
Developable Quad Meshes and Contact Element Nets

VICTOR CEBALLOS INZA, KAUST, Saudi Arabia
FLORIAN RIST, KAUST, Saudi Arabia
JOHANNES WALLNER, TU Graz, Austria
HELMUT POTTMANN, KAUST, Saudi Arabia

Fig. 1. An architectural design based on challenging developable lofting tasks. CAD software has been used to connect given boundaries by a NURBS loft,
followed by quad remeshing. Subsequently, our optimization towards developability has been applied. Observe that patches have several boundaries, and
meshes exhibit combinatorial singularities. From left to right, we show the resulting design, meshes representing developables, and a zoomed-in detail revealing
a discrete-developable quad mesh, endowed with inscribed contact elements, and the ruling line field we get from intersecting neighboring contact elements.

The property of a surface being developable can be expressed in different

equivalent ways, by vanishing Gauss curvature, or by the existence of iso-

metric mappings to planar domains. Computational contributions to this

topic range from special parametrizations to discrete-isometric mappings.

However, so far a local criterion expressing developability of general quad

meshes has been lacking. In this paper, we propose a new and efficient dis-

crete developability criterion that is applied to quad meshes equipped with

vertex weights, and which is motivated by a well-known characterization

in differential geometry, namely a rank-deficient second fundamental form.

We assign contact elements to the faces of meshes and ruling vectors to

the edges, which in combination yield a developability condition per face.

Using standard optimization procedures, we are able to perform interactive

design and developable lofting. The meshes we employ are combinatori-

ally regular quad meshes with isolated singularities but are otherwise not

required to follow any special curves on a developable surface. They are

thus easily embedded into a design workflow involving standard operations

like remeshing, trimming, and merging operations. An important feature is

that we can directly derive a watertight, rational bi-quadratic spline surface

from our meshes. Remarkably, it occurs as the limit of weighted Doo-Sabin

subdivision, which acts in an interpolatory manner on contact elements.

Authors’ addresses: Victor Ceballos Inza, KAUST, Saudi Arabia; Florian Rist, KAUST,

Saudi Arabia; Johannes Wallner, TU Graz, Austria; Helmut Pottmann, KAUST, Saudi

Arabia.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2023/12-ART183 $15.00

https://doi.org/10.1145/3618355

CCS Concepts: • Computing methodologies → Shape modeling; Opti-
mization algorithms.

Additional Key Words and Phrases: developable surface, discrete differential

geometry, computer-aided design, shape optimization, checkerboard pattern,

contact elements

ACM Reference Format:
Victor Ceballos Inza, Florian Rist, Johannes Wallner, and Helmut Pottmann.

2023. Developable Quad Meshes and Contact Element Nets. ACM Trans.
Graph. 42, 6, Article 183 (December 2023), 13 pages. https://doi.org/10.1145/

3618355

1 INTRODUCTION
The numerical and geometric modeling of developable surfaces has

attracted attention for many years, starting with the first mesh

representations proposed by R. Sauer [1970]. One reason for that

is the great practical importance of developables, which represent

shapes made by bending flat pieces of inextensible sheet material.

New algorithms continue to emerge, as do new applications — we

only point to the construction of metamaterials that can be speedily

laser-cut and fill volumes in the manner of ruffles by Signer et al.

[2021], and the use of developables in interactive physical book

simulation by Wolf et al. [2021].

A developable surface is unanimously defined by the existence

of local isometric mappings to planar domains. As it turns out, the

physical reality of bending thin sheets is modeled by surfaces ex-

hibiting piecewise𝐶2
smoothness, which means surfaces exhibiting

curvature continuity except for creases along curves. Geometric

modeling of developables has been confined to this case. The contin-

uous new proposals for the computational treatment of developables

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

https://doi.org/10.1145/3618355
https://doi.org/10.1145/3618355
https://doi.org/10.1145/3618355
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618355&domain=pdf&date_stamp=2023-12-05

183:2 • Ceballos Inza, V. et al.

are a sign that the problem has not yet been satisfactorily solved.

Another reason is the mathematical complexity of the subject itself,

as well as the fact that 𝐶2
developables enjoy many different but

equivalent characterizations. These include vanishing Gauss curva-

ture or other equivalent infinitesimal properties; line contact with

tangent planes; or the existence of a local planar development. Each

of these properties has been the basis of a computational approach,

and each serves as motivation for defining a certain kind of discrete

developable surface. This is also true for the present paper: We use

the fact that developability is characterized by a rank deficient sec-

ond fundamental form, and we employ the checkerboard patterns

proposed by Peng et al. [2019] to express this in a discrete way. The

basic entity we work with is a contact element, which is a weighted

point plus a normal vector.

1.1 Overview and Contributions

• Wepresent a new quad-mesh-based discretemodel of developable

surfaces which does not require the use of a development. Neither

do edges have to be aligned with special curves on the surface under

consideration. It is based on so-called contact elements inscribed in

the faces of the mesh which are defined via vertex weights (§ 2.2).

• The contact element net derived from a quad mesh is used to

express discrete developability (§ 2.3), and also to derive a water-

tight spline surface interpolating contact elements. Incidentally that

spline surface is the limit of weighted Doo-Sabin subdivision which

acts in an interpolatory manner on contact elements (§ 2.2.2).

• The discrete developability property is achieved by optimization,

essentially performing a projection onto the constraint manifold,

guided by soft constraints like fairness and proximity to a reference

surface (§ 2.4). When needed, we can combine our method with the

isometric mappings proposed by Jiang et al. [2020].

• Interactive design of developables can mean the isometric defor-

mation of a given flat piece as well as generally modifying a design

surface such that developability is maintained as a constraint. We

are able to do both (§ 3).

• Modeling tools treated in this paper include developable lofting,

which is an old problem not easily accessible with previous methods

(§ 3.2). A user can interactively modify developables by pulling

on handles and letting developables glide through guiding curves;

attaching a developable patch to a surface; and positioning singular

curves. The refinement property of contact element nets allows for

a multiresolution approach to modeling developables (§ 3.3).

1.2 Previous Work
There is a large body of literature about geometric modeling of

and with developable surfaces. Our brief overview is subdivided

according to the way developables are represented, either as spline

surfaces or as discrete surfaces.

1.2.1 Previous work based on splines. It is known that developables

consist of ruled surfaces enjoying torsality, i.e., the tangent plane
along a ruling is constant. A ruled surface can bemodeled as a degree

(1, 𝑛) B-spline surface — one family of parameter lines then will be

the surface’s rulings. Torsality is a nonlinear constraint [Lang and

Röschel 1992] that can be achieved by optimization [Jiang et al. 2019;

Tang et al. 2016]. One limitation of such a method is the necessity

to decompose developables into ruled pieces. The method thus may

not be suitable for modeling deformations of developables where

that decomposition may change.

A torsal ruled surface is the envelope of its tangent planes, and

thus essentially is a curve in the dual space of planes. This fact

has been exploited by Bodduluri and Ravani [1993] and follow-

up publications. It reduces the design of ruled developables to the

design of curves. The drawback of this method is that, in addition

to the one mentioned in the previous paragraph, working in plane

space is not intuitive and does not naturally avoid singularities.

Finally, we point to Jiang et al. [2020] who impose approximate

developability on spline surfaces via conversion to a quad mesh.

Here rulings do not have to coincide with parameter lines, cf. § 1.2.2.

1.2.2 Previous work based on quad meshes. The textbook [Sauer

1970] proposes discrete developables based on the fact that devel-

opables are the envelopes of their tangent planes: A discrete ruled

developable is simply a sequence of flat quads, and the edges be-

tween them play the role of rulings. This property lies on the basis

of quad-meshing of developables, see recent work by Verhoeven at

al. [2022]. Such ruling-based developables are the basis of work by

Liu et al. [2006] and Solomon et al. [2012]. Their disadvantages are

the same as for other ruling-based methods: it is difficult to model

situations where the ruling pattern of a developable changes.

A different characterization of developables, the existence of a

network of orthogonal geodesics, is the basis of work by Rabinovich

et al. [2018a; 2018b; 2019] and Ion et al. [2020]. Here developables

are represented by quad meshes whose edges are not necessarily

aligned with the rulings, but nevertheless are in a special position —

they discretize a network of orthogonally intersecting geodesics.

Jiang et al. [2020] use discrete-isometric mappings to handle

developables: A surface is represented by a quad mesh whose edges

do not have any special relation to the surface. Developability is

imposed by maintaining a second mesh in R2 isometric to the first

mesh. Similarly, the work by Chern et al. [2018] is also capable of

handling developables via isometric mappings to planar domains.

1.2.3 Previous work based on other discretizations. A triangle mesh

is intrinsically flat except at the vertices, and it is in fact locally flat

if and only if the angle sum in its vertices equals 2𝜋 . This natural

discretization of the concept of a developable surface has not been

in much use in geometric modeling. An exception is provided by

meshes consisting of equilateral triangles as used by Jiang et at.

[2015]. Better suited for geometric design of developables is the

‘local hinge’ condition imposed by Stein et al. [2018]. It ensures the

existence of rulings and also implies that the position of edges is not

arbitrary; every face has an edge that represents the direction of a

ruling. Binninger et al. [2021] approximate surfaces with piecewise-

developable ones by thinning the Gauss image; their method oper-

ates on a triangle mesh.

