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Fig. 1. The proposed unified 𝜆-subdivision scheme covers a continuous family of tuned subdivisions in 𝜆, the subdominant eigenvalue of the respective
subdivision matrix. Main subdivision coefficients, 𝑓2 (𝜆) and 𝑓3 (𝜆) , of the proposed scheme are represented by spline functions of 𝜆. Subdivision schemes with
different properties can be conveniently extracted by proper selection of 𝜆 values. The 𝑓2 (𝜆) and 𝑓3 (𝜆) functions for 𝑁 = 6 are illustrated (with different
vertical shift and in different vertical scale for illustration only), and several typical selections of 𝜆 to accommodate different applications are also highlighted.

We propose an unified 𝜆-subdivision scheme with a continuous family of
tuned subdivisions for quadrilateral meshes. Main subdivision stencil pa-
rameters of the unified scheme are represented as spline functions of the
subdominant eigenvalue 𝜆 of respective subdivision matrices and the 𝜆 value
can be selected within a wide range to produce desired properties of refined
meshes and limit surfaces with optimal curvature performance in extraordi-
nary regions. Spline representations of stencil parameters are constructed
based on discrete optimized stencil coefficients obtained by a general tuning
framework that optimizes eigenvectors of subdivision matrices towards
curvature continuity conditions. To further improve the quality of limit
surfaces, a weighting function is devised to penalize sign changes of Gauss
curvatures on respective second order characteristic maps. By selecting an
appropriate 𝜆, the resulting unified subdivision scheme produces anticipated
properties towards different target applications, including nice properties of
several other existing tuned subdivision schemes. Comparison results also
validate the advantage of the proposed scheme with higher quality surfaces
for subdivision at lower 𝜆 values, a challenging task for other related tuned
subdivision schemes.
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1 INTRODUCTION
Subdivision schemes provide an elegant solution for the represen-
tation of models with arbitrary topology. With a given set of sub-
division rules, an input mesh is subdivided to generate a series of
refined meshes that converge to a smooth limit surface. Subdivision
schemes relax the rigid grid structure of B-spline control meshes
and allow the use of extraordinary vertices (EVs) on a quadrilat-
eral control mesh with the number of incident edges meeting at an
internal extraordinary vertex (EV) being three or more than four.
The number of edges connected to a vertex is usually called its
valence. A popular subdivision scheme for quadrilateral meshes
is the Catmull-Clark subdivision [Catmull and Clark 1978] which
has been integrated in various modeling software, such as Rhino,
Blender and Maya, for model definition using unstructured meshes
with arbitrary topology.
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The properties of Catmull-Clark subdivision at extraordinary
vertex positions, however, can be further improved for some practi-
cal applications. First, Catmull-Clark subdivision cannot produce
bounded curvature near extraordinary points [Sabin et al. 2003],
which is a necessary condition for producing high quality limit
surfaces with 𝐶2/𝐺2 continuity conditions. Second, Catmull-Clark
surfaces might exhibit kinked highlight lines indicating less com-
petitive surface qualities. Third, Catmull-Clark subdivision cannot
reproduce convex shapes [Karciauskas et al. 2004] for generic data
when the valence is 𝑁 ≥ 5. To remedy these problems, a simple idea
is to directly modify subdivision rules so that the resulting subdivi-
sion scheme preserves desired properties. Such a method is usually
referred to as subdivision tuning. Subdivision rules as linear opera-
tions of vertices can be written in a matrix form, and the operation
of local mesh subdivision can be performed through a matrix multi-
plication operation between the subdivision matrix and the array
of local control vertices. As subdivision surfaces can be considered
as infinitely refined control meshes, surface properties can thus be
determined by the eigenstructure of respective subdivision matrices.
Tuning of subdivision schemes is thus to modify subdivision rules
so that the eigenstructure of the subdivision matrix follows specific
patterns that lead to desired properties of limit surfaces.
A key parameter in the eigenstructure analysis of subdivision

matrices is the subdominant eigenvalue 𝜆, i.e., the twofold second
largest eigenvalue that has paramount importance in subdivision
tuning. Tuned subdivision schemes usually produce different 𝜆 val-
ues suitable for different target applications. Intuitively, 𝜆 quantifies
the speed of contraction for 1-ring vertices in the process of sub-
division. As illustrated in Fig. 1, a lower 𝜆 value leads to faster
contraction of 1-ring vertices. Existing tuned subdivision schemes
with high surface qualities, e.g. [Augsdörfer et al. 2006] and [Ma
and Ma 2018], usually result in polar artifacts in the mesh structure
which might cause inconveniences for rendering [Augsdörfer et al.
2009] due to slightly higher 𝜆 values. At 𝜆 = 0.5, polar artifacts could
be eliminated with uniform refined meshes [Ma and Ma 2019b], see
Fig. 1, at the expense of slightly reduced limit surface qualities. So
in practice, subdivision schemes with intermediate 𝜆 values might
be necessary for different modeling and graphics applications to
balance between different desired priorities. In recent years, subdivi-
sion schemes have also been widely applied in engineering analysis.
The use of subdivision schemes with a lower 𝜆 value usually pro-
duces analysis results with faster convergence of solution errors [Ma
and Ma 2019a; Wei et al. 2021], and the use of subdivision schemes
at different 𝜆 values would also be preferred for producing different
target analysis solutions.
These observations motivate us to develop a continuous family

of 𝜆-subdivision schemes that cover a wide range of 𝜆 values to
accommodate different applications. Inspired by the clear geometric
meaning of the subdominant eigenvalue 𝜆, we use 𝜆 as an intuitive
indexing parameter to extract respective subdivision schemes with
specific subdominant eigenvalue 𝜆. For ease of implementation,
main subdivision coefficients are written as spline functions of 𝜆. By
selecting an appropriate 𝜆 value, the respective tuned subdivision
scheme can be extracted by simple spline evaluation and follow-
up arithmetic calculations. As to the selection of appropriate 𝜆
values for different target applications, results of several featured

𝜆-subdivisions are provided as illustrations for guiding the selection.
Main features and contributions of this work are as follows.
• This paper presents a novel unified 𝜆-subdivision schemewith
a continuous family of tuned subdivision schemes unified
under a single parameter 𝜆 that has explicit and intuitive
meanings for various practical applications.
• Main subdivision coefficients of the unified 𝜆-subdivision
scheme are represented as spline functions in 𝜆. For a given
𝜆 value, the full set of respective subdivision parameters can
be easily extracted through spline evaluations and further
simple arithmetic calculations.
• The proposed unified 𝜆-subdivision scheme includes tuned
subdivisions with better or similar properties to that in [Ma
and Ma 2018], [Ma and Ma 2019b] and [Ma and Ma 2019a].
In addition, one can extract tuned subdivision schemes in a
continuous wide range of 𝜆 for various practical applications
in modeling, computer graphics and engineering analysis.
• The proposed unified subdivision scheme generates tangent
plane continuous limit surfaces at extraordinary points with
optimal or near optimal curvature performances for any fea-
sible 𝜆 by optimization towards curvature continuity condi-
tions. To accommodate wider applications, the feasible do-
main of 𝜆 is expanded to lower 𝜆 region by proper relaxation
of bounded curvature constraints.
• We also construct a weighted objective function to further
improve surface qualities at lower 𝜆 values, e.g., [Ma and
Ma 2019a]. The new objective function includes weighting
functions that penalize undesired sign changes of Gauss cur-
vatures of second order maps for better surface performances.

The rest of the paper is organized as follows. Some further pre-
liminaries on subdivision-based modeling and other related works
can be found in Section 2. To construct a continuous family of the
proposed subdivision schemes, we first perform subdivision tuning
at a set of discrete 𝜆 values in Section 3. Spline representations of
main subdivision coefficients in 𝜆, the so-called spline stencils, are
further constructed from the resulting discrete tuned subdivision
schemes in Section 4. Subdivisions at some featured 𝜆 values with
method for the evaluation of the full set of stencil parameters at an
arbitrary 𝜆 value are also highlighted in Section 4. Examples and
some further discussions with comparisons can be found in Section
5. Conclusions and future works are discussed in Section 6.

2 RELATED WORK

2.1 Subdivision prerequisites
Subdivision schemes work by recursive refinement of input meshes
producing a sequence of refined meshes converging to smooth limit
surfaces. Each of refined vertices is computed as linear combina-
tions of vertices in the old mesh, and coefficients that describe the
influence from old vertices to a new vertex is referred to as a subdi-
vision stencil [Sabin et al. 2007], as illustrated in Fig. 2. Subdivision
of a given mesh can be performed by matrix multiplication, and the
limit properties of subdivision surfaces can be analyzed through
the spectrum of subdivision matrices. With proper organization of
local control vertices, the respective subdivision matrix S is usually
block-circulant that can be transformed to a block-diagonal form Ŝ
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through the help of Discrete Fourier transform [Ball and Storry 1988].
Eigenvalues of subdivisionmatrix S can thus be computed by solving
eigenvalues of the diagonal submatrices in Ŝ which is much easier,
and if the eigenvalue 𝜆𝑖 is an eigenvalue of the 𝑘-th diagonal block
in Ŝ, then 𝜆𝑖 has a Fourier index of 𝑘 , denoted by F (𝜆𝑖 ) = {𝑘} [Peters
and Reif 2008]. For a general subdivision scheme with smooth limit
surfaces, the first three eigenvalues in descending order should be
1, 𝜆, 𝜆, and 𝜆 < 1 is called the subdominant eigenvalue. Similarly,
the one after 𝜆 is called the subsubdominant eigenvalue. There are
two right eigenvectors ®𝑣1 and ®𝑣2 for the subdominant eigenvalue 𝜆,
which can be considered as lists of two coordinates of vertices in R2.
The set of vertices form the natural configuration of the subdivision
scheme, see Fig. 1, and the spline rings defined by the natural config-
uration is referred to as the characteristic map [Reif 1995]. Similarly,
higher order maps can be defined if we consider the eigenvector for
the subsubdominant eigenvalue as the third coordinate, see Fig. 4(b).
Limit properties, e.g., 𝐶1 continuity, can be analyzed through analy-
sis of characteristic maps, while higher order properties are related
to higher order maps. For a comprehensive tutorial on subdivision
surfaces, please refer to [Zorin 2000] [Peters and Reif 2008].

