al. 2020;

Huot and Shaikhha 2022; Paszke et al. 2021]. However, most systems

rely on mutative updates, especially for reverse mode accumulations

11
https://pytorch.org/functorch/stable/aot_autograd.html

(notably, Pearlmutter and Siskind [2008]’s system relies on a + =

operation to update the adjoints).

The IRs may be higher-level (mirroring the source code) or lower-

level inside the compiler. Enzyme is notable for advocating the latter

design for extending LLVM [Lattner and Adve 2004] with automatic

differentiation features.

Automatic differentiation IRs are often quite primitive, and lack

more complex typing or object-oriented language features (with

notable exception of the Swift automatic differentiation work [Vy-

tiniotis et al. 2019; Wei et al. 2021] and some work on higher-order

function differentiation [Huot et al. 2020; Krawiec et al. 2022]). Our

work incorporates the type system and object-oriented features in

Slang into the IR directly, taking a similar approach to the ongoing

Swift work, but applying it to shading languages.

Finally, another choice is whether the IR is closed under dif-

ferentiation. If the differentiation produces code that can be not

differentiable, it can cause troubles for higher-order or nested differ-

entiation. Many automatic differentiation systems do not support

higher-order differentiation because the code generated by differen-

tiation is not the same IR before differentiation [Hu et al. 2020; Jakob

et al. 2022]. Our system ensures closure of IR under differentiation

and supports higher-order differentiation.

Program optimization. DSLs for automatic differentiation are dis-

tinguished by how they choose to optimize and compile their code,

which largely follows from a characterization of the expected pro-

grams. The Deep Learning system design is one approach [Abadi

et al. 2015; Paszke et al. 2019; Yu et al. 2014]. Deep learning pipeline

runtimes tend to be dominated by a selected set of layers (fully

connected, convolution, attention, etc.), whose implementations are

supplied via highly-efficient hand-tuned kernels rather than being

generated by the compiler. As a result, compilation is primarily

focused on highly-localized peephole optimizations to fuse nearby

computations into these key layers. For example, XLA (which serves

as the compilation layer for JAX and TensorFlow) contains templated

versions of key computation kernels to support variations through

fusion. A variety of systems offer other approaches. For example, the

automatic differentiation system of Halide [Li et al. 2018b; Ragan-

Kelley et al. 2012] offers code transform for long-range fusion and

a scatter-gather transform during the differentiation to avoid race

condition. Opt [Devito et al. 2017] and Thallo [Mara et al. 2021], on

the other hand, specialize for sparse-Hessian-vector-products where

the sparsity is determined by the program structure. Our situation

is characterized by the situation of shading languages: we avoid

complex program analysis for global optimization, while providing

sufficient flexibility to the users to achieve high-performance.

C.3 Shading Languages
In real-time rendering, shading languages were originally intro-

duced to define the kernel code (shader) executed during the pro-

grammable stages of the hardware-accelerated graphics pipelines.

Popular shading languages like HLSL, GLSL and the Metal Shading

Language provide a Single-Instruction-Multiple-Threads program-

ming model that maps natively to modern GPU architectures, which

are optimized for the data-parallel nature of rendering workloads.
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To support the extreme demand for high performance from real-

time rendering applications, shading languages are designed to

ensure that performance critical optimizations can be performed

without relying on complex compiler analysis. For example, most

shading languages do not provide access to pointers, and global

memory read and write operations can only be done through explicit

resource handles. Memory exposed by different resource handles

are generally considered to be non-overlapping, so the compiler

can perform aggressive optimizations without worrying about ad-

dress aliasing. Operations on a read-only resource handle can also

be safely considered as side-effect-free. Meanwhile, traditional lan-

guage features that cannot be implemented efficiently on GPUs

(such as recursive function calls, heap allocation, and dynamic life-

time management) are generally prohibited in shading languages.

The demand for high performance also drives applications to

aggressively specialize shaders into many variants where each vari-

ant caters a specific use case. For example, when rendering a scene

with three point lights, the rendering framework will ensure that

a minimal amount of code is sent to GPU for execution. This is

accomplished by creating a specialized shader that contains only

the code to evaluate point lights and not other types of lights. Such

specialization improves the runtime performance by enabling more

code to be evaluated at compile time, and by removing unused

code branches from the final shader kernel to reduce the maximum

register consumption.