Sellán et al. [2020] use an entirely different way of imposing

developability. A height field 𝑧 = 𝑓 (𝑥,𝑦) represents a developable
surface if and only if the Hessian of 𝑓 has a vanishing determinant.

A certain convex optimization converts a given height field to one

where the Hessian is nonsingular only along 1D curves. This leads

to a piecewise-developable surface. Our method is also based on the

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

Developable Quad Meshes and Contact Element Nets • 183:3

characterization of developables as surfaces with low-rank second

fundamental forms. Our discretization, however, works for any quad

mesh, and is not limited to height fields.

1.2.4 Previous work on Contact Elements. In the continuous setting,

contact elements have been used in differential geometry and anal-

ysis since the 19th century. In the discrete setting, contact elements

are implicitly present every time vertices are treated together with

normal vectors. There are only a few contributions explicitly based

on contact elements, such as the discrete principal meshes proposed

by Bobenko and Suris [2007] and subsequent treatment of a discrete

curvature theory and related topics [Bobenko et al. 2010; Rörig and

Szewieczek 2021; Schröcker 2010].

2 DISCRETE DEVELOPABLES

2.1 Differential Geometry of Smooth Developables
We consider surfaces that are piecewise curvature continuous and

which enjoy the property of being locally isometric to a planar

domain. It is well known (see e.g. [Guggenheimer 1963]) that this

intrinsic flatness is characterized by the vanishing of Gauss cur-

vature, 𝐾 = 0. It is also well known that one family of principal

curvature lines of such surfaces is composed of straight lines, and

that the tangent plane along these straight lines (rulings) is constant.
The rulings extend all the way to the boundary of the surface. A

developable thus decomposes into ruled surface pieces and planar

parts. In geometric modeling, the number of pieces is assumed to be

finite. We also consider surfaces consisting of individual developable

pieces.

Gauss Image and 2nd Fundamental Form. The Gauss image of a
developable is the set of its unit normal vectors. It is contained in

the unit sphere 𝑆2, and it decomposes into curves, one for each ruled

piece.

In each point 𝑝 of the surface, the second fundamental form

II𝑝 (v,w) governs curvatures. It takes as arguments vectors v,w
tangent to the surface. If x(𝑢, 𝑣) is a parametrization, and n(𝑢, 𝑣) is
the corresponding unit normal vector field, then the second funda-

mental form relates their derivatives via

II𝑝 (x𝑢 , x𝑢) = ⟨x𝑢 ,−n𝑢⟩, II𝑝 (x𝑢 , x𝑣) = ⟨x𝑢 ,−n𝑣⟩,
II𝑝 (x𝑣, x𝑣) = ⟨x𝑣,−n𝑣⟩.

By linearity, II is now defined for all tangent vectors.

The Conjugacy Relation and Developability. Tangent vectors v,w
attached to the same point 𝑝 are called conjugate, if

II𝑝 (v,w) = 0.

Gauss curvature vanishes in 𝑝 if and only if II𝑝 has rank less than 2

and exhibits a kernel (the ruling) which is conjugate to all tangent

Fig. 2. A developable touch-
ing another surface along a
curve c(𝑡) . Its rulings 𝑟 (𝑡)
are conjugate to the deriva-
tive vectors ¤c(𝑡) .

𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)𝑟 (𝑡)

c(𝑡)¤c(𝑡)

R4

�̂�0

�̂�1

�̂�2

�̂�3

𝑓 𝜏𝑓

�̂�0+···+�̂�3
4

�̂�0+�̂�1
2

�̂�1+�̂�2
2

R3

𝑣0

𝑣1

𝑣2

𝑣3

𝑓 𝜏𝑓

n𝑓

𝑏 𝑓

𝑚𝑒0

𝑚𝑒1

𝑚𝑒2

𝑚𝑒3

Fig. 3. A contact element associated with the weighted vertices of a face 𝑓 is
defined by points𝑚𝑒𝑖 on the edges 𝑒𝑖 = 𝑣𝑖 𝑣𝑖+1, the plane 𝜏𝑓 and its normal
vector n𝑓 , and the contact point 𝑏𝑓 . The plane 𝜏𝑓 serves as a tangent plane
associated with face 𝑓 .

vectors. This can equivalently be expressed by the existence of a

tangent vector which obeys

II(x𝑢 , r) = II(x𝑣, r) = 0 (r ≠ 0) . (1)

There is another property relating conjugacy of tangent vectors

with developable surfaces: Suppose we have a curve c(𝑡) contained
in a surface and a vector field r(𝑡) which is conjugate to the deriva-

tive ¤c(𝑡). Then the ruled surface y(𝑡, 𝑠) = c(𝑡) + 𝑠r(𝑡) is tangent to
the original surface along the curve c, and is itself developable [Liu

et al. 2006]. It is the envelope of the tangent planes of the surface

along the curve c, and it is a geometric fact that the rulings of this

envelope are conjugate to the tangents of the curve — see Fig. 2.

2.2 Contact Element Nets
It is our aim to express developability as a local property of a quad

mesh whose edges and faces are allowed to be arbitrary. In contrast

to previous work [Liu et al. 2006; Sauer 1970] we do not require the

faces to be planar, nor do we require the edges to be aligned with

special curves on the surface, as is done by the previous references

and by [Rabinovich et al. 2018b; Stein et al. 2018]. We also do not

need an isometric mapping to a planar domain.

2.2.1 Contact Element Nets From Weighted Vertices. We propose

a developability condition that uses a generalized version of the

checkerboard patterns approach used e.g. by [Jiang et al. 2020]. For

each edge they consider the midpoint, and for each face 𝑓 , the

inscribed parallelogram formed by those edge midpoints — see

Fig. 3.

The center of the parallelogram together with a normal vector

already form a contact element as it is. However, we aim for greater

generality; we wish to consider not only parallelograms, but any
planar quadrilateral inscribed in the faces of meshes.

Consider a quadrilateral, which needs not be planar, with vertices

𝑣0, 𝑣1, 𝑣2, 𝑣3, and edge points 𝑚𝑒𝑖 on each edge 𝑒𝑖 = 𝑣𝑖𝑣𝑖+1 (indices
modulo 4). The edge points shall not coincide with the vertices.

Lemma 2.1. The edge points are co-planar if and only if the ratios
of distances

(𝑣𝑖 ,𝑚𝑒𝑖 , 𝑣𝑖+1) :=
∥𝑚𝑒𝑖 − 𝑣𝑖 ∥
∥𝑣𝑖+1 −𝑚𝑒𝑖 ∥

fulfill the equation

(𝑣0,𝑚𝑒0 , 𝑣1) (𝑣1,𝑚𝑒1 , 𝑣2) (𝑣2,𝑚𝑒2 , 𝑣3) (𝑣3,𝑚𝑒3 , 𝑣0) = 1. (2)

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

183:4 • Ceballos Inza, V. et al.

Proof. Note that (𝑣𝑖 ,𝑚𝑒𝑖 , 𝑣𝑖+1) equals the ratio of distances of

points to any plane through𝑚𝑒𝑖 not containing 𝑣𝑖 , 𝑣𝑖+1 Taking this
plane as the one which spans 3 edge points, the product of ratios

equals 1 if and only if the 4th point lies on the same plane, so that

all distances in the product cancel out. □

The edge points can be described by weights𝑤𝑖 > 0 associated

with the vertices 𝑣𝑖 as

𝑚𝑒𝑖 =
1

𝑤𝑖,𝑖+1
(𝑤𝑖𝑣𝑖 +𝑤𝑖+1𝑣𝑖+1), 𝑤𝑖, 𝑗 = 𝑤𝑖 +𝑤 𝑗 . (3)

Lemma 2.2. Any choice of weights𝑤𝑖 > 0 leads to co-planar edge
points. Conversely, any co-planar edge points can be described by
vertex weights.

Proof. Given edge points as in Eq. (3), the ratios of distances be-

come (𝑣𝑖 ,𝑚𝑒𝑖 , 𝑣𝑖+1) = 𝑤𝑖+1/𝑤𝑖 , so Eq. (2) holds. Conversely, to show

the representation via weights, if Eq. (2) holds, we can obviously

find weights𝑤𝑖 > 0 to represent the points𝑚𝑒𝑖 . □

The setting of Lemma 2.2 is shown by Fig. 3. For any given quad

mesh we therefore attach a weight to each vertex and define edge

points on the edges by Eq. (3). It is convenient to represent weighted

points in R3 by their homogeneous coordinates, letting

�̂�𝑖 = (𝑤𝑖𝑣𝑖 ,𝑤𝑖) ∈ R4 .

Given a weight _, provided that _ ≠ 0, any point (𝑥1, 𝑥2, 𝑥3, _) ∈ R4
corresponds to the point (𝑥1

_
,
𝑥2
_
,
𝑥3
_
) ∈ R3. It is elementary that the

edge points𝑚𝑒𝑖 are represented by homogeneous coordinate vectors

1

2
(�̂�𝑖 + �̂�𝑖+1) ≡ �̂�𝑖 + �̂�𝑖+1. This correspondence between vectors of R4

and points of R3 is illustrated by Fig. 3.