2.2 Unified subdivision schemes
With the introduction of Catmull-Clark subdivision [Catmull and
Clark 1978] and Doo-Sabin subdivision [Doo and Sabin 1978], a wide
range of subdivision schemes have been further proposed, including
Loop subdivision [Loop 1987],

√
2-subdivision [Li et al. 2004],

√
3-

subdivision [Kobbelt 2000], Butterfly subdivision [Dyn et al. 1990],
Kobbelt subdivision [Kobbelt 1996], and so on. For further introduc-
tion on subdivision schemes, please refer to [DeRose et al. 1998; Reif
and Sabin 2019; Sabin 2005] and references therein for information.
These subdivision schemes are mostly further generalization of cer-
tain class of splines or other basis functions. In the literature, there
are also families of unified subdivision schemes that are proposed
to unify and further generalize various individual classes of subdi-
vision schemes, aiming at (1) subdivision with arbitrary continuity
in regular regions [Stam 2001] [Zorin and Schröder 2001] [Deng
and Ma 2013]; (2) generalizations of interpolatory and approximat-
ing subdivisions [Maillot and Stam 2001][Shi et al. 2008][Zhang
et al. 2019][Novara and Romani 2016]; (3) subdivision for mixed
triangle/quad meshes [Stam and Loop 2003][Lin et al. 2013] [Peters
and Shiue 2004]; and (4) unifications for existing non-stationary
schemes [Zheng and Zhang 2017]. In this work, we present a uni-
fied 𝜆-subdivision scheme that can be considered as a generalized
unification of several existing tuned subdivision schemes, such as
[Ma and Ma 2018], [Ma and Ma 2019b], and [Ma and Ma 2019a] for
different target applications.

2.3 Limit surface properties of subdivision schemes
Properties of subdivision surfaces can be analyzed from the eigen-
structures of the respective subdivision matrices [Doo and Sabin
1978]. A sufficient condition for𝐶1 continuity at extraordinary posi-
tions is given in [Reif 1995] that requires two identical subdominant
eigenvalues, denoted by 𝜆, and regular and injective characteristic
maps. It has been verified that Catmull-Clark, Doo-Sabin, and Loop
schemes, satisfy the 𝐶1 condition and thus are 𝐶1 continuous at

extraordinary positions [Peters and Reif 1998] [Umlauf 2000]. For
surfaces to be 𝐶𝑘 continuous at extraordinary positions, a lower
bound for the degree of respective polynomial patches is given in
[Prautzsch and Reif 1999], and a stationary subdivision scheme
requires a minimum degree of 6 to be curvature continuous at ex-
traordinary positions. The Catmull-Clark scheme is thus only 𝐶1

continuous at extraordinary positions, and the curvatures are un-
bounded [Karciauskas et al. 2004]. Criteria for bounded curvature
are presented in [Doo and Sabin 1978] and subdivision rules can
be tuned to satisfy such properties. Although curvatures may not
be bounded for Catmull-Clark subdivision near extraordinary po-
sitions, the principle curvatures are square-integrable [Reif and
Schröder 2001], indicating that the scheme can be used for engineer-
ing analysis. There are also other constructions for𝐶2 continuity at
extraordinary positions, e.g., guided subdivision [Karčiauskas and
Peters 2007][Karčiauskas and Peters 2018] and patchwork methods
[Loop and Schaefer 2008] [Ma andMa 2020] [Yang et al. 2023]. These
schemes may produce higher-quality limit surfaces at the cost of
higher complexity for implementation. Patchwork methods may
not always produce nested limit surfaces.

2.4 Tuning of subdivision schemes
Subdivision coefficients can be tuned to have desired properties.
The Catmull-Clark scheme and the Loop scheme are tuned for
bounded curvature in [Sabin 1991] and [Loop 2002], respectively,
and bounded curvature is also achieved for non-uniform subdi-
visions [Cashman et al. 2009b]. To incorporate a wider range of
possible desired properties, a general tuning framework through op-
timization of eigenvectors is proposed in [Barthe and Kobbelt 2004]
that produces surfaces with bounded curvature and alleviated polar
artifact. Performances of limit surfaces at extraordinary positions
can be further improved by optimizing respective eigenvectors to-
wards curvature continuity conditions while maintaining minimum
curvature variations [Ma and Ma 2018] and least polar artifact [Ma
and Ma 2019b]. In [Augsdörfer et al. 2006], the Gauss curvature near
extraordinary positions is minimized through optimization of Gauss
curvatures on a set of representative central surfaces.

2.5 Tuning for applications in Isogeometric Analysis (IGA)
With the popularity of subdivision in engineering analysis, tuning
of subdivision schemes for analysis purposes have attracted much
attention. In [Zhang et al. 2018], the Catmull-Clark scheme is tuned
through optimization of second order characteristic maps using a
thin-plate energy, and the tuned scheme yields a significant reduc-
tion of solution errors in 𝐿2-norms. For higher convergence rates
in isogeometric analysis (IGA), a lower subdominant eigenvalue of
𝜆 = 0.39 is used in [Ma and Ma 2019a] to increase local mesh densi-
ties near extraordinary vertices, and optimal convergence rates are
observed for 𝐿2-approximation problems. Similar ideas are also used
for tuning of non-uniform subdivisions in [Li et al. 2019] [Wei et al.
2021] and Loop subdivision in [Kang et al. 2022]. In general, these
schemes require 𝜆 values lower than 0.5 which might be undesirable
for high quality limit surfaces. Further discussions on subdivision
for IGA applications can also be found in [Dietz et al. 2023].
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2.6 Other tuning and construction schemes
To balance between surface qualities and engineering analysis, a
tuned scheme [Wang and Ma 2023] further relaxes Catmull-Clark
rules for 2-ring refined vertices so that additional degrees of free-
dom are introduced in optimization for improved surface qualities
at the cost of increased complexity in implementation for both
tuning and later applications. In the literature, one can also find
special rules for 2-ring refined vertices in [Karčiauskas and Peters
2023a][Karčiauskas and Peters 2023b][Karčiauskas and Peters 2022]
that are constructed based on the idea of guided subdivision [Karči-
auskas and Peters 2007] with refined vertices that are dependent on
all 3-ring vertices, leading to much more degrees of freedom for im-
proving desired limit surface properties and with well behaved limit
surface quality benefiting both modeling and relevant applications.

3 CONSTRUCTION OF SUBDIVISION STENCILS AT
SPECIFIED 𝜆 VALUES

In this section, we present a general tuning framework to compute
stencil coefficients through optimization towards curvature conti-
nuity conditions at extraordinary positions. The tuning framework
is similar to that in [Ma and Ma 2018], but a different weighted ob-
jective function with integrated penalty for reducing sign changes
in Gauss curvature of the second order characteristic maps is used
for stencil optimization in this work, which leads to improved prop-
erties of limit surfaces, especially for subdivision at lower 𝜆 values.

3.1 Subdivision stencils and subdivision matrices
The proposed family of subdivision schemes generalizes Catmull-
Clark subdivision [Catmull and Clark 1978] by modifying subdivi-
sion rules for 1-ring refined vertices. The respective stencil coeffi-
cients are written as functions of 𝜆, the subdominant eigenvalue of
respective subdivision matrices. The symbolized subdivision sten-
cils are illustrated in Fig. 2. For simplicity, we omit the variable 𝜆 of
subdivision coefficients sometimes, and use 𝑓2, 𝑓3, etc., instead.

The subdivision stencils in Fig. 2 are for quadrilateral meshes of
arbitrary topology with separated extraordinary vertices. In cases
of input meshes with general topological structure or quadrilateral
meshes with connected extraordinary vertices, we can subdivide
the mesh once using Catmull-Clark rules [Catmull and Clark 1978]
to separate extraordinary vertices, and the proposed unified subdi-
vision scheme can thus be applied.

Based on the irregular rules in Fig. 2 and regular rules for Catmull-
Clark subdivision, local subdivision matrices, denoted by S, can be
constructed to perform local mesh subdivision, written as

®𝑃𝑚 = S ®𝑃𝑚−1, (1)

where ®𝑃𝑚 is the vector of control vertices at level𝑚 = 0, 1, 2, . . ..
The respective eigenvalues and eigenvectors of the subdivision

matrix S can be explicitly written as functions of subdivision sten-
cils in Fig. 2, which will be further used for subsequent tuning of
desired subdivision stencils. A detailed formulation of subdivision
matrices with eigenstructure analysis can be found in the attached
supplementary materials (Section A).
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Fig. 2. Symbolized subdivision stencils near an extraordinary vertex: (a)-(c)
stencil coefficients for refined face, edge, and vertex vertices, respectively.
Hollow circles are regular vertices from the original mesh and red pentagram
represents the extraordinary vertex in the original mesh. Red, blue and green
solid circles are the refined face, edge, and vertex vertices, respectively. Note
that all subdivision coefficients can be written as functions of subdominant
eigenvalues 𝜆, respectively, and details will be given in Section 4.

3.2 Expected properties for subdivision schemes
For a given subdivision scheme, properties of limit surfaces are
closely related to eigenstructures of the respective subdivision ma-
trices. In the following, we highlight relevant conditions and require-
ments of respective eigenstructures for meeting expected properties
of desired subdivision schemes, which will be used for later stencil
tuning and optimization. For clarity, eigenvalues of the local sub-
division matrix S are arranged with descending absolute values as
|𝜆0 | ≥ |𝜆1 | ≥ |𝜆2 | ≥ · · · .