D DIFFERENTIATION OF TEXTURE SAMPLING
As a common operation in rendering, texture sampling is accelerated

by the hardware and therefore exposed as an intrinsic operation

in shading languages. Since texture sampling involves multiple

global memory reads, SLANG.D does not automatically differentiate

through these operations, as discussed in Sec. 4.3.

However, we can use SLANG.D’s primal substitute mechanism to

provide a software implementation of texture sampling for auto-

matic differentiation, and then use custom derivative functions to

handle the gradient accumulation for individual texel loads.

To make it easy for existing shader code written against the built-

in Texture2D type to propagate derivatives back to the textures, we
can define a differentiable texture type completely in user code:

SLANG.D
struct MyDifferentiableTexture {

Texture2D hwTextureHandle;

Buffer dBuffer;

[BackwardDerivative(WriteTexelDerivative)]

float4 LoadTexel(uint2 location, uint lod) {

hwTextureHandle.Load(location);

}

void WriteTexelDerivative(

uint2 location, uint lod, float4 derivative) {

// Atomic accumulate to dBuffer

}

[PrimalSubstitute(sample_ref)]

float4 Sample(

SamplerState s, float2 uv, float2 ddx, float2 ddy) {

hwTextureHandle.Sample(s, uv, ddx, ddy);

}

[Differentiable]

float4 sample_ref(

SamplerState s, float2 uv, float2 ddx, float2 ddy) {

// Software implementation of trilinear sampling ...

// ... calls LoadTexel to read texels ...

}

};

Developers can use MyDifferentiableTexture as a drop-in re-

placement of the built-in Texture2D type, and call the Sample
method as usual. When the SLANG.D compiler’s differentiation pass

sees a call to MyDifferentiableTexture.Sample, it will instead
differentiate through sample_ref as if the user code were calling
sample_ref, thus propagating the derivative through our software

trilinear sampling method all the way back to the accumulation

buffer. We can then use a follow-up pass to process dBuffer and

turn it into a texture containing the propagated derivatives.

To provide more details, we include the full shader code for dif-

ferentiable trilinear sampling in the supplementary material as the

texture.slang file.

E INFERENCE RULES OF FORWARD AND BACKWARD
DERIVATIVE FUNCTION SIGNATURES

The general rule for determining the signature of a forward deriv-

ative function is to transform each differentiable parameter into a

DifferentialPair that holds both the original parameter value

and the derivative associated with the parameter for forward prop-

agation. More specifically, the signature of its forward derivative

function is determined using the following rules:

(1) If the return type R is differentiable, the forward derivative

function will return DifferentialPair<R> that consists of
both the computed original result value as well as the (partial)

derivative of the result value. Otherwise, the return type is

kept unmodified as R.
(2) If a parameter has type T that is differentiable, it will be

translated into a DifferentialPair<T> parameter in the de-

rivative function, where the differential component of the

DifferentialPair holds the initial derivatives of each pa-

rameter with regard to their upstream parameters.
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(3) All parameter directions are unchanged. For example, an

out parameter in the original function will remain an out
parameter in the derivative function.

The general rule for determining the signature of a backward

derivative function is that a differentiable output 𝑜 becomes an input

parameter holding the partial derivative of a downstream output

with regard to the this differentiable output, i.e. 𝜕𝑦/𝜕𝑜); an input

differentiable parameter 𝑖 in the original function will become an

output in the backward propagation function, holding the propa-

gated partial derivative 𝜕𝑦/𝜕𝑖 and any non-differentiable outputs

are dropped from the backward propagation function. This means

that the backward derivative function never returns any values

computed in the original function.

More specifically, the signature of a backward derivative function

is determined using the following rules:

(1) A backward derivative function always returns void.
(2) A differentiable in parameter of type T will become an inout

DifferentialPair<T> parameter, where the original value

part of the differential pair contains the original value of the

parameter to pass into the back-prop function. The original

value will not be overwritten by the backward derivative

function. The propagated derivative will be written to the

derivative part of the differential pair after the backward

propagation function returns. The initial derivative value of

the pair is ignored as input.

(3) A differentiable out parameter of type T will become an in
T.Differential parameter, carrying the partial derivative

of some downstream term with regard to the return value.

(4) A differentiable inout parameter of type T will become an

inout DifferentialPair<T> parameter, where the original

value of the argument, along with the downstream partial de-

rivative with regard to the argument is passed as input to the

backward derivative function as the original and derivative

part of the pair. The propagated derivative with regard to this

input parameter will be written back and replace the deriva-

tive part of the pair. The primal value part of the parameter

will not be updated.
(5) A differentiable return value of type R will become an ad-

ditional in R.Differential parameter at the end of the

backward derivative function parameter list, carrying the

result derivative of a downstream term with regard to the

return value of the original function.