We think of the given quad mesh as approximating a smooth

surface. For each face 𝑓 , the plane containing the edge points repre-

sents a tangent plane 𝜏𝑓 . Every face is thus naturally equipped with

a unit normal vector n𝑓 . It is natural to define the contact point 𝑏 𝑓
as the weighted center of mass of vertices:

𝑏 𝑓 = (�̂�0 + · · · + �̂�3)/4 =⇒
𝑏 𝑓 = (𝑤0𝑣0 + · · · +𝑤3𝑣3)/𝑤 𝑓 , 𝑤 𝑓 = 𝑤0 +𝑤1 +𝑤2 +𝑤3 .

Here 𝑤 𝑓 is a weight associated with the face 𝑓 . It is easy to show

that this contact point is the intersection of diagonals𝑚𝑒0𝑚𝑒2 and

𝑚𝑒1𝑚𝑒3 — see Fig. 3. Note that we consider all unit normal vectors

n𝑓 to be consistently oriented and pointing to one side of the mesh.

Lifting themesh toR4 yields a checkerboard pattern in the original
sense of [Jiang et al. 2020], where each face is equipped with an

inscribed parallelogram (Fig. 3, left), defining a tangent plane 𝜏𝑓 .

The given quad mesh together with its edge points is a checkerboard

pattern in R3 only if all vertex weights are equal.

2.2.2 Subdivision of Contact Element Nets. It is interesting that so-

called dual quad-based subdivision rules are able to refine contact

elements in a natural way, yielding a smooth limit surface. The

well-known Doo-Sabin refinement rule even interpolates contact

elements, as follows. We are going to apply it to homogeneous

coordinate vectors �̂�𝑖 ∈ R4. For each vertex �̂� 𝑗 of a quadrilateral face

𝑓 = (𝑣0𝑣1𝑣2𝑣3) we construct a new vertex

�̂� ′
𝑗,𝑓

=
1

16

(̂9𝑣 𝑗 + 3�̂� 𝑗+1 + 3�̂� 𝑗−1 + �̂� 𝑗+2) (indices mod 4).

R3

𝑣0

𝑣1

𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2𝑣2

𝑣3

𝑣′
1,𝑓

𝑣′
0,𝑓

n𝑓

𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓𝑏𝑓

R4

�̂�0

�̂�1

�̂�3

�̂�2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2̂𝑣2

𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 �̂�𝑏 𝑓

Fig. 4. Left: Doo-Sabin refinement acting on weighted vertices interpolates
both the center 𝑏𝑓 of faces and the normal vectors n𝑓 . Right: The limit
surface of the subdivision is a biquadratic rational spline surface composed
of rational Bézier patches. The control elements inR4 of the latter are derived
from the homogeneous coordinates �̂�𝑖 of vertices, from their midpoints
(�̂�𝑖 + �̂�𝑗)/2, and from face midpoints, as shown in the figure.

In this way, each vertex, each edge, and also each face of the original

mesh is naturally associated with a cycle of new vertices, yielding a

new face each — see Fig. 4. For the refinement rule for 𝑛-gons with

𝑛 ≠ 4 we refer to [Peters and Reif 2008].

For our purposes, the following observation is relevant: The center

of mass 𝑓 = (�̂�0�̂�1�̂�2�̂�3) of a face is invariant under subdivision:

𝑏 𝑓 =
1

4

∑︁
�̂� ′
𝑖,𝑓

=
1

4

∑︁
�̂�𝑖 .

So are diagonals in inscribed quads, which span the tangent plane:

1

2

(
1

2

(�̂�0 + �̂�1) −
1

2

(�̂�2 + �̂�3)
)
=

1

2

(�̂� ′
0,𝑓

+ �̂� ′
1,𝑓

) − 1

2

(�̂� ′
2,𝑓

+ �̂� ′
3,𝑓

) .

An illustration is provided by Fig. 4. Summing up, we get:

Proposition 2.3. The Doo-Sabin refinement scheme, acting on
the homogeneous coordinate representation of a regular quad mesh,
interpolates contact elements. In the limit, it produces a 𝐶1-smooth
spline surface of the rational biquadratic type, whose spline control
points are the weighted vertices we started from. That spline surface
interpolates the contact elements of the original quad mesh.

The nature of the limit referred to in Prop. 2.3 is well known

[Peters and Reif 2008]. If the original mesh is not a regular quad

mesh, the statement remains true away from extraordinary points.

Prop. 2.3 is relevant because it shows how to construct a smooth

surface naturally connected to the data we work with. Note that

Doo-Sabin subdivision surfaces in their simple form as shown here

do not interpolate the boundary.

𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0𝑚𝑒0

𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1𝑚𝑒1

𝑒0
𝑒1 𝑒2 𝑒3

𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0
𝑏 𝑓0𝑏 𝑓0𝑏 𝑓0
𝑏 𝑓0𝑏 𝑓0

𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1
𝑏 𝑓1𝑏 𝑓1𝑏 𝑓1
𝑏 𝑓1𝑏 𝑓1

𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0𝑟𝑒0
𝑟𝑒0𝑟𝑒0𝑟𝑒0

𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1𝑟𝑒1
𝑟𝑒1𝑟𝑒1𝑟𝑒1

𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2𝑟𝑒2
𝑟𝑒2𝑟𝑒2𝑟𝑒2 𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3𝑟𝑒3

𝑟𝑒3𝑟𝑒3𝑟𝑒3

Fig. 5. A discrete version of conjugacy. This discrete version of Fig. 2 shows
a strip of contact elements comprised of faces { 𝑓𝑖 } with tangent planes
{𝜏𝑓𝑖 } and points of contact {𝑏𝑓𝑖 }. It represents a developable tangentially
circumscribed to a surface along the discrete curve {𝑏𝑓𝑖 }. In analogy to the
smooth case it is natural to define that discrete tangents 𝑏𝑓𝑖+1 − 𝑏𝑓𝑖 and
intersections 𝑟𝑒𝑖 = 𝜏𝑓𝑖 ∩ 𝜏𝑓𝑖+1 are conjugate.

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

Developable Quad Meshes and Contact Element Nets • 183:5

2.3 Developable Contact Element Nets
2.3.1 Conjugacy and Fields of Rulings. Consider a sequence of faces
𝑓0, 𝑓1, . . . which have common edges 𝑓𝑖 ∩ 𝑓𝑖+1 — see Fig. 5. Each is

equipped with a tangent plane 𝜏𝑓𝑖 . We now perform a construction

that is a discrete analog of the envelope of tangent planes shown by

Fig. 2: We construct the intersection lines of successive planes,

𝑟𝑒𝑖 = 𝜏𝑓𝑖 ∩ 𝜏𝑓𝑖+1 , where 𝑒𝑖 = 𝑓𝑖 ∩ 𝑓𝑖+1 .

The line 𝑟𝑒𝑖 passes through the edge point𝑚𝑒𝑖 as defined by Eq. (3).

The line 𝑟𝑒𝑖 it is a discrete ruling of the discrete envelope of tangent

planes along the discrete curve 𝑏 𝑓0 , 𝑏 𝑓1 , . . . [Sauer 1970]. In analogy

to the smooth case shown, we postulate:

Definition 2.4. The discrete envelope of tangent planes 𝜏𝑓0 , 𝜏𝑓1 , . . .
along a discrete curve 𝑏 𝑓0 , 𝑏 𝑓1 , . . . is developable if discrete tangents
𝑏 𝑓𝑖+1 − 𝑏 𝑓𝑖 and intersections 𝑟𝑒𝑖 = 𝜏𝑓𝑖 ∩ 𝜏𝑓𝑖+1 are conjugate.

The direction of the ruling 𝑟𝑒𝑖 is indicated by a ruling vector
associated with an oriented edge (half-edge) ®𝑒𝑖 . If ®𝑒𝑖 and −®𝑒𝑖 are the
two half-edges corresponding to the edge 𝑒𝑖 = 𝑓𝑖 ∩ 𝑓𝑖+1, we let

r®𝑒𝑖 = n𝑓𝑖 × n𝑓𝑖+1 . (4)

Here we assume that 𝑓𝑖 is to the left and 𝑓𝑖+1 to the right, and we

also have r−®𝑒𝑖 = −r®𝑒𝑖 .
The vector r®𝑒𝑖 computed as a cross product in Eq. (4) is zero if

neighbouring tangent planes 𝜏𝑓𝑖 , 𝜏𝑓𝑖+1 coincide. This happens e.g. if

the mesh is flat, or the strip under consideration is flat.

Figure 6 shows what happens when we assign a ruling 𝑟𝑒 to all
edges of a quad mesh. The rulings 𝑟𝑒 associated with the edges of a

mesh are usually not samples of a continuous line field. However,

in the case of a developable mesh, they indicate the kernel of the

2nd fundamental form, so they correspond to a single continuous

line field.

This way of computing rulings amounts to numerical differentia-

tion. The definition of ruling vectors in Eq. (4) is valid provided a

fair mesh that discretizes a smooth surface. We consider only such

meshes where the edge polylines themselves are fair, so that they

could be interpreted locally as a discrete version of the parameter

lines of a 𝑢𝑣 parametrization — which is no restriction.

Fig. 6. Left: On a general surface, the rulings associated with edges corre-
spond to two distinct line fields (yellow and red). Right: Developability is
characterized by the property that these line fields coincide.