3.2.1 Convergence. The subdivision scheme converges and is affine
invariant [Doo and Sabin 1978] if and only if

1 = 𝜆0 > |𝜆1 |, F (1) = {0} . (2)

3.2.2 𝐶1 continuity. The subdominant eigenvalue 𝜆 is positive and
has algebraic and geometric multiplicity two, with Fourier indices
1, 𝑁 − 1,

1 > 𝜆 := 𝜆1 = 𝜆2 > |𝜆3 |, F (𝜆) = {1, 𝑁 − 1} , (3)

and the characteristic map defined by the corresponding eigenvec-
tors is regular and injective [Peters and Reif 1998].

3.2.3 Convex hull property. All subdivision stencils in Fig. 2 should
be nonnegative, i.e.,

𝑓1, 𝑓2, 𝑓3, 𝑑1, 𝑑2, 𝑒1, 𝑒2, 1 − 𝛼 − 𝛽, 𝛼, 𝛽 ≥ 0. (4)

Note that the variable 𝜆 in these stencils is omitted for brevity.
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3.2.4 Bounded curvature. The subsubdominant eigenvalue 𝜇 is pos-
itive and has algebraic and geometric multiplicity three with Fourier
indices 0, 2, 𝑁 − 2,

1 > 𝜆 := 𝜆1 = 𝜆2 > 𝜇 = 𝜆3 = 𝜆4 = 𝜆5 > |𝜆6 |, F (𝜇) = {0, 2, 𝑁 − 2} ,
(5)

and satisfies 𝜇 = 𝜆2 [Doo and Sabin 1978][Reif 2007].

3.2.5 𝐶2 continuity. The necessary and sufficient conditions [Reif
2007][Peters and Reif 2008] for a subdivision surface to be 𝐶2 at an
extraordinary position for all generic initial data is given as

1. 𝜇 < 𝜆2,
2. 𝜇 = 𝜆2 and𝜓𝑖 ∈ span{𝜓2

1 ,𝜓1𝜓2,𝜓
2
2 } for all 𝑖 = 3, . . . , 𝑞.

The second condition can be written as

𝜓𝑖 = 𝑎𝑖𝜓
2
1 + 𝑏𝑖𝜓1𝜓2 + 𝑐𝑖𝜓

2
2 , 𝑖 = 3, . . . , 𝑞, (6)

where𝜓𝑖 is the eigenfunctions corresponding to 𝜆𝑖 , and 𝑞 ≤ 5 due to
the linear independence. At least triple subsubdominant eigenvalues
with Fourier indices {0, 2, 𝑁 − 2} are required to produce all possible
basic shapes, which are always satisfied by our scheme.

3.3 Stencil optimization with desired properties
The subdivision tuning can be performed through an optimization
framework with objective functions being the main expected prop-
erties subjecting to a group of necessary constraints for stencil
coefficients to meet other desired properties of subdivision schemes.

3.3.1 Selection of free variables for optimization. Some of the afore-
mentioned properties can be strictly satisfied, such as convergence
of refined meshes, 𝐶1 continuity, the convex hull property, and
bounded curvature. These properties usually lead to hard constraints
in the optimization of stencil coefficients.
As illustrated in Fig. 2, there are nine subdivision coefficients,

i.e., 𝑓1, 𝑓2, 𝑓3, 𝑑1, 𝑑2, 𝑒1, 𝑒2, 𝛼, 𝛽 . If all the hard constraints are satisfied,
seven degrees of freedom will be eliminated, leaving only two in-
dependent parameters for optimization. In this work, we choose 𝑓2
and 𝑓3, the stencil coefficients for face vertices, as independent vari-
ables, and other coefficients for prescribed 𝑁 and 𝜆 can be written
as functions of 𝑓2 and 𝑓3 in terms of

(𝑓1, 𝑑1, 𝑑2, 𝑒1, 𝑒2, 𝛼, 𝛽) = L(𝑁, 𝜆, 𝑓2, 𝑓3) . (7)

Detailed expression for Eq. (7) can be found in Eqs. (25)-(28) and in
Section 4.5, and hard constraints can be transformed into parameter
bounds of the following form

G(𝑁, 𝜆, 𝑓2, 𝑓3) ≤ 0, (8)

where details are given in supplementary materials (Section B).

3.3.2 Constraint relaxation for bounded curvature at lower 𝜆 values.
The lower bounds 𝜆𝑙 for 𝜆 of valences 𝑁 = 3, . . . , 20 to produce
schemes with bounded curvature are illustrated in Fig. 3. If bounded
curvature is strictly required, one can only select 𝜆 in a narrow
range, especially for higher valences. To further extend feasible
domains for 𝜆, the bounded curvature constraint is relaxed as

𝜇 = 𝑠𝜆2, (9)
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Fig. 3. Illustration of lower bounds 𝜆𝑙 of 𝜆 for different valence 𝑁 for pro-
ducing subdivisions with bounded curvature in 𝜆 ≥ 𝜆𝑙 together with other
featured 𝜆 values in Table 1 (see later Section 4.4). In this figure, 𝜆𝐶1 is the
lower bound of 𝜆 to produce𝐶1 limit surfaces.

where 𝑠 ≥ 1 is a relaxation coefficient for the bounded curvature
criterion of 𝜇 = 𝜆2. In this work, the value of 𝑠 is computed as

𝑠 = 𝑠𝑙 + Δ𝑠, (10)

where 𝑠𝑙 is the lower bound for 𝑠 to satisfy other desired properties
and Δ𝑠 is a small tolerance necessary in eigenstructure analysis. The
lower bounds 𝑠𝑙 for all valences have consistent forms with explicit
formula in Eq. (47) given in the supplementary materials (Section
B). A typical 𝑠 − 𝜆 curve is illustrated in Fig. 6(e) for valence 𝑁 = 6.
We empirically select Δ𝑠 = Δ𝑠0 = 10−3 at 𝜆 ≤ 𝜆𝑙 and Δ𝑠 = 0 at
𝜆 ≥ 𝜆𝑙 +Δ𝜆0 in this work, where Δ𝜆0 = 10−2. Further investigations
regarding the selection of 𝑠 for producing well behaved subdivisions
will be conducted in our future work.

3.3.3 The objective function for optimization. The requirements for
𝐶2 continuity are adapted to construct the objective function for
stencil optimization. The𝐶2 continuity condition in Eq. (6) requires
computations of eigenfunctions 𝜓𝑖 for eigenvalues 𝜆 and 𝜇. The
eigenfunction𝜓𝑖 has intuitive geometric meanings. If we consider
eigenvectors of 𝜆 as arrays of coordinates for control vertices, the re-
sulting subdivision surface is just the span of eigenfunctions (𝜓1,𝜓2),
also written as (𝑥,𝑦) in Fig. 4(a). Similarly, if we further consider one
of the eigenvectors of 𝜇 as the third coordinate for respective control
vertices over (𝑥,𝑦) in Fig. 4(a), the resulting subdivision surface will
be the span of eigenfunctions (𝜓1,𝜓2,𝜓𝑖 ), 𝑖 = 3, 4, 5, also written as
(𝑥,𝑦, 𝑧) in Fig. 4(b), corresponding to one of the three independent
eigenvectors of 𝜇, respectively. We can write 𝜓𝑖 , 𝑖 = 3, 4, 5, as 𝑧 𝑗 ,
𝑗 = 1, 2, 3, but for simplicity as 𝑧𝑖 , 𝑖 = 1, 2, 3 in the rest of the paper,
see Fig. 4(b) for the cup case of valence 𝑁 = 7.

The quadratic precision error. As 𝐶2 continuity at extraordinary
positions requires eigenfunctions corresponding to 𝜇 to be standard
quadratics of eigenfunctions for 𝜆, the condition in Eq. (6) can be
rewritten into the following form that can be used for optimization,

𝑄𝑖 (𝑥,𝑦) =
(
𝜕2𝑧𝑖
𝜕𝑥2
− 𝑎𝑖

)2
+
(
𝜕2𝑧𝑖
𝜕𝑥𝜕𝑦

− 𝑏𝑖
)2
+
(
𝜕2𝑧𝑖
𝜕𝑦2
− 𝑐𝑖

)2
, (11)

where (𝑥,𝑦, 𝑧𝑖 ) = ®𝐵𝑇 ( ®𝑋, ®𝑌, ®𝑍𝑖 ), ®𝐵 is the column vector of basis
functions to parameterize the integral domain Ω in Fig. 4 following
the method in [Stam 1998], ®𝑋 , ®𝑌 are eigenvectors corresponding to
𝜆, ®𝑍𝑖 , 𝑖 = 1, 2, 3 are eigenvectors for 𝜇, and 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ∈ R for 𝑖 = 1, 2, 3
are coefficients of the 𝑖-th standard quadratics that can be obtained
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by minimizing respective integrals of 𝑄𝑖 (𝑥,𝑦) for 𝑖 = 1, 2, 3 as,

min
(𝑎𝑖 ,𝑏𝑖 ,𝑐𝑖 )

𝑒𝑖 (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ) =
∬
Ω 𝑄𝑖 (𝑥,𝑦) 𝑑𝑥𝑑𝑦∬

Ω 𝑑𝑥𝑑𝑦
. (12)

If we consider (𝑥,𝑦, 𝑧𝑖 ) as a subdivision surface, the minimization
in Eq. (12) gives standard quadratics of 𝑥 and 𝑦 that best fit the
subdivision surface (𝑥,𝑦, 𝑧𝑖 ). The partial derivatives in Eq. (11) can
be computed following the chain rule with the help of basis functions
in ®𝐵 and invertible Jacobian matrices guaranteed by 𝐶1 conditions.