(6) A non-differentiable return value will be dropped from the

derivative function signature.

(7) A non-differentiable in parameter will remain unchanged in

the backward propagation function.

(8) A non-differentiable inout parameter will become an ‘in‘

parameter of the same type.

For example consider the following original function:

struct T : IDifferentiable {...}

struct R : IDifferentiable {...}

struct ND {} // Non differentiable

[Differentiable]

R original(

T p0,

out T p1,

inout T p2,

ND p3,

out ND p4,

inout ND p5);

The signature of its backward derivative function is:

void back_prop(

inout DifferentialPair<T> p0,

T.Differential p1,

inout DifferentialPair<T> p2,

ND p3,

ND p5,

R.Differential dResult);

Note that although p2 is still inout in the backward propagation

function, the backward derivative function will only write propa-

gated derivative to p2.d and will not modify the primal value in

p2.p.

F AN EXAMPLE OF EXPONENTIAL CODE EXPANSION
WITHOUT CONSTRAINING DIFFERENTIAL TYPE

In Sec. 4.2, we stated that it is important to make the Differential
associated type in IDifferentiable interface (Listing 3) to conform
to this additional constraint:

Differential.Differential=Differential

Here, we provide an example showing the compiler will need

to generate exponentially large amount of code without assuming

this constraint. Imagine the user has defined three types A1, A2, A3,
where

A1.Differential = A2

A2.Differential = A3

A3.Differential = A1

Wenotate that in a shorter form as A1->A2->A3. Similarly, assume

there is another set of types B1->B2, and the compiler is asked to

synthesize the Differential type for a product type (A1, B1). In
Slang, this can be represented as a struct type:

struct MyType : IDifferentiable {

A1 field1;

B1 field2;

}

By performing the synthesis structurally on each field, the com-

piler will generate a type (A2, B2) as the first-order Differential.
But since the differential type itself must also be differentiable, the

compiler must continue synthesizing the second-order differential

type (A3, B1). This process will continue until the newly syn-

thesized differential type is equivalent to an existing one. In this

particular case, the compiler will synthesize 6 types in total: (A2,
B2), (A3, B1), (A1, B2), (A2, B1), (A3, B2), (A1, B1). As can
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be seen in this simple example, the compilation became an expo-

nential process with respect to the number of fields in a product

type.

G CONTROL-FLOW NORMALIZATION PASS
As discussed in Section 5.1, the purpose of the control-flow normal-

ization step is to transform the CFG of a differentiable function into

a reversible form, where jumps in the CFG are either to the next

block in a sequential region, to different branches in an if or switch
region, to the merge point at the end of each branch, or to the loop

header at the end of a loop. In other words, if a CFG in reversible

form is represented with structured control-flow primitives, there

will be no goto, continue or break statements. There will also be

only one return statement at the end of the function.

Control-flow normalization is done in four steps: return removal,

continue removal, break removal and loop canonicalization. The

first two steps removes any early returns and continue statements

by transforming them into a break. The third step removes break
statements by introducing a boolean flag tracking whether a break
took place and guard the operations after the break statement with

the boolean flag. Finally, we transform all loops into a single canon-

ical form to simplify the implementation of the AD pass. We will

use concrete examples to illustrate each transform.

G.1 return Removal
In this step, we rewrite functions with early returns into break
statements. For example, consider the following code:

if (x < 1)

return 0;

int y = x + 1;

return y;

We can rewrite this code by wrapping the entire function into a

one-iteration loop, and replace all returns into breaks out of the
one-iteration loop:

int returnVal;

while (1) {

if (x < 1) {

returnVal = 0;

break;

}

int y = x + 1;

returnVal = y;

break;

}

return returnVal;

G.2 continue Removal
In this step, we remove all the continue jumps from the CFG, using

the same idea of using breaks out of one-iteration loops to replace

continues. For example, consider the following code:

int sum = 0;

for (int i = 0; i < n; i++) {

if (i % 2 == 0)

continue;

sum += i;

}

We can wrap the loop body with a new one-iteration loop, so the

continue can be rewritten into a break:

int sum = 0;

for (int i = 0; i < n; i++) {

while (1) {

if (i % 2 == 0)

break;

sum += i;

break;

}

}

Note that if the original loop contains break statements, the

original break will become a multi-level break that jumps to the

end of the outer loop. This is allowed in the Slang IR.