Fig. 7. Characterization of developability in-
volving the ruling vectors r®𝑒0 , . . . , r®𝑒3 associ-
ated with the cycle of edges around a face 𝑓 .

r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0r®𝑒0

r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒2r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3r®𝑒3

r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1r®𝑒1

2.3.2 Definition of Developable Quad Meshes. We express devel-

opability via the following property: A surface is developable if and

only if its 2nd fundamental forms do not have full rank [do Carmo

1976, p. 194]. For a discrete version of this statement, it is useful to

associate part of a 2nd fundamental form with each face of a mesh.

Consider a face 𝑓 = 𝑣0𝑣1𝑣2𝑣3 with its boundary cycle ®𝑒0, . . . , ®𝑒3,
assuming 𝑒𝑖 = 𝑓 ∩ 𝑓𝑖 . We define edge vectors e𝑖 = 𝑣𝑖+1 − 𝑣𝑖 (indices
modulo 4). We use Eq. (4) to compute ruling vectors r®𝑒0 , . . . , r®𝑒3 :

r®𝑒𝑖 = n𝑓 × n𝑓𝑖 .

Figure 7 shows this configuration. Note that the ruling vectors

associated with opposite edges point in the opposite direction, like

the edge vectors themselves.

We now partly define the matrix II𝑓 of a 2nd fundamental form

attached to the face center 𝑏 𝑓 . II𝑓 governs conjugacy, and in fact

Def. 2.4 already states such a conjugacy relation per edge. In order

to formulate a conjugacy condition per face, we define average edge
vectors

e02 =𝑚𝑒2 −𝑚𝑒0 =
1

𝑤𝑒2

(𝑤2𝑣2 +𝑤3𝑣3) −
1

𝑤𝑒0

(𝑤1𝑣1 +𝑤0𝑣0) (5)

e13 =𝑚𝑒3 −𝑚𝑒1 =
1

𝑤𝑒3

(𝑤0𝑣0 +𝑤3𝑣3) −
1

𝑤𝑒1

(𝑤2𝑣2 +𝑤1𝑣1),

and we postulate that these average edge vectors are conjugate to

average ruling vectors

r®𝑒13 =
1

𝑤 𝑓

(
𝑤𝑒1r®𝑒1 +𝑤𝑒3 (−r®𝑒3)

)
r®𝑒02 =

1

𝑤 𝑓

(
𝑤𝑒0r®𝑒0 +𝑤𝑒2 (−r®𝑒2)

)
.

The bilinear conjugacy relation per face then reads

e𝑇
13

· II𝑓 · r®𝑒13 = e𝑇
02

· II𝑓 · r®𝑒02 = 0, (6)

where II𝑓 is the symmetric 2 × 2 matrix of a discrete second funda-

mental form associated with the face 𝑓 . Equations (6) determine II𝑓

uniquely up to a factor.

We now propose a definition of developability of quad meshes

which uses the notions introduced above and discretizes several

properties of smooth developables simultaneously:

Definition 2.5. A quad mesh is developable if for all faces the
average ruling vectors are parallel, i.e.,

r®𝑒13 × r®𝑒02 = 0. (7)

This expresses the fact that each face is equipped with a single

ruling direction, where rulings arise as intersections of neighboring

tangent planes. Further, Eq. (7) implies that the conjugacy relation

(6) is degenerate, because now two different average edge vectors

are conjugate to the same ruling direction. It follows that

det(II𝑓) = 0.

A further equivalent condition is det(r®𝑒13 , r®𝑒02 ,n𝑓) = 0.

Fig. 8. This developable has an in-
flection ruling visible as the zero
level set of the length of ruling
vectors. Ruling vectors are here
shown without arrows.

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

183:6 • Ceballos Inza, V. et al.

Ruling vectors might vanish for several reasons: (i) In planar

parts of a developable, rulings vectors r®𝑒𝑖 vanish and Eq. (7) is

fulfilled automatically. The same is true if the developable has an

inflection ruling: Fig. 8 shows that already close to the inflection

ruling, vectors r®𝑒𝑖 approach zero. (ii) An individual ruling vector r®𝑒𝑖
vanishes if and only if the normal vectors n𝑓 ,n𝑓𝑖 are parallel. This

situation happens if faces 𝑓 , 𝑓𝑖 are arranged along a ruling contained

in the developable mesh; similar to the previous special cases, it is

consistent with Eq. (7).

Remark 2.6. In case vertex weights are equal, Eq. (7) has interesting

consequences for the Gauss image. We illustrate this in the generic

case (away from an inflection ruling), where a developable locally

is convex. Definition 2.5 is expressed by the condition that

n𝑓 × (n𝑓1 − n𝑓3), n𝑓 × (n𝑓0 − n𝑓2) are parallel.

All vectors involved here approximately lie in a

plane orthogonal to n𝑓 (namely the unit sphere’s

tangent plane in n𝑓). If the quad n𝑓0 , . . . ,n𝑓3 were

planar, then Eq. (7) would express the fact that di-

agonals are parallel (see the inset figure; diagonals are yellow). This

characterizes quads of zero oriented area, and is nicely consistent

with the fact that the Gauss image of a developable is curve-like

and has zero area.

Projective Transformations. Developability is well known to be

invariant under projective transformations. This property is numer-

ically verified by Fig. 26, and is in part reflected in our approach

using homogeneous coordinates (in this way projective transforma-

tions are simply expressed as linear mappings). Our constructions

up to and including the computation of the ruling line fields are

projectively invariant. Only the developability condition of Def. 2.5

itself, which checks equality of ruling line fields, is not. We employ

such a projective transformation later — see Fig. 13.

Singularities of Developable Quad Meshes. Developables can ex-

hibit geometric singularities like a cone’s vertex or the line of regres-

sion in a torsal ruled surface. The developability criterion of Def. 2.5

does not prevent singularities from emerging, and in fact, extremely

singular meshes formed by the tangents of a curve may well enjoy

discrete developability. We prevent such singularities by fairness

imposed on the normal vector field n𝑓 . Combinatorial singulari-

ties do not pose a problem, since also in this case the geometric

interpretation of Eq. (7) remains valid — see Fig. 9.

Fig. 9. Singularities. Left: We show a discrete-developable mesh and the
good behaviour of ruling vectors r®𝑒 in the vicinity of combinatorial singu-
larities (red). Right: This mesh exhibits a geometric singularity typical for
developables, namely a sharp curve of regression. The singularity is not
detectable via checking fairness of mesh polylines and is made visible by
clipping by a plane. The mesh fulfills the developability condition of Def. 2.5.

(a) (b)

(c) (d)

Fig. 10. A simple developable computed with our method. (a) An optimized
quad mesh exhibiting discrete developability. (b) Rulings found by integrat-
ing the ruling vector field. (c) The Gauss image consisting of face normal
vectors n𝑓 . (d) Detail of the discrete ruling vector field r®𝑒 .

2.4 Computation
All our computations are based on an optimization procedure which

achieves constraints and yields low values of fairness functionals.

We operate with a quad mesh (𝑉 , 𝐸, 𝐹) which is thought to follow

the parameter lines of a smooth surface. We have regular grid com-

binatorics except for isolated singularities, and we assume that we

have a consistent orientation of faces. Our variables are vertices 𝑣𝑖 ,

vertex weights 𝑤𝑖 , re-weighted vertices �̃�𝑖 = 𝑤𝑖𝑣𝑖 , a unit normal

vector n𝑓 of each face 𝑓 ∈ 𝐹 , appropriately re-weighted edge vec-

tors ẽ
02,𝑓 , ẽ13,𝑓 per face, a ruling vector r®𝑒 for each oriented edge

®𝑒 ∈ 𝐸, and re-weighted ruling vectors r̃
02,𝑓 , r̃13,𝑓 per face.

Constraints involving vertices are

𝑐vert,1 (𝑣) := �̃�𝑖 −𝑤𝑖𝑣𝑖 = 0, 𝑐vert,2 (𝑣) := 𝑤𝑖 − 𝜔2

𝑖 − 1.0 = 0.

We use one dummy variable 𝜔𝑖 per weight to ensure that weights

remain above the threshold 1.0. The precise value of the threshold is

not relevant because all other constraints are homogeneous. Average

edge vectors per face, in the notation used by Eq. (5), are defined by

the constraints

𝑐ev,1 (𝑓) := ẽ
02,𝑓 −

(
(𝑤0 +𝑤1) (�̃�2 + �̃�3) − (𝑤2 +𝑤3) (�̃�1 + �̃�0)

)
= 0,

𝑐ev,2 (𝑓) := ẽ
13,𝑓 −

(
(𝑤1 +𝑤2) (�̃�0 + �̃�3) − (𝑤0 +𝑤3) (�̃�2 + �̃�1)

)
= 0

Vectors ẽ
02,𝑓 , ẽ13,𝑓 are the previously defined average edge vec-

tors e02, e13, multiplied by a combination of weights which makes

denominators vanish.

The normal vector n𝑓 is initialized according to Fig. 3, while

taking the orientation into account. Our average edge vectors are

precisely the diagonals in the inscribed quad depicted in Fig. 3. We

therefore use the following constraints to handle normal vectors:

𝑐norm,1 (𝑓) := ⟨n𝑓 , ẽ02,𝑓 ⟩ = 0, 𝑐norm,2 (𝑓) := ⟨n𝑓 , ẽ13,𝑓 ⟩ = 0,

𝑐norm,3 (𝑓) := ∥n𝑓 ∥2 − 1 = 0.