As the eigenstructure analysis is based on a 5-ring configuration,
the integral in Eq. (12) should be performed over all 4-ring patches
Ω, i.e., the shaded region in Fig. 4(a) with the hole enclosed. In our
implementation, we can perform the integral only on the highlighted
region Ω0 in Fig. 4(a) which contains only regular patches for easy
evaluation, and the remaining integral on the region enclosed by
Ω0 can be easily computed as the sum geometric sequences which
are convergent due to the parameter bounds in Eq. (8).

x

y

(a)

y x

z

(b)

Fig. 4. Illustration of the integral domain in Eq. (12): (a) the shaded base
domain Ω0 used for numerical quadrature and (b) an eigenfunction for the
subsubdominant eigenvalue 𝜇. Due to the scaling nature of the refinement
process for eigenvectors, the integral over Ω, i.e., the union of Ω0 and the
hole region enclosed, can often be computed from the integral over Ω0 as
the sum of geometric sequences.

Weighting function to further improve second order characteristic
maps. Curvature performances near extraordinary positions are
heavily influenced by second order characteristic maps. If second
order characteristic maps have sign-changing Gauss curvatures, the
resulting limit surface might have hybrid curvature behavior that
leads to artifacts [Peters and Reif 2004].

We use a weighting function to penalize sign changes for Gauss
curvature on second order characteristic maps. Following the same
notations in Eq. (11), Gauss curvature for three second order char-
acteristic maps is computed as [Pressley 2010]

𝐾∗𝑖 (𝑥,𝑦) =

𝜕2𝑧𝑖
𝜕𝑥2

𝜕2𝑧𝑖
𝜕𝑦2
−
(
𝜕2𝑧𝑖
𝜕𝑥𝜕𝑦

)2
[
1 +

(
𝜕𝑧𝑖

𝜕𝑥

)2
+
(
𝜕𝑧𝑖

𝜕𝑦

)2]2 , 𝑖 = 1, 2, 3. (13)

As we are mostly interested in the sign of 𝐾∗
𝑖
(𝑥,𝑦), we only use the

numerator of 𝐾∗
𝑖
(𝑥,𝑦) for subsequent computations, written as

𝐾𝑖 (𝑥,𝑦) =
𝜕2𝑧𝑖
𝜕𝑥2

𝜕2𝑧𝑖
𝜕𝑦2
−
(
𝜕2𝑧𝑖
𝜕𝑥𝜕𝑦

)2
. (14)

Ideally, if 𝐶2 continuity conditions are satisfied, 𝐾𝑖 (𝑥,𝑦) should
be a constant equal to 𝑎𝑖𝑐𝑖 − 𝑏2𝑖 . For the cup case of the second
order characteristic map, 𝑎𝑖𝑐𝑖 − 𝑏2𝑖 > 0, while for the saddle cases,
𝑎𝑖𝑐𝑖 − 𝑏2𝑖 < 0. Now we redefine 𝐾𝑖 (𝑥,𝑦) as

𝐾𝑖 (𝑥,𝑦) = sign(𝑎𝑖𝑐𝑖 − 𝑏2𝑖 )
[
𝜕2𝑧𝑖
𝜕𝑥2

𝜕2𝑧𝑖
𝜕𝑦2
−
(
𝜕2𝑧𝑖
𝜕𝑥𝜕𝑦

)2]
. (15)

Through multiplication by the sign of the Gauss curvature for the
ideal case, i.e., sign(𝑎𝑖𝑐𝑖 − 𝑏2𝑖 ), the new form of 𝐾𝑖 (𝑥,𝑦) in Eq. (15)
will only be negative if Gauss curvature takes signs other than
sign(𝑎𝑖𝑐𝑖−𝑏2𝑖 ). We thus only need to penalize the case for𝐾𝑖 (𝑥,𝑦) <
0. A regularization operator for 𝐾𝑖 (𝑥,𝑦) can be defined as

𝑟 (𝐾𝑖 , 𝜖𝑖 ) =
𝐾𝑖 (𝑥,𝑦) +

√︃
𝐾2
𝑖
(𝑥,𝑦) + 4𝜖2

𝑖

2 , (16)

where 𝜖𝑖 is the regularization parameter. With lower 𝜖𝑖 values,
𝑟 (𝐾𝑖 , 𝜖𝑖 ) approximates 𝐾𝑖 (𝑥,𝑦) better for 𝐾𝑖 (𝑥,𝑦) > 0, while for
𝐾𝑖 (𝑥,𝑦) < 0, 𝑟 (𝐾𝑖 , 𝜖𝑖 ) becomes a small positive number that can be
used in the denominator as a penalty for 𝐾𝑖 (𝑥,𝑦) < 0, see Fig. 5(a).
Based on the properties of 𝑟 (𝐾𝑖 , 𝜖𝑖 ), a dimensionless weighting

function is thus constructed of the following form

𝑤𝑖 (𝐾𝑖 , 𝜖𝑖 , 𝑛) =
𝑟 (𝐾𝑖 , 𝑛𝜖𝑖 )
𝑟 (𝐾𝑖 , 𝜖𝑖 )

, (17)

where 𝑛 is a parameter to control the maximum weight applied,
and 𝜖𝑖 describes the overall slope for 𝑤𝑖 near 𝐾𝑖 (𝑥,𝑦) = 0. The
maximum weight is 𝑛2 and lower 𝜖𝑖 values produce steeper 𝑤𝑖
curves, as illustrated in Fig. 5(b).
A penalty will be applied if 𝐾𝑖 (𝑥,𝑦) < 0 when sign changes

appear in Gauss curvatures, and the influence of the weighting
function would be negligible for larger 𝐾𝑖 (𝑥,𝑦) values, which is
desirable for stencil tuning.
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Fig. 5. Illustrations for the weighting functions in Eq. (17): (a) the regular-
ization function in Eq. (16) with different regularization parameters 𝜖𝑖 ; and
(b) the weighting functions in Eq. (17) with different 𝑛 and 𝜖𝑖 values.

ACM Trans. Graph., Vol. 42, No. 6, Article 209. Publication date: December 2023.



An Unified 𝜆-subdivision Scheme for Quadrilateral Meshes with Optimal Curvature Performance in Extraordinary Regions • 209:7

ALGORITHM 1: StencilTuning(𝑁 )
Input: 𝑁 ;
Output:𝑚 tuned 𝑓2 and 𝑓3 stencil parameters for each 𝜆 ∈ 𝚲,
namely {𝚲, f2, f3} = { 𝚲(𝑖 ) , f2 (𝑖 ) , f3 (𝑖 ) ,𝑖 = 1, 2, · · · ,𝑚 };
// Initialization of output variables

𝑚 ← 100 ; // Number of candidate 𝜆 values

Compute 𝜆𝑙 by Eq. (23);
for 𝑖 = 1 to𝑚 do

𝚲(𝑖 ) ← 𝜆 ∈ [𝜆𝑎, 𝜆𝑒 ], see Table 1; f3 (𝑖 ) ← 0; f2 (𝑖 ) ← 0;
end
// Stencil tuning for all candidate 𝜆 values

for 𝑖 = 1 to𝑚 do
𝜆 ← 𝚲(𝑖 ) ; 𝑠 ← 𝑠𝑙 + Δ𝑠 by Eq. (10);
Initialization of 𝑓3 and 𝑓2 within respective bounds in Eqs.
(49)-(52), see Section B in the supplementary material.
𝑓 𝑙𝑎𝑔← 𝑁𝑜 ; // Stopping criteria not satisfied

while 𝑓 𝑙𝑎𝑔 = 𝑁𝑜 do
(𝑓1, 𝑑1, 𝑑2, 𝑒1, 𝑒2, 𝛼, 𝛽 ) = L(𝑁, 𝜆, 𝑓2, 𝑓3 ) in Eq. (7);
Construct local subdivision matrix S in Eq. (34) of Section A;
Compute eigenvectors for 𝜆 and 𝜇 as in Section A;
for 𝑗 = 1, 2, 3 do

Compute standard quadratic coefficients 𝑎 𝑗 , 𝑏 𝑗 , 𝑐 𝑗 by
minimizing Eq. (12) ;

𝐸 𝑗 ←
∬
Ω
𝑤𝑗𝑄 𝑗 𝑑𝑥𝑑𝑦∬
Ω
𝑑𝑥𝑑𝑦

by Eq. (18);

end
𝐸 ← 𝐸1 + 𝐸2 + 𝐸3;
if stopping criteria satisfied then

𝑓 𝑙𝑎𝑔← 𝑌𝑒𝑠 ;
f3 (𝑖 ) ← 𝑓3, f2 (𝑖 ) ← 𝑓2;

else
𝑓 𝑙𝑎𝑔← 𝑁𝑜 ;
Update 𝑓2 and 𝑓3 s.t. G(𝑁, 𝜆, 𝑓2, 𝑓3 ) ≤ 0 in Eq. (8)
following the BFGS method;

end
end

end
return 𝚲, f2, f3

The weighted objective function for stencil optimization. In this
work, we use the following integral of weighted quadratic precision
error to quantify the quality of each map,

𝐸𝑖 (𝑁, 𝜆, 𝑓2, 𝑓3) =
∬
Ω𝑤𝑖 (𝐾𝑖 , 𝜖𝑖 , 𝑛)𝑄𝑖 (𝑥,𝑦) 𝑑𝑥𝑑𝑦∬

Ω 𝑑𝑥𝑑𝑦
, 𝑖 = 1, 2, 3, (18)

where 𝑄𝑖 (𝑥,𝑦) and𝑤𝑖 (𝐾𝑖 , 𝜖𝑖 , 𝑛) are quadratic precision errors and
the weighting function in Eq. (11) and Eq. (17), respectively, and the
denominator is the area of the integral domain used for normaliza-
tion.

The optimized stencil coefficients (𝑓2, 𝑓3) for specified 𝜆 of valence
𝑁 can be obtained through the following minimization problem,{

min
(𝑓2,𝑓3 )

𝐸 (𝑁, 𝜆, 𝑓2, 𝑓3) =
∑3
𝑖=1 𝐸𝑖 (𝑁, 𝜆, 𝑓2, 𝑓3)

s.t. G(𝑁, 𝜆, 𝑓2, 𝑓3) ≤ 0,
(19)

where G(𝑁, 𝜆, 𝑓2, 𝑓3) contains parameter bounds in Eq. (8).