G.3 break Removal
After the first two steps, the only jumps that are not inherent to

control-flow constructs (e.g. for, if or switch) are the jumps rep-

resenting a break statement. To remove these breaks, we insert
a boolean flag tracking whether the execution of the current se-

quential region has been terminated by a break, so that the break
can be rewritten to set the termination flag to true. The operations
following the break will be guarded by the termination flag. For

example, the while loop in the previous example will become:

...

bool terminate_flag = false;

while (1) {

if (i % 2 == 0)

terminate_flag = true;

if (!terminate_flag) {

sum += i;

terminate_flag = true;

}

}

After these normalization steps, functions with early returns,
break and continue statements will be transformed into a simpler

form without these constructs, so we can easily reverse the control

flow by simply arranging the control-flow regions in the reverse

order.

G.4 Loop Canonicalization
To allow the automatic differentiation passes to work on all types

of loops regardless of whether they are originally defined by a for,
while or do-while statement in user code, the CFG normalization

pass canonicalizes all loops into the form of:
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loopHeaderBlock:

condition = condition of whether loop should continue

cbranch condition, loopBodyBlock, loopExitBlock

loopBodyBlock:

Loop body logic

branch continueBlock

continueBlock:

branch loopHeaderBlock

loopExitBlock:

End of loop

Note that in this canonical form, the only back-jump inside a loop

is defined in continueBlock, and the only jump out of the loop is

the cbranch instruction in loopHeaderBlock. After SSA transfor-

mation, all loop state variables (variables that are updated during a

loop iteration) will become 𝜙 instructions in loopHeaderBlock.
At the end of CFG normalization pass, all normalized functions

will have only one return point, and all loops will have only one

exit point.

H DIFFERENTIABLE WARP FUNCTION
IMPLEMENTATION

As discussed in Sec. 6.1.2, SLANG.D enables us to implement warped-

area reparameterization by building the warp function, using a

nested forward-mode pass instead of hand-coding. Listing 11 shows

a differentiable version ofV(harmonic)
that is computed by taking the

weighted mean of points attached to the geometry. Listing. 12 shows

how the reparameterize()method uses fwd_diff to compute the

reparameterization.

SLANG.D
[Differentiable]

float2 warpedSample(float2 uv) {

//...

Ray ray = sampleToRay(uv);

for (i = 0; i < auxCount; i++) {

Ray auxRay = sampleAuxRay(Ray(dir, o));

float3 pt = intersect(auxRay);

float2 attachedUV = projectToScreen(pt);

float wt = harmonicWt(auxRay, pt);

totalAttachedUV += wt * attachedUV;

totalWt += wt;

}

float2 meanUV = totalAttachedUV / totalWt;

return meanUV - detach(meanUV);

}

Listing 11. Primal logic to reparameterize a sample according to the warp
V (harmonic) described by Bangaru et al.[2020]. As described by their appen-
dix B, the divergence ∇.V is equivalent to the Jacobian of this function, and
can be computed by placing multiple calls to fwd_diff(warpedSample).
Note that detach() is similar to PyTorch’s stop_gradient(): it serves as
the identity function in the absence of differentiation, but transforms to a
0 differential when differentiated, effectively stopping the propagation of
gradients.

SLANG.D
[Differentiable]

float2x2 infinitesimal(float2x2 xy)

{ return xy - detach(xy); }

// Note that inspite of using AD, this function

// can further be used in a differentiable pipeline

[Differentiable]

float2 reparameterize(float2 uv, out float wt) {

// Map uv to reparamterized sample

float2 w_uv = warpedSample(uv);

// Compute Jacobian of the mapping

float2 w_uv_dx = fwd_diff(warpedSample)(

diffPair(w_uv, float2(1.0, 0.0))).d;

float2 w_uv_dy = fwd_diff(warpedSample)(

diffPair(w_uv, float2(0.0, 1.0))).d;

float2x2 J = identity<2>() + infinitesimal(

float2x2(w_uv_dx.x, w_uv_dy.x,

w_uv_dx.y, w_uv_dy.y));

wt = determinant(J);

return uv + w_uv;

}

Listing 12. Primal logic to reparameterize a screen space sample.
reparameterize() uses SLANG.D’s forward-mode AD to elegantly con-
struct the Jacobian of the warp mapping and computes the reparameter-
ization weight. Note that this requires d invocations for a d-dimensional
mapping. Our practical implementation uses an array of d replica samples
to avoid tracing auxiliary rays multiple times.
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