These normal vectors are recomputed after each round of optimiza-

tion, since we cannot be sure that the implicit conditions above are

sufficient to keep a consistent orientation. For every oriented half-

edge ®𝑒 = 𝑣𝑖𝑣 𝑗 , we have a ruling vector r®𝑒 defined by the constraint

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

n𝑓0

n𝑓1n𝑓2

n𝑓3

Developable Quad Meshes and Contact Element Nets • 183:7

𝑐rul (®𝑒) := r®𝑒 − n𝑓 × n𝑓 ′ = 0, where ®𝑒 = 𝑓 ∩ 𝑓 ′,

with 𝑓 to the left and 𝑓 ′ to the right of the half-edge ®𝑒 . We define

re-weighted ruling vectors per face by the constraints

𝑐rul,1 (𝑓) := r̃
13,𝑓 −

(
(𝑤1 +𝑤2)r𝑣1𝑣2 + (𝑤3 +𝑤0) (−r𝑣3𝑣0)

)
= 0,

𝑐rul,2 (𝑓) := r̃
02,𝑓 −

(
(𝑤0 +𝑤1)r𝑣0𝑣1 + (𝑤2 +𝑤3) (−r𝑣2𝑣3)

)
= 0.

Developability is expressed by Eq. (7):

𝑐dev (𝑓) := r̃
13,𝑓 × r̃

02,𝑓 = 0.

The sums of squares of the constraints define energy functionals,

𝐸vert =
∑

𝑣∈𝑉 ,𝑗 𝑐vert, 𝑗 (𝑣)2, 𝐸norm =
∑

𝑓 ∈𝐹,𝑗 𝑐norm, 𝑗 (𝑓)2, and analo-

gously for energies 𝐸ev, 𝐸rul, 𝐸dev.

To ensure that the mesh polylines approximate smooth parameter

lines of a surface, we employ fairness functionals: We define

𝐸𝑉fair =
∑︁

triples 𝑣𝑖 𝑣𝑗 𝑣𝑘
∥𝑣𝑖 − 2𝑣 𝑗 + 𝑣𝑘 ∥2,

where the sum is over all triples 𝑣𝑖𝑣 𝑗𝑣𝑘 of successive vertices on a

discrete parameter polyline. Likewise we measure the fairness of

the normal field and ruling fields by energies

𝐸𝑛fair =
∑︁

triples 𝑓𝑖 𝑓𝑗 𝑓𝑘

∥n𝑓𝑖 − 2n𝑓𝑗 + n𝑓𝑘 ∥
2, 𝐸𝑟fair =

∑︁
triples ®𝑒𝑖 ,®𝑒 𝑗 ,®𝑒𝑘

∥r®𝑒𝑖 − 2r®𝑒 𝑗 + r®𝑒𝑘 ∥
2 .

The sum in 𝐸𝑛fair is over all triples of successive faces arranged in a

strip like shown in Fig. 5. We found that imposing fairness on the

normal vector field prevents singularities like the one in Fig. 9, right.

The sum in 𝐸𝑟fair is over triples of successive half-edges.

Summing up, in our optimization we minimize the functional

𝐸 = 𝐸norm + _vert𝐸vert + _ev𝐸ev + _rul𝐸rul + _dev𝐸dev
+ _𝑉fair𝐸

𝑉
fair + _

𝑛
fair𝐸

𝑛
fair + _

𝑟
fair𝐸

𝑟
fair . (8)

The weights _vert, _rul, . . . have to be chosen according to the par-

ticular application — see Table 1. In the last steps of the iteration,

weights of terms used for regularization are set to 0. This enables

𝐸dev to approach zero itself. Table 1 refers to the status immediately

before.

Remark 2.7. Both the definition of discrete developability and the

optimization setup are much simplified if the vertex weights are

equal. In such case, we can, without loss of generality, simply let

𝑤𝑖 = 1 for all 𝑖 . Our choice of variables for optimization is guided

by the empirical rule that the polynomial degree of constraints

should not exceed 2. If all weights equal 1, the number of variables

Fig. 11. The influence of vertex weights 𝑤𝑗 . A coarse mesh (left) has been
optimized to become developable, setting all point weights to 1 (center) and
with weights as variables (right). Gauss images show that the additional
degrees of freedom provided by the weights have a beneficial influence.

Fig. 12. The influence of ruling fairness. The left- and right-hand images show
results of optimization with ruling fairness disabled (_𝑟fair = 0) resp., enabled.
The effect is that the resulting developable does not as easily decompose
into several ruled pieces.

is reduced not only because the weights themselves are constants

now, but we also would not need edge vectors as variables — they

could be replaced by a linear combination of vertices. Similarly, the

average face ruling vectors could be replaced by a difference of

edge ruling vectors. Figure 11 shows that the additional degrees of

freedom provided by the weights have a beneficial influence, which

is particularly visible for coarse meshes.

2.5 Approximation Power of Discrete Developables
We argue that contact element nets as introduced in § 2.3 are a

suitable discretization for developable surfaces, as they are capable

of representing developables up to 2nd order approximations.

Locally, a surface Ψ is represented as a height field 𝑧 = 𝑓 (𝑥,𝑦).
We approximate 𝑓 with a 2nd order Taylor polynomial, which yields

an approximating surface Φ defined by

𝑧 = 𝑔(𝑥,𝑦) = 𝑓 (0, 0) + ∇𝑓 (0, 0)𝑇
(
𝑥

𝑦

)
+ 1

2

(𝑥 𝑦)∇2 𝑓

(
𝑥

𝑦

)
.

If Ψ is developable, then det∇2 𝑓 = 0 [do Carmo 1976, p. 163]. It

follows that Φ is a parabolic cylinder.

Interestingly, there are many contact element nets that are devel-

opable in the sense of Def. 2.5, and whose associated B-spline surface

reproduces the above-mentioned cylinder Φ. The construction is

the following:

Φ1 Φ1

Φ2

Fig. 13. A projective transformation maps the parabolic cylinder Φ1 to
a quadratic cone Φ2. Φ1 has many exact representations by a discrete-
developable quad mesh and associated biquadratic spline surface (left and
center). The projective transformation maps spline control points of Φ1

to weighted spline control points of Φ2, leading to a quadratic NURBS
representation. This low degree is possible with polynomial (un-weighted)
splines only in special cases, namely, if parameter lines are rulings.

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

183:8 • Ceballos Inza, V. et al.

(a) (b) (c) (d) (e) (f)

Fig. 14. Interactive editing. The sequence of images (a)–(d) shows a developable patch being interactively modified by a user who keeps one boundary segment
and two corner vertices (blue) fixed, and is dragging on another boundary vertex (red). Images (e) and (f) show the influence of the weight we give to 𝐸iso in
our optimization. While in subfigures (a)–(d) we use isometry to the previous step for its regularizing effect, in (e) we employ isometry to the original patch.
This is a constraint that is not compatible with the user’s desire to move the red vertex. Subfigure (f) is similar to (a)–(d), but with a lower weight of 𝐸iso.

Fig. 15. The action of our optimization procedure on a non-developable initial mesh. From left to right, we show the initial mesh and the result of 2, 5, and 10
rounds of optimization. After 10 rounds, both Gauss image and orthotomic surface (§ 4.2) are curve-like and no pockets of non-developability remain.

Consider the special case 𝑔(𝑥,𝑦) = 𝑥2 first. Define a parametriza-

tion of the 𝑥𝑦 plane and Φ by 𝑥 (𝑢, 𝑣) = 𝑎1𝑢 +𝑏1𝑣 ,𝑦 (𝑢, 𝑣) = 𝑎2𝑢 +𝑏2𝑣 ,
and 𝑧 (𝑢, 𝑣) = 𝑥 (𝑢, 𝑣)2 = (𝑎1𝑢 +𝑏1𝑣)2. Its polar form [Prautzsch et al.

2002] reads

𝐺 (𝑢1, 𝑢2; 𝑣1, 𝑣2) =
(
𝑎1
𝑢1 + 𝑢2

2

+ 𝑏1
𝑣1 + 𝑣2

2

, 𝑎2
𝑢1 + 𝑢2

2

+ 𝑏2
𝑣1 + 𝑣2

2

,

𝑎2
1
𝑢1𝑢2 + 2𝑎1𝑏1

𝑢1 + 𝑢2
2

𝑣1 + 𝑣2
2

+ 𝑏2
1
𝑣1𝑣2

)
.

The function𝐺 defines spline control points 𝑣𝑖 𝑗 = 𝐺 (𝑖, 𝑖 + 1; 𝑗, 𝑗 + 1),
where 𝑖, 𝑗 run in the integers. The bi-quadratic B-spline surface with

control points 𝑣𝑖 𝑗 exactly reproduces Φ. By § 2.2.2, it is at the same

time the limit surface when the net of control points undergoes

Doo-Sabin subdivision.

A general parabolic cylinder 𝑧 = 𝑔(𝑥,𝑦) is either generated

from the special case 𝑧 = 𝑥2 by applying an affine transforma-

tion, or directly by computing control points via the polar form of

𝑔(𝑥 (𝑢, 𝑣), 𝑦 (𝑢, 𝑣)) [Prautzsch et al. 2002]. Figure 13 shows examples.