The minimization problem in Eq. (19) is solved by the ’fmincon’
function in Matlab where the ’bfgs’ algorithm is used for related
Hessian matrix approximation. The objective function in Eq. (19) is a
weighted version of that in [Ma andMa 2019b] whose global minima
have been verified. The introduction of the weighting function
Eq. (17) slightly modifies the behavior of the objective function at
lower 𝜆 values, creating a local ’flat’ region near the global minima
that might lead to premature convergence. Stencils in this local
’flat’ region exhibit almost identical performances according to our
numerical tests. To guarantee a reliable optimal solution, we also
perform optimizations for a number of initial solutions uniformly
sampled from the feasible domain of (𝑓2, 𝑓3) (with a number of
10 × 10 samples) and use the locally optimized result that best fits
the overall curves in Fig. 7.

4 SPLINE REPRESENTATION OF MAIN STENCIL
COEFFICIENTS

Based on the tuning framework in the previous section, we perform
subdivision tuning at a series of discrete 𝜆 values, and further rep-
resent the optimized 𝑓2 and 𝑓3 coefficients as continuous B-spline
functions of 𝜆 through spline approximation. A continuous family
of subdivision stencils can then be retrieved at any feasible 𝜆 value
through spline evaluation, which comes to the proposed unified
𝜆-subdivision scheme.

4.1 Parameter setting for tuning at discrete 𝜆 values
4.1.1 Domain for 𝜆 sampling. As indicated in Fig. 3, 1/8 ≤ 𝜆 ≤ 1
are required for 𝐶1 continuity at extraordinary positions. We select
samples for tuning subdivision stencils from 𝜆 ∈ [0.15, 0.9], which
would cover most scenarios for practical applications. Note that for
consistency, we denote by [𝜆𝑎, 𝜆𝑒 ] the domain of [0.15, 0.9] for 𝜆
sampling in subsequent discussions, see Table 1.

4.1.2 Strategies for 𝜆 sampling. As bounded curvature is an im-
portant property for subdivision schemes, we divide the interval
of 𝜆 ∈ [𝜆𝑎, 𝜆𝑒 ] at 𝜆 = 𝜆𝑙 , the lower bound for bounded curvature,
and select 50 uniformly distributed sample 𝜆 values in each subin-
terval, collectively denoted by 𝚲, which should be sufficient for
representing the entire family of unified subdivision scheme.

4.1.3 Parameters 𝜖𝑖 and 𝑛 for the weighting function. There are two
parameters for the weighting function in Eq. (17), namely 𝜖𝑖 and
𝑛. To ensure that the regularization have similar influences for all
three second order characteristic maps, we use

𝜖𝑖 = |𝑎𝑖𝑐𝑖 − 𝑏2𝑖 |𝜖, 𝑖 = 1, 2, 3, (20)

where 𝜖 = 0.2, and 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 are coefficients in Eq. (15). For the
parameter 𝑛 in Eq. (17), we use 𝑛 = 5 in this work.

4.1.4 Simplified evaluation of weighted objective functions. To sim-
plify the computation of Eq. (18) by making the most of the scaling
property of eigenvectors, the weighting functions defined on inner
spline rings are considered as scaled copies of those defined on Ω0
in Fig. 4(a). The integrals in Eq. (18) can then be computed as sums
of geometric sequences similar to that in [Ma and Ma 2018]. Numer-
ical verifications show that such a treatment produces reliable and
consistent results for the optimization in Eq. (19). All integrals for
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computing the objective function in Eq. (19) are finally produced
with 5 × 5 Gaussian points for each patch, and detailed procedures
for the optimization are illustrated in Algorithm 1.

4.2 Calculation of global optimal stencil coefficients
Apart from stencil coefficients at discrete sample 𝜆 values, we also
compute global optimal subdivision stencils (𝜆∗

𝐶
, 𝑓2, 𝑓3) over the

entire feasible domain for 𝜆 for each valence 𝑁 , which will be re-
covered by spline stencils in this work. The optimal 𝜆∗

𝐶
value for

a specified 𝑁 , along with corresponding optimal stencil 𝑓2 and 𝑓3
values, can be obtained by another layer of one-dimensional op-
timization with 𝜆 being the variable for minimization by Eq. (19).
The optimization framework in this case is slightly different from
Algorithm 1, but similar to that in [Ma and Ma 2018] with a different
objective function in this work. As expected for valence 𝑁 = 4,
the above optimization in 𝜆 produces stencils for bi-cubic B-spline
subdivision with 𝑓2 = 𝑓3 = 1/4 at 𝜆∗

𝐶
= 1/2, i.e., the regular case.

4.3 Spline representation of main stencil coefficients
With optimized stencil coefficients at sample 𝜆 values {𝚲, f2, f3}, as
shown in Fig. 6(a) for discrete points, including the global optimal
stencil at 𝜆∗

𝐶
in Section 4.2, we further construct spline representa-

tions of 𝑓2 (𝜆) and 𝑓3 (𝜆) in 𝜆 through B-spline approximation [Piegl
and Tiller 1997].

4.3.1 Determination of knot vectors. We propose to use B-spline
functions with degree 𝑝 = 3 and with open knots for representing
𝑓2 and 𝑓3 against 𝜆 for all valences 𝑁 = 3, . . . , 20.
Observed in Fig. 7 that there are feature 𝜆 values at which the

𝑓2 and 𝑓3 functions are 𝐶0 continuous, mostly caused by param-
eter bounds. We place 𝑝-multiple knots at such feature 𝜆 values.
It should be noted that for consistency of knot structures, three
𝑝-multiple knots, denoted by 𝜆𝑏 , 𝜆𝑐 = 𝜆𝑙 , and 𝜆𝑑 , are assigned for
all knot vectors of 𝑁 = 3, . . . , 20, even though the functions for 𝑓2
and 𝑓3 are smooth at such 𝜆 values for some valences 𝑁 . In such
cases, the required 𝑝-multiple knots are inserted by knot insertion
after obtaining the desired 𝑓2 or 𝑓3 functions. Between each pair
of multiple knots, an intermediate knot is also inserted to enrich
the knot vector for better representation of 𝑓2 and 𝑓3 functions. The
knot vectors for 𝑓2 and 𝑓3 functions are structured in the form of

𝚵 = {𝜉1, . . . , 𝜉𝑛𝑣+𝑝+1}

=

 𝜆𝑎︸︷︷︸
𝑝+1

, 𝜆−
𝑏
, 𝜆𝑏︸︷︷︸

𝑝

, 𝜆+
𝑏
, 𝜆𝑐︸︷︷︸

𝑝

, 𝜆−
𝑑
, 𝜆𝑑︸︷︷︸

𝑝

, 𝜆+
𝑑
, 𝜆𝑒︸︷︷︸
𝑝+1

 ,
(21)

where 𝑛𝑣 = 17 is the number of control coefficients for 𝑓2 and 𝑓3
following the proposed knots structure.
Details for each knot value can be found in Table 1. Knots with

superscripts + and − are intermediate knots inserted at the center
of neighboring multiple knots.

4.3.2 Calculation of control coefficients for 𝑓2 and 𝑓3 functions.
When constructing the spline stencils, we require resulting 𝑓2 (𝜆)
and 𝑓3 (𝜆) functions to exactly recover the global optimal stencil
at 𝜆∗

𝐶
for all valence 𝑁 , including the regular stencil for 𝑁 = 4 at

𝜆∗
𝐶
= 1/2. Given knots 𝚵 with degree 𝑝 defined in Eq. (21) and𝑚
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(f)

Fig. 6. Construction of stencil spline functions of 𝑓2 (𝜆) and 𝑓3 (𝜆) for 𝑁 =

6: (a) stencil spline functions (solid lines) with discrete optimized stencil
parameters (hollow circles); (b) approximation errors (thin lines) from 𝑓2 (𝜆)
and 𝑓3 (𝜆) to discrete tuned stencil parameters, respectively; (c) resulting
objective function 𝐸 (𝑁, 𝜆, 𝑓2, 𝑓3 ) in Eq. (19) (solid lines) corresponding to
approximation spline stencils in (a) with superposed discrete optimized 𝐸;
(d) resulting error plot of objective function 𝐸 (𝑁, 𝜆, 𝑓2, 𝑓3 ) from 𝐸 of the
approximation spline stencils to 𝐸 of discrete optimized stencils; (e) resulting
𝑠 and 𝜃 plots (solid lines) corresponding to 𝑓2 (𝜆) and 𝑓3 (𝜆) with superposed
discrete 𝑠 and 𝜃 of tuned stencils; and (f) resulting spline stencil parameters
𝑓2 (𝜆) , 𝑓3 (𝜆) , and respective 𝐸 (𝑁, 𝜆, 𝑓2, 𝑓3 ) . In this figure, the superscript
"#" denotes results from direct tuning through Eq. (19) at discrete sample 𝜆
values, some featured 𝜆 values are marked with vertical dashed lines, and
recommended regions in Section 4.4 are shaded with light green in (a)-(e).

optimized discrete stencil parameters of 𝑓2 and 𝑓3 with respective
𝜆 values obtained for 𝜆 ∈ [𝜆𝑎, 𝜆𝑒 ] from the previous subsection,
collectively denoted here as M , we thus further construct B-spline
functions 𝑓2 (𝜆) and 𝑓3 (𝜆) approximating M with 𝚵 through con-
strained B-spline approximation while interpolating the globally
optimal stencil at 𝜆∗

𝐶
for all valences 𝑁 . During the process of ap-

proximation, we also apply inequality constraints at all discrete
sample stencils in M such that the resulting spline stencils of 𝑓2 (𝜆)
and 𝑓3 (𝜆) would fall within respective upper and lower bounds in
Eqs. (53)-(62), see supplementary materials (Section B).
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(c) 𝑁 = 7
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(d) 𝑁 = 9
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(e) 𝑁 = 8
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(f) 𝑁 = 12
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(g) 𝑁 = 16
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(h) 𝑁 = 20

Fig. 7. Stencil coefficients 𝑓2 (𝜆) and 𝑓3 (𝜆) for selected valences 𝑁 ≤ 20. Regions shaded with orange and blue are the feasible domains for 𝑓2 and 𝑓3,
respectively. The recommended regions for 𝜆 ∈ [𝜆𝑟1, 𝜆𝑟2 ] in Section 4.4 are highlighted by a piece of thicker lines in the plots for 𝑓2 and 𝑓3, and their
boundaries are highlighted by black dashed lines. Some other featured 𝜆 values in Section 4.4 are also marked for reference.