The contact element net with vertices 𝑣𝑖 𝑗 is exactly developable

in the discrete sense. This is because discrete tangent planes 𝜏𝑓 by

§ 2.2.2 are tangent to Φ, therefore intersect in lines parallel to the

rulings of Φ. It follows that all discrete rulings are parallel, implying

developability.

Developables have the same tangent plane in all points of a single

ruling. The parabolic cylinders mentioned above have 2nd order

contact only in a single point. However, applying projective trans-

formations yields the class of quadratic cones, which are capable

of 2nd order approximation along an entire ruling [Pottmann and

Wallner 2001, § 6.1]. This means that contact element nets with

appropriately weighted vertices can reproduce developables up to

2nd order along an entire ruling.

Summing up, contact element nets are capable of approximating

developables in the sense of a 2nd order Taylor approximation; they

are even capable of exactly reproducing said Taylor approximation.

For an exact reproduction, it is not necessary that the edges of

the contact net are aligned with rulings.

3 DESIGN TOOLS FOR DEVELOPABLE SURFACES
We here discuss several tools for modeling developables. All are

based on minimizing a target functional composed of individual

energies expressing either constraints or fairness.

3.1 Interactive Editing
A basic way of design is the interactive manipulation of a surface

by pulling on handles, and by requiring that certain vertices stay

close to prescribed positions. Positional constraints are handled

by adding an energy of the form 𝐸pos =
∑ ∥𝑣𝑖 − 𝑣∗𝑖 ∥

2
to the total

energy of Eq. (8). Here the sum is over all vertices 𝑣𝑖 for which target

positions 𝑣∗
𝑖
are available. Figure 14 shows how different positional

constraints influence editing.

Initializing Variables For Editing. In all our examples concerning

editing, vertex weights are set to 1 and are never modified. The ver-

tices of themesh to be edited are assumed to be given. The remaining

variables are initialized directly via their respective constraints.

The initial mesh can be arbitrary; it evolves toward developability

in a way which is defined by the positional constraints imposed by

the user. Figure 15 shows an example of how a non-developable

initial mesh quickly becomes developable.

Φ Fig. 16. Gliding Con-
straint. 3 positions of
a developable gliding
along a curve Φ.

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

Developable Quad Meshes and Contact Element Nets • 183:9

Fig. 17. The surface on the left is made
piecewise developable by partitioning it
into strips alongmesh polylines, andmak-
ing those strips developable while bound-
aries remain fixed. We also show the
Gauss image, whose curve components
correspond to the developable parts of
the surface. The figure on the right shows
a paper model.

Gliding Constraint. Another basic design requirement would be

that our surface𝑀 is to glide through a reference shape represented

by a point cloud Φ (e.g. a curve). For all 𝑝 ∈ Φ we compute the

closest point projection 𝑝∗ ∈ 𝑀 which is contained in some face

𝑓 (𝑝). We now require that 𝑝 does not deviate from the tangent plane

associated with this face, which passes through the face midpoint

𝑏 𝑓 (𝑝) and has normal vector n𝑓 (𝑝) . This is expressed by a low value

of the energy

𝐸prox =
∑︁

𝑝 active

⟨𝑝 − 𝑏 𝑓 (𝑝) , n𝑓 (𝑝) ⟩2

The sum is over all active points 𝑝 in the cloud Φ (which are not

variables), where active means they are not too far from the variable

mesh𝑀 . The faces 𝑓 (𝑝) are recomputed in each round of the opti-

mization. The approximation of the distance field of𝑀 by distances

to tangent planes is done on the basis of [Pottmann et al. 2006]. It is

known to be accurate to 2nd order in the case of zero distance, and

it prevents unwanted effects if the pool of active points in Φ is not

entirely correct. Figure 16 shows an example where a developable

is gliding along a curve.

Soft Isometry Constraints as Regularizers. In interactive modelling

applications, we offer to the designer different kinds of material

behaviour as illustrated by Fig. 14.

For the soft isometry constraints, we follow [Jiang et al. 2020].

We express isometry between faces 𝑓 = 𝑣0𝑣1𝑣2𝑣3 and 𝑓
′ = 𝑣 ′

0
𝑣 ′
1
𝑣 ′
2
𝑣 ′
3

by

𝑐iso,1 (𝑓 , 𝑓 ′) := ∥𝑣2 − 𝑣0∥2 − ∥𝑣 ′
2
− 𝑣 ′

0
∥2 = 0,

𝑐iso,2 (𝑓 , 𝑓 ′) := ∥𝑣3 − 𝑣1∥2 − ∥𝑣 ′
3
− 𝑣 ′

1
∥2 = 0,

𝑐iso,3 (𝑓 , 𝑓 ′) := ⟨𝑣2 − 𝑣0, 𝑣3 − 𝑣1⟩ − ⟨𝑣 ′
2
− 𝑣 ′

0
, 𝑣 ′

3
− 𝑣 ′

1
⟩ = 0.

These constraints yield a contribution to the target functional in

optimization, namely

𝐸iso =
∑︁

(𝑓 ,𝑓 ′)

∑︁
𝑘=1,2,3

𝑐iso,𝑘 (𝑓 , 𝑓 ′)2 .

• If the design surface𝑀 is to behave like an inextensible material,

geometric design can be done by including the property of being

isometric to the reference mesh, using the term 𝐸iso with a large

associated weight _iso.

• The design surface may behave in an elastic way. In our imple-

mentation, we can choose to include the property of being isometric

either to the reference mesh (with a smaller weight _iso), or to the

previous state/iteration. Both provide a regularizing effect to vary-

ing extents, without pulling the surface back to its initial position.

We do not claim to accurately model any exact material behavior.

3.2 Developable Lofting
A basic way how a designer may specify a developable is to prescribe

two boundary curves — see Fig. 18. This procedure is referred to

as lofting. Developable lofting is a problem with a long history,

and early solutions for special cases. Within the framework of our

optimization, we set up lofting as follows: We connect the two given

curves by an arbitrary quad mesh (e.g. by a ruled surface) which we

subsequently optimize.

Previous approaches to discrete developables cannot take this

road easily:

• The semidiscrete representation of piecewise-developables by

Pottmann et al. [2008] uses quad meshes with planar faces. Edges
correspond either to boundary curves, or rulings. Apart from the the

difficulty of having planar faces, such a mesh also cannot describe

strips that are cut off in an arbitrary way, not exactly along a ruling.

Since in our approach rulings are not aligned with edges, such

problems do not occur.

• The ruling-based method of Tang et al. [2016] suffers the same

deficiencies.

• The methods based on orthogonal geodesic nets, such as [Rabi-

novich et al. 2018a] and follow-up contributions, cannot describe a

collection of developable strips without trimming, since the bound-

ary curves are, in general, not geodesics.

• The method of Jiang et al. [2020], which is based on isometries,

cannot easily solve examples like that of Fig. 18. This is because the

development, which does not even exist globally, has to be initialized

and then optimized simultaneously with the surface.

While some of these drawbacks might be solvable through trivial

engineering solutions (such as trimming, or matching local develop-

ments), our method does not require any computational overhead,

making it more efficient, and hence suitable, for interactive design.

Fig. 18. Developable lofting. The surface with cylinder topology on the left
is optimized for developability so that the two boundary curves remain
unchanged. We visualize developability not only via the Gauss image, but
also with the orthotomic curve mentioned in § 4.2.

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

183:10 • Ceballos Inza, V. et al.

Fig. 19. Developable lofting of skew straight lines. A lofting solution usually
findings a developable with rulings transverse to the prescribed boundaries.
However, this is not possible if those boundaries are straight lines. Our
method allows us to find a solution with singularities and a planar piece (top)
and another solution where the boundaries are actually rulings (bottom).
The latter is found automatically if the ruling fairness term is given a higher
weight.

Solvability of the Lofting Problem. Lofting is actually a difficult

problem, which does not need to have a smooth solution: It has many

continuous solutions such as a union of cones whose vertices lie on

the given boundary curves in an alternating way. Figure 19 shows

the behavior of our algorithm in such a failure case. A developable

containing two skew lines exists and can be found (Fig. 19, bottom).

However, when disabling ruling fairness, our optimization gets stuck

in a local minimum and tries to find a developable whose rulings are

transverse to the given boundary. In this special case, it is known

that no solution exists, so we use this example to simulate a failure

case. Our algorithm produces a developable with singularities at the

boundary (Fig. 19, top).

Generally, developable lofting is known to be challenging. An

example demonstrating the capabilities of our method is illustrated

by the architectural design shown in Fig. 1.

3.3 Multiresolution Modeling
In § 2.2.2 we described the watertight spline surface associated with

a quad mesh, and how it occurs as the limit of weighted Doo-Sabin

subdivision. We use these tools for a multiresolution approach to

modeling developables.

We start with a coarse quadmesh𝑀 equippedwith vertexweights.

Vertices and weights are optimized such that 𝑆𝑘𝑀 , the result of 𝑘

rounds of subdivision, is a discrete developable. Here typically 𝑘 = 1

or 𝑘 = 2. The idea of this procedure is to define a near-developable

spline surface 𝑆∞𝑀 by a small optimized control mesh𝑀 . In case

the result of optimization does not yield the desired quality, we

subdivide, let𝑀 := 𝑆1𝑀 , and repeat the procedure.