During the approximation process in the implementation, we
only apply multiple knots at visually𝐶0 positions, if exist for certain
valences 𝑁 , and at the two end knots. We later insert respective
multiple knots in the knot vector to recover the knot structure in
𝚵 afterwards. Also, as indicated in Eqs. (61)-(62) in supplementary
materials (Section B), parameter bounds for 𝑓2 are influenced by 𝑓3,
so for each valence 𝑁 , we produce the spline approximation of 𝑓3
first followed by the computation of 𝑓2 spline function.
The results of spline approximations are control coefficients of

𝑓𝑖 (𝜆), 𝑖 = 2, 3 for each of the respective valence 𝑁 ≤ 20, that can be
organized as a vector ®𝐶𝑁

𝑓𝑖
. Combined with knots 𝚵 with degree 𝑝 ,

the B-spline representations of 𝑓𝑖 (𝜆), 𝑖 = 2, 3 are thus fully defined.
Full lists of control coefficients ®𝐶𝑁

𝑓𝑖
for 𝑓𝑖 (𝜆), 𝑖 = 2, 3 can be found

in Table 5 and Table 6 in supplementary materials (Section C). See
also Section 4.5 for further information on the evaluation of 𝑓𝑖 (𝜆),
𝑖 = 2, 3 and further construction of desired full subdivision stencils.

4.3.3 Illustration of spline functions of 𝑓2 (𝜆) and 𝑓3 (𝜆). The ob-
tained spline functions of 𝑓2 (𝜆) and 𝑓3 (𝜆) for 𝑁 = 6 are illustrated
in Fig. 6. From Fig. 6(b) and (d), it can been seen that spline functions
𝑓2 (𝜆) and 𝑓3 (𝜆) approximate discrete optimized 𝑓2 and 𝑓3 values well
over the entire feasible domain for 𝜆 ∈ [𝜆𝑎, 𝜆𝑒 ]. The relaxation pa-
rameter 𝑠 in Eq. (10) follows the same pattern of Fig. 6(e) for all
valences 𝑁 . The angle 𝜃 is the half-angle of the outermost corner
of 1-ring quadrilaterals in the respective natural configurations,
and 𝜃 should be 𝜃 ≤ 𝜋

2 to avoid concave corners and to guarantee
regularity and injectivity of characteristic maps for 𝐶1 continuity.
In this work, we require that 𝜃 ≤ 𝜋

2 −
𝜋
2𝑁 , leading to parameter

bounds of Eq. (62) and Eq. (60) in supplementary materials (Section
B). The application of 𝜃 constraints in stencil optimization and for

regularity check are similar to that in [Ma and Ma 2019a]. Fig. 6(f)
illustrates the resulting spline stencil parameters 𝑓2 (𝜆), 𝑓3 (𝜆), and
respective 𝐸 (𝑁, 𝜆, 𝑓2, 𝑓3), with marked parameters at some featured
𝜆 for valence 𝑁 = 6. Fig. 7 provides further illustrations of 𝑓2 (𝜆) and
𝑓3 (𝜆) similar to that in Fig. 6(f) for some other selected valences.

4.4 Highlights of featured 𝜆 values and regions
Properties of the proposed unified 𝜆-subdivision scheme depend
upon the selection of the 𝜆 value. Table 1 highlights several featured
𝜆 values that are useful for practical applications.

Table 1. Summary of important and featured 𝜆 values, see also Fig. 3. Mul-
tiple knots used in Eq. (21), i.e., 𝜆𝑏 , 𝜆𝑐 = 𝜆𝑙 , and 𝜆𝑑 , are shaded with light
gray, while 𝜆𝑎 = 0.15 and 𝜆𝑒 = 0.9 are not listed in the table. The column
𝜆𝐶𝐶 contains 𝜆 values for Catmull-Clark subdivision for reference.

𝑁 𝜆𝑟1 𝜆𝑏 𝜆∗
𝐴

𝜆𝑐 = 𝜆𝑙 𝜆∗
𝑀

𝜆𝐶𝐶 𝜆𝑑 𝜆∗
𝐶

𝜆𝑟2
3 0.2 0.25 0.39 0.3536 0.5 0.4101 0.5 0.4112 0.5832
4 0.2 0.25 0.39 0.3536 0.5 0.5 0.5500 0.5 0.7438
5 0.2 0.25 0.39 0.3536 0.5 0.5500 0.3973 0.5599 0.8017
6 0.2 0.25 0.39 0.3536 0.5 0.5797 0.3973 0.5935 0.8625
7 0.2 0.2 0.39 0.3536 0.5 0.5985 0.4082 0.6140 0.8760
8 0.2 0.3010 0.39 0.4142 0.5 0.6111 0.5500 0.6320 0.8842
9 0.2 0.2564 0.39 0.4976 0.5 0.6199 0.5540 0.6455 0.8887
10 0.2 0.2265 0.39 0.5669 0.5 0.6263 0.6868 0.6587 0.8910
11 0.2 0.1980 0.39 0.6243 0.5 0.6311 0.7291 0.6733 0.8940
12 0.2 0.2 0.39 0.6720 0.5 0.6348 0.7768 0.6860 0.8962
13 0.2 0.2 0.39 0.7118 0.5 0.6377 0.7871 0.6944 0.8977
14 0.2 0.3 0.39 0.7453 0.5 0.6400 0.7948 0.7138 0.8992
15 0.2 0.3 0.39 0.7735 0.5 0.6418 0.8064 0.7268 0.9
16 0.2 0.3 0.39 0.7975 0.5 0.6433 0.8221 0.7348 0.9
17 0.2 0.3 0.39 0.8180 0.5 0.6446 0.8344 0.7405 0.9
18 0.2 0.3 0.39 0.8357 0.5 0.6457 0.8550 0.7461 0.9
19 0.2 0.3 0.39 0.8510 0.5 0.6466 0.8647 0.7510 0.9
20 0.2 0.3 0.39 0.8643 0.5 0.6473 0.8721 0.7551 0.9
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• 𝜆𝑙 is the lower bound for 𝜆 to have bounded curvature. Values
of 𝜆𝑙 can be found in Table 1, and explicit computation for 𝜆𝑙
can also be found in Eq. (23).
• 𝜆∗

𝐶
is the value of 𝜆 with global optimal bounded curvature

for any valence 𝑁 over the entire feasible domain for 𝜆. By
using 𝜆 = 𝜆∗

𝐶
, the 𝑓2 and 𝑓3 functions will return subdivision

stencils that produce the best possible surface qualities.
• 𝜆∗

𝐴
= 0.39 is the value of 𝜆 that produces IGA solutions with

optimal convergence rates in 𝐿2-norms [Ma and Ma 2019a].
If errors in other norms are considered, such as 𝐻1- and 𝐿∞-
norms, even lower 𝜆 values should be used.
• 𝜆∗

𝑀
= 1/2 is the value of 𝜆 that produces uniform refined

meshes with the least polar artifacts.
• 𝜆𝑟1 is an empirical lower bound for the recommended re-
gion of 𝜆. For 𝜆 < 𝜆𝑟1 , the subdivision schemes are less sta-
ble. A slight decrease in 𝜆 might lead to rapid increase of
𝐸 (𝑁, 𝜆, 𝑓2, 𝑓3) in Eq. (19), especially for higher valences, see
Fig. 7(g) and (h).
• 𝜆𝑟2 is an empirical upper bound for the recommended region
of 𝜆. For 𝜆 > 𝜆𝑟2 , the subdivision schemes are also less stable
with possible overlapping or concave 2-ring quadrilaterals in
respective natural configurations.

In summary, while the feasible region of the resulting spline sten-
cil parameters of 𝑓2 (𝜆) and 𝑓3 (𝜆) is 𝜆 ∈ [𝜆𝑎, 𝜆𝑒 ], the recommended
region for practical applications is 𝜆 ∈ [𝜆𝑟1, 𝜆𝑟2] for producing qual-
ity subdivisions. While the proposed unified 𝜆 subdivision scheme
produces bounded curvature subdivisions in theory for 𝜆 ∈ [𝜆𝑙 , 𝜆𝑒 ]
as shown in Fig. 3, it produces well behaved bounded curvature
subdivisions for 𝜆 ∈ [𝜆𝑙 , 𝜆𝑟2].
Also note that at 𝜆∗

𝐶
, 𝜆∗
𝐴
, and 𝜆∗

𝑀
, the proposed unified 𝜆 sub-

division scheme produces optimized subdivision stencils having
similar properties to that in [Augsdörfer et al. 2006; Ma and Ma
2018] with the best curvature performance, [Ma and Ma 2019a; Wei
et al. 2021] at lower 𝜆 values with improved performance in IGA,
and [Ma and Ma 2019b; Reif and Sabin 2019] at 𝜆 close to 1/2 with
uniform refined meshes, respectively.