The resulting spline surface consists of as many biquadratic ra-

tional Bézier patches as the mesh has faces. Our aim is to achieve a

small number of patches. Figure 20 shows an example of multireso-

lution modeling.

Fig. 20. Combining lofting with multiresolution. Left: A coarse mesh𝑀 which
is optimized towards developability. The corresponding Gauss image shows
that the goal has not been achieved, owing to the low resolution. Center:
A coarse mesh𝑀 ′, constrained to the same two boundary curves as𝑀 , is
optimized such that a subdivided mesh 𝑆2𝑀 ′ is discrete-developable. The
Gauss image of𝑀 ′ demonstrates a high degree of developability. Right: The
biquadratic spline surface defined by𝑀 ′ , consisting of 16 Bézier patches. It
does not interpolate the boundary (for that, we would have to impose that
certain face centers are constrained to the boundary, see Fig. 4, right).

4 DISCUSSION

4.1 Implementation
All interactive design tools described in § 3 were implemented as

part of Rhinoceros3D. Our plugin is a C++ dynamic-link Windows
®

library that can directly interact with the Rhino application. The

benefit of our implementation choice is two-fold: first, it seamlessly

combines with all the existing geometry processing tools already

in Rhino. This results in a powerful design environment. Secondly,

Rhino is widely used within the architectural community, and thus

provides a natural, broad user base for the new algorithms. Our

plugin will be made available as open-source software.

The optimization of § 2.4 and § 3.1 was solved using a Levenberg-

Marquardt method according to [Madsen et al. 2004, §3.2], with

a damping parameter of 10
−6
. In the interactive application, the

optimization is restarted on every user input. We terminate the opti-

mization loop when the energy value falls below a certain threshold,

or when there is no more improvement.

Our implementation uses McNeel’s openNURBS toolkit for el-

ementary geometric manipulations, the Intel
®
oneAPIMath Ker-

nel library for efficient sparse matrix manipulations, and Intel
®
’s

oneMKL pardiso for solving large sparse symmetric linear systems.

The behaviour of energies during the course of optimization is

exemplarily shown by Fig. 21. Table 1 provides statistics on the

size of optimization problems, the choice of weights, and the time

needed. Times refer to an Intel
®
Xeon

®
CPU E5-2695 v3@ 2.30GHz

x64-based processor, running 64-bit Windows
®
10. Our plugin is

configured to use 64 parallel openMP threads. This was chosen to

10
−6

10
−4

10
−2

10
0

7 iterations

Fig. 10 Fig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, topFig. 19, top

400 iterations

𝐸pos

𝐸dev

𝐸rul

𝐸norm

𝐸𝑉fair

𝐸𝑛fair

Fig. 21. Energies during optimiza-
tion for Fig. 10 (weights change
after 4 iterations), and for the sin-
gular case of Fig. 19, top. Energy
spikes correspond to buckling-
like local shape changes.

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

Developable Quad Meshes and Contact Element Nets • 183:11

Table 1. Optimization details. For selected examples, we give the number of
faces, weights used in optimization, the number of individual surfaces this
example consists of, the number of iterations (resp. an average number of
iterations, if marked by “∼”), the average time in seconds needed for a single
iteration and a single surface, and the total time used for optimization.

Fig. |𝐹 | 𝑤𝑉
fair 𝑤𝑛

fair 𝑤𝑟
fair 𝑤rul 𝑤dev 𝑤pos 𝑤iso #surf #it𝑇

per it

single
𝑇
total

10 1024 0.1 1.0 10.0 10.0 0.1 1 4 .201

0.01 0.1 10.0 10.0 0.1 3 .207 1.4

11
cent

99 0.1 10.0 100.0 1.0 1 162 .009 1.5

11
right

99 0.1 10.0 100.0 1.0 1 133 .018 2.4

15 1638 0.1 10.0 100.0 1 10 .227 2.3

17 1076 0.1 0.01 1.0 10.0 100.0 6 ∼21 .018 2.7

18 1500 1.0 0.01 10.0 100.0 10.0 1 52 .211 11.0

19
top

1800 0.01 0.1 10.0 10.0 10.0 0.1 1 400 .395 158

19
bot

1800 0.1 0.1 2.0 10.0 100.0 10.0 0.1 1 380 .703 267

20
left

25 0.05 10.0 100.0 1.0 1 23 .004 .092

20
cent

25 0.05 10.0 100.0 1.0 1 106 .037 3.9

Table 2. Measuring developability. This table gives the energy 𝐸dev for those
examples where remeshing and projective transformations take place.

Fig. 𝐸total

dev
𝐸
per face

dev
|𝐹 |

26a 5.5 ·10−5 7.4 ·10−8 734

26b 2.0 ·10−4 1.1 ·10−6 175

26c 1.9 ·10−5 2.1 ·10−8 900

26d 2.5 ·10−5 3.4 ·10−8 734

Fig. 𝐸total

dev
𝐸
per face

dev
|𝐹 |

13
left

9.6 ·10−30 – 77

13
center

1.6 ·10−28 – 77

13
right

6.1 ·10−5 7.9 ·10−7 77

achieve interactivity for the models shown throughout the figures,

but could be tuned for larger designs.

We do not give statistics for Fig. 1, Fig. 22 or Fig. 23 since these

examples were interactively designed, with optimization running

in the background continuously. The architectural design in Fig. 1

consists of 6 surfaces with a total of 15k faces.

4.2 Validation
Our developability condition of Def. 2.5 imposed on meshes is com-

parable to the requirement that the Gauss curvature of a smooth

developable vanishes. The latter has a list of local and global impli-

cations, including a curve-like Gauss image and existence of rulings.

These properties could be verified up to tolerances.

Visualization of Gauss Curvature. The property of the Gauss im-

age being curve-like is a very sensitive indicator of developability. In

contrast to this, visualizing the numerical values of Gauss curvature

Fig. 22. Creases as a design element of piecewise developables.

Fig. 23. A developable surface
made with the design tool de-
scribed in § 3.1, starting from a
planar mesh with 3 incisions. Af-
ter cutting free every hole, a devel-
opment can be computed, using
the method of [Jiang et al. 2020].

is not suitable for properly identifying developable surfaces, because

the numerical errors inherent in the approximate computation of

Gauss curvature are bigger than the value of Gauss curvature itself.

This was confirmed in experiments on fair quad meshes sampled

frommathematically correct developables, using the jet fitmethod of

[Cazals and Pouget 2005]. For this reason, we validate developability

via the Gauss image throughout this paper.

Visualization of Developability via Orthotomics. For any surface Φ,
reflecting a source point in all tangent planes yields the orthotomic

surface Φ∗
[Hoschek 1985]. It degenerates into a curve if and only

if the original surface was developable and thus is a good visual

indicator of developability — see Fig. 15 and Fig. 18.

4.3 Conclusion
The developability criterion for quad meshes presented in this paper

has successfully been used to solve design problems with devel-

opable surfaces, which is a well-known and difficult topic with a

long list of individual contributions. The fact that the edges of our

developable quad meshes do not have to be aligned with special

curves, represents a great practical advantage. Another advantage

is the fact that we do not have to consider the actual development

at the same time as the developable surface. These advantages are

evident in comparison with prior work.

The method presented in this paper has a focus on the model-

ing of continuous deformations of discrete developable surfaces for

applications in design, in line with the works of [Jiang et al. 2020;

Rabinovich et al. 2018a]. We observed that typically we could im-

prove the quality of results obtained by prior work by subjecting

these results to optimization by our method. Figure 24 shows an

example where this has been tested on a result obtained by the

method of [Rabinovich et al. 2018a]. In our experience, the Gauss

image test reveals that the results of [Rabinovich et al. 2018a] have

the highest quality of developability among related work [Jiang

et al. 2020; Sellán et al. 2020; Stein et al. 2018]. Yet our method can

improve the quality of developability even further.

Our method can be used in other applications involving devel-

opables, such as guided surface approximation by piecewise devel-

opables — see Fig. 17. We do not compare approximation capabilities

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

183:12 • Ceballos Inza, V. et al.

Fig. 24. The mesh on the left has been created using the method of [Rabi-
novich et al. 2018a]. We illustrate rulings and Gauss image to show that
this surface is developable. Further optimization by our method improves
the quality (right). The main advantage of our method compared to that of
Rabinovich et al. [2018a] is that theirs works with a special parametrization,
limiting its capabilities e.g. for modeling.

with previous contributions in that area [Binninger et al. 2021; Ion

et al. 2020; Sellán et al. 2020; Stein et al. 2018], as currently our

method would require a prior decomposition into piecewise devel-

opables. This limitation is intentional, as our focus is to incorporate

design aesthetics that cannot be achieved without user-guided input.

Interactive Modeling. Our method is interactive in two ways.

Firstly it can be used to interactively model developables — see

Fig. 14. Secondly, we provide immediate feedback to the user: The

Gauss image directly shows if developability has been achieved.

The user can react and change constraints, or the weights given to

constraints.

Since developables can often be defined by their boundaries, loft-

ing is actually a very good method of design. We show several

examples in previous sections; here we only point out that we can

model creases as a design element, as shown in Fig. 22, as well as

singularities, illustrated by Fig. 25.

The developability condition proposed in this paper is almost-

invariant under remeshing — see Fig. 26. This means representing

a given developable mesh by another quad mesh with fair mesh

polylines yields a mesh that almost fulfills our criterion of Def. 2.5

again. This is due to the underlying geometric property not being

changed. This property has been used to create the examples of

Fig. 23, and is extremely useful e.g. for trimming and for joining

Fig. 25. Lofting singularities. By choosing boundaries and optimizing the
surfaces between them we achieve piecewise developability. The singularity
at the top is a strip boundary that doubles back onto itself.

(a) (b)

(c) (d)

Fig. 26. Invariance of developability under remeshing and projective maps.
Remeshing converts mesh (a) to meshes (b), (c), and a projective transfor-
mation yields (d). 𝐸dev remains small — see Table 2.

patches. We emphasize that we can work with most methods for

user-guided quad remeshing, e.g. [Ebke et al. 2016].

Recall that in our setup we can directly leverage the projective

invariance of developability, cf. § 2.3.2. Affine transformations were

used in the modeling process that led to Fig. 23.

Limitations. One major limitation of our methods is geometric

in nature. While an experienced user can generate developables

easily, this is more difficult for a user without prior knowledge of

the quirks of developable surfaces. Our implementation currently

requires the user to choose weights meaningfully.

Future Research. Our aim is to publish a plugin for the software

Rhino, which benefits from the possibility of conversion to NURBS

format. For practical applications, material properties and tolerances

need to be considered. Regarding our contribution to geometry, we

are confident that it can lead to a more comprehensive theory of

contact element nets.

ACKNOWLEDGMENTS
This work was supported by the Austrian Science Fund via grants

I2978 (SFB-Transregio programme Discretization in geometry and

dynamics), and F77 (SFB grant Advanced Computational Design).

V. Ceballos Inza and F. Rist were supported by KAUST baseline

funding.

REFERENCES
Alexandre Binninger, Floor Verhoeven, Philipp Herholz, and Olga Sorkine-Hornung.

2021. Developable Approximation via Gauss Image Thinning. Comput. Graph.
Forum 40, 5 (2021), 289–300. Proc. SGP.

Alexander Bobenko, Helmut Pottmann, and JohannesWallner. 2010. A curvature theory

for discrete surfaces based on mesh parallelity. Math. Annalen 348 (2010), 1–24.

Alexander Bobenko and Yuri Suris. 2007. On Organizing Principles of discrete differen-

tial Geometry, Geometry of spheres. Russian Math. Surveys 62, 1 (2007), 1–43.
R.M.C. Bodduluri and Bahram Ravani. 1993. Design of developable surfaces using

duality between plane and point geometries. Computer-Aided Design 25 (1993),

621–632.

Frédéric Cazals and Marc Pouget. 2005. Estimating differential quantities using poly-

nomial fitting of osculating jets. Computer Aided Geometric Design 22, 2 (2005),

121–146.

Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2018. Shape from

Metric. ACM Trans. Graph. 37, 4 (2018), 63:1–17.

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

Developable Quad Meshes and Contact Element Nets • 183:13

Manfredo P. do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall,
Englewood Cliffs, NJ.

Hans-Christian Ebke, Patrick Schmidt, Marcel Campen, and Leif Kobbelt. 2016. Inter-

actively Controlled Quad Remeshing of High Resolution 3D Models. ACM Trans.
Graph. 35, 6 (2016), 218:1–13.

Heinrich W Guggenheimer. 1963. Differential Geometry. McGraw-Hill, New York.

Josef Hoschek. 1985. Smoothing of curves and surfaces. Comput. Aided Geom. Des. 2
(1985), 97–105.

Alexandra Ion, Michael Rabinovich, Philipp Herholz, and Olga Sorkine-Hornung. 2020.

Shape Approximation by Developable Wrapping. ACM Trans. Graph. 39, 6 (2020),
200:1–12.

Caigui Jiang, Klara Mundilova, Florian Rist, Johannes Wallner, and Helmut Pottmann.

2019. Curve-pleated structures. ACM Trans. Graph. 38, 6 (2019), 169:1–13.
Caigui Jiang, Chengcheng Tang, Marko Tomičić, Johannes Wallner, and Helmut

Pottmann. 2015. Interactive Modeling of Architectural Freeform Structures – Com-

bining Geometry with Fabrication and Statics. In Advances in Architectural Geometry
2014. Springer, Cham, 95–108.

Caigui Jiang, Cheng Wang, Florian Rist, Johannes Wallner, and Helmut Pottmann.

2020. Quad-Mesh Based Isometric Mappings and Developable Surfaces. ACM Trans.
Graph. 39, 4 (2020), 128:1–13.

Johann Lang and Otto Röschel. 1992. Developable (1, 𝑛)-Bézier Surfaces. Comput.
Aided Geom. Design 9 (1992), 291–298.

Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and Wenping Wang.

2006. Geometric modeling with conical meshes and developable surfaces. ACM
Trans. Graph. 25, 3 (2006), 681–689.

Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. 2004. Methods for non-linear least
squares problems (2nd ed.). Technical Univ. Denmark, Denmark.

Chi-Han Peng, Caigui Jiang, Peter Wonka, and Helmut Pottmann. 2019. Checkerboard

Patterns with Black Rectangles. ACM Trans. Graph. 38, 6 (2019), 171:1–13.
Jörg Peters and Ulrich Reif. 2008. Subdivision surfaces. Springer, Berlin Heidelberg.

Helmut Pottmann, Qixing Huang, Yong-Liang Yang, and Shimin Hu. 2006. Geometry

and convergence analysis of algorithms for registration of 3D shapes. Int. J. Computer
Vision 67, 3 (2006), 277–296.

Helmut Pottmann, Alexander Schiftner, Pengbo Bo, Heinz Schmiedhofer, Wenping

Wang, Niccolo Baldassini, and Johannes Wallner. 2008. Freeform surfaces from

single curved panels. ACM Trans. Graph. 27, 3 (2008), 76:1–10.
Helmut Pottmann and Johannes Wallner. 2001. Computational line geometry. Springer,

Berlin Heidelberg New York.

Hartmut Prautzsch, Wolfgang Boehm, and Marco Paluszny. 2002. Bézier and B-spline
techniques. Springer, Berlin.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018a. Discrete

Geodesic Nets for Modeling Developable Surfaces. ACM Trans. Graph. 37, 2 (2018),
16:1–17.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018b. The Shape

Space of Discrete Orthogonal Geodesic Nets. ACM Trans. Graph. 37, 6 (2018), 228:1–
17.

Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2019. Modeling

Curved Folding with Freeform Deformations. ACM Trans. Graph. 38, 6 (2019),

170:1–12.

Thilo Rörig and Gudrun Szewieczek. 2021. The Ribaucour families of discrete R-con-

gruences. Geom. Dedicata 214 (2021), 251–275.
Robert Sauer. 1970. Differenzengeometrie. Springer, Berlin.
Hans-Peter Schröcker. 2010. The Bäcklund Transform of Principal Contact Element

Nets. arXiv:1010.3339.

Silvia Sellán, Noam Aigerman, and Alec Jacobson. 2020. Developability of Heightfields

via Rank Minimization. ACM Trans. Graph. 39, 4 (2020), 109:1–15.
Madlaina Signer, Alexandra Ion, and Olga Sorkine-Hornung. 2021. Developable Meta-

materials: Mass-Fabricable Metamaterials by Laser-Cutting Elastic Structures. In

Proc. 2021 CHI Conf. on Human Factors in Computing Systems. ACM, 674:1–13.

Justin Solomon, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2012. Flexible

Developable Surfaces. Comput. Graph. Forum 31, 5 (2012), 1567–1576.

Oded Stein, Eitan Grinspun, and Keenan Crane. 2018. Developability of Triangle Meshes.

ACM Trans. Graph. 37, 4 (2018), 77:1–14.
Chengcheng Tang, Pengbo Bo, Johannes Wallner, and Helmut Pottmann. 2016. Interac-

tive design of developable surfaces. ACM Trans. Graph. 35, 2 (2016), 12:1–12.
Floor Verhoeven, Amir Vaxman, Tim Hoffmann, and Olga Sorkine-Hornung. 2022.

Dev2PQ: Planar Quadrilateral Strip Remeshing of Developable Surfaces. ACM Trans.
Graph. 41, 3 (2022), 29:1–18.

Thomas Wolf, Victor Cornillère, and Olga Sorkine-Hornung. 2021. Physically-based

Book Simulation with Freeform Developable Surfaces. Comput. Graph. Forum 40, 2

(2021), 449–460.

ACM Trans. Graph., Vol. 42, No. 6, Article 183. Publication date: December 2023.

	Abstract
	1 Introduction
	1.1 Overview and Contributions
	1.2 Previous Work

	2 Discrete Developables
	2.1 Differential Geometry of Smooth Developables
	2.2 Contact Element Nets
	2.3 Developable Contact Element Nets
	2.4 Computation
	2.5 Approximation Power of Discrete Developables

	3 Design Tools for Developable Surfaces
	3.1 Interactive Editing
	3.2 Developable Lofting
	3.3 Multiresolution Modeling

	4 Discussion
	4.1 Implementation
	4.2 Validation
	4.3 Conclusion

	Acknowledgments
	References