4.5 Stencil evaluation at given 𝜆 values
As stencil coefficients 𝑓2 (𝜆) and 𝑓3 (𝜆) are represented as B-spline
functions, they can be efficiently evaluated [Piegl and Tiller 1997].
If the column vector ®𝑏 (𝜆) contains B-spline basis functions corre-
sponding to 𝚵 at 𝜆, then the 𝑓2 and 𝑓3 values at 𝜆 for valence 𝑁 ,
denoted by 𝑓𝑖 (𝑁, 𝜆), 𝑖 = 2, 3, can be written as

𝑓𝑖 (𝑁, 𝜆) = ®𝑏𝑇 (𝜆) ®𝐶𝑁𝑓𝑖 , 𝜆 ∈ [𝜆𝑎, 𝜆𝑒 ] , for 𝑖 = 2, 3, (22)

where ®𝐶𝑁
𝑓𝑖
is the vector of control coefficients for 𝑓𝑖 of valence 𝑁 ,

𝑖 = 2, 3, and ®𝐶𝑁
𝑓𝑖

is available in supplementary materials (Section C).
In Table 2 and Table 3 of the attached supplementary materi-

als (Section C), we also include selected evaluations of 𝑓2 (𝜆) and
𝑓3 (𝜆) at some featured 𝜆 values that can be readily used for further
computing relevant full subdivision stencils.

With𝑁 , 𝜆, 𝑓2, and 𝑓3 given, other stencil parameters or subdivision
coefficients can be further computed by simple arithmetic formu-
lae as follows. First we compute the lower bound 𝜆𝑙 for bounded

curvature. For a specific valence 𝑁 , 𝜆𝑙 is given as

𝜆𝑙 =

{
𝜆𝑙1, for 𝑁 < 5,
max(𝜆𝑙1, 𝜆

𝑙
2, 𝜆

𝑙
3), for 𝑁 ≥ 5, (23)

where

𝜆𝑙1 =

√︂
1
8 , 𝜆𝑙2 =

𝑐𝑛,2
𝑐𝑛,1

, 𝜆𝑙3 =
1 + 𝑐𝑛,2

1 + 2𝑐𝑛,1 − 𝑐𝑛,2
, (24)

with 𝑐𝑛,1 = cos(2𝜋/𝑁 ) and 𝑐𝑛,2 = cos(4𝜋/𝑁 ). Note that values of
𝜆𝑙 are also recorded in Table 1, with four decimal places.
Then we compute 𝑠 following Eq. (10), where 𝜆𝑙 is used. The

remaining stencil coefficients can thus be computed as

𝑓1 = 1 − 2𝑓2 − 𝑓3, 𝑑1 = 𝑔1 + 2𝑔2 𝑓1, 𝑑2 = 𝑔3 + 2𝑔2 𝑓2,
𝑒1 = 𝑔2 𝑓2, 𝑒2 = 𝑔2 𝑓3,

𝛽 =
𝑓3 (2𝑒1 + 𝑑2) − 4𝑓2𝑒2 + 𝜇2 − (𝑓3 + 2𝑒1 + 𝑑2)𝜇
𝑑2 + 2𝑒1 − 2𝑓2 − 𝜇 + (𝑓3 − 2𝑒2 − 𝜇)𝜑𝑛

𝛼 = 𝜑𝑛𝛽, 𝜑𝑛 = 6

(25)
(26)

(27)

(28)
where

𝜇 = 𝑠𝜆2,

𝑔3 = 𝑠𝜆
2 (1 + 𝑐𝑛,1)𝑠𝜆2 − (1 + 𝑐𝑛,2)𝜆 + 𝑓3 (𝑐𝑛,2 − 𝑐𝑛,1)
(𝑐𝑛,1 − 𝑐𝑛,2)𝑠𝜆2 + 𝑓3 (1 + 𝑐𝑛,2)𝑠𝜆 − 𝑓3 (1 + 𝑐𝑛,1)

,

𝑔2 =
𝜆(𝜆 − 𝑓3) + (𝑓3 − 𝜆)𝑔3

2𝑓2 (1 + 𝑐𝑛,1)𝜆
, 𝑔1 = 1 − 2𝑔2 − 𝑔3 .

(29)

(30)

(31)

The intermediate variables, 𝑔1, 𝑔2, and 𝑔3, are generalized Catmull-
Clark coefficients [Ma and Ma 2018] for refined edge vertices

𝑉𝐸 = 𝑔1𝑉0 + 𝑔2 (𝑉𝐹 +𝑉 ′𝐹 ) + 𝑔3𝑉1, (32)

where 𝑉0 is the original extraordinary vertex, 𝑉0 and 𝑉1 are end
vertices of the corresponding edge in the original mesh, and 𝑉𝐹 and
𝑉 ′
𝐹
are two neighboring face vertices in the refined mesh.

5 EXAMPLES AND FURTHER DISCUSSIONS

5.1 Performance at various 𝜆 values
Fig. 8 provides illustrations of limit surfaces of two general models
with subdivision in extraordinary regions at a range of 𝜆 values
using our method. One can observe that, the 𝜆-subdivision scheme
produces the most favorable models when 𝜆 falls in the middle
region, while minor visual surface twisting might appear when 𝜆
is selected either too small or too large on the two sides. Fig. 9
provides some further illustrations of the proposed method on two
other general models at some important featured 𝜆 values, 𝜆∗

𝐴
, 𝜆∗
𝑀

and 𝜆∗
𝐶
in Table 1 of Section 4.4, with also highlight lines display.

The limit surfaces appear to be satisfactory for all three candidate 𝜆
values while the highlight lines for 𝜆∗

𝑀
and 𝜆∗

𝐶
usually behave better

than that for 𝜆∗
𝐴
. The result is consistent with observations in Fig. 8.

In terms of refined mesh structure, the value of 𝜆 directly influ-
ences the contraction of 1-ring vertices, which can be seen both
in Fig. 10 with selected natural configurations and in Fig. 11(a-e)
with refined meshes. The proposed 𝜆-subdivision at 𝜆 = 𝜆∗

𝐶
for each

valence 𝑁 in Table 1 produces the smoothest limit surface as shown
in Fig. 9 and Fig. 11, and refined meshes are the most uniform for
𝜆 = 𝜆∗

𝑀
= 0.5, as shown in Fig. 10(g)(h)(i) and Fig. 11(c).
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(a) Input mesh (b) 𝜆 = 0.3 (c) 𝜆 = 0.4 (d) 𝜆 = 0.5 (e) 𝜆 = 0.6 (f) 𝜆 = 0.7

(g) Input mesh (h) 𝜆 = 0.3 (i) 𝜆 = 0.4 (j) 𝜆 = 0.5 (k) 𝜆 = 0.6 (l) 𝜆 = 0.7

Fig. 8. Two examples of the proposed method at various 𝜆 values: (a-f) results for the mesh "tripleTorus" and (g-l) results for the mesh "brick". Both meshes in
(a) and (g) are from [Cashman et al. 2009a]. The mesh "brick" contains extraordinary vertices of valences 𝑁 = 3, 6, 8, and for the mesh "tripleTorus", all the
extraordinary vertices are of valence 𝑁 = 6.

For detailed illustrations of performances of our method, we
use the 𝑁 = 7 mesh in Fig. 12 and plot refined meshes, surface
renderings, Gauss curvature distributions, and highlight lines, in
Fig. 11 again at featured 𝜆 values 𝜆∗

𝐴
, 𝜆∗
𝑀

and 𝜆∗
𝐶

in Section 4.4.
Surface renderings have consistent performances to those in Fig.
8, and the best highlight lines and Gauss curvature performances
are also observed at 𝜆 = 𝜆∗

𝐶
. Deviations from 𝜆 = 𝜆∗

𝐶
might lead to

possible degradation of surface qualities, in both highlight lines and
curvature distributions. So when selecting 𝜆 values, there is usually
a balance between different priorities. Empirically, 𝜆 ∈ [𝜆∗

𝑀
, 𝜆∗
𝐶
]

produces good quality limit surfaces and is recommended for surface
representations, while small values of 𝜆 < 𝜆∗

𝑀
would be preferred

for IGA applications, such as at 𝜆∗
𝐴
mentioned in Section 4.4.

5.2 Comparisons with existing subdivision schemes
The proposed 𝜆-subdivision scheme is an improved generalization
of existing schemes in [Ma and Ma 2019a], [Ma and Ma 2018], and
[Ma and Ma 2019b], with corresponding 𝜆 denoted by 𝜆𝐴 , 𝜆𝐶 , and
𝜆𝑀 . Here we compare the proposed method with these schemes and
the classical Catmull-Clark subdivision [Catmull and Clark 1978].
Comparison of second order characteristic maps: Compared with

previous schemes [Ma and Ma 2019a], [Ma and Ma 2018], and [Ma
and Ma 2019b], a major difference is that we use a weighted objec-
tive function in subdivision tuning to penalize the undesired sign
changes of second order characteristic maps for producing better
surfaces. We use 𝐾𝑚 defined in Eq. (33) to measure the extent of
overall sign change for three second order characteristic maps,

𝐾𝑚 = max(−𝐾𝑚1 , 0) +max(𝐾𝑚2 , 0) +max(𝐾𝑚3 , 0). (33)

𝐾𝑚1 is the minimum Gauss curvature for the cup case which ideally
should be positive, and 𝐾𝑚2 and 𝐾𝑚3 are the maximum Gauss cur-
vature for two saddle cases which ideally should be negative. The
smaller the 𝐾𝑚 value, the better the respective subdivision with less
Gauss curvature sign changes.

The comparison of 𝐾𝑚 between the proposed scheme and [Ma
and Ma 2019a] is illustrated in Fig. 13, which shows that the pro-
posed scheme produces better maps with less Gauss curvature sign
changes than that in [Ma and Ma 2019a]. The results for comparison
among the proposed scheme and three previous schemes [Catmull
and Clark 1978], [Ma and Ma 2019b] and [Ma and Ma 2018] are
omitted since 𝐾𝑚 vanishes for all of them, which indicate that all
these schemes, including ours at higher 𝜆 values, produce second
order maps with no Gauss curvature sign changes.
Further comparisons on meshes with a single EV: Our method is

also compared with [Ma and Ma 2019a] on challenging single-EV
meshes in Fig. 12 for further validation of performances at lower
𝜆 values. Comparisons with Catmull-Clark subdivision are also
included as a baseline, see Fig. 14 and Fig. 15.
At lower 𝜆 values, e.g., 𝜆 = 𝜆𝐴 , the proposed method produces

tuned subdivisions with better second order maps and better limit
surfaces than [Ma and Ma 2019a], as illustrated in Fig. 14(a-f) and
Fig. 15(a-f). The ridges in surface renderings are alleviated, and the
highlight lines are smoother for our method. Gauss curvatures by
our method have tighter bounds and are more uniformly distributed.
By using the same 𝜆 value of Catmull-Clark subdivision, our scheme
generates surfaces with smoother highlight lines and bounded Gauss
curvature, see comparisons in Fig. 14(g-l) and Fig. 15(g-l).
For tuned subdivisions at 𝜆 values in the middle region, as the

influence of weighting function in Eq. (17) is limited, the proposed
method produces almost identical results at 𝜆∗

𝑀
and 𝜆∗

𝐶
compared

with tuned subdivisions in [Ma and Ma 2019b] and [Ma and Ma
2018], respectively, and relevant comparisons are thus omitted.

5.3 Other observations and further discussions
The proposed 𝜆-subdivision scheme produces tuned subdivisions
and further generalization of Catmull-Clark subdivision. All existing
schemes for sharp features for Catmull-Clark subdivision can be di-
rectly integrated into our scheme. From Fig. 8(b)(h), we also observe
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(a) (b)

(c) 𝜆 = 𝜆∗
𝐴

(d) 𝜆 = 𝜆∗
𝑀

(e) 𝜆 = 𝜆∗
𝐶

(f) 𝜆 = 𝜆∗
𝐴

(g) 𝜆 = 𝜆∗
𝑀

(h) 𝜆 = 𝜆∗
𝐶

(i) 𝜆 = 𝜆∗
𝐴

(j) 𝜆 = 𝜆∗
𝑀

(k) 𝜆 = 𝜆∗
𝐶

(l) 𝜆 = 𝜆∗
𝐴

(m) 𝜆 = 𝜆∗
𝑀

(n) 𝜆 = 𝜆∗
𝐶

Fig. 9. Results from the proposed scheme on general meshes at selected
𝜆: (a-b) initial control meshes of "Kitten" (from [Jakob et al. 2015] with
EVs of 𝑁 = 3, 5, 6) and "Propeller" (from [Scott et al. 2013] with EVs of
𝑁 = 3, 5); (c-h) results for "Kitten"; and (i-n) results for "Propeller". Results
for 𝜆 = 𝜆∗

𝐴
, 𝜆∗

𝑀
and 𝜆∗

𝐶
are illustrated in columns 1 to 3, respectively. The

highlighted regions illustrate highlight lines near EVs of valence 𝑁 = 5.

that soft crease features appear on limit surfaces in extraordinary re-
gions with lower 𝜆 values. This property could be further addressed
to develop an alternative scheme for defining soft or semi-sharp
features over 𝜆-subdivision surfaces. Properly organized subdivi-
sions with a lower 𝜆 value can be applied at tagged vertices/edges
with which newly inserted vertices can be positioned close to the
respective crease edge forming a soft crease. Sharpness of the soft
crease can be controlled by 𝜆.

(a) 𝜆 = (𝜆𝑟1 + 𝜆
∗
𝐴
)/2 (b) 𝜆 = (𝜆𝑟1 + 𝜆

∗
𝐴
)/2 (c) 𝜆 = (𝜆𝑟1 + 𝜆

∗
𝐴
)/2

(d) 𝜆 = 𝜆∗
𝐴

(e) 𝜆 = 𝜆∗
𝐴

(f) 𝜆 = 𝜆∗
𝐴

(g) 𝜆 = 𝜆∗
𝑀

(h) 𝜆 = 𝜆∗
𝑀

(i) 𝜆 = 𝜆∗
𝑀

(j) 𝜆 = 𝜆∗
𝐶

(k) 𝜆 = 𝜆∗
𝐶

(l) 𝜆 = 𝜆∗
𝐶

(m) 𝜆 = (𝜆∗
𝐶
+ 𝜆𝑟2 )/2 (n) 𝜆 = (𝜆∗

𝐶
+ 𝜆𝑟2 )/2 (o) 𝜆 = (𝜆∗

𝐶
+ 𝜆𝑟2 )/2

𝑁 = 5 𝑁 = 8 𝑁 = 11

Fig. 10. Natural configurations at selected 𝜆 values for 𝑁 = 5, 8, 11 in
columns 1 to 3, respectively. Note that respective maps are organized fol-
lowing an ascending order from the first row to the fifth row. Featured 𝜆
values can be found in Table 1.

The proposed 𝜆-subdivision scheme could also be used for mesh
reparameterization with desired distribution of control vertices for
producing field-aligned solutions in isogeometric analysis. For fluid
flow simulation or crack animation, for examples, one can perform
mesh refinement or develop mesh reparameterization algorithms
using 𝜆-subdivision rules to increase mesh density near crack or at
other desired positions for producing solutions with reduced local
errors and balanced solution error distribution.
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(a) 𝜆 = 0.35 (b) 𝜆 = 𝜆∗
𝐴

(c) 𝜆 = 𝜆∗
𝑀

(d) 𝜆 = 𝜆∗
𝐶

(e) 𝜆 = 𝜆∗
𝐶
+ Δ𝜆

(f) 𝜆 = 0.35 (g) 𝜆 = 𝜆∗
𝐴

(h) 𝜆 = 𝜆∗
𝑀

(i) 𝜆 = 𝜆∗
𝐶

(j) 𝜆 = 𝜆∗
𝐶
+ Δ𝜆

(k) −49.56 ≤ 𝐾𝐺 ≤ 15.32 (l) −38.72 ≤ 𝐾𝐺 ≤ 13.42 (m) −26.04 ≤ 𝐾𝐺 ≤ 2.54 (n) −21.29 ≤ 𝐾𝐺 ≤ 3.61 (o) −26.84 ≤ 𝐾𝐺 ≤ 10.27

(p) 𝜆 = 0.35 (q) 𝜆 = 𝜆∗
𝐴

(r) 𝜆 = 𝜆∗
𝑀

(s) 𝜆 = 𝜆∗
𝐶

(t) 𝜆 = 𝜆∗
𝐶
+ Δ𝜆

Fig. 11. Illustration of results for the 𝑁 = 7 mesh at featured 𝜆 values: (a-e) meshes after two steps of subdivision; (f-j) rendering of limit surfaces; (k-o) Gauss
curvature distributions; and (p-t) highlight lines. Results for 𝜆 = 0.35, 𝜆∗

𝐴
, 𝜆∗

𝑀
, 𝜆∗

𝐶
, and 𝜆∗

𝐶
+ Δ𝜆 with Δ𝜆 = (𝜆𝑟2 − 𝜆∗𝐶 )/2, are illustrated in columns 1 to 5,

respectively. Gauss curvature is denoted by 𝐾𝐺 , and the same color scale is used for all Gauss curvature plottings.

(a) (b) (c)

Fig. 12. Three challenging meshes from [Karčiauskas and Peters [n. d.]]
with a single extraordinary vertex for comparisons: (a) 𝑁 = 5; (b) 𝑁 = 6;
and (c) 𝑁 = 7. Note that the 𝑁 = 6 mesh is convex while the other two are
saddle meshes.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we propose a continuous family of subdivision schemes
that generalizes several existing tuned schemes. The main subdivi-
sion coefficients in this work are represented as B-spline functions
of subdominant eigenvalues 𝜆. Tedious stencil tuning is avoided for

0
26.86

66.03

343.36

0

335.01
378.02

493.77

N = 3 N = 5 N = 6 N = 7
0

100

200

300

400

500

Ours
MM2019a

Fig. 13. Comparisons of 𝐾𝑚 in Eq. (33) for measuring overall Gauss curva-
ture sign changes of the three second order characteristic maps between
the proposed scheme and MM2019a ([Ma and Ma 2019a]). For comparison,
we use the same 𝜆 value as [Ma and Ma 2019a] for the proposed scheme.

potential users, and the evaluation of subdivision stencils at given 𝜆
values can be performed by B-spline evaluations followed by simple
arithmetic calculations. A tuning framework has been proposed
for subdivision stencil optimization towards curvature continuity
conditions. The bounded curvature constraint has been relaxed for
extended feasible domains of 𝜆 with minimum possible curvature
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(a) Ours at 𝜆 = 𝜆𝐴 (b) −33.07 ≤ 𝐾𝐺 ≤ 1.12 (c) Ours at 𝜆 = 𝜆𝐴

(d) MM2019a (e) −42.17 ≤ 𝐾𝐺 ≤ 34.51 (f) MM2019a

(g) Ours at 𝜆 = 𝜆𝐶𝐶 (h) −32.57 ≤ 𝐾𝐺 ≤ 1.57 (i) Ours at 𝜆 = 𝜆𝐶𝐶

(j) CC1978 (k) −1.65×103 ≤ 𝐾𝐺 ≤ 0 (l) CC1978

Fig. 14. Comparison using the 𝑁 = 5mesh in Fig. 12: (a-f) comparison with
MM2019a [Ma and Ma 2019a], and (g-l) comparison with CC1978 [Catmull
and Clark 1978]. The values 𝜆𝐴 and 𝜆𝐶𝐶 are the subdominant eigenvalue
for MM2019a and CC1978, respectively. Gauss curvature is denoted by 𝐾𝐺 ,
and the same color scale is used for all Gauss curvature plottings.

variations. A weighting function has been applied to further im-
prove the qualities of second order characteristic maps at lower 𝜆
values. Optimized stencils are then reforged into B-spline represen-
tations for easy evaluation. Properties of the proposed scheme at
different 𝜆 values have been validated by numerical examples. The
improvement of surface qualities at lower 𝜆 values have also been
verified. The proposed unified 𝜆-subdivision scheme can be applied
in both graphics and engineering analysis. As future works, we will
apply the proposed method for the creation of semi-sharp features,
and use the method to solve relevant engineering problems.
